
Maxima by Example:
Ch. 2, Plots, Files, Read, Write, and Fit∗

Edwin L. Woollett

January 6, 2014

Contents

2.1 Introduction toplot2d . 3
2.1.1 First Steps withplot2d . 3
2.1.2 Parametric Plots 5
2.1.3 Can We Draw A Circle? 6
2.1.4 Line Width and Color Controls .. 9
2.1.5 DiscreteData Plots: Point Size, Color, and Type Control 11
2.1.6 Moregnuplot preambleOptions . 15
2.1.7 Creating Various Kinds of Graphics Files Usingplot2d . 16
2.1.8 Usingqplot for Quick Plots of One or More Functions 17
2.1.9 Plot of a Discontinuous Function 19

2.2 Working with Files Using the Packagemfiles.mac. 19
2.2.1 Check File Existence withfile searchor probe file . 19
2.2.2 Check for File Existence usingls or dir . 20
2.2.3 Type of File, Number of Lines, Number of Characters 21
2.2.4 Print All or Some Lines of a File to the Console 21
2.2.5 Rename a File usingrename file . 22
2.2.6 Delete a File withdeletefile . 22
2.2.7 Copy a File usingcopy file . 22
2.2.8 Change the File Type usingfile convert . 22
2.2.9 Breaking File Lines withpbreak linesor pbreak() . 23
2.2.10 Search Text Lines for Strings withsearchfile . 25
2.2.11 Search for a Text String in Multiple Files withsearchmfiles . 26
2.2.12 Replace Text in File withftext replace . 28
2.2.13 Email Reply Format Usingreply to . 29
2.2.14 Reading a Data File withread data . 29
2.2.15 File Lines to List of Strings usingread text . 31
2.2.16 Writing Data to a Data File One Line at a Time Usingwith stdout . 31
2.2.17 Creating a Data File from a Nested List Usingwrite data . 32

2.3 Least Squares Fit to Experimental Data 33
2.3.1 Maxima and Least Squares Fits:lsquaresestimates . 33
2.3.2 Syntax oflsquaresestimates . 34
2.3.3 Coffee Cooling Model 35
2.3.4 Experiment Data for Coffee Cooling 36
2.3.5 Least Squares Fit of Coffee Cooling Data 38

∗This version usesMaxima 5.31.2. Check http://www.csulb.edu/ ˜ woollett/ for the latest version of these notes. Send
comments and suggestions towoollett@charter.net

1

COPYING AND DISTRIBUTION POLICY
This document is part of a series of notes titled
"Maxima by Example" and is made available
via the author’s webpage http://www.csulb.edu/˜woollett /
to aid new users of the Maxima computer algebra system.

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them
to others as long as you charge no more than the costs of printi ng.

Keeping a set of notes about using Maxima up to date is easier
than keeping a published book up to date, especially in view o f
the regular changes introduced in the Maxima software updat es.

Feedback from readers is the best way for this series of notesto become more helpful to new users of Maxima. All
comments and suggestions for improvements will be appreciated and carefully considered.

LOADING FILES
The defaults allow you to use the brief version load(fft) to l oad in the
Maxima file fft.lisp.
To load in your own homemade file, such as qxxx.mac
using the brief version load(qxxx), you either need to place
qxxx.mac in one of the folders Maxima searches by default, or
else put a line like:

file_search_maxima : append(["c:/work2/###.{mac,mc}"] ,file_search_maxima)$

in your personal startup file maxima-init.mac (see Ch. 1, In troduction to
Maxima for more information about this).

Otherwise you need to provide a complete path in double quote s,
as in load("c:/work2/qxxx.mac"),

We always use the brief load version in our examples, which ar e generated
using the XMaxima graphics interface on a Windows XP compute r, and copied
into a fancy verbatim environment in a latex file which uses t he fancyvrb
and color packages.

Maxima.sourceforge.net. Maxima, a Computer Algebra Syste m. Version 5.31.2
(2013). http://maxima.sourceforge.net/

2

3

2.1 Introduction to plot2d

You should be able to use any of our examples with eitherwxMaxima or Xmaxima. If you substitute the wordwxplot2d for the
wordplot2d , you should get the same plot (usingwxMaxima), but the plot will be drawn “inline” in your notebook ratherthan in
a separate gnuplot window, and the vertical axis labeling will be rotated by 90 degrees as compared to the gnuplot window graphic
produced byplot2d .

