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contradicting (1). This proves that we must have ¢ = 1 (mod 3), as was
to be shown.

(Sierpinski [39], Problem #176) There is only one, namely =z = 3. Setting
x =t+3, (%) is reduced to

() 2t(t* + 9t + 21) = 0.

Since the quadratic polynomial ¢ 4+ 9t 4+ 21 has no real roots, the only
solution of (#x) is t = 0. It follows that the only solution of () is = 3.
Assume that such a solution {z,y} exists. Since 9|117, we must have that
9|z3 + 5, which is impossible, since z3 +5=4,5,6 (mod 9).
REMARK: In his book [32], Joe Roberts makes the following interesting
observation:
In the chapter “Diophantine Equations: p-adic Methods” in
Studies in Number Theory, [22] D.J. Lewis states on page 26
that “The equation x3 — 117y = 5 is known to have at most 18
integral solutions but the exact number is not known.” Finkel-
stein and London (1971) [12] made use of the field Q(¥/117),
where the cube root is real, to show that, in fact, the equa-
tion has no solutions in integers. Halter-Koch (1973) [17] and
Udrescu (1973) [33] independently observed that by considering
the equation modulo 9 we get 3 =5 (mod 9) and this congru-
ence clearly has no solutions. Consequently we immediately see
that the equation has no solutions.
It is important to make sure that each of the terms (...)3 is positive. To
do so, if we take a > 3 and b = a + 1, it is easy to see that each of the
four expressions (...) is positive. Since the Ramanujan identity holds for
each integer a > 3, the first result is proved. On the other hand, to find
the “double” representation of 1729, we first set a = 3 and b = 4 in (%),
in which case we obtain

7 + 843 = 63% + 70°.

Dividing each of the four terms of this last identity by 72, we obtain the
double representation of 1729 noticed by Ramanujan.
If az + by = b+ c is solvable, then d = (a,b)|(b + ¢). Since d|b, it follows
that d|c, which implies that az + by = ¢ is solvable. The other implication
can be handled in a similar manner.
We know that az + by = c is solvable if and only if d = (a, b)|c, which is
equivalent to d|(a, b, ¢). This shows that (a,b) = (a,b, c).
Since (a,b) = 1, there exist integers z* and y* such that az* + by* = 1.
The solutions of ax 4+ by = n are then given by £ = nz* — bk and y =
ny* +ak, where az* + by* = 1. Hence, the equation has positive solutions
if na* — bk > 0 and ny* + ak > 0, that is if
Yo k<l

b
To show that there exists at least one such a value of k, we only need to
show that

—yn+1<x

*n

b b
an inequality which is equivalent to n(az* + by*) > ab, that is n > ab.
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Finally, if n = ab, then —y*b < k < z*a; and since ax™ + by* =1, we
obtain az* — 1 < k < azx*, which is impossible.
The solution is x = 19, y = 11, z = 70. Indeed, if we multiply the first
equation by 2 and subtract this new equation from the second one, we
obtain

(x) 30y — 19z = —1000.

Reducing modulo 19, we obtain 11y = 7 (mod 19) and therefore (multi-
plying by 7) we have

y=11 (mod 19) thatis y=11+19%, ke Z.

Substituting this value in (%), we find z = 70430k and finally x = 19—49k.
For these solutions to be positive, we must choose k = 0, which gives the
solution stated above.

(Marco Carmosini, Queen’s University, Canadian Congress of Students in
Mathematics, May 1999). If P and A stand respectively for the perime-
ter and the area of such a triangle, then using Heron’s formula A =

\/g (£ —a) (£ —b) (£ —c) where P = a + b+ c, we are led to the
equation

at+b+c —a+b+c a—-b+c a+b—c
that is

(%) 16(a+b+c)=(—a+b+c)(a—b+c)(la+b—c).

Since the left-hand side of (*) is even, it follows that (—a + b+ ¢) or
(a—b+c) or (a+b—c) must be even. It is easy to see that if any of these
three quantities is even, each of the other two will also be even. It follows
that there exist three integers m < n < k such that

—a+b+c=2m, a—b+c=2n, a+b—c=2k,
so that
a=n+k, b=m+k, c=m+n.
Substituting these values in (), we obtain that
mnk = 4(m +n + k).
We will treat separately the following four cases:
m=1, m=2, m =3, m > 4.

If m = 1, we obtain successively nk = 4(1 + n + k), nk — 4n — 4k = 4,
nk —4n — 4k + 16 = 4+ 16 and (n — 4)(k — 4) = 20, in which case
the only possible values of (n, k) are (n, k) = (5,24), (6,14) and (8,9). To
these values correspond the three triangles whose sides a, b, ¢ are (a, b, c) =
(20,15,7), (17,10,9) and (29, 25, 6).

In the case m = 2, we have 2nk = 4(2+n+k); that is (n—2)(k—2) =
8, which gives the only possible values (n,k) = (3,10) and (4,6), thus
yielding the two triangles of lengths a,b, ¢ given by (a,b,c) = (13,12,5)
and (10,8, 6).
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In the case m = 3, we obtain successively 3nk = 4(3+n + k), (3n —
4)(3k—4) = 52, and hence the pair (n, k) = (2, 10), which must be rejected
sincen=2<4=m.

It remains to consider the case m > 4. Let us assume that there exists
a solution (m,n, k), with m > 4, to the equation mnk = 4(m + n + k).
We would then successively have

4
At AR ntk>nk—d4, k< —"— 41  foralln >4,
nk —4 n—1
In particular, we would have
k§%+1:§<3, and therefore 4 <m <n <k < 3,

a contradiction.
To sum up, the only solutions (a, b, c) are given by the five triples

(13,12,5), (10,8,6), (29,25,6), (20,15,7), (17,10,9).

(794) There are none. Indeed, if z,y is a solution, since z is not a multiple of
3, then z2 = 1 (mod 3), in which case z2 + 3y = 1 (mod 3), while 5 = 2
(mod 3).

(795) We may assume that 2 + y?2 = 22. We proceed by contradiction by
assuming that zyz # 0 (mod 5), in which case z2,42,2% = 1,4 (mod 5).
The only three possible values modulo 5 of x? + y? are therefore 1 + 1,
1+ 4 and 4 + 4, that is 2, 0 and 3 modulo 5, while we should have 1 or 4.

