Euler’s Phi Function and the
Chinese Remainder Theorem

Euler’s formula
a®™ =1 (mod m)

is a beautiful and powerful result, but it won’t be of much use to us unless we can
find an efficient way to compute the value of ¢(m). Clearly, we don’t want to list
all the numbers from 1 to m — 1 and check each to see if it is relatively prime
to m. This would be very time consuming if m = 1000, for example, and it would
be impossible for m =~ 10'%°. One case where ¢(m) is easy to compute is when
m = p is a prime, since then every integer 1 < a < p — 1 is relatively prime to m.
Thus, ¢(p) =p — 1.

We can easily derive a similar formula for gb(pk) when m = p¥ is a power of a
prime. Rather than trying to count the numbers between 1 and p” that are relatively
prime to pk’ , we will instead start with all numbers 1 < a < pk’ , and then we will
discard the ones that are not relatively prime to p*.

When is a number a not relatively prime to p¥? The only factors of p* are
powers of p, so a is not relatively prime to p* exactly when it is divisible by p. In
other words,

o) =p" —#{a : 1<a<ptandp|a}.
So we have to count how many integers between 1 and p” are divisible by p. That’s
easy, they are the multiples of p,

k—1 k—1

p,2p,3p,4p, ... ("1 = 2)p, (P*' — 1)p, p*.

There are p*~! of them, which gives us the formula

p(p*) = pF —pF L.

From Chapter 11 of A Friendly Introduction to Number Theory, Fourth Edition. Joseph H. Silverman.
Copyright (© 2013 by Pearson Education, Inc. All rights reserved.
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For example,
$(2401) = ¢(7*) = 7 — 73 = 2058.

This means that there are 2058 integers between 1 and 2401 that are relatively
prime to 2401.

We now know how to compute ¢(m) when m is a power of a prime. Next
suppose that m is the product of two primes powers, m = p/¢*. To formulate a
conjecture, we compute ¢(p’¢*) for some small values and compare it with the

values of ¢(p’) and ¢(q*).

Pl | P | o) | eld") | e(dh)
2 3 6 1 2

4 5 20 2 4 8

3 7 21 2 6 12

8 9 72 4 6 24

9 | 25 | 225 6 20 120

This table suggests that ¢(p?¢*) = ¢(p?)p(¢*F). We can also try some examples
with numbers that are not prime powers, such as

¢»(14) = 6, #(15) =8, #(210) = ¢(14 - 15) = 48.
all this leads us to guess that the following assertion is true:
If ged(m,n) = 1, then p(mn) = ¢(m)p(n).

Before trying to prove this multiplication formula, we show how it can be used to
easily compute ¢(m) for any m or, more precisely, for any m that you are able to
factor as a product of primes.

Suppose that we are given a number m, and suppose that we have factored m
as a product of primes, say

k k ko
f)’n:pll.z)22...pr7

where p1, pa, ..., p, are all different. First we use the multiplication formula to
compute
¢(m) = ¢(p}") - $(p5?) - H(p").

k

Then we use the prime power formula ¢(p*) = p¥ — p*~! to obtain

k ki—1y (K ko —1 . —
¢(m) = <P11 _p11 ) <P22 —p22 )(pvlf _pf 1)-
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This formula may look complicated, but the procedure to compute ¢(m) is really
very simple. For example,

$(1512) = §(2° - 3° - 7) = $(2°) - $(3%) - 6(7)
=(22-2%).(33-3%) - (7T—1)=4-18-6 = 432.

So there are 432 numbers between 1 and 1512 that are relatively prime to 1512.

We are now ready to prove the multiplication formula for Euler’s phi function.
We also restate the formula for prime powers so as to have both formulas conve-
niently listed together.

Theorem 1 (Phi Function Formulas). (a) If p is a prime and k > 1, then
¢(p*) = p* —p"".
(b) If ged(m,n) = 1, then ¢(mn) = ¢(m)¢(n).

Proof. We verified the prime power formula (a) earlier in this chapter, so we need
to check the product formula (b). We will do this by using one of the most powerful
tools available in number theory:

|COUNTING|

You may wonder how counting can be so powerful. After all, it’s one of the first
things taught in kindergarten.! Briefly, we are going to find one set that con-
tains ¢(mn) elements and a second set that contains ¢(m)¢(n) elements. Then
we will show that the two sets contain the same number of elements.

The first set is

{a : 1< a<mnand ged(a,mn) =1}.

