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Mersenne Primes

In this chapter we will study primes that can be written in the form an − 1 with
n ≥ 2. For example, 31 is such a prime, since 31 = 25−1. The first step is to look
at some data.

22 − 1 = 3 23 − 1 = 7 24 − 1 = 3 · 5 25 − 1 = 31

32 − 1 = 23 33 − 1 = 2 · 13 34 − 1 = 24 · 5 35 − 1 = 2 · 112
42 − 1 = 3 · 5 43 − 1 = 32 · 7 44 − 1 = 3 · 5 · 17 45 − 1 = 3 · 11 · 31
52 − 1 = 23 · 3 53 − 1 = 22 · 31 54 − 1 = 24 · 3 · 13 55 − 1 = 22 · 11 · 71
62 − 1 = 5 · 7 63 − 1 = 5 · 43 64 − 1 = 5 · 7 · 37 65 − 1 = 52 · 311
72 − 1 = 24 · 3 73 − 1 = 2 · 32 · 19 74 − 1 = 25 · 3 · 52 75 − 1 = 2 · 3 · 2801
82 − 1 = 32 · 7 83 − 1 = 7 · 73 84 − 1 = 32 · 5 · 7 · 13 85 − 1 = 7 · 31 · 151

An easy observation is that if a is odd then an − 1 is even, so it cannot be prime.
Looking at the table, we also see that it appears that an − 1 is always divisible by
a− 1. This observation is indeed true. We can prove that it is true by using the
famous formula for the sum of a geometric series:

xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x2 + x+ 1). Geometric Series

To check this Geometric Series formula, we multiply out the product on the
right. Thus,

(x− 1)(xn−1 + xn−2 + · · ·+ x2 + x+ 1)

= x · (xn−1 + xn−2 + · · ·+ x2 + x+ 1)

− 1 · (xn−1 + xn−2 + · · ·+ x2 + x+ 1)
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= (xn + xn−1 + · · ·+ x3 + x2 + x)

− (xn−1 + xn−2 + · · ·+ x2 + x+ 1)

= xn − 1,

since all the other terms cancel.
Using the Geometric Series formula with x = a, we see immediately that

an − 1 is always divisible by a− 1. So an − 1 will be composite unless a− 1 = 1,
that is, unless a = 2.

However, even if a = 2, the number 2n − 1 is frequently composite. Again we
look at some data:

n 2 3 4 5 6 7 8 9 10

2n − 1 3 7 3 · 5 31 32 · 7 127 3 · 5 · 17 7 · 73 3 · 11 · 31

Even this short table suggests the following:

When n is even, 2n − 1 is divisible by 3 = 22 − 1.

When n is divisible by 3, 2n − 1 is divisible by 7 = 23 − 1.

When n is divisible by 5, 2n − 1 is divisible by 31 = 25 − 1.

So we suspect that if n is divisible by m, then 2n − 1 will be divisible by 2m − 1.
Having made this observation, it is easy to verify that it is true. So suppose

that n factors as n = mk. Then 2n = 2mk = (2m)k. We use the Geometric Series
formula with x = 2m to obtain

2n− 1 = (2m)k − 1 = (2m − 1)
(
(2m)k−1+(2m)k−2+ · · ·+(2m)2 +(2m)+ 1

)
.

This shows that if n is composite then 2n − 1 is composite. We have verified the
following fact.

Proposition 1. If an − 1 is prime for some numbers a ≥ 2 and n ≥ 2, then a must
equal 2 and n must be a prime.