(796) If z > 1, then using the first equation, we have that y < 1, which in turn
implies that z > 1. But “x > 1, z > 1” contradicts the third equation.
Hence, x < 1. By a similar argument, one can show that z > 1. Hence,
z = 1. We can then do the same reasoning with each unknown, allowing
us to conclude that z =y =2 = 1.

(797) (TYCM, Vol. 13, 1982, p. 263). Assume that there exist nonnegative
integers =z and y such that ax + by = ab — a — b. In this case, we have
a(z+1) = b(a—y—1). Since a and b are relatively prime, it is clear that

blz +1 and ala—y—1,

which implies that a|y + 1. Hence, y +1 > a, z + 1 > b and therefore
ab = (z + 1)a + (y + 1)b > 2ab, which is impossible, since a and b are
positive.

(798) We know that the solutions of n = ax + by are of the form z = zo+bt, y =
yo — at, where axo +byo = n, t € Z. We must choose ¢ so that yo —at > 0
and zo+bt > 0, which is equivalent to —(zo/b) <t < (yo/a). The number
of solutions is therefore [yo/a] — [—zo/b], and since [a] — [b] = [a — b] or
[@ — b] + 1, we obtain the result.

(799) Say Peter has paid $1.04. The only way this can happen is if Peter has
bought z apples and y oranges, with z and y such that 5z + 7Ty = 104.
We can express this situation as (z,y) = (2o, yo) = (4,12). All the integer
solutions of 5z + Ty = 104 are given by x = o+ 7t =4+ 7t and y =
yo — 5t = 12 — 5¢. Since we must have 4 + 7t > 0 (that is ¢ > —4/7)
and 12 — 5t > 0 (that is ¢t < 12/5), it follows that 0 < ¢ < 2. The
only three suitable values of ¢ are therefore 0, 1 and 2. Since Peter’s
purchase corresponds to the value t = 0, Paul’s purchase must necessarily
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correspond tot = 1 or to ¢t =2, that is z = 11 and y = 7 or z = 18 and
y = 2. Since by hypothesis y > 3, we may conclude that Paul has bought
11 apples and 7 oranges.

First of all, since (3,7) = 1|11, the given Diophantine equation has integer
solutions. We easily establish that (zg,y0) = (6,—1) is a particular solu-
tion of this Diophantine equation. The set of all the solutions is therefore
given by

z=6+4Tt, y=—1-—3t, where t € Z.

The solutions located in the second quadrant are those corresponding to
the points {x, y) satisfying
r=6+T7Tt<0 and y=-1-3t>0,

that is when t < —g and t < —%. This means that we must have t < —1.
The set A of integer points (z,y) which are solutions of 3z + 7y = 11 and
which are located in the second quadrant is therefore given by

A={(z,y):z=6+T7t and y = —1 — 3t, where t = —-1,—-2,-3,...}.

We first establish that (zg,y0) = (5, —2) is a particular solution of this
equation. This point generates the solutions

T =05+ Tt, y = —2 — bt, where t € Z.

Since we are interested in the points (z,y) such that y > z, we need to
establish the integer values of ¢ for which

—2-5t>5+7t, thatis t<-7/12,
which is only possible if ¢t < —1. The required set F is therefore
E={(z,y):z=5+Ttand y = —2 — 5¢, where t = —1,-2,-3,...}.

Taking ¢t = 0, we obtain that (z,y) = (5,1) is a solution of (). Choosing
t = 1, we obtain the solution (z,y) = (1,—2). These two solutions give
rise to the system

5a+b=11,
a—2b=11,
a solution of which is @ = 3 and b = —4, which produces the required

numbers a and b.
Since (z,y,%) = 1, we have (z,y) = (z,2) = (y,2) = 1, and therefore
only one of the terms x, y and z can be even. If z is even, then 22 = 0
(mod 4). The fact that z is even implies that y and 2 are both odd and
22 — 3y? = 2 (mod 4). It follows that  must be odd and that y or z is
even.

I) If y is even, then (z + z,z — ) = 2 and therefore z + x = 2u and
z — x = 2v, where (u,v) = 1. We then have 3y? = (z — z)(z + z) = 4uv.
Hence, (y/2)? = uv/3, and since (u,v) = 1, we may assume that 3|u, so
that there exists a positive integer m such that v = 3m. It follows that
there exist positive integers r and s such that v = r? and m = s?, in which
case

z+z 2 zZ—z 2

> =u=3m=3s and 5 =y =7
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We easily see that in this case, we must have

(r,s)=1, s>r3fr, y=2rs, x=3s°—1r% z=3s>+47r%

IT) If 2 is even, then (2 +z,z — z) = 1, in which case for r and s odd
and (r,s) =1, s>r,3/r, we have

352 —r? 352 +r?
y = TS, Tr = _—, =
2 2
(Sierpinski [39], Problem #170). We begin with the identity
(+) (@+y+2)° - @+’ +2%) =3 +y)(+2)(y+2).

It follows that if x, y and z are integers such that z + y + 2 = 3 and
z3 + 93 + 2% = 3, then, by (x), we have

(%) 8=(r+y)lz+2)(y+2)=0CB-7)B—-y)(3-2),
so that, in light of x + y + z = 3, we have
(% % %) 8=03-2)3—-y)(3—2).

Relation (x % %) implies that either the three numbers 3 —z, 3 —y, 3 — 2
are even or else only one of the three is even. In the first case, in light of
(xx), they are all in absolute value equal to 2; therefore, by (x * %), they
are equal to 2, in which case £ = y = z = 1. In the second case, in light
of (*x), one of the numbers 3 —x, 3 —y, 3 — z is in absolute value equal to
8, while the others are in absolute value equal to 1; thus, by (%), one of
the two is equal to 8, while the others are equal to —1. This finally yields
zr=-bandy=z2=4,orx=y=4and z=-5orx=4,y=-5and
z = 4. We can therefore conclude that the system of equations has only
four integer solutions, namely (1,1,1), (—5,4,4), (4, —5,4) and (4,4, —5).

We only need to consider, for each positive integer n, the triples {z, y, z},
where
r = n%n+1)8,
= n'(n+1)5,
— 4 3
z = n*(n+1)°.

Consider the equation 5z + 7y = 136. Reducing this equation modulo 5,
we obtain y = 3+ 5k. Substituting in the equation, we obtain x = 23 —7k.
The condition “z > 0 and y > 0” allows us to conclude that solutions are
possible for £ = 0,1,2,3, that is 136 = 115+ 21 = 80 4+ 56 = 45 + 91 =
10 + 126.

