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A prime number is a number p ≥ 2 whose only (positive) divisors are 1 and p.
Numbers m ≥ 2 that are not primes are called composite numbers. For example,

prime numbers 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .
composite numbers 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, . . .

Prime numbers are characterized by the numbers by which they are divisible; that
is, they are defined by the property that they are only divisible by 1 and by them-
selves. So it is not immediately clear that primes numbers should have special
properties that involve the numbers that they divide. Thus the following fact con-
cerning prime numbers is both nonobvious and important.1

Lemma 1. Let p be a prime number, and suppose that p divides the product ab.
Then either p divides a or p divides b (or p divides both a and b).2

Proof. We are given that p divides the product ab. If p divides a, we are done, so
we may as well assume that p does not divide a. Now consider what gcd(p, a) can
be. It divides p, so it is either 1 or p. It also divides a, so it isn’t p, since we have
assumed that p does not divide a. Thus, gcd(p, a) must equal 1.

1A lemma is a result that is used as a stepping stone for proving other results.
2You may say that this lemma is obvious if we look at the prime factorizations of a and b. How-

ever, the fact that a number can be factored into a product of primes in exactly one way is itself a
nonobvious fact. We will discuss this further later in this chapter.
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Now we use the Linear Equation Theorem with the numbers p and a. The
Linear Equation Theorem says that we can find integers x and y that solve the
equation

px+ ay = 1.

[Note that we are using the fact that gcd(p, a) = 1.] Now multiply both sides of
the equation by b. This gives

pbx+ aby = b.

Certainly pbx is divisible by p, and also aby is divisible by p, since we know that p
divides ab. It follows that p divides the sum

pbx+ aby,

so p divides b. This completes the proof of the lemma.3

The lemma says that if a prime divides a product ab, it must divide one of
the factors. Notice that this is a special property of prime numbers; it is not true
for composite numbers. For example, 6 divides the product 15 · 14, but 6 divides
neither 15 nor 14. It is not hard to extend the lemma to products with more than
two factors.

Theorem 2 (Prime Divisibility Property). Let p be a prime number, and suppose
that p divides the product a1a2 · · · ar. Then p divides at least one of the fac-
tors a1, a2, . . . , ar.

Proof. If p divides a1, we’re done. If not, we apply the lemma to the product

a1(a2a3 · · · ar)

to conclude that p must divide a2a3 · · · ar. In other words, we are applying the
lemma with a = a1 and b = a2a3 · · · ar. We know that p|ab, so if p � a, the lemma
says that p must divide b.

So now we know that p divides a2a3 · · · ar. If p divides a2, we’re done. If
not, we apply the lemma to the product a2(a3 · · · ar) to conclude that p must di-
vide a3 · · · ar. Continuing in this fashion, we must eventually find some ai that is
divisible by p.

3When we are proving a statement, we use a little box to indicate that we have completed the
proof. Some books instead use QED to indicate the end of a proof. The letters QED stand for the
Latin phrase Quod erat demonstrandum, which roughly means “that which was to be proved.” This
in turn comes from the Greek phrase ωπερ εδει δειξαι, which appears in Euclid’s Elements.
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Later in this chapter we are going to use the Prime Divisibility Property to
prove that every positive integer can be factored as a product of prime numbers
in essentially one way. Unfortunately, this important fact is so familiar to most
readers that they will question why it requires a proof. So before giving the proof,
I want to try to convince you that unique factorization into primes is far from being
obvious. For this purpose, I invite you to leave the familiar behind and enter the4

Even Number World
(popularly known as the “E-Zone”)

Imagine yourself in a world where the only numbers that are known are the even
numbers. So, in this world, the only numbers that exist are

E = {. . . ,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10, . . .}.
Notice that in the E-Zone we can add, subtract, and multiply numbers just as usual,
since the sum, difference, and product of even numbers are again even numbers.
We can also talk about divisibility. We say that a number m E-divides a number n
if there is a number k with n = mk. But remember that we’re now in the E-Zone,
so the word “number” means an even number. For example, 6 E-divides 12, since
12 = 6 · 2; but 6 does not E-divide 18, since there is no (even) number k satisfying
18 = 6k.

We can also talk about primes. We say that an (even) number p is an E-prime if
it is not divisible by any (even) numbers. (In the E-Zone, a number is not divisible
by itself!) For example, here are some E-primes:

2, 6, 10, 14, 18, 22, 26, 30.