This means that if we are interested in primes of the form an − 1 we only need
to consider the case that a = 2 and n is prime. Primes of the form

2p − 1

are called Mersenne primes. The first few Mersenne primes are

22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 31, 27 − 1 = 127, 213 − 1 = 8191.
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Of course, not every number 2p − 1 is prime. For example,

211 − 1 = 2047 = 23 · 89 and 229 − 1 = 536870911 = 233 · 1103 · 2089.
The Mersenne primes are named after Father Marin Mersenne (1588–1648),

who asserted in 1644 that 2p − 1 is prime for

p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257

and that these are the only primes less than 258 for which 2p − 1 is prime. It is not
known how Mersenne discovered these “facts,” especially since it turns out that his
list is not correct. The complete list of primes p less than 10000 for which 2p − 1
is prime is1

p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279,

2203, 2281, 3217, 4253, 4423, 9689, 9941.

It is a nontrivial problem to check a large number for primality, and indeed it
wasn’t until 1876 that E. Lucas proved conclusively that 2127 − 1 is prime. Lu-
cas’s 39-digit number remained the largest known prime until the 1950s, when the
advent of electronic computing machines made it possible to check numbers with
hundreds of digits for primality. Table 1 lists Mersenne primes that have been dis-
covered in recent years using computers, together with the names of the people
who made the discoveries. The largest known prime has more than 12 million
digits!

The most recent Mersenne primes in Table 1 were unearthed using specialized
software as part of Woltman’s Great Internet Mersenne Prime Search. You, too,
can take part in the search for world record primes2 by downloading software from
the GIMPS website

www.mersenne.org/prime.htm

Further historical and topical information about Mersenne primes is available at

www.utm.edu/research/primes/mersenne.shtml

Of course, although it is interesting to see a list like this of the world’s largest
known primes, there is no huge mathematical significance in finding a few more
Mersenne primes. Far more interesting from a mathematical perspective is the
following question. The answer is not known.

1Notice that Father Mersenne made five mistakes, three of omission (61, 89, 107) and two of
commission (67, 257).

2Andy Warhol opined that in the future everyone will be famous for 15 minutes. One route to
such fame is to find the largest known (Mersenne) prime. And the quest for bigger and better primes
continues.
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p Discovered by Date

521, 607
1279, 2203

2281
Robinson 1952

3217 Riesel 1957
4253
4423

Hurwitz 1961

9689
9941

11213
Gillies 1963

19937 Tuckerman 1971

21707
Noll

Nickel
1978

23209 Noll 1979

44497
Noll

Slowinski
1979

86243 Slowinski 1982
132049 Slowinski 1983
216091 Slowinski 1985

110503
Colquitt
Welsch

1988

p Discovered by Date

756839
Slowinski

Gage
1992

859433
Slowinski

Gage
1994

1257787
Slowinski

Gage
1996

1398269∗ Armengaud 1996
2976221∗ Spence 1997
3021377∗ Clarkson 1998
6972593∗ Hajratwala 1999

13466917∗ Cameron 2001
20996011∗ Shafer 2003
24036583∗ Findley 2004
25964951∗ Nowak 2005
30402457∗ Boone, Cooper 2005
32582657∗ Boone, Cooper 2006
37156667∗ Elvenich 2008
42643801∗ Strindmo 2009
43112609∗ Smith 2008

Table 1: Primes p ≥ 500 for Which 2p − 1 Is Known to be Prime
∗Discovered with GIMPS (Woltman, Kurokowski,. . . )

Question 2. Are there infinitely many Mersenne primes, or does the list of Mersenne
primes eventually stop?

Exercises

1. If an + 1 is prime for some numbers a ≥ 2 and n ≥ 1, show that n must be a power
of 2.

2. Let Fk = 22
k

+ 1. For example, F1 = 5, F2 = 17, F3 = 257, and F4 = 65537.
Fermat thought that all the Fk’s might be prime, but Euler showed in 1732 that F5 factors
as 641 · 6700417, and in 1880 Landry showed that F6 is composite. Primes of the form
Fk are called Fermat primes. Show that if k �= m, then the numbers Fk and Fm have no
common factors; that is, show that gcd(Fk, Fm) = 1. [Hint. If k > m, show that Fm

divides Fk − 2.]