Setting x =a—7, y = a and z = a +r, we find the equation 2% + y* = z
becomes a(a — 4r) = 0. Hence, a = 4r and therefore z = 3r, y = 4r and
z = br, where r € N.

Setting r = 16 and s = 5 in Theorem 34, we obtain z = 281, y = 160 and
z = 231.

Since 3|zy and 4|zy, we have that 12|zyz. Hence, we only need to show
that 5|zyz. We first observe that if 5 fm, then m = 5k +1 or m = 5k +2,
for a certain integer k. In the first case, m? = 5(5k% & 2k) + 1 and in
the second case, m? = 5(5k? + 4k) + 4. Using this observation, we see
that if none of the numbers z,y, z are divisible by 5, then z? + y? gives,
after dividing by 5, the remainders 2, 3 or 0. Since 22 + y? = 22, the first

2
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two cases are clearly impossible. The only possibility is the third one, in
which case 22 is divisible by 5, so that z is divisible by 5.

Since z = r? — 52, y = 2rs and z = 2 + s2, we have s(r — s) = 6. Solving
for s, we find

r+vr2-24

—

Hence, in order for s to exist, we must have 72 > 24, in which case
V72 — 24 is an integer. Therefore, there exists an integer u such that
r2 — 24 = 42, in which case

(r—u)(r+u)=24=1.24=2-12=3.8=4-6.

S =

From this, we derive the values » = 7 and » = 5. We thus obtain the
Pythagorean triples (20, 21, 29), (16,30, 34), (13, 84, 85) and (48, 14, 50).
The equations 2 + y? = 22 and = + y + z = zy allow us to obtain the
equation (z — 2)(y —2) = 2. Hence, z = 3, y = 4 and z = 5 are the
dimensions of the required triangle.

The relation (n —1)? +n? = (n+ 1)? implies that n? = 4n; that is n = 4.
Whatever the parity of n, the left-hand side is always odd, while the
right-hand side is always even, a contradiction.

Since 22,92 = 0,1 (mod 4), we have z2+y? # 3 (mod 4), while 4247 =3
(mod 4).

First observe that the primitive solutions of 22 + y? = (22)? are given
by z =72 — 5%, y = 2rs and 22 = r?2 + s, withr > s > 0, (r,8) = 1,
r,s of opposite parity. Since the primitive solutions of 22 = r? + s2
are in turn given by r = m? —n?, s = 2mn and z = m? + n?, with
m >n >0, (m,n) = 1, m,n of opposite parity, we may conclude that
all primitive solutions of z? + y? = 2% are given by y = 4mn(m? — n?),
z =m*+n*-6m?n? and z = m? +n?, withm >n >0, (m,n) =1, m,n
of opposite parity.

First of all, it is clear that (zg,yo) = (2, —1) is a solution of the Diophan-
tine equation x +y = 1. All the integer solutions (z,y) of the equation
are therefore given by

=2+t y=-1-t (t€2Z).

Hence, we are looking for the values of z and y such that z2 4+ y? < 9.
But

2+t =242+ (-1 -t)2 =2t + 6t +5.
This means that we must have

2% +6t+5<9,

an inequality which is verified for the integers t = —3, -2, —1,0, yielding
the integer solutions

(-1,2), (0,1), (1,0), (2,-1).

First observe that 3136 = 562. We are therefore looking for the primitive
solutions of

(%) z? 4 56% = 22.
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Since all the primitive solutions of X2 + Y2 = Z? are given by
X=r*—s% Y=2rs Z=r>+5s%

where r > s > 0, (r,s) = 1, r,s of opposite parity, we must look for

integers r and s such that

(%%) Y =56 = 2rs, where r > s > 0,(r,s) = 1, r, s of opposite parity.

Hence, we only need to search for the solutions of (xx). There are
two of them, namely (r,s) = (28,1) and (r,s) = (7,4), these in turn
giving rise to the solutions (X,Y,Z) = (z,56,z) = (783,56,785) and
(X,Y,Z) = (z,56,2) = (33,56, 65).

Comparing the geometric mean with the arithmetic mean (see Theorem 5)
we have, for any positive real numbers z and y,

2% + 3 2. 2\1/2 2 .2
———2———2(:6 y?)Y/? = 2y, and therefore 2% + y% > 2zy.

Hence, we cannot have 22 + y? = zy unless * = y = 0. This is why the
only integer solution of z% + y2 = zy is (z,y) = (0,0).
It is obvious that x must be even. Setting x = 2u, we have

2u% +y? =222

It is then clear that y must be even, in which case setting y = 2v, we

obtain

u? + 202 =22

Reducing modulo 4, we see that v must be even. Setting v = 2w, we then

have

u? + 8w? = 22,

This equation has infinitely many solutions for each fixed value of u. In-

deed, w = v and z = 3u is a solution for each positive integer u. Moreover,
for each solution of (x) we can write

8uw? +u? = (3w —a)?,
for some integer a. Thus, we have
w=3axv8a%+ u?
Since w; = u is a solution, it follows that
we = 3u + \/m = 6u
is also a solution. Other solutions are given by
w3 = 35 u,
wy = 204 u,
and more generally by
Wp =6 Wp_1 — Wn_3.

To find all the solutions for a fixed u, we only need to search for the
solutions such that w is between 0 and w inclusively and then to iterate
from these solutions.
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(Contribution of John Brillhart, Arizona). Let a, b, ¢ be the lengths of the
three sides of the required triangle and let & and 2« be the angles opposite
to the sides a and b. Calling upon the law of sines and thereafter to the
law of cosines, we obtain successively

b sin2a 2sinacosa b2+ 2 —a?
- = — = - =2cosqa= ————,
a sin « sin o be
so that
e = ab®+ac® —dd,
blc—bla = a(c® —d?),
V(c—a) = a(c*—a?),
b* = a(c+a), sincec#a.

It is clear that the choice a = 4, ¢ = 5, b = 6 serves our purpose.
It is easy to check that the only solution is x = 1 and y = 3. As for the
other equation, it has no integer solution.

x\* /v\?
Since X? +Y? = Z? implies (—Z—> + (E) =1, we have

X 2rs Y r2-42

TTZ ey VYT 7T e

Dividing the numerator and the denominator by r2, we obtain by setting
t=s/r,

2 o 1-¢
Tl YT iy

Let y=2rs =24,s0that rs =12=12-1=6-2 = 4-3. We thus find
(r,s) =(12,1) = (6,2) = (4, 3), and this is why the primitive Pythagorean
triangles are obtained when (r,s) = (12,1) and (r, s) = (4, 3).