It is clear that this set contains ¢(mn) elements, since that’s just the definition
of ¢(mn). The second set is

(bc) : 1<b<m and ged(bym)=1
V" 1<e<n and ged(e,n) =1 |7

How many pairs (b, ¢) are in this second set? Well, there are ¢(m) choices for b,
since that’s the definition of ¢(m), and there are ¢(n) choices for ¢, since that’s the
definition of ¢(n). So there are ¢(m) choices for the first coordinate b and ¢(n)

"Yet another illustration of the principle that Everything I Ever Needed To Know I Learned in
Kindergarten, although proving theorems in number theory probably isn’t one of the basic skills that
Robert Fulghum had in mind when he wrote his book.
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choices for the second coordinate c; so there are a total of ¢(m)¢(n) choices for
the pair (b, c).
For example, suppose that we take m = 4 and n = 5. Then the first set consists
of the numbers
{1,3,7,9,11,13,17, 19}

that are relatively prime to 20. The second set consists of the pairs

{(1,1), (1,2), (1,3), (1,4), (3,1), (3,2), (3,3), (3,4)}

where the first number in each pair is relatively prime to 4 and the second number
in each pair is relatively prime to 5.

Going back to the general case, we are going to take each element in the first
set and assign it to a pair in the second set in the following way:

o 1<a<mn . (bc)_lgbgm, ged(b,m) =1
" ged(a,mn) =1 7 1<ce<n, ged(e,n)=1

a mod mn — (a mod m,a mod n)

What this means is that we take the integer a in the first set and send it to the
pair (b, ¢) with

a =b (mod m) and a = c (mod n).

This is probably clearer if we look again at our example with m = 4 and n = 5.
Then, for example, the number 13 in the first set gets sent to the pair (1, 3) in the
second set, since 13 = 1 (mod 4) and 13 = 3 (mod 5). We do the same for each
of the other numbers in the first set.

(3,1), (3,2), (3,3), (3,4)}
1+— (1,1) 11— (3,1)
3+ (3,3) 13— (1,3)
7— (3,2) 17— (1,2)
9 — (1,4) 19 — (3,4)

In this example, you can see that each pair in the second set is matched with exactly
one number in the first set. This means that the two sets have the same number of
elements. We want to check that the same matching occurs in general.

We need to check that the following two statements are correct:

1. Different numbers in the first set get sent to different pairs in the second set.
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2. Every pair in the second set is hit by some number in the first set.

Once we verify these two statements, we will know that the two sets have the
same number of elements. But we know that the first set has ¢(mn) elements
and the second set has ¢(m)¢(n) elements. So in order to finish the proof that
o(mn) = ¢(m)p(n), we just need to verify (1) and (2).

To check (1), we take two numbers a; and as in the first set, and we suppose
that they have the same image in the second set. This means that

a1 = az (mod m) and a1 = ag (mod n).

Thus, a; — a9 is divisible by both m and n. However, m and n are relatively prime,
S0 a1 — az must be divisible by the product mn. In other words,

a1 = ag (mod mn),

which shows that a; and as are the same element in the first set. This completes
our proof of statement (1).

To check statement (2), we need to show that for any given values of b and ¢
we can find at least one integer a satisfying

a = b (mod m) and a = ¢ (mod n).
The fact that these simultaneous congruences have a solution is of sufficient im-

portance to warrant having its own name.

Theorem 2 (Chinese Remainder Theorem). Let m and n be integers satisfying
ged(m,n) = 1, and let b and c be any integers. Then the simultaneous congru-
ences

x = b (mod m) and x = ¢ (mod n)

have exactly one solution with 0 < x < mn.

Proof. Let’s start, as usual, with an example. Suppose we want to solve
x =8 (mod 11) and  x =3 (mod 19).

The solution to the first congruence consists of all numbers that have the form
z = 11y + 8. We substitute this into the second congruence, simplify, and try to
solve. Thus,

11y +8 = 3 (mod 19)
11y = 14 (mod 19).
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We know how to solve linear congruences of this sort. The solution is y; =
3 (mod 19), and then we can find the solution to the original congruences us-
ing z; = 11y; + 8 = 11 - 3 + 8 = 41. Finally, we should check our answer:
(41 —8)/11 =3 and (41 — 3)/19=2. v

For the general case, we again begin by solving the first congruence * =
b (mod m). The solution consists of all numbers of the form x = my + b. We
substitute this into the second congruence, which yields

my = c— b (mod n).