3. The numbers 3n−1 are never prime (if n ≥ 2), since they are always even. However, it
sometimes happens that (3n − 1)/2 is prime. For example, (33 − 1)/2 = 13 is prime.
(a) Find another prime of the form (3n − 1)/2.
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(b) If n is even, show that (3n − 1)/2 is always divisible by 4, so it can never be prime.
(c) Use a similar argument to show that if n is a multiple of 5 then (3n − 1)/2 is never a

prime.
(d) Do you think that there are infinitely many primes of the form (3n − 1)/2?
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Mersenne Primes and Perfect
Numbers

The ancient Greeks observed that the number 6 has a surprising property. If you
take the proper divisors of 6, that is, the divisors other than 6 itself, and add them
up, you get back the number 6. Thus, the proper divisors of 6 are 1, 2, and 3, and
when you add these divisors, you get

1 + 2 + 3 = 6.

This property is rather rare, as can be seen by looking at a few examples:

n Sum of Proper Divisors of n

6 1 + 2 + 3 = 6 Sum is just right (perfect!).
10 1 + 2 + 5 = 8 Sum is too small.
12 1 + 2 + 3 + 4 + 6 = 16 Sum is too large.
15 1 + 3 + 5 = 9 Sum is too small.
20 1 + 2 + 4 + 5 + 10 = 22 Sum is too large.
28 1 + 2 + 4 + 7 + 14 = 28 Sum is just right (perfect!).
45 1 + 3 + 5 + 9 + 15 = 33 Sum is too small.

The Greeks called these special numbers perfect. That is, a perfect number is a
number that is equal to the sum of its proper divisors. So far, we have discovered
two perfect numbers, 6 and 28. Are there others?

The Greeks knew a method for finding some perfect numbers and, interestingly
enough, their method is closely related to the Mersenne primes. The following
assertion occurs as Proposition 36 of Book IX of Euclid’s Elements.
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Theorem 1 (Euclid’s Perfect Number Formula). If 2p − 1 is a prime number, then
2p−1(2p − 1) is a perfect number.

The first two Mersenne primes are 3 = 22 − 1 and 7 = 23 − 1. Euclid’s Per-
fect Number Formula applied to these two Mersenne primes gives the two perfect
numbers we already know,

22−1(22 − 1) = 6 and 23−1(23 − 1) = 28.

The next Mersenne prime is 25 − 1 = 31, and Euclid’s formula gives us a new
perfect number,

25−1(25 − 1) = 496.

To check that 496 is perfect, we need to sum its proper divisors. Factoring 496 =
24 · 31, we see that the proper divisors of 496 are

1, 2, 22, 23, 24 and 31, 2 · 31, 22 · 31, 23 · 31.

We could just add these numbers, but to illustrate the general method we will sum
them in two stages. First

1 + 2 + 22 + 23 + 24 = 31,

and second

31 + 2 · 31 + 22 · 31 + 23 · 31 = 31(1 + 2 + 22 + 23) = 31 · 15.

Now adding the two pieces gives 31 + 31 · 15 = 31 · 16 = 496, so 496 is indeed
perfect.

Using the same sort of idea, we can easily verify that Euclid’s Perfect Number
Formula is true in general. We let q = 2p − 1, and we need to check that 2p−1q is
a perfect number. The proper divisors of 2p−1q are

1, 2, 4, . . . , 2p−1 and q, 2q, 4q, . . . , 2p−2q.

We add these numbers using the formula for the Geometric Series. The Geometric
Series formula (slightly rearranged) says that

1 + x+ x2 + · · ·+ xn−1 =
xn − 1

x− 1
.

Putting x = 2 and n = p, we get

1 + 2 + 4 + · · ·+ 2p−1 =
2p − 1

2− 1
= 2p − 1 = q.
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And we can use the formula with x = 2 and n = p− 1 to compute

q + 2q + 4q + · · ·+ 2p−2q = q(1 + 2 + 4 + · · ·+ 2p−2)

= q

(
2p−1 − 1

2− 1

)

= q(2p−1 − 1).