Assume that z, y and z is a primitive solution of x? + y? = 22. Hence,
x =12 — 5% y=2ts and z = t? + 52, so that letting A be the area of the
triangle and letting r be the radius of the inscribed circle, we have

0<t<1.

2

ry rx ry rz
A=5 =5ttty
and therefore

ry 2ts(t? — s?)
z+y+z  2s+ (t2 — %) + (t2 + s2)

= = s(t — s),

an integer.

One only needs to reduce the equation modulo 8, thereby obtaining a
contradiction.

We will show that at least two of the numbers z, y, z must be even. Assume
the contrary, that is that the three numbers z,y, z are odd. Then t2 is a
number of the form 8% + 3 and therefore must be odd, which contradicts
the fact that t is even. If only one of the numbers x,y, z is even, the sum
2% 4+ 4?4+ 22 = t? is of the form 4k +2, which is impossible since the square
of an even number must be of the form 4k.
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If (z,y) = (y,2) = (x,2) = 1, then z and z are odd and y is even. Set
z—x = 2u, 2+ = 2vu, where (u,v) = 1 and u and v are of opposite
parity. Substituting in the equation, we find that ¥? = 2uv. Assuming
that u is even, set u = 2M, that is y? = 4Mwv, in which case we must have
that M = r? and v = s2, (r,s) = 1. By substitution, we obtain y = 2rs,
z=152+2r? and z = s? — 2r2, with (r,s) = 1.

(AMM, Vol. 65, 1958, p. 48). The first equation becomes

(a—b—c)(a2+(b—c)2+ab+bc+ca) = 0.

Since a% + (b —c)2 +ab + bc + ca # 0 (because a,b,c > 0), we have
a—b—c = 0, which implies that a = b + ¢ = a?/2 and allows us to
conclude that a =2 and b=c=1.

(AMM, Vol. 73, 1966, p. 895). Multiplying the equation of the statement
by 4 and adding 1, we obtain

4ot + 4% + 42 440+ 1= (29 + 1)°

For x = —1, we find y = —1 or 0; for £ = 0, we find y = —1 or 0; for
x =2, we find y = —6 or 5; finally, for x = 1, y is not an integer. On
the other hand, for z < —1 or x > 2, the left-hand side of the above
equation is larger than (222 + z)? but smaller than (222 + z + 1)? and
therefore cannot be the square of an integer for integer values of x, while
the right-hand side is the square of an integer for all integer values of y.
It follows that the six solutions listed above are the only integer solutions
of the given equation.

(AMM, Vol. 75, 1968, p. 193). If 22 + ry? = p, then 22 = —ry? (mod p)
and therefore —ry?; that is —r is a quadratic residue of p. Hence, the

required prime number must satisfy <—7r> =1 for 1 <r < 10. This will

be satisfied if —1,2,3,5 and 7 are quadratic residues of p. It follows that
the congruences p = 1 (mod 8),p = 1 (mod 3),p = 1 or —1 (mod 5),
and p=1,2, or 4 (mod 7). The required prime number p must therefore
satisfy

p=1,121,169, 289,361 or 520 (mod 840),

and this is why the smallest prime number satisfying the conditions is
p = 1009. We have therefore obtained

1009 = 152+4282=192+2-182=312+3-42=152+4-142
= 1774+5-122=252+6-82=12+7-122 =192 + 8- 92
282 +9.52 =32410- 10

(AMM, Vol. 75, 1968, p. 685). Setting x =a+3d,y=a+4d, z=a+5d
and w = a+6d, we find the given equation becomes a(a?+9ad+21d?) = 0.
The only integer solution a of this equation is ¢ = 0, and therefore the
only solution {z,y, z,w} of the given equation is {3d, 4d, 5d, 6d}.

We have 11 = 1 +6n(n+2), n > 1, and therefore z,,41 = (n+2)3 —n3.
Hence, if 2,4 is a cube, say A3, then we have 2,,,1 = A3 = (n42)3 —n3.
Since no integer satisfies such an equation, the result is proved.
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(833) (AMM, Vol. 85, 1978, p. 118). Assume that there exists a solution
{z,y,n}. Since
gt =y 1= (-1 +y" T+ 4 ),
it is clear that any prime divisor p of y—1 divides z, and since (z,n+1) = 1,
we have pf(n + 1). Since y =1 (mod y — 1), it follows that
I+y+y2+-+y"=n+1 (mody—1)
and therefore that the numbers y — 1 and 1 +y + - -- + y™ are relatively
prime. Hence, we may write
et =@y-DA+y+---+y"),
which implies that 1 +y + --- + y™ is an n-th power of an integer. But
this is impossible since
Yy <l4y+-+yt <+

(834) (AMM, Vol. 87, 1980, p. 138). If the exponent of 3 is not zero, it is easy
to see that none of these equations are solvable modulo 3.

(835) (AMM, Vol. 76, 1969, p. 308). If < y < z, then 4* +4Y 4 47 is a perfect
square under the condition that there exists a positive integer m and a
positive odd integer ¢ such that

14+4Y7% 4+ 4777 = (1 +2™t)%

Therefore,
(%) A1+ 477Y) = 2m (1 + 2™ N,
so that we must have m = 2y — 22z — 1. Substituting this value in (x), we
obtain
t—1 = 4y—z—1(4z—2y+m+l _ t2)

4y—z—1(2z—2y+z+1 + t)(2z—2y+w+l _ t)

Since t is odd, this last equation is possible when ¢ = 1, and consequently
z = 2y —x — 1. Therefore, the only integer solutions are {z,y, 2y —z — 1},

with arbitrary z and y. Finally, these values produce the square (2% +
22y—z—1)2'

(836) (AMM, Vol. 76, 1969, p. 84). Setting a = 3d, ¢ = 2b — 3d, we obtain
z + y = 3b, and the second equation boils down to