Recall the lemma we proved above for ordinary numbers. We showed that if
a prime p divides a product ab then either p divides a or p divides b. Now move
to the E-Zone and consider the E-prime 6 and the numbers a = 10 and b = 18.
The number 6 E-divides ab = 180, since 180 = 6 · 30; but 6 E-divides neither 10
nor 18. So our “obvious” lemma is not true here in the E-Zone!

There are other “self-evident facts” that are untrue in the E-Zone. For exam-
ple, consider the fact that every number can be factored as a product of primes in
exactly one way. (Of course, rearranging the order of the factors is not considered
a different factorization.) It’s not hard to show, even in the E-Zone, that every
(even) number can be written as a product of E-primes. But consider the following
factorizations:

180 = 6 · 30 = 10 · 18.
4Since this book is not a multimedia product, you’ll have to use your imagination to supply the

appropriate Twilight Zone music.
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Notice that all of the numbers 6, 30, 10, and 18 are E-primes. This means that 180
can be written as a product of E-primes in two fundamentally different ways! In
fact, there is even a third way to write it as a product of E-primes,

180 = 2 · 90.
We are going to leave the E-Zone now and return to the familiar world where

odd and even numbers live together in peace and harmony. But we hope that our
excursion into the E-Zone has convinced you that facts that seem obvious require
a healthy dose of skepticism. Especially, any “fact” that “must be true” because it
is very familiar or because it is frequently proclaimed to be true is a fact that needs
the most careful scrutiny.5

E-Zone Border Crossing—Welcome Back Home

Everyone “knows” that a positive integer can be factored into a product of primes
in exactly one way. But our visit to the E-Zone provides convincing evidence that
this obvious assertion requires a careful proof.

Theorem 3 (The Fundamental Theorem of Arithmetic). Every integer n ≥ 2 can
be factored into a product of primes

n = p1p2 · · · pr
in exactly one way.

Before we commence the proof of the Fundamental Theorem of Arithmetic, a
few comments are in order. First, if n itself is prime, then we just write n = n and
consider this to be a product consisting of a single number. Second, when we write
n = p1p2 · · · pr, we do not mean that p1, p2, . . . , pr have to be different primes.
For example, we would write 300 = 2 · 2 · 3 · 5 · 5. Third, when we say that n can
be written as a product in exactly one way, we do not consider rearrangement of
the factors to be a new factorization. For example, 12 = 2 · 2 · 3 and 12 = 2 · 3 · 2
and 12 = 3 · 2 · 2, but all these are treated as the same factorization.

Proof. The Fundamental Theorem of Arithmetic really contains two assertions.

Assertion 1. The number n can be factored into a product of primes in some way.

Assertion 2. There is only one such factorization (aside from rearranging the fac-
tors).

5The principle that well-known and frequently asserted “facts” should be carefully scrutinized
also applies to endeavors far removed from mathematics. Politics and journalism come to mind, and
the reader will undoubtedly be able to add many others to the list.
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We begin with Assertion 1. We are going to give a proof by induction. Don’t
let this scare you, it just means that first we’ll verify the assertion for n = 2, and
then for n = 3, and then for n = 4, and so on. We begin by observing that 2 = 2
and 3 = 3 and 4 = 22, so each of these numbers can be written as a product of
primes. This verifies Assertion 1 for n = 2, 3, 4. Now suppose that we’ve verified
Assertion 1 for every n up to some number, call it N . This means we know that
every number n ≤ N can be factored into a product of primes. Now we’ll check
that the same is true of N + 1.

There are two possibilities. First, N + 1 may already be prime, in which case
it is its own factorization into primes. Second, N + 1 may be composite, which
means that it can be factored as N + 1 = n1n2 with 2 ≤ n1, n2 ≤ N . But we
know Assertion 1 is true for n1 and n2, since they are both less than or equal to N .
This means that both n1 and n2 can be written as a product of primes, say

n1 = p1p2 · · · pr and n2 = q1q2 · · · qs.

Multiplying these two products together gives

N + 1 = n1n2 = p1p2 · · · prq1q2 · · · qs,

so N + 1 can be factored into a product of primes. This means that Assertion 1 is
true for N + 1.

To recapitulate, we have shown that if Assertion 1 is true for all numbers less
than or equal to N , then it is also true for N + 1. But we have checked it is true
for 2, 3, and 4, so taking N = 4, we see that it is also true for 5. But then we can
take N = 5 to conclude that it is true for 6. Taking N = 6, we see that it is true for
N = 7, and so on. Since we can continue this process indefinitely, it follows that
Assertion 1 is true for every integer.