To save a plot as an image file, usingwxMaxima, right click on the inline plot, choose a name and a destination folder, and click ok.

TheXMaxima interface default plot mode is set to “Separate”, which the author recommends you use normally. You can check this
setting in theXMaxima window by selectingOptions, Plot Windows, and see thatSeparateis checked. (You can then back out by
pressing Esc repeatedly.)

To save aXMaxima plot drawn in a separategnuplot window, left click the left-most icon in the icon bar of the gnuplot window,
which is labeled “Copy the plot to clipboard”, and then open any utility which can open a picture file and select Edit, Paste, and then
File, Save As. A standard utility which comes withWindows XP is the accessoryPaint, which will work fine in this role to save
the clipboard image file. The freely availableInfanview is a combination picture viewer and editor which can also be used for this
purpose. Saving the image via the gnuplot window route results in a larger image.

We discuss later how to use an optional plot2d list to force a particular type of image output. A simple example is

plot2d (sin(u),[’u,0,%pi], [gnuplot_term,’pdf])$

which will create the image filemaxplot.pdf in your current working directory.

2.1.1 First Steps with plot2d

The syntax ofplot2d is

plot2d(object-list, draw-parameter-list, other-option -lists).

The required object list (the first item)maybe simply one object (not a list). The object types may be expressions (or functions), all
depending on the same draw parameter, discrete data objects, and parametric objects. If at least one of the plot objects involves a
draw parameter, sayp, then a draw parameter range list of the form[p, pmin, pmax] should follow the object list.

We start with the simplest version which only controls how much of the expression to plot, and does not try to control the canvas
width or height.

(%i1) plot2d (sin(u), [’u, 0, %pi/2])$

which produces (on the author’s Windows XP system) approximately:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

si
n(

u)

u

Figure 1: plot2d (sin(u), [’u, 0, %pi/2])

4

While viewing the resulting plot, use of the two-key commandAlt-Spacebar , which normally (in Windows) brings up
a resizing menu, instead switches from the gnuplot figure to araw gnuplot window. You can get back to the figure using
Alt-Tab , but the raw gnuplot window remains in the background. You should resize the figure window by clicking on
the Maximize (or Restore) icon in the upper right-hand corner. Both the figure and the raw gnuplot window disappear
when you close (using, sayAlt-F4 , twice: once to close the figure window, and once to close the raw gnuplot window).

Returning to the drawn plot, we see thatplot2d has made the canvas width only as wide as the drawing width, and has
made the canvas height only as high as the drawing height. Nowlet’s add a horizontal range (canvas width) control list in
the form[’x,-0.2,1.8] . Notice the special role the symbolx plays here inplot2d . u is a plot parameter, andx is
a horizontal range control parameter.

(%i2) plot2d (sin(u),[’u,0,%pi/2],[’x, -0.2, 1.8])$

which produces approximately:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5

si
n(

u)

u

Figure 2: plot2d (sin(u), [’u, 0, %pi/2], [’x,-0.2,1.8])

We see that we now have separate draw width and canvas width controls included. If we try to put the canvas width
control list before the draw width control list, we get an error message:

(%i3) plot2d(sin(u),[’x,-0.2,1.8], [’u,0,%pi/2])$
set_plot_option: unknown plot option: u

-- an error. To debug this try: debugmode(true);

However, if the expression variablehappensto bex , the following command includes both draw width and canvas width
using separatex symbol control lists, and results in the correct plot:

(%i4) plot2d (sin(x), [’x,0,%pi/2], [’x,-0.2,1.8])$

in which the first (required)x drawing parameter list determines the drawing range, and the second (optional)x control
list determines the canvas width.

Despite the special role the symboly also plays inplot2d, the following command produces the same plot as above.

(%i5) plot2d (sin(y), [’y,0,%pi/2], [’x,-0.2,1.8])$

5

Theoptional vertical canvas height control list uses the special symboly , as shown in

(%i6) plot2d (sin(u), [’u,0,%pi/2], [’x,-0.2,1.8], [’y,- 0.2, 1.2])$

which produces

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5

si
n(

u)

u

Figure 3: plot2d (sin(u), [’u,0,%pi/2], [’x,-0.2,1.8], [’y,-0.2, 1.2])

and the following alternatives produce exactly the same plot.