(z —y)? = (b—8d)? — 40d?,
of which a solution is given by
r—y=m?—-10n%, b—8d=m?+10n%, d=mn,

where m,n € N. Hence, the solutions are: a = 3d, b = 8d + m? + 10n?,
c=2b-3d, z = 12d + 2m? + 10n2, y = 12d + m? + 20n2. To obtain
infinitely many solutions when a, b, ¢ are in arithmetic progression, it is
enough to choose

a=3mn, b=m?+8mn+10n%, c¢=2m?+ 13mn+ 20n?
and

z=2m?+12mn + 10n?, y=m? + 12mn + 20n>.
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(AMM, Vol. 83, 1976, p. 569). First consider the equation (x), (2% +
y) = y™*L. If m = 0, the solutions are z = 0 and y arbitrary. If m > 1,
the solutions are given by z = b(b™ — 1), y = b*(b™ — 1), where b € Z. It
is easy to verify that these are indeed solutions. Let (z,y) be a nontrivial
solution; that is xy # 0. Then, we can write = ac, y = bc where a and
b are relatively prime and a > 1. From (), we derive

a™(a*c+b) = b

This implies a = 1 and ¢ = b(b™ — 1), hence the solutions z and y. The
only solutions are therefore (m,xz,y) = (0,0,y) where y is arbitrary, and
(m,z,y) = (m,b(d™ — 1),b2(b™ — 1)), where m > 1 and b € Z.

Let us now examine the equation (x#), 2™ (22 +y?) = y™*l. If m = 0,
we have the only solution z =0, y = 1. If m > 1, we only have the trivial
solution z = y = 0. Indeed, assume that there exists a nontrivial solution
(z,y). Then zy # 0, and we write again £ = ac, y = be, where a and b
are relatively prime and a > 1. From (%) we derive

a™c(a® +b%) = L
This implies a = 1, so that 1 + b? divides b™*1. Since b # 0, we obtain
a contradiction. The only solutions are therefore (m,z,y) = (0,0,1) and
(m,0,0) where m > 1.
(AMM, Vol. 95, 1988, p. 141). These equations cannot be satisfied by
integers. Indeed, for each integer h, we have

0 (mod8) ifh=0 (mod4),
R2=¢{ 1 (mod8) ifh=1or3 (mod 4),
4 (mod8) ifh=2 (mod4).
We therefore have
0,1or4d (mod8) ifh=0 (mod4),
R+ k*={ 1,20r5 (mod8) ifh=1or3 (mod4),
0,40or5 (mod8) ifh=2 (mod4),

for each integer h and k. Hence, since {z + 1,z + 2,z + 3,z + 4} forms a
complete residue system modulo 4, the congruences

(z+1)+a?=(x+2? 4+ =(x+3)*+ P =(x+4)* +d°
=n (mod 8)

are satisfied only if n € {0,1,4} N {1,2,5} N {0,4,5}, which is impossible.
Verifying the parity, we easily notice that two of the three integers are
even, while the other is odd. Setting x = 2m, y = 2n and z = 2r + 1, the
equation becomes

4m? 4+ 4n? + 4r% + 4r + 2 = dmn(2r + 1),

which would mean that 4|2, which is nonsense. Hence, there are no solu-
tions.

If £ = 0, then from (%), y = +1; hence, because of (), we have y = 1. It
follows that (z,y) = (0,1) is a solution of the system. Similarly, (z,y) =
(1,0) is a solution of the system. Assume that  # 0 and y #0. If z > 1,
then 22% — 22 + ¢y = 22(2z — 1) + %2 > 22 + 4?2 > 1 +y? > 1, which
contradicts (*); hence < 1. Similarly, y < 1. By adding (%) and (*x),
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we derive that 23 + 43 = 1. If z < 0, then y > 1, which contradicts y < 1;
hence z > 0. Similarly, y > 0. We then have 0 <z <1l and 0 < y < 1.
By hypothesis, 223 — 22 + y? = 29> — y? + 22, so that o3 — 22 = ¢3 — 42,

Let u = y/z. It follows that 23 — 22 = 4323 — u?2? and therefore that

(1) r—1=u?(uz —1).

If u > 1, then u?(uz — 1) > uz — 1, which contradicts (1). Similarly, we
cannot have u < 1. It follows that w = 1 and therefore that y = z. It
then follows from (x) that 23 = 1/2 and therefore that x = y = (1/2)/5.
The only solutions of the system are therefore

1 1
(071)) (170)7 (mam> .

(MMAG, Vol. 52, 1979, p. 47). If one of the numbers is 1, the other
must also be equal to 1. Assume that (x,y) is a solution with x > 2 and
y > 2. Then, 2¥ = y* ¥ > 1 and therefore z > y. Dividing both sides of
the equation by yY, we obtain (z/y)Y = y*~ 2. Since x/y > 1, we have
(z/y)¥ = y*=2¥ > 1. It follows that  — 2y is a positive integer and thus
z/y > 2, so that (xz/y)¥ is a positive integer. This implies that z/y is a
positive integer. Since the function f(z) = 2* — 42 is strictly increasing
for x > 5, it follows that 2% > 4z and therefore for z/y > 5, we have

T _ /-2 9@/m-25 2

) )
a contradiction. On the other hand, when 2 < z/y < 5 we obtain that
x/y must be equal to 3 or 4. Since z/y = y®/¥)=2 it follows that by
choosing z/y = 3, we have y = 3 and z = 9, and choosing z/y = 4, we
have y = 2 and z = 8. Therefore, the only solutions are (1, 1), (9,3) and
(8,2).
(MMAG, Vol. 63, 1990, p. 190). Since 1 +z+ x> >0, 1+y+y? > 0 and
14 z+ 2% > 0, it follows that z,y, z are positive integers. Without any
loss in generality, we may assume that x > y > 2. Then, 2z(1 +z +z2) >
3(1 + x*), so that (z — 1)?(3x? + 4z + 3) < 0. Therefore, z = 1, which
yields the only real solution z =y =2z = 1.
(MMAG, Vol. 63, 1990, p. 190). This follows from the fact that any
integer n > 2 satisfies the identity (n2+n)! (n—1)! = (2 +n—1)! (n+1)!
and the chain of inequalities n? +n>n’4+n—-1>n+1>n—1.
Since m® = 0,1 or 8 (mod 9), it follows that

2 +4y24+23=0,1,2,3,6,70or 8 (mod 9).