So if we add all the proper divisors of 2p−1q, we get

1+ 2+ 4+ · · ·+2p−1 + q+2q+4q+ · · ·+2p−2q = q+ q(2p−1 − 1) = 2p−1q.

This shows that 2p−1q is a perfect number.
We can use Euclid’s Perfect Number Formula to write down many more perfect

numbers. In fact, we get one perfect number for each Mersenne prime that we
can find. The first few perfect numbers obtained in this fashion are listed in the
following table. As you will observe, the numbers get large rather quickly.

p 2 3 5 7 13 17

2p−1(2p − 1) 6 28 496 8128 33550336 8589869056

We can also list perfect numbers that are incredibly huge. For example,

2756838(2756839 − 1) and 2859432(2859433 − 1)

are perfect numbers. The latter has more than half a million digits!
A natural question to ask at this point is whether Euclid’s Perfect Number For-

mula actually describes all perfect numbers. In other words, does every perfect
number look like 2p−1(2p − 1) with 2p − 1 prime, or are there other perfect num-
bers? Approximately 2000 years after Euclid’s death, Leonhard Euler showed that
Euclid’s formula at least gives all even perfect numbers.

Theorem 2 (Euler’s Perfect Number Theorem). If n is an even perfect number,
then n looks like

n = 2p−1(2p − 1),

where 2p − 1 is a Mersenne prime.

We will prove Euler’s theorem at the end of this chapter, but first we need to
discuss a function that will be needed for the proof. This function, which is denoted
by the Greek letter σ (sigma), is equal to

σ(n) = sum of all divisors of n (including 1 and n).
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Here are a few examples:

σ(6) = 1 + 2 + 3 + 6 = 12
σ(8) = 1 + 2 + 4 + 8 = 15
σ(18) = 1 + 2 + 3 + 6 + 9 + 18 = 39.

We can also give some general formulas. For example, if p is a prime number, then
its only divisors are 1 and p, so σ(p) = p + 1. More generally, the divisors of a
prime power pk are the numbers 1, p, p2, . . . , pk, so

σ(pk) = 1 + p+ p2 + · · ·+ pk =
pk+1 − 1

p− 1
.

To study the sigma function further, we make a short table of its values.

σ(1) = 1 σ(2) = 3 σ(3) = 4 σ(4) = 7 σ(5) = 6
σ(6) = 12 σ(7) = 8 σ(8) = 15 σ(9) = 13 σ(10) = 18

σ(11) = 12 σ(12) = 28 σ(13) = 14 σ(14) = 24 σ(15) = 24
σ(16) = 31 σ(17) = 18 σ(18) = 39 σ(19) = 20 σ(20) = 42
σ(21) = 32 σ(22) = 36 σ(23) = 24 σ(24) = 60 σ(25) = 31
σ(26) = 42 σ(27) = 40 σ(28) = 56 σ(29) = 30 σ(30) = 72
σ(31) = 32 σ(32) = 63 σ(33) = 48 σ(34) = 54 σ(35) = 48
σ(36) = 91 σ(37) = 38 σ(38) = 60 σ(39) = 56 σ(40) = 90
σ(41) = 42 σ(42) = 96 σ(43) = 44 σ(44) = 84 σ(45) = 78
σ(46) = 72 σ(47) = 48 σ(48) = 124 σ(49) = 57 σ(50) = 93
σ(51) = 72 σ(52) = 98 σ(53) = 54 σ(54) = 120 σ(55) = 72
σ(56) = 120 σ(57) = 80 σ(58) = 90 σ(59) = 60 σ(60) = 168
σ(61) = 62 σ(62) = 96 σ(63) = 104 σ(64) = 127 σ(65) = 84

An examination of this table reveals that σ(mn) is frequently equal to the product
σ(m)σ(n) and, after a little further analysis, we notice that this seems to be true
when m and n are relatively prime. Thus, the sigma function appears to obey
the same sort of multiplication formula as the phi function. We record this rule,
together with the formula for σ(pk).