(%i7) plot2d (sin(u), [’u,0,%pi/2], [’y,-0.2, 1.2], [’x,- 0.2,1.8])$
(%i8) plot2d (sin(x), [’x,0,%pi/2], [’x,-0.2,1.8], [’y,- 0.2, 1.2])$
(%i9) plot2d (sin(y), [’y,0,%pi/2], [’x,-0.2,1.8], [’y,- 0.2, 1.2])$

2.1.2 Parametric Plots

For orientation, we will draw a sine curve using the parametric plot object syntax and using a parametric parametert .

(%i1) plot2d ([parametric, t, sin(t), [’t, 0, %pi]])$

which produces

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5

si
n(

t)

t

Figure 4: plot2d ([parametric, t, sin(t), [’t, 0, %pi]])

6

As theplot2d section of the manual asserts, the general syntax for aplot2d parametric plot is

plot2d (... [parametric,x_expr,y_expr,t_range],...)

in which t_range has the form of a list:[’t,tmin,tmax] if the two expressions are functions oft , say. There is no
restriction on the name used for the parametric parameter.

We see that

plot2d ([parametric, fx(t), fy(t), [’t, tmin, tmax]])$

plots pairs of points (fx (ta), fy(ta)) for ta in the interval[tmin, tmax] . We have usedno canvas
width control list[’x, xmin, xmax] in this minimal version.

2.1.3 Can We Draw A Circle?

This is a messy subject. We will only consider the separate gnuplot window mode (not the embedded plot mode) and
assume a maximized gnuplot window (as large as the monitor allows).

We use a parametric plot to create a “circle”, lettingfx(t) = cos(t) andfy(t) = sin(t) , and again adding no
canvas width or height control lists.

(%i2) plot2d ([parametric, cos(t), sin(t), [’t,-%pi,%pi]])$

If this plot is viewed in a maximized gnuplot window, the height to width ratio is about 0.6 on the author’s equipment.
The corresponding eps file for the figure included here has a height to width ratio of about 0.7 when viewed with GSView,
and about the same ratio in this pdf file:

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

si
n(

t)

cos(t)

Figure 5: plot2d ([parametric, cos(t), sin(t), [’t, -%pi, %pi]])

7

There are two approaches to better “roundness”. The first approach is to use theplot2d option
[gnuplot_preamble,"set size ratio 1;"] , as in

(%i3) plot2d ([parametric, cos(t), sin(t), [’t,-%pi,%pi]],
[gnuplot_preamble,"set size ratio 1;"])$

With this command, the author gets a height to width ratio of about 0.9 using the fullscreen gnuplot window choice. The
eps file save of this figure, produced with the code

plot2d ([parametric, cos(t), sin(t), [’t,-%pi,%pi]],
[gnuplot_preamble,"set size ratio 1;"],
[psfile,"ch2p06.eps"])$

had a height to width ratio close to 1 when viewed with GSView and close to that value in this pdf file:

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

si
n(

t)

cos(t)

Figure 6: plot2d (adding set size ratio 1 option)

We conclude that the gnuplot preamble method of getting an approximate circle works quite well for an eps graphics
file, and we will use that method to produce figures for this pdffile.

The alternative approach is to handset the x-range and y-range experimentally until the resulting “circle” measures the
same width as height, for example forcing the horizontal canvas width to be, say, 1.6 as large as the vertical canvas height.

(%i4) plot2d ([parametric, cos(t), sin(t), [’t, -%pi, %pi]], [’x,-1.6,1.6])$

has a height to width ratio of about 1.0 (fullscreen Gnuplot window) on the author’s equipment. Notice above that the
vertical range is determined by the curve properties and extends over(y= -1, y = 1) . The y-range here is 2, the
x-range is 3.2, so the x-range is 1.6 times the y-range.

8

We now make a plot consisting of two plot objects, the first being the explicit expressionuˆ3 , and the second being the
parametric plot object used above. We now need the syntax

plot2d ([plot-object-1, plot-object-2], possibly-requi red-draw-range-control,
other-option-lists)

Here is an example :

(%i5) plot2d ([uˆ3,[parametric, cos(t), sin(t), [’t,-%pi ,%pi]]],
[’u,-1.1,1.1],[’x,-1.5,1.5],[’y,-1.5,1.5],

[gnuplot_preamble,"set size ratio 1;"])$

in which [’u,-1.1,1.1] is required to determine the drawing range ofuˆ3 , and we have added separate horizontal
and vertical canvas control lists as well as the gnuplotpreamble option to approximate a circle, since it is quickerthan
fiddling with the x and y ranges by hand.