We conclude that neither of these two equations is solvable in integers.
The answer is YES. Indeed, this Diophantine equation can be written
successively as

ot = 4y +4y+1-81,
zt 481 = 4 +4y+1,
et 430 = (2y41)3%

this last equation having integer solutions only if x = 0, in which case we
obtain 2y+1 = +9, that is y = 4 or —5. We then have only two solutions,
namely (z,y) = (0,4) and (z,y) = (0, —5).
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The answer is NO. Indeed, given an arbitrary integer a, we always have
a* =0or 1 (mod 5). Therefore, the only possible values of z* + y* + 2*
modulo 5 are 0, 1, 2 or 3. Since 363932239 = 4 (mod 5), there is no hope
for a solution.

The answer is NO. The reason is that (303,57) = 3, while 3 never divides
a®+1.

The answer is NO. Indeed, this Diophantine equation can be written as

et 424 = (2y +1)2

But we know that the Diophantine equation X* + Y% = Z?2 has integer
solutions only if X =0 or Y = 0. Here, Y = 2, and therefore X = 0. It
then follows that 16 = (2y + 1)?, which makes no sense.

The answer is YES. It is enough to take x =0, y = 1 and z = 9, in which
case we do have

ot 2y + 1) =0 434 =92

And this is the only solution in nonnegative integers.
Since 2% — y* = 8, we have (z — y?)(z + y?) = 8, which means that the
only two possible cases are

x—yzzl’ 1'—y2:2,
and

r+y*=8 T4yt =4
The first of these two systems has no solutions, while the second implies
that x = 3 and y = 1. The only positive solution of this Diophantine
equation is therefore (z,y) = (3,1).
Since 2% — y* = pq, we have (z — y?)(z + y?) = pq, which gives rise to the
systems of equations

z -y’ =1, z -y’ =p,
N and 9
T+ y*=pg T+yt=q
The second system has the solution

Y St T S o
2’ 2
which provides the following solutions to the Diophantine equation: x =
Brd g =42,
2 )

The first system implies that 2y%2+1 = pq = p(p+8); that is 2y?+17 =
(p+4)? with p+8 prime. This last equation may have solutions depending
on the value of p. When p = 3 with ¢ = p+8 = 11, we obtain the solutions
x = +7 and y = £2, and therefore we have found in this case more than
one solution.

The answer is NO. Indeed, this Diophantine equation can be written as

N | o

:4’

(z4+1)2*+ (y+2)? = —42+3.

Assume that this equation has a solution (z,y, z). Since the left-hand side
of this equation is congruent to 0, 1 or 2 modulo 4, while the right-hand
side is congruent to 3 modulo 4, we have reached a contradiction.
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The answer is NO. This follows immediately from the fact that, since the
geometric mean is no larger than the arithmetic mean (see Theorem 5),

4, .4 4 4
x 24 u
FYE A (atytatt) 4 = oy,
The answer is NO. To prove it, we use the method of infinite descent of
Fermat. Indeed, assume that this Diophantine equation has solutions. Let
x = xg be the value corresponding to the smallest positive value of x for
which this equation has a solution, say (o, ¥o, 20). We then have

(1) x5 + 2y = 425.

It is clear from (1) that 2|x3, which implies that 8|z3; hence z¢ = 2X for
a certain positive integer X. The equation can therefore be rewritten as
8X3 + 2y3 = 423, that is

(2) 4X3 +yd =223

It follows from (2) that 2|y3 and therefore that 8|y3, and equation (2)
becomes 4X3 + 8Y3 = 223, with 2Z = 2, that is

(3) 2X3 +4y3 =23

It follows from (3) that 2|z and therefore that 8|z3, and equation (3)
becomes 2X° + 4Y3 = 823, that is

X% +2v3 =428,

which is not possible, since we would have thus obtained a solution (X,Y, Z)
to the equation x3 + 2y% = 423, with 0 < X < xzg, thereby contradicting

the minimal choice of zg.

If m=4k+7, 0<r <3, then m? = 0,1 or 4 (mod 8). Consequently,

22 +9y2=0,1,2,4 or 5 (mod 8) while 8z +7 =7 (mod 8). Therefore, we

conclude that this Diophantine equation has no integer solutions.

We may assume that the numbers z and y are not divisible by 7. Con-

sequently, these numbers are of the form 7k + 1, 7k + 2 or 7k &+ 3. Since

(Tk £1)% = 7(Tk® £ 2k) + 1, (Tk £ 2)2 = 7(Tk® £ 4k) + 4, (Tk £ 3) =

7(7Tk? £ 6k + 1) + 2, it follows that

(Tk+ D) ="M +1, (Tk+2)*=7TN+2, (Thk+3)=7K+4
and therefore that
2t +44=1,2,3,4,5,6 (mod7),

while 722 = 0 (mod 7). Hence, equation z* + y* = 722 has no integral
solution.

For the second equation, the answer is again NO. In this case, we only
need to reduce the given equation modulo 5.
We easily see that the left-hand side of the equation is congruent to 0, 2
or 4 modulo 8, while the right-hand side is congruent to 5 or 6 modulo 8.
It follows that the equation has no integer solutions.
We have 2" = 222772 = z"72(22 + y%) > 2™ + y", a contradiction.
We write the initial relation as

X3 +3yY3 =925
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We proceed by contradiction by first assuming that amongst all the so-
lutions with Z > 0, the smallest one (in Z) is z,y,2. From the above
equation, we derive that x is a multiple of 3, and we write x = 3n,
which we immediately substitute in the relation. We then obtain that
9n3 + 93 = 323, which implies that y is also a multiple of 3. We then set
y = 3m, which gives rise to the relation 9n® + 27m? = 323, which in turn
implies that 3n% +9m3 = 23. Hence, z = 3k and 3n% 4 9m? = 27k3, which
is equivalent to n® + 3m3 = 9k3. But this relation is of the same form as
the initial equation. But k£ = z/3, which contradicts the minimal choice
of z.