Theorem 3 (Sigma Function Formulas). (a) If p is a prime and k ≥ 1, then

σ(pk) = 1 + p+ p2 + · · ·+ pk =
pk+1 − 1

p− 1
.

(b) If gcd(m,n) = 1, then

σ(mn) = σ(m)σ(n).
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Just as with the phi function, we can use the sigma function formulas to easily
compute σ(n) for large values of n. For example,

σ(16072) = σ(23 · 72 · 41)
= σ(23) · σ(72) · σ(41)
= (1 + 2 + 22 + 23)(1 + 7 + 72)(1 + 41)

= 15 · 57 · 42 = 35910,

and
σ(800000) = σ(28 · 55)

=

(
29 − 1

2− 1

)(
56 − 1

5− 1

)

= 511 · 15624
4

= 1995966.

At this point you probably expect that I will show you how to prove the multi-
plication formula for the sigma function. But I won’t! You have now made enough
progress in number theory that it is time for you to start acting as a mathematician
yourself.1 So I am going to ask you to prove the formula σ(mn) = σ(m)σ(n)
for relatively prime integers m and n. Don’t be discouraged and give up if you
don’t succeed at first. One suggestion I can give you is to try to discover why the
formula is true before you attempt to give a general proof. So, for example, first
look at numbers like 21 = 3 · 7 and 65 = 5 · 13 that are products of two primes and
list their divisors. This should enable you to prove that σ(pq) = σ(p)σ(q) when p
and q are distinct prime numbers. Then try some m’s and n’s that have two or three
divisors each and try to see how the divisors of m and n fit together to give divisors
of mn. If you can describe this precisely enough, you should be able to prove that
σ(mn) = σ(m)σ(n). Remember, though, that you’ll need to use the fact that m
and n are relatively prime.

How is the sigma function related to perfect numbers? A number n is perfect if
the sum of its divisors, other than n itself, is equal to n. The sigma function σ(n)
is the sum of the divisors of n, including n, so it has an “extra” n. Therefore,

n is perfect exactly when σ(n) = 2n.

We are now ready to prove Euler’s formula for even perfect numbers, which we
restate here for your convenience.

1Your mission, should you decide to accept it, is to prove the multiplication formula for the sigma
function. Should you be captured or killed in this endeavor, we will be forced to deny all knowledge
of your activities. Good luck!
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Theorem 4 (Euler’s Perfect Number Theorem). If n is an even perfect number,
then n looks like

n = 2p−1(2p − 1),

where 2p − 1 is a Mersenne prime.

Proof. Suppose that n is an even perfect number. The fact that n is even means
that we can factor it as

n = 2km with k ≥ 1 and m odd.

Next we use the sigma function formulas to compute σ(n),

σ(n) = σ(2km) since n = 2km,

= σ(2k)σ(m) using the multiplication formula for σ
and the fact that gcd(2k,m) = 1,

= (2k+1 − 1)σ(m) using the formula for σ(pk) with p = 2.

But n is supposed to be perfect, which means that σ(n) = 2n = 2k+1m. So we
have two different expressions for σ(n), and they must be equal,

2k+1m = (2k+1 − 1)σ(m).

The number 2k+1 − 1 is clearly odd, and (2k+1 − 1)σ(m) is a multiple of
2k+1, so 2k+1 must divide σ(m). In other words, there is some number c such that
σ(m) = 2k+1c. We can substitute this into the above equation to get

2k+1m = (2k+1 − 1)σ(m) = (2k+1 − 1)2k+1c,

and then canceling 2k+1 from both sides gives m = (2k+1 − 1)c. To recapitulate,
we have shown that there is an integer c such that

m = (2k+1 − 1)c and σ(m) = 2k+1c.

We are going to show that c = 1 by assuming that c > 1 and deriving a false
statement. (This is called a “proof by contradiction.”) So suppose that c > 1. Then
m = (2k+1 − 1)c would be divisible by the distinct numbers

1, c, and m.

