
Prime Numbers

Prime numbers are the basic building blocks of number theory. That’s what the
Fundamental Theorem of Arithmetic, tells us. Every number is built up in a unique
fashion by multiplying together prime numbers. There are analogous situations in
other areas of science, and without exception the discovery and description of the
building blocks has had a profound effect on its discipline. For example, the field
of chemistry was revolutionized by the discovery that every chemical is formed
from a few basic elements and by Mendeleev cataloging these elements into fami-
lies whose properties recur periodically. We will do something similar below when
we split the set of prime numbers into various subsets, for example, into the set
congruent to 1 modulo 4 and the set congruent to 3 modulo 4. Similarly, a tremen-
dous advance in physics occurred when scientists discovered that the atoms com-
prising every element are made up of three basic particles, protons, neutrons, and
electrons,1 and that the number of each determines the chemical and physical at-
tributes of the atom. For example, an atom made up of 92 protons and only 143
neutrons has properties that clearly distinguish it from its cousin with three addi-
tional neutrons.

The fact that prime numbers are basic building blocks is sufficient reason to
study their properties. Of course, this doesn’t imply that those properties will be
interesting. Studying how to conjugate irregular verbs is important when learning
a language, but that doesn’t make it very appealing. Luckily, the more one stud-
ies prime numbers, the more interesting they become, and the more beautiful and
surprising become the relationships that one discovers. In this brief chapter we
will only have time to mention a few of the many remarkable properties of prime
numbers.

1This description of an atom is a simplification, but it is a fairly accurate portrayal of the original
atomic theories advanced in the early part of the twentieth century.

From Chapter 12 of A Friendly Introduction to Number Theory, Fourth Edition. Joseph H. Silverman.
Copyright c© 2013 by Pearson Education, Inc. All rights reserved.
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To begin with, let’s list the first few primes:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, . . . .

What can we glean from this list? First, it looks like 2 is the only even prime. This
is true, of course. If n is even and larger than 2 then it factors as n = 2 ·(n/2). This
makes 2 somewhat unusual among the set of primes, so people have been known
to say that

“2 is the oddest prime!”2

A more important observation from our list of primes is signified by the ellipsis
(three dots) appended at the end. This means that the list is not complete. For
example, 67 and 71 are the next two primes. However, the real issue is whether
the list ends or whether it continues indefinitely. In other words, are there infinitely
many prime numbers? The answer is yes. We now give a beautiful proof that
appeared in Euclid’s Elements more than 2000 years ago.

Theorem 1 (Infinitely Many Primes Theorem). There are infinitely many prime
numbers.

Euclid’s Proof. Suppose that you have already compiled a (finite) list of primes. I
am going to show you how to find a new prime that isn’t in your list. Since you can
then add the new prime to the list and repeat the process, this will show that there
must be infinitely many primes.

So suppose we start with some list of primes p1, p2, . . . , pr. We multiply them
together and add 1, which gives the number

A = p1p2 · · · pr + 1.

If A itself is prime, we’re done, since A is too large to be in the original list. But
even if A is not prime, it will certainly be divisible by some prime, since every
number can be written as a product of primes. Let q be some prime dividing A, for
example, the smallest one. I claim that q is not in the original list, so it will be the
desired new prime.

Why isn’t q in the original list? We know that q divides A, so

q divides p1p2 · · · pr + 1.

If q were to equal one of the pi’s, then it would have to divide 1, which is not
possible. This means that q is a new prime that may be added to our list. Repeating

2Naturally, I would never even consider repeating such a weak joke! Notice that this is one of
those jokes that is language specific. For example, it doesn’t work in French, since an odd number is
impair, while an odd person or event is étrange or bizarre.
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this process, we can create a list of primes that is as long as we want. This shows
that there must be infinitely many prime numbers.

Euclid’s proof is very clever and beautiful. We will illustrate the ideas in Eu-
clid’s proof by using them to create a list of primes. We start with a list consisting
of the single prime {2}. Following Euclid, we compute A = 2 + 1 = 3. This A
is already prime, so we append it to our list. Now we have two primes, {2, 3}.
Again using Euclid’s argument, we compute A = 2 · 3 + 1 = 7, and again A
is prime and can be added to the list. This gives three primes, {2, 3, 7}. Re-
peating the argument gives A = 2 · 3 · 7 + 1 = 43, another prime! So now
our list has four primes, {2, 3, 7, 43}. Into the breach once more, we compute
A = 2 · 3 · 7 · 43+ 1 = 1807. This time, A is not prime, it factors as A = 13 · 139.
We add 13 to our list, which now reads {2, 3, 7, 43, 13}. One more time, we com-
pute A = 2 · 3 · 7 · 43 · 13 + 1 = 23479. This A also factors, A = 53 · 443. This
gives the list {2, 3, 7, 43, 13, 53}, and we will stop here. But in principle we could
continue this process to produce a list of primes of any specified length.