The answer is NO. Indeed, since p|z, we can set z = zop for some positive
integer zo. Substituting in the original equation, we obtain the equation

p’zy +y* +p2t = pPwt.
This equation implies that p|y. As above, we then write y = yop, which
yields the equation

p%é +p3y3 + 2* = pw.
It follows that p|z. Hence, write z = zp, giving rise to the equation
pag + pPyg + p’ag = w',
This implies that p|w. Writing w = wop, we obtain
g+ py + P72 = powt.
Now, this equation is of the same type as the original equation, but the in-
tegers g, Yo, 20, Wo are respectively strictly smaller than x,y, z, w. There-
fore, the method of infinite descent of Fermat then guarantees that the
original equation has no integer solution.
We proceed by contradiction by assuming that such a solution z,y, z ex-

ists, with positive integers x,y, z. First assume that x is odd and that y
and z are even. We have

22 +y*+22=1 (mod4) while 2zyz=0 (mod 4),

which makes no sense. Similarly, x and y cannot be odd with 2z even.
We can then finally show that x,y, 2z are odd. We have thus arrived at
the conclusion that the three integers x,y, z must be even, say x = 2z,
y = 2y1, 2 = 221, so that

o3 +yf+ 2 =412 =0 (mod 4),

which again implies that z1, y; and 2; must in turn be even. Continuing
this process, we build triples (z2,y2, 22), (z3,ys,23), ... delivering each
time smaller and smaller even integers, which is impossible. This proves
that there exist no integer solutions z, y, 2.

Let (z,y) be a solution of

(1) m3 +y3 — xz +y2.
If x = 0, we find the two solutions (z,y) = (0,0) and (z,y) = (0,1). On
the other hand, if x # 0, set a = y/z. Since, from (1), we always have

y # —z, it follows that a # —1. Substituting y = az in (1), we find

T = }i—‘;; Similarly, substituting £ = y/a in (1), we find y = %ﬁ We
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have thus established that any solution (z,y) of (1) with & # 0 is of the

form
9 _lrae -urae) ~1).

(2) e s L Bl B (a#-1)
Reciprocally, one easily verifies that (2) produces a solution (z,y) of (1).
(Problem due to Leo Moser). We will provide a particular solution. Set
x1 = 2 and then, for each r, 2 < r < mn, let

_1+a? a(l+ a?)

Ty = 21T9 " Tp—1 + 1.

Of course the equation is satisfied for n = 1. Hence, assume that the set
{z1,22,...,2,} satisfies the equation for n = r; we will show that the
corresponding set with n = r 4 1 satisfies the equation as well. But for
n=r+ 1, we have

1 1 1 1 1
—_  — 4+ + =1 - —
T X2 Tr+1 Z1X2: - Tryl T1Z2 " Tr
1 1
+
Tr41 T1T2 - Tr41
1 Tr41 -1 1 1T
=1+ -t =1+ —~ T =1,
Tr41 T1X2 " Tr41 Tr41 T1- " TrTry1

as required.

REMARK: The sequence 2,3,7,43,1807,3263443, ... is also the subject
of Problem 479.

We proceed by contradiction by assuming that such a solution z, y, z exists
with positive integers z,y, z. First assume that z is odd and that y and 2
are even. We thus have

22 +9y*+22=1 (mod4) while z%?=0 (mod 4),

which makes no sense. Similarly, one can show z and y cannot be odd
while z is even. Finally, one can show that z,y,z cannot be odd. We
therefore arrive at the conclusion that all three integers z,y, z must be
even, say = = 2xy, y = 2y1, 2 = 221, so that we have

2 +yf+2f =dalyf =0 (mod 4),

which again implies that z, y; and z; must also be even. Continuing, we
construct triples (za,y2, 22), (*3,ys,23), ... each time made up of even
numbers getting smaller and smaller, an endless process, which makes no
sense. This argument implies that there is no integer solution z,y, z.
Assuming that x is even or odd, we reach a contradiction.

(Problem introduced by Johann Walter). Assume that such odd integers
x,y, z exist. Then

(2% 4+ 2zy + ) + (2 + 222 + 2%) = % + 2y2 + 22
and therefore
? +xy+ Tz =1yY=z.

By adding yz on each side, we obtain

(%) (z+y)(z+2) =2z,
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which is impossible because each of the expressions = +vy and =+ z is even,
so that the left member of (*) is divisible by 4, while its right member is
not, y and z being odd.

One easily checks that z = (s2 — pr?)/2, y =rs, 2 = (s> + pr?)/2 is a
solution. Conversely, if z,y, z is a primitive solution, then y? = (2 —z?)/p
and thus p|(z + z). Setting s> = z ¥ x and r? = (2 + z)/p, we obtain the
result.

Let n,m € N. Setting z = n(n? — 12m?), y = m(4m? — 3n?), we obtain
z = n? + 4m?, which yields infinitely many solutions.

The only solutions are (z,y,n) = (0,0, n) (with arbitrary n) and (z,y,n) =
(2,2,1). Indeed, first consider the case n = 1. The equation z + y = zy
becomes x = (x— 1)y, which means that z = 0 (and y = 0) or that z— 1|z,
or in other words that x —1 = 1 or —1 (since £ — 1 and z are two consecu-
tive integers). If z—1 =1,thenz =2andy =2. fz—1 = —1,thenz =0
and y = 0. The second case is the one where n > 2. If z and y are posi-
tive, assume that x > y > 0; we then have zy = 2™ +y™ > 2" > 22 > zy,
a contradiction.

Let us now examine the case where at least one of z,y is negative;
clearly both cannot be negative. Assume that £ < 0 and y > 0. If n
is even, we are back to the above case. On the other hand, if n is odd,
n > 3, then we can write z = —a, with @ > 0, and say y = b. Then, the
equation z" + y™ = zy becomes a™ — b™ = ab. Setting a = b+ r, we have

a®" — b =(b+7)" —b" >nb" " lr 4+ (Z) b~ 2r? > 3b%r + 3br?
> b% + br = ab,

a contradiction.

Since z > max(z,y), we derive from the equation that n”|n¥ and n¥|n®.
Consequently, £ = y and it follows that z =z 4+ 1 and n = 2.

Assume that w > max{z,y}. Then, n®|n™. Since n*|n*, we have n®|n¥.
By the symmetry of the problem, we also have n¥|n®. Therefore, x = y
and the equation we need to solve is reduced to (¥) 2n* + n* = n*. In
this case, we derive that n*|2n®, so that 2n® % is an integer for z < w.
If n > 2, then x = w and (%) becomes 3n” = n*, which implies that
n = 3 and the solution is ¢ = y = w = z — 1. For n = 2, the solution is
r=y=w—-1=2z-2.