To get the corresponding eps file figure for incorporation in this pdf file, we used the code

plot2d ([uˆ3,[parametric, cos(t), sin(t), [’t,-%pi,%pi]]],
[’u,-1.1,1.1],[’x,-1.5,1.5],[’y,-1.5,1.5],

[gnuplot_preamble,"set size ratio 1;"],
[psfile,"ch2p07.eps"])$

which produces

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

y

u

u3

cos(t), sin(t)

Figure 7: Combining an Explicit Expression with a Parametric Object

in which the horizontal axis label (by default) isu.

9

We now add a few more options to make this combined plot look cleaner and brighter (more about some of these later).

(%i6) plot2d (
[[parametric, cos(t), sin(t), [’t,-%pi,%pi],[nticks,20 0]],uˆ3],

[’u,-1,1], [’x,-1.2,1.2] , [’y,-1.2,1.2],
[style, [lines,8]], [xlabel," "], [ylabel," "],
[box,false], [axes, false],
[legend,false],[gnuplot_preamble,"set size ratio 1;"]) $

and the corresponding eps file (with[lines,20] for increased line width) produces:

Figure 8: Drawing ofu3 Over a Circle

The default value ofnticks insideplot2d is 29, and using[nticks, 200] yields a much smoother parametric curve.

2.1.4 Line Width and Color Controls

Each element to be included in the plot can have a separate[lines, nlw, nlc] entry in thestyle option list, with nlw
determining the line width andnlc determining the line color. The default value ofnlw is 1, a very thin weak line. The
use ofnlw = 5 creates a strong wider line.

The default color choices (if you don’t provide a specific vlue of nlc) consist of a rotating color scheme which starts
with nlc = 1 (blue) and then progresses throughnlc = 6 (cyan = greenish-blue) and then repeats.

10

You will see the colors with the associated values ofnlc, using the following code which draws a set of vertical linesin
various colors (a version of a histogram). This code also shows an example of usingdiscrete list objects (to draw straight
lines), and the use of various options available. You shouldrun this code with your own hardware-software setup, to see
what the defaultplot2d colors are with your system.

(%i1) plot2d(
[[discrete,[[0,0],[0,5]]], [discrete,[[2,0],[2,5]]],

[discrete,[[4,0],[4,5]]],[discrete,[[6,0],[6,5]]],
[discrete,[[8,0],[8,5]]],[discrete,[[10,0],[10,5]]] ,
[discrete,[[12,0],[12,5]]],[discrete,[[14,0],[14,5]]]],

[style, [lines,6,0],[lines,6,1],[lines,6,2],
[lines,6,3],[lines,6,4],[lines,6,5],[lines,6,6],
[lines,6,7]],

[x,-2,20], [y,-2,8],
[legend,"0","1","2","3","4","5","6","7"],
[xlabel," "], [ylabel," "],
[box,false],[axes,false])$

Note that none of the objects being drawn are expressions or functions, so a draw parameter range list is not only not
necessary but would make no sense, and that the optional horizontal canvas width control list above is[’x,-2,20] .

The interactive gnuplotplot2d colors available on a Windows XP system (using XMaxima with Maxima ver. 5.31) thus
are:0 = cyan, 1 = blue, 2 = red, 3 = green, 4 = majenta, 5 = black, 6 = cyan, 7 = blue, 8 = red, ...

Adding the element[psfile,"c:/work2/ztest2.eps"] to the aboveplot2d code produces the figure dis-
played here:

0
1
2
3
4
5
6
7

Figure 9: Cyclicplot2d Colors with a Windows XP System

11

For a simple example which uses color and line width controls, we plot the expressionsuˆ2 anduˆ3 on the same canvas,
using lines in black and red colors, and add a height control list, which has the syntax[’y, ymin, ymax] .

(%i2) plot2d([uˆ2,uˆ3],[’u,0,2], [’x, -.2, 2.5],
[style, [lines,5,5],[lines,5,2]],

[’y,-1,4])$
plot2d: some values were clipped.

The plot2d warning should not be of concern here.