We now know that the list of primes continues without end, and we also ob-
served that 2 is the only even prime. Every odd number is congruent to either 1
or 3 modulo 4, so we might ask which primes are congruent to 1 modulo 4 and
which are congruent to 3 modulo 4. This separates the set of (odd) primes into
two families, just as the periodic table separates the elements into families having
similar properties. In the following list, we have boxed the primes congruent to 1
modulo 4:

3, 5 , 7, 11, 13 , 17 , 19, 23, 29 , 31, 37 , 41 , 43, 47, 53 , 59,

61 , 67, 71, 73 , 79, 83, 89 , 97 , 101 , . . . .

There doesn’t seem to be any obvious pattern, although there do seem to be plenty
of primes of each kind. Here’s a longer list.

p ≡ 1 (mod 4) 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109,
113, 137, 149, 157, 173, 181, 193, 197, . . .

p ≡ 3 (mod 4) 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103,
107, 127, 131, 139, 151, 163, 167, 179, . . .

Is it possible that one of the lines in this list eventually stops, or are there
infinitely many primes in each family? It turns out that each line continues indef-
initely. We will use a variation of Euclid’s proof to show that there are infinitely
many primes congruent to 3 modulo 4.
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Theorem 2 (Primes 3 (Mod 4) Theorem). There are infinitely many primes that
are congruent to 3 modulo 4.

Proof. We suppose that we have already compiled a (finite) list of primes, all of
which are congruent to 3 modulo 4. Our goal is to make the list longer by finding
a new 3 modulo 4 prime. Repeating this process gives a list of any desired length,
thereby proving that there are infinitely many primes congruent to 3 modulo 4.

Suppose that our initial list of primes congruent to 3 modulo 4 is

3, p1, p2, . . . , pr.

Consider the number
A = 4p1p2 · · · pr + 3.

(Notice that we don’t include the prime 3 in the product.) We know that A can be
factored into a product of primes, say

A = q1q2 · · · qs.

I claim that among the primes q1, q2, . . . , qs at least one of them must be congruent
to 3 modulo 4. This is the key step in the proof. Why is it true? Well, if not,
then q1, q2, . . . , qs would all be congruent to 1 modulo 4, in which case their prod-
uct A would be congruent to 1 modulo 4. But you can see from its definition that A
is clearly congruent to 3 modulo 4. Hence, at least one of q1, q2, . . . , qs must be
congruent to 3 modulo 4, say qi ≡ 3 (mod 4).

My second claim is that qi is not in the original list. Why not? Well, we
know that qi divides A, while it is clear from the definition of A that none of
3, p1, p2, . . . , pr divides A. Thus, qi is not in our original list, so we may add
it to the list and repeat the process. In this way we can create as long a list as
we want, which shows that there must be infinitely many primes congruent to 3
modulo 4.

We can use the ideas in the proof of the Primes 3 (Mod 4) Theorem to create
a list of primes congruent to 3 modulo 4. We need to start with a list containing
at least one such prime, and remember that 3 is not allowed in our list. So we
start with the list consisting of the single prime {7}. We compute A = 4 · 7 +
3 = 31. This A is itself prime, so it is a new 3 (mod 4) prime to add to our
list. The list now reads {7, 31}, so we compute A = 4 · 7 · 31 + 3 = 871. This A
is not prime; it factors as A = 13 · 67. The proof of the theorem tells us that at
least one of the prime factors will be congruent to 3 modulo 4. In this case, the
prime 67 is 3 (mod 4), so we add it to our list. Next we take {7, 31, 67}, compute
A = 4 · 7 · 31 · 67 + 3 = 58159, and factor it as A = 19 · 3061. This time it is the

88



Prime Numbers

first factor 19 that is 3 (mod 4), so our list becomes {7, 31, 67, 19}. We will repeat
the process one more time. So

A = 4 · 7 · 31 · 67 · 19 + 3 = 1104967 = 179 · 6173,

which gives the prime 179 to add to the list, {7, 31, 67, 19, 179}.
Why won’t the same idea work for 1 (mod 4) primes? This is not an idle

question; it’s almost as important to understand the limitations of an argument as
it is to understand why the argument is valid. So suppose we try to create a list
of 1 (mod 4) primes. If we start with the list {p1, p2, . . . , pr}, we can compute
the number A = 4p1p2 · · · pr + 1, factor it, and try to find a prime factor that is
a new 1 (mod 4) prime. What happens if we start with the list {5}? We compute
A = 4 · 5 + 1 = 21 = 3 · 7, and neither of the factors 3 or 7 is a 1 (mod 4) num-
ber. So we’re stuck. The problem is that it is possible to multiply two 3 (mod 4)
numbers, such as 3 and 7, and end up with a 1 (mod 4) number like A = 21. In
general, we cannot use the fact that A ≡ 1 (mod 4) to deduce that some prime fac-
tor of A is 1 (mod 4), and that’s why this proof won’t work for primes congruent
to 1 modulo 4.