(N.B. The fact that our original number n was even means that k ≥ 1, so c and m
are different.) Of course, m is probably divisible by many other numbers, but in
any case we find that

σ(m) ≥ 1 + c+m = 1 + c+ (2k+1 − 1)c = 1 + 2k+1c.
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However, we also know that σ(m) = 2k+1c, so

2k+1c ≥ 1 + 2k+1c.

Therefore, 0 ≥ 1, which is an absurdity. This contradiction shows that c must
actually be equal to 1, which means that

m = (2k+1 − 1) and σ(m) = 2k+1 = m+ 1.

Which numbers m have the property that σ(m) = m + 1? These are clearly
the numbers whose only divisors are 1 and m, since otherwise the sum of their
divisors would be larger. In other words, σ(m) = m+1 exactly when m is prime.
We have now proved that if n is an even perfect number then

n = 2k(2k+1 − 1) with 2k+1 − 1 a prime number.

We know that if 2k+1 − 1 is prime then k + 1 must itself be prime, say k + 1 = p.
So every even perfect number looks like n = 2p−1(2p−1) with 2p−1 a Mersenne
prime. This completes our proof of Euler’s Perfect Number Theorem.

Euler’s Perfect Number Theorem gives an excellent description of all even per-
fect numbers, but it says nothing about odd perfect numbers.

Question 5 (Odd Perfect Number Quandary). Are there any odd perfect numbers?

To this day, no one has been able to discover any odd perfect numbers, although
this is not through lack of trying. Many mathematicians have written many research
papers (more than 50 papers in the last 50 years) studying these elusive creatures,
and it is currently known that there are no odd perfect numbers less than 10300.
However, no one has yet been able to prove conclusively that none exist, so for
now, odd perfect numbers are like the little man in the poem:

Last night I met upon the stair,
A little man who wasn’t there.
He wasn’t there again today.
I wish to heck he’d go away.

Anonymous

If you do some experimentation with small numbers, you might suspect that
σ(n) < 2n for all odd numbers. If this were true, it would certainly prove that
there are no odd perfect numbers, but unfortunately it is not true. The first odd
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number for which it is false is n = 945 = 33 · 5 · 7, which has σ(945) = 1920.
This example should serve as a warning against believing a fact to be true simply
because it has been checked for lots of small numbers. It is perfectly all right to
make conjectures based on numerical data, but mathematicians insist on rigorous
proofs precisely because such data can be misleading.

Exercises

1. If m and n are integers with gcd(m,n) = 1, prove that σ(mn) = σ(m)σ(n).

2. Compute the following values of the sigma function.
(a) σ(10) (b) σ(20) (c) σ(1728)

3. (a) Show that a power of 3 can never be a perfect number.
(b) More generally, if p is an odd prime, show that a power pk can never be a perfect

number.
(c) Show that a number of the form 3i · 5j can never be a perfect number.
(d) More generally, if p is an odd prime number greater than 3, show that the product

3ipj can never be a perfect number.
(e) Even more generally, show that if p and q are distinct odd primes, then a number of

the form qipj can never be a perfect number.

4. Show that a number of the form 3m · 5n · 7k can never be a perfect number.

5. Prove that a square number can never be a perfect number. [Hint. Compute the value of
σ(n2) for the first few values of n. Are the values odd or even?]

6. A perfect number is equal to the sum of its divisors (other than itself). If we look at the
product instead of the sum, we could say that a number is product perfect if the product of
all its divisors (other than itself) is equal to the original number. For example,

m Product of factors
6 1 · 2 · 3 = 6 product perfect
9 1 · 3 = 3 product is too small
12 1 · 2 · 3 · 4 · 6 = 144 product is too large
15 1 · 3 · 5 = 15 product perfect.