The width and height control list parameters have been chosen to make it easy to see where the two curves cross for
positive u. If you move the cursor over the crossing point, you can read off the coordinates from the cursor position
printout in the lower left corner of the plot window. This produces the plot:

-1

 0

 1

 2

 3

 4

 0 0.5 1 1.5 2 2.5

y

u

u2

u3

Figure 10: Black and Red Curves

2.1.5 Discrete Data Plots: Point Size, Color, and Type Control

We have seen some simple parametric plot examples above. Here we make a more elaborate plot which includes dis-
crete data points which locate on the curve special places, with information on the key legend about those special
points. The actual parametric curve color is chosen to be black (5) with some thickness (4), using[lines,4,5]
in the style list. We force large size points with special color choices,using the maximum amount of control in the
[points, nsize, ncolor, ntype] style assignments.

(%i1) obj_list : [[parametric, 2 * cos(t),tˆ2,[’t,0,2 * %pi]],
[discrete,[[2,0]]],[discrete,[[0,(%pi/2)ˆ2]]],

[discrete,[[-2,%piˆ2]]],[discrete,[[0,(3 * %pi/2)ˆ2]]]]$
(%i2) style_list : [style, [lines,4,5],[points,5,1,1],[points,5,2,1],

[points,5,3,1],[points,5,4,1]]$
(%i3) legend_list : [legend, " ","t = 0","t = pi/2","t = pi",

" t = 3 * pi/2"]$
(%i4) plot2d(obj_list, [’x,-3,4], [’y,-1,40],style_lis t,

[xlabel,"X = 2 cos(t), Y = t ˆ2 "],
[ylabel, " "] ,legend_list)$

12

This produces the plot:

 0

 5

 10

 15

 20

 25

 30

 35

 40

-3 -2 -1 0 1 2 3 4

X = 2 cos(t), Y = t 2

t = 0

t = pi/2
t = pi

 t = 3*pi/2

Figure 11: Parametric Plot with Discrete Points

Thepoints style option has any of the following forms:[points] , or [points, point_size] , or
[points, point_size, point_color] , or [points, point_size, point_color, point_type] , in order
of increasing control.

The defaultpoint colorsare the same cyclic colors used by thelinesstyle. The defaultpoint typeis a cyclic order starting
with 1 = filled circle , then continuing2 = open circle, 3 = plus sign, 4 = diagonal crossed lines as capital X, 5 = star,
6 = filled square, 7 = open square, 8 = filled triangle point up,9 = open triangle point up, 10 = filled triangle point
down, 11 = open triangle point down 12 = filled diamond, 13 = open diamond = 0, 14 = filled circle, which is the
same as1, and repeating the same cycle. Thus if you use[points,5] you will get good size points, and both the color
and shape will cycle through the default order. If you use[points,5,2] you will force a red color but the shape will
depend on the contents and order of the rest of the objects list.

You can see the default points cycle through both colors and shapes with the code:

plot2d([[discrete,[[0,.5]]],[discrete,[[0.1,.5]]],
[discrete,[[0.2,.5]]],[discrete,[[0.3,.5]]],

[discrete,[[0.4,.5]]],[discrete,[[0.5,.5]]],
[discrete,[[0.6,.5]]],[discrete,[[0.7,.5]]],
[discrete,[[0,0]]],[discrete,[[0.1,0]]],
[discrete,[[0.2,0]]],[discrete,[[0.3,0]]],
[discrete,[[0.4,0]]],[discrete,[[0.5,0]]],
[discrete,[[0.6,0]]],[discrete,[[0.7,0]]]],

13

[style,[points,5]],[xlabel,""],[ylabel,""],
[’x,-0.2,1],[’y,-0.2,0.7],
[box,false],[axes,false],[legend,false])$

which will produce something like

Figure 12: default point colors and styles, 1-8, then 9-16

You can also experiment with one shape at a time by defining a function dopt(n) which selects the shape with the
integern and leaves the color blue:

dopt(n) := plot2d ([discrete,[[0,0]]],[style,[points,1 5,1,n]],
[box,false],[axes,false],[legend,false])$

Next we combine a list of twelve (x,y) pairs of points with thekey worddiscreteto form a discrete object type forplot2d,
and then look at the data points without adding the optional canvas width control. Note that using only one discrete list
for all the points results in all data points being displayedwith the same size, color and shape.