There is no particular reason to consider only congruences modulo 4. For
example, every number is congruent to either 0, 1, 2, 3, or 4 modulo 5; and except
for 5 itself, every prime number is congruent to one of 1, 2, 3, or 4 modulo 5.
(Why?) So we can break up the set of prime numbers into four families, depending
on their congruence class modulo 5. Here’s a list of the first few numbers in each
family:

p ≡ 1 (mod 5) 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241

p ≡ 2 (mod 5) 2, 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197

p ≡ 3 (mod 5) 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223

p ≡ 4 (mod 5) 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239

Again there seem to be lots of primes in each family, so we might guess that each
contains infinitely many prime numbers.

In general, if we fix a modulus m and a number a, when might we expect
there to be infinitely many primes congruent to a modulo m? There is one sit-
uation in which this cannot happen, that is if a and m have a common factor.
For example, suppose that p is a prime and that p ≡ 35 (mod 77). This means
that p = 35 + 77y = 7(5 + 11y), so the only possibility is p = 7, and even p = 7
doesn’t work. Generally, if p is a prime satisfying p ≡ a (mod m), then gcd(a,m)
divides p. So either gcd(a,m) = 1 or else gcd(a,m) = p, which means there is at
most one possibility for p. Thus, it is really only interesting to ask about primes
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congruent to a modulo m if we assume that gcd(a,m) = 1. A famous theorem of
Dirichlet from 1837 says that with this assumption there are always infinitely many
primes congruent to a modulo m.

Theorem 3 (Dirichlet’s Theorem on Primes in Arithmetic Progressions3). Let a
and m be integers with gcd(a,m) = 1. Then there are infinitely many primes that
are congruent to a modulo m. That is, there are infinitely many prime numbers p
satisfying

p ≡ a (mod m).

Earlier in this chapter we proved Dirichlet’s Theorem for (a,m) = (3, 4), and
Exercise 2 asks you to do (a,m) = (5, 6). Unfortunately, the proof of Dirichlet’s
Theorem for all (a,m) is quite complicated, so we will not be able to give it in this
book. The proof uses advanced methods from calculus and, in fact, calculus with
complex numbers!

Exercises

1. Start with the list consisting of the single prime {5} and use the ideas in Euclid’s proof
that there are infinitely many primes to create a list of primes until the numbers get too
large for you to easily factor. (You should be able to factor any number less than 1000.)

2. (a) Show that there are infinitely many primes that are congruent to 5 modulo 6. [Hint.
Use A = 6p1p2 · · · pr + 5.]

(b) Try to use the same idea (with A = 5p1p2 · · · pr +4) to show that there are infinitely
many primes congruent to 4 modulo 5. What goes wrong? In particular, what happens
if you start with {19} and try to make a longer list?

3. Let p be an odd prime number. Write the quantity

1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

p− 1

as a fraction Ap/Bp in lowest terms.
(a) Find the value of Ap (mod p) and prove that your answer is correct.
(b) Make a conjecture for the value of Ap

(
mod p2

)
.

(c) Prove your conjecture in (b). (This is quite difficult.)

3An arithmetic progression is a list of numbers with a common difference. For example, 2, 7,
12, 17, 22, . . . is an arithmetic progression with common difference 5. The numbers congruent to a
modulo m form an arithmetic progression with common difference m, which explains the name of
Dirichlet’s Theorem.
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4. Let m be a positive integer, let a1, a2, . . . , aφ(m) be the integers between 1 and m that
are relatively prime to m, and write the quantity

1

a1
+

1

a2
+

1

a3
+ · · ·+ 1

aφ(m)

as a fraction Am/Bm in lowest terms.
(a) Find the value of Am (mod m) and prove that your answer is correct.
(b) Generate some data for the value of Am

(
mod m2

)
, try to find patterns, and then

try to prove that the patterns you observe are true in general. In particular, when is
Am ≡ 0

(
mod m2

)
?

5. Recall that the number n factorial, which is written n!, is equal to the product

n! = 1 · 2 · 3 · · · (n− 1) · n.

(a) Find the highest power of 2 dividing each of the numbers 1!, 2!, 3!, . . . , 10!.
(b) Formulate a rule that gives the highest power of 2 dividing n!. Use your rule to

compute the highest power of 2 dividing 100! and 1000!.
(c) Prove that your rule in (b) is correct.
(d) Repeat (a), (b), and (c), but this time for the largest power of 3 dividing n!.
(e) Try to formulate a general rule for the highest power of a prime p that divides n!. Use

your rule to find the highest power of 7 dividing 1000! and the highest power of 11
dividing 5000!.

(f) Using your rule from (e) or some other method, prove that if p is prime and if pm

divides n! then m < n/(p − 1). (This inequality is very important in many areas of
advanced number theory.)

6. (a) Find a prime p satisfying p ≡ 1338 (mod 1115). Are there infinitely many such
primes?

(b) Find a prime p satisfying p ≡ 1438 (mod 1115). Are there infinitely many such
primes?
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