So 6 and 15 are product perfect, while 9 and 12 are not product perfect.
(a) List all product perfect numbers between 2 and 50.
(b) Describe all product perfect numbers. Your description should be precise enough to

enable you easily to solve problems such as “Is 35710 product perfect?” and “Find a
product perfect number larger than 10000.”

(c) Prove that your description in (b) is correct.

7. (a) Write a program to compute σ(n), the sum of all the divisors of n (including 1
and n itself). You should compute σ(n) by using a factorization of n into primes, not
by actually finding all the divisors of n and adding them up.
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(b) As you know, the Greeks called n perfect if σ(n) = 2n. They also called n abundant
if σ(n) > 2n, and they called n deficient if σ(n) < 2n. Count how many n’s
between 2 and 100 are perfect, abundant, and deficient. Clearly, perfect numbers are
very rare. Which do you think are more common, abundant numbers or deficient
numbers? Extend your list for 100 < n ≤ 200 and see if your guess still holds.

8. The Greeks called two numbers m and n an amicable pair if the sum of the proper
divisors of m equals n and simultaneously the sum of the proper divisors of n equals m.
(The proper divisors of a number n are all divisors of n excluding n itself.) The first
amicable pair, and the only one (as far as we know) that was known in ancient Greece, is
the pair (220, 284). This pair is amicable since

284 = 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 (divisors of 220)

220 = 1 + 2 + 4 + 71 + 142 (divisors of 284).

(a) Show that m and n form an amicable pair if and only if σ(n) and σ(m) both equal
n+m.

(b) Verify that each of the following pairs is an amicable pair of numbers.

(220, 284), (1184, 1210), (2620, 2924), (5020, 5564), (6232, 6368),

(10744, 10856), (12285, 14595).

(c) There is a rule for generating amicable numbers, although it does not generate all of
them. This rule was first discovered by Abu-l-Hasan Thabit ben Korrah around the
ninth century and later rediscovered by many others, including Fermat and Descartes.
The rule says to look at the three numbers

p = 3 · 2e−1 − 1,

q = 2p+ 1 = 3 · 2e − 1,

r = (p+ 1)(q + 1)− 1 = 9 · 22e−1 − 1.

If all of p, q, and r happen to be odd primes, then m = 2epq and n = 2er are
amicable. Prove that the method of Thabit ben Korrah gives amicable pairs.

(d) Taking e = 2 in Thabit ben Korrah’s method gives the pair (220, 284). Use his
method to find a second pair. If you have access to a computer that will do factor-
izations for you, try to use Thabit ben Korrah’s method to find additional amicable
pairs.

9. Let
s(n) = σ(n)− n = sum of proper divisors of n;

that is, s(n) is equal to the sum of all divisors of n other than n itself. So n is perfect if
s(n) = n, and (m,n) are an amicable pair if s(m) = n and s(n) = m. More generally, a
collection of numbers n1, n2, . . . , nt is called sociable (of order t) if

s(n1) = n2, s(n2) = n3, . . . , s(nt−1) = nt, s(nt) = n1.
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Mersenne Primes and Perfect Numbers

(An older name for a list of this sort is an Aliquot cycle.) For example, the numbers

14316, 19116, 31704, 47616, 83328, 177792, 295488,

629072, 589786, 294896, 358336, 418904, 366556, 274924,

275444, 243760, 376736, 381028, 285778, 152990, 122410,

97946, 48976, 45946, 22976, 22744, 19916, 17716

are a sociable collection of numbers of order 28.
(a) There is one other collection of sociable numbers that contains a number smaller than

16000. It has order 5. Find these five numbers.
(b) Up until 1970, the only known collections of sociable numbers of order at least 3

were these two examples of order 5 and 28. The next such collection has order 4, and
its smallest member is larger than 1,000,000. Find it.

(c) Find a sociable collection of order 9 whose smallest member is larger than

800,000,000.

This is the only known example of order 9.
(d) Find a sociable collection of order 6 whose smallest member is larger than

90,000,000,000.

There are two known examples of order 6; this is the smallest.
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