(%i5) data_list : [discrete,
[[1.1,-0.9],[1.45,-1],[1.56,0.3],[1.88,2],

[1.98,3.67],[2.32,2.6],[2.58,1.14],
[2.74,-1.5],[3,-0.8],[3.3,1.1],
[3.65,0.8],[3.72,-2.9]]]$

(%i6) plot2d(data_list, [style,[points]])$

14

This produces the plot

-3

-2

-1

 0

 1

 2

 3

 4

 1 1.5 2 2.5 3 3.5 4

y

x

Figure 13: Twelve Data Points with Same Size, Color, and Shape

We now combine the data points with a curve which is a possiblefit to these data points over the draw parameter range
[u, 1, 4] .

(%i7) plot2d([sin(u) * cos(3 * u) * uˆ2, data_list],
[’u,1,4], [’x,0,5],[’y,-10,8],

[style,[lines,4,1],[points,4,2,1]])$
plot2d: some values were clipped.

which produces (approximately) the plot

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0 1 2 3 4 5

y

u

u2*sin(u)*cos(3*u)
discrete2

Figure 14: Curve Plus Data

15

2.1.6 More gnuplot preamble Options

Here is an example of using thegnuplot preamble options to add a grid, a title, and position the plot key at thebottom
center of the canvas. Note the use of a semi-colon between successive gnuplot instructions.

(%i1) plot2d([u * sin(u),cos(u)],[’u,-4,4] ,[’x,-8,8],
[style,[lines,5]],

[gnuplot_preamble,"set grid; set key bottom center;
set title ’Two Functions’;"])$

which produces (approximately) the plot

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-8 -6 -4 -2 0 2 4 6 8

u

Two Functions

u*sin(u)
cos(u)

Figure 15: Using the gnuplotpreamble Option

Another option you can use isset zeroaxis lw 5; to get more prominentx andy axes. Another example of a key
location would beset key top left; . We have also previously usedset size ratio 1; to get a “rounder”
circle.

16

2.1.7 Creating Various Kinds of Graphics Files Using plot2d

The first method of exportingplot2d drawings as special graphics files is to have the plot drawn inthe Gnuplot window
(either the XMaxima route, or usingwxplot2d rather thanplot2d if you are usingwxmaxima). Then left-click the
left-most Gnuplot icon near the top of the Gnuplot window (“copy the plot to clipboard”). Then open an application
which accomodates the graphics format you desire, and pastethe clipboard image into the application, and then use Save
As, selecting the graphics type of save desired.

The second method of exportingplot2d drawings as special graphics files is to use thegnuplot_term option as part
of your plot2d command. If you do not add an additional option of the form (for example)

[gnuplot_out_file, "c:/k1/myname.ext"]

whereext is replaced by an appropriate graphics type extension, thenplot2d creates a file with the namemaxplot.ext
in your current working directory.

For example,

(%i1) plot2d (sin(u),[’u,0,%pi], [gnuplot_term,’jpeg]) $

will create the graphics filemaxplot.jpeg , and a further commmand

(%i2) plot2d (cos(u),[’u,0,%pi], [gnuplot_term,’jpeg]) $

will overwrite the previous filemaxplot.jpeg to create the new graphics file for the plot ofcos . To provide a different
name for different plots, you would write, for example,

(%i3) plot2d (cos(u),[’u,0,%pi],
[gnuplot_out_file,"c:/work2/mycos1.jpeg"],

[gnuplot_term,’jpeg])$

If you do not supply the complete path, the file is written in the /bin folder of the Maxima program installation. Turning
to other graphics file formats, and ignoring the naming option part,

(%i4) plot2d (sin(u),[’u,0,%pi],
[gnuplot_term,’png])$

will createmaxplot.png .

(%i5) plot2d (sin(u),[’u,0,%pi],
[gnuplot_term,’eps])$

will createmaxplot.eps .

(%i6) plot2d (sin(u),[’u,0,%pi],
[gnuplot_term,’svg])$

will createmaxplot.svg (a “scalable vector graphics” file openable byinkscape).

(%i7) plot2d (sin(u),[’u,0,%pi],
[gnuplot_term,’pdf])$

will createmaxplot.pdf , which will be the cleanest plot of the above cases.

17

2.1.8 Using qplot for Quick Plots of One or More Functions

The file qplot.mac is posted with Ch. 2 and contains a function calledqplot which can be used for quick plotting of
functions in place ofplot2d.