(Contribution of A. Ivié, Belgrade). Assume that the equation zP+y? = 2"
has a solution in positive integers z,y,2. Let A=aP, B=y?, C =2z", so

that
Il r= I p=]] p<av=

p|ABC plzPydz" plryz

But since z < 2"/P, y < 2'/9, then according to the abc conjecture, for all
€ > 0, there exists a positive constant M = M (e) such that
1+e

2" < M- H p =M - (zyz)"*c < M- (Z'r)(1+5)(%+%+%).
p|ABC
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If z > zy, we obtain
1 1 1
1§(1+s)(—+—+—),
p q

which contradicts (x) for ¢ sufficiently small.
In order to prove the result, we first observe that if 1 < a < b < ¢ are
three consecutive integers, then ac + 1 = b?.

Now, since ac, 1 and b? are relatively prime, it follows from the abc
conjecture that, for each € > 0, there exists a positive constant M = M ()
such that

14
(%) B2 < M - (v(abe)) 't < M - (\/abc> < M- B3F/2,

where v(n) stands for the product of the prime numbers dividing n and
where we used the fact that ac < b2. It then follows from () that

b(1—36)/2 < M.

Choosing ¢ small enough, we find that b as well as ¢ and ¢ are bounded,
which proves the result.
Assume that the number m = n3 + 1 is powerful. Then, according to the
abc conjecture, we have that for each € > 0 there exists a positive constant
M = M(e) such that

m < M -y(mn3)tte
where (a) is the product of the prime numbers dividing a. Since (m,n) =
1, v(m) < /m and n < m'/3, it follows that

m< M- ,y(nm)1+s <M. (m1/3m1/2)1+s =M. m5(1+5)/6’

so that X
%

<M.

Taking ¢ sufficiently small, we find that m is bounded, which proves the
result.

The numbers n = 2 and n = 23 are the two smallest numbers (and
possibly the only ones) such that the corresponding number n3 + 1 is
powerful: 23 +1 =32 and 23 +1=2%.32.132
Assume that z,y, 2 are three 4-powerful numbers relatively prime and
verifying x + y = z. We apply the abc conjecture to the triple (z,y, z) so
that

2 < Mo r(ays) e < M- (ay2) /A < M09/
It follows that

1
me

LA-39)/4 < or
and therefore that z is bounded, and similarly for x and y.
Let a + b = ¢, where ¢ is 4-powerful and where a and b are 3-powerful,
(a,b) = 1. For each £ > 0, we have ¢ < M(e) - y(abc)!T¢. By hypothesis,
we have

y(a) < a3, A(b) <3 A(c) < V3,

which implies that, using the abc conjecture,

1+¢
c < M(e) (a1/3b1/301/3) < M(e)(c11/12)1+5,
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an inequality which cannot hold if ¢ is sufficiently small and ¢ large enough.
This clearly proves that only a finite number of such a, b, ¢ integers can
exist.
Let y > 0 be fixed and let £ > 0 be fixed and sufficiently small. Let also
P1,D2, - - -, Pr be the list of all prime numbers < y. If P(p? — 1) < y for a
certain prime number p, then there exist nonnegative integers oy, ..., a,
such that

pP—1=pf"-ppr
and therefore

p?=pit - pl + L
It follows from the abc conjecture that for all € > 0, there exists a positive
constant M = M(e) > 0 such that

p> < M- (pip2---prp)t e,

so that
pl—e <M. (p1p2 .. _pr)1+5 < M- yT(HE)-

Since ¢ is small and r = w(y) is fixed (as well as y), it follows that p is
bounded, and the result is proved.

REMARK: For each odd prime number y < 19, here is the conjectured
value of the largest element p, = p.(y) of the set of prime numbers A,:

y=13 5 7 11 13 17 19
p.= |17 31 4801 4801 8191 388961 1419263

Let us mention that although P(p? — 1) > 11 for each prime number
p > 4801, the largest prime number p such that P(p? —1) = 11 is p = 881
(in fact P(48012 — 1) = 7). For the other prime numbers y listed above,
we have P(p2 — 1) = y.

Since p = 1 (mod 4), we have ¢ = 1 (mod 8), so that (%) =1 and there-
fore, by Euler’s Criterion,

-1 = 9% = (g) =1 (mod q).

On the other hand, since
n—1=pg—1=2p>—p—1=(p—1)(2p+1) and 2P"'=1 (mod p),
it follows that
gn—1 = (21’—1)27"+1 =1 (mod p),
2"l = (21’—1)2""Ll =1 (mod q),

which implies that 2"~! = 1 (mod pq), as required.
First we define the function

Mo(e) = roax M(9),
which is decreasing for all € > 0 and is such that M(e) < My(e) for each

e>0.
It follows from the abc conjecture that, for ¢ = 1,2, 3,

2 < M(e/3) - (Y(z12223)) /% < Mo(e/3) - (Y(z17223)) 773
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and therefore that

w2923 < Mo(e/3)° - (y(z1223))°**.
Hence, if the conclusion (*) is false, then

zi > Mo(e) v(z:)*™®  (1=1,2,3)
and therefore

T1T2Z3 > M0(€)3 : (7(-’131x2273))3+6,

in which case we would have
Mo(f)3 '7($1$2$3)3+E < 112223 < Mo(i‘?/3)3 "Y($1$2$3)3+E7

and therefore
My(e) < My(e/3),

which is impossible since My is decreasing.

(880) (Math. Intelligencer 18 (1996), p. 58). It is false. Indeed, choosing
n =3,z =10, y =16, 2 = 17, we obtain a contradiction. This counter-
example is due to Roger Apéry, the famous mathematician who proved
the irrationality of ((3) =Y oo, 1/n3.

(881) From Wilson’s Theorem, we have (p — 1)! = —1 (mod p) so that

(p—1!+1
P

§=

is an integer .

It follows that

P11 _ (p-1)! oot Fe-Dt

T

Hence,
(r€)? = (T@—l)!/m)“l n (T(P-l)!ﬂn)a? oot (T@fl)!/ar)“ﬂ

The result follows by setting

n=r¢t and z;=r®" VY% for ;= 1,2,...,r
(882) From Wilson’s Theorem, (p — 1)) = —1 (mod p) and this is why
p—1'+1

£

is a positive integer. It follows that

(26)P = 2= DML = 9= 1! 4 9(e-D)! (2<p—1>!/<p—1>)”'1

n (2(p—1)!/(p—1>>”‘1 '
The result then follows by choosing
T = 2(1’—2)!’ y= 2(p=2)! » =9,

(883) It is all the prime numbers p satisfying one of the congruences p =
1,5,7,9,19,25,35,37,39,43 (mod 44).