We are given that gcd(m, n) = 1, so the Linear Congruence Theorem tells us that
there is exactly one solution y; with 0 < y; < n. Then the solution to the original
pair of congruences is given by

r1 = myy + b;

and this will be the only solution z; with 0 < x; < mn, since there is only
one y; between 0 and n, and we multiplied y; by m to get x1. This completes our
proof of the Chinese Remainder Theorem and, with it, our proof of the formula

p(mn) = ¢(m)d(n). H

Historical Interlude. The first recorded instance of the Chinese Remainder The-
orem appears in a Chinese mathematical work from the late third or early fourth
century. Somewhat surprisingly, it deals with the harder problem of three simulta-
neous congruences.

“We have a number of things, but we do not know exactly how many.
If we count them by threes, we have two left over. If we count them
by fives, we have three left over. If we count them by sevens, we have
two left over. How many things are there?”

Sun Tzu Suan Ching (Master Sun’s Mathematical Manual)

Circa AD 300, volume 3, problem 26.

Exercises

1. (a) Find the value of ¢(97).
(b) Find the value of ¢(8800).

2. (a) If m > 3, explain why ¢(m) is always even.
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(b) ¢(m) is “usually” divisible by 4. Describe all the m’s for which ¢(m) is not divisible
by 4.

3. Suppose that p1, po, . .., p, are the distinct primes that divide m. Show that the follow-
ing formula for ¢(m) is correct.

1 1 1
(1 D) (1 L) (- ),
b1 D2 Dr
Use this formula to compute ¢(1000000).

4. Write a program to compute ¢(n), the value of Euler’s phi function. You should
compute ¢(n) by using a factorization of n into primes, not by finding all the a’s between 1
and n that are relatively prime to n.

5. For each part, find an x that solves the given simultaneous congruences.
(@) =3 (mod 7)and z =5 (mod 9)
(b) z =3 (mod 37) and x = 1 (mod 87)
(¢) =5 (mod 7) and x = 2 (mod 12) and z = 8 (mod 13)

6. Solve the 1700-year-old Chinese remainder problem from the Sun Tzu Suan Ching.

7. A farmer is on the way to market to sell eggs when a meteorite hits his truck and destroys
all of his produce. In order to file an insurance claim, he needs to know how many eggs
were broken. He knows that when he counted the eggs by 2’s, there was 1 left over, when
he counted them by 3’s, there was 1 left over, when he counted them by 4’s, there was 1 left
over, when he counted them by 5’s, there was 1 left over, and when he counted them by 6’s,
there was 1 left over, but when he counted them by 7’s, there were none left over. What is
the smallest number of eggs that were in the truck?

8. Write a program that takes as input four integers (b, m, ¢, n) with ged(m,n) = 1
and computes an integer x with 0 < z < mn satisfying

x = b (mod m) and z = ¢ (mod n).

9. In this exercise you will prove a version of the Chinese Remainder Theorem for three
congruences. Let mq, me, m3 be positive integers such that each pair is relatively prime.
That is,

ged(my,mg) =1 and ged(my,m3) =1 and ged(mg,ms3) = 1.

Let a1, as, as be any three integers. Show that there is exactly one integer « in the interval
0 < z < mymaymg that simultaneously solves the three congruences

x = a7 (mod my), x = ag (mod ma), x = a3 (mod mg).
Can you figure out how to generalize this problem to deal with lots of congruences
x = ay (mod my), x = ag (mod ma), .. ., x = a, (mod m,.)?

In particular, what conditions do the moduli m1, ma, ..., m, need to satisfy?
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10. What can you say about n if the value of ¢(n) is a prime number? What if it is the
square of a prime number?

11. (a) Find at least five different numbers n with ¢(n) = 160. How many more can you
find?
(b) Suppose that the integer n satisfies ¢(n) = 1000. Make a list of all of the primes that
might possibly divide n.
(c) Use the information from (b) to find all integers n that satisfy ¢(n) = 1000.

12. Find all values of n that solve each of the following equations.
@ ¢(n) =n/2 (b)  ¢(n) =n/3 (© ¢(n)=n/6

[Hint. The formula in Exercise 3 might be useful.]

13. (a) For each integer 2 < a < 10, find the last four digits of a'9%°.
(b) Based on your experiments in (a) and further experiments if necessary, give a simple
criterion that allows you to predict the last four digits of a'°°° from the value of a.
(c) Prove that your criterion in (b) is correct.
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