Next we tackle Assertion 2. It is possible to give an induction proof for this
assertion, too, but we will proceed more directly. Suppose that we are able to
factor n as a product of primes in two ways, say

n = p1p2p3p4 · · · pr = q1q2q3q4 · · · qs.

We need to check that the factorizations are the same, possibly after rearranging
the order of the factors. We first observe that p1|n, so p1|q1q2 · · · qs. The Prime
Divisibility Property proved earlier in this chapter tells us that p1 must divide (at
least) one of the qi’s, so if we rearrange the qi’s, we can arrange matters so that
p1|q1. But q1 is also a prime number, so its only divisors are 1 and q1. Therefore,
we must have p1 = q1.
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Now we cancel p1 (which is the same as q1) from both sides of the equation.
This gives the equation

p2p3p4 · · · pr = q2q3q4 · · · qs.

Briefly repeating the same argument, we note that p2 divides the left-hand side of
this equation, so p2 divides the right-hand side, and hence by the Prime Divisibility
Property, p2 divides one of the qi’s. After rearranging the factors, we get p2|q2,
and then the fact that q2 is prime means that p2 = q2. This allows us to cancel p2
(which equals q2) to obtain the new equation

p3p4 · · · pr = q3q4 · · · qs.

We can continue in this fashion until either all the pi’s or all the qi’s are gone.
But if all the pi’s are gone, then the left-hand side of the equation equals 1, so there
cannot be any qi’s left, either. Similarly, if the qi’s are all gone, then the pi’s must
all be gone. In other words, the number of pi’s must be the same as the number
of qi’s. To recapitulate, we have shown that if

n = p1p2p3p4 · · · pr = q1q2q3q4 · · · qs,

where all the pi’s and qi’s are primes, then r = s, and we can rearrange the qi’s so
that

p1 = q1 and p2 = q2 and p3 = q3 and . . . and pr = qs.

This completes the proof that there is only one way to write n as a product of
primes.

The Fundamental Theorem of Arithmetic says that every integer n ≥ 2 can be
written as a product of prime numbers. Suppose we are given a particular integer n.
As a practical matter, how can we write it as a product of primes? If n is fairly small
(for example, n = 180) we can factor it by inspection,

180 = 2 · 90 = 2 · 2 · 45 = 2 · 2 · 3 · 15 = 2 · 2 · 3 · 3 · 5.

If n is larger (for example, n = 9105293) it may be more difficult to find a
factorization. One method is to try dividing n by primes 2, 3, 5, 7, 11, . . . until we
find a divisor. For n = 9105293, we find after some work that the smallest prime
dividing n is 37. We factor out the 37,

9105293 = 37 · 246089,
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and continue checking 37, 41, 43, . . . to find a prime that divides 246089. We find
that 43|246089, since 246089 = 43·5723. And so on until we factor 5723 = 59·97,
where we recognize that 59 and 97 are both primes. This gives the complete prime
factorization

9105293 = 37 · 43 · 59 · 97.
If n is not itself prime, then there must be a prime p ≤ √

n that divides n.
To see why this is true, we observe that if p is the smallest prime that divides n,
then n = pm with m ≥ p, and hence n = pm ≥ p2. Taking the square root of
both sides yields

√
n ≥ p. This gives the following foolproof method for writing

any number n as a product of primes:

To write n as a product of primes, try dividing it by every number (or
just every prime number) 2, 3, . . . that is less than or equal to

√
n. If

you find no numbers that divide n, then n itself is prime. Otherwise,
the first divisor that you find will be a prime p. Factor n = pm and
repeat the process with m.

This procedure, although fairly inefficient, works fine on a computer for num-
bers that are moderately large, say up to 10 digits. But how about a number like
n = 10128 + 1? If n turns out to be prime, we won’t find out until we’ve checked√
n ≈ 1064 possible divisors. This is completely infeasible. If we could check

1,000,000,000 (that’s one billion) possible divisors each second, it would still take
approximately 3 · 1048 years! This leads to the following two closely related ques-
tions:

Question 1. How can we tell if a given number n is prime or composite?

Question 2. If n is composite, how can we factor it into primes?

Although it might seem that these questions are the same, it turns out that
Question 1 is much easier to answer than Question 2. We will later see how to
write down large numbers that we know are composite, even though we will be
unable to write down any of their factors. In a similar fashion, we will be able
to find very large prime numbers p and q such that, if we were to send someone
the value of the product n = pq, they would be unable to factor n to retrieve the
numbers p and q. This curious fact, that it is very easy to multiply two numbers
but very difficult to factor the product, lies at the heart of a remarkable application
of number theory to the creation of very secure codes.
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Exercises

1. Suppose that gcd(a, b) = 1, and suppose further that a divides the product bc. Show
that a must divide c.

2. Suppose that gcd(a, b) = 1, and suppose further that a divides c and that b divides c.
Show that the product ab must divide c.

3. Let s and t be odd integers with s > t ≥ 1 and gcd(s, t) = 1. Prove that the three
numbers

st,
s2 − t2

2
, and

s2 + t2

2

are pairwise relatively prime; that is, each pair of them is relatively prime. This fact was
needed to complete the proof of the Pythagorean triples theorem. [Hint. Assume that there
is a common prime factor and use the fact (Lemma 1) that if a prime divides a product,
then it divides one of the factors.]

4. Give a proof by induction of each of the following formulas. [Notice that (a) is the
formula that we can prove using a geometric argument and that (c) is the first n terms of
the geometric series.]

(a) 1 + 2 + 3 + ·+ n =
n(n+ 1)

2

(b) 12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

(c) 1 + a+ a2 + a3 + · · ·+ an =
1− an+1

1− a
(a �= 1)

(d)
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · ·+ 1

(n− 1)n
=

n− 1

n

5. This exercise asks you to continue the investigation of the E-Zone. Remember as you
work that for the purposes of this exercise, odd numbers do not exist!
(a) Describe all E-primes.
(b) Show that every even number can be factored as a product of E-primes. [Hint. Mimic

our proof of this fact for ordinary numbers.]
(c) We saw that 180 has three different factorizations as a product of E-primes. Find the

smallest number that has two different factorizations as a product of E-primes. Is 180
the smallest number with three factorizations? Find the smallest number with four
factorizations.

(d) The number 12 has only one factorization as a product of E-primes: 12 = 2 · 6. (As
usual, we consider 2 · 6 and 6 · 2 to be the same factorization.) Describe all even
numbers that have only one factorization as a product of E-primes.

6. Welcome to M-World, where the only numbers that exist are positive integers that leave
a remainder of 1 when divided by 4. In other words, the only M-numbers that exist are

{1, 5, 9, 13, 17, 21, . . .}.
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(Another description is that these are the numbers of the form 4t+ 1 for t = 0, 1, 2, . . ..)
In the M-World, we cannot add numbers, but we can multiply them, since if a and b both
leave a remainder of 1 when divided by 4 then so does their product. (Do you see why this
is true?)

We say that m M-divides n if n = mk for some M-number k. And we say that n is
an M-prime if its only M-divisors are 1 and itself. (Of course, we don’t consider 1 itself to
be an M-prime.)
(a) Find the first six M-primes.
(b) Find an M-number n that has two different factorizations as a product of M-primes.

7. In this exercise you are asked to write programs to factor a (positive) integer n into
a product of primes. (If n = 0, be sure to return an error message instead of going into an
infinite loop!) A convenient way to represent the factorization of n is as a 2 × r matrix.
Thus, if

n = pk1
1 pk2

2 · · · pkr
r ,

then store the factorization of n as the matrix
(
p1 p2 · · · pr
k1 k2 · · · kr

)

.

(If your programming language doesn’t allow dynamic storage allocation, you’ll have to
decide ahead of time how many factors to allow.)
(a) Write a program to factor n by trying each possible factor d = 2, 3, 4, 5, 6, . . .. (This

is an extremely inefficient method but will serve as a warm-up exercise.)
(b) Modify your program by storing the values of the first 100 (or more) primes and

first removing these primes from n before looking for larger prime factors. You
can speed up your program when trying larger d’s as potential factors if you don’t
bother checking d’s that are even, or divisible by 3, or by 5. You can also increase
efficiency by using the fact that a number m is prime if it is not divisible by any
number between 2 and

√
m. Use your program to find the complete factorization of

all numbers between 1,000,000 and 1,000,030.
(c) Write a subroutine that prints the factorization of n in a nice format. Optimally,

the exponents should appear as exponents; but if this is not possible, then print the
factorization of (say) n = 75460 = 22 · 5 · 73 · 11 as

2ˆ2 * 5 * 7ˆ3 * 11.

(To make the output easier to read, don’t print exponents that equal 1.)
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