The functionqplot (q for “quick”) accepts the default cyclic colors but always uses thicker lines than theplot2d default,
adds more prominent x and y axes to the plot, and adds a grid (which can be switched off using the third from the left
gnuplot icon). Here are some examples of use. (We include usewith discrete lists only for completeness, since there is
no way to get thepoints style withqplot.)

(%i1) load(qplot);
(%o1) c:/work2/qplot.mac
(%i2) qplot(sin(u),[’u,-%pi,%pi])$
(%i3) qplot(sin(u),[’u,-%pi,%pi],[’x,-4,4])$
(%i4) qplot(sin(u),[’u,-%pi,%pi],[’x,-4,4],[’y,-1.2, 1.2])$
(%i5) qplot([sin(u),cos(u)],[’u,-%pi,%pi])$
(%i6) qplot([sin(u),cos(u)],[’u,-%pi,%pi],[’x,-4,4]) $
(%i7) qplot([sin(u),cos(u)],[’u,-%pi,%pi],[’x,-4,4], [’y,-1.2,1.2])$
(%i8) qplot ([parametric, cos(t), sin(t), [’t,-%pi,%pi]] ,

[’x,-2.1,2.1],[’y,-1.5,1.5])$

The last use involved only a parametric object, and the list[’x,-2.1,2.1] is interpreted as a horizontal canvas width
control list based on the symbolx .

While viewing the resulting plot, use of the two-key commandAlt-Spacebar , which normally brings up a resizing menu, instead
switches from the gnuplot figure to a raw gnuplot window. You can get back to the figure usingAlt-Tab , but the raw gnuplot
window remains in the background. You should resize the figure window by clicking on the Maximize (or Restore) icon in the upper
right-hand corner. Both the figure and the raw gnuplot windowdisappear when you close (using, sayAlt-F4 , twice: once to close
the figure window, and once to close the raw gnuplot window).

The next example includes both an expression depending on the parameteru and a parametric object depending on a parametert , so
we must have a expression draw list of the form:[’u,umin,umax] .

(%i9) qplot ([uˆ3,
[parametric, cos(t), sin(t), [’t,-%pi,%pi]]],
[’u,-1,1],[’x,-2.25,2.25],[’y,-1.5,1.5])$

Here is approximatedly the result with the author’s system:

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

u

Figure 16: qplot example

18

To get the same plot usingplot2d from scratch requires the code:

plot2d([uˆ3, [parametric, cos(t), sin(t), [’t,-%pi,%pi]]],
[’u,-1,1],[’x,-2.25,2.25],[’y,-1.5,1.5],

[style,[lines,5]], [nticks,100],
[gnuplot_preamble, "set grid; set zeroaxis lw 5;"],

[legend,false],[ylabel, " "])$

Here are twodiscreteexamples which draw vertical lines.

(%i10) qplot([discrete,[[0,-2],[0,2]]],[’x,-2,2],[’y ,-4,4])$
(%i11) qplot([[discrete,[[-1,-2],[-1,2]]],

[discrete,[[1,-2],[1,2]]]],[’x,-2,2],[’y,-4,4])$

Here is the code (in qplot.mac) which defines the Maxima function qplot.

qplot (exprlist, prange, [hvrange]) :=
block([optlist, plist],

optlist : [[nticks,100], [legend, false],
[ylabel, " "], [gnuplot_preamble, "set grid; set zeroaxis l w 5;"]],

optlist : cons ([style,[lines,5]], optlist),
if length (hvrange) = 0 then plist : []

else plist : hvrange,
plist : cons (prange,plist),
plist : cons (exprlist,plist),
plist : append (plist, optlist),
apply (plot2d, plist))$

In this code, the third argument is an optional argument. Thelocalplist accumulates the arguments to be passed toplot2d
by use ofconsandappend, and is then passed toplot2d by the use ofapply. The order of usingconsmakes sure that
exprlist will be the first element, (andprange will be the second) seen byplot2d. In this example you can see several
tools used for programming with lists.

Several choices have been made in theqplot code to get quick and uncluttered plots of one or more functions. One choice
was to add a grid and strongerx andy axis lines. Another choice was to eliminate the key legend byusing the option
[legend, false] . If you want a key legend to appear when plotting multiple functions, you should remove that
option from the code and reloadqplot.mac.

19

2.1.9 Plot of a Discontinuous Function

Here is an example of a definition and plot of a discontinous function.

(%i12) fs(x) := if x >= -1 and x <= 1 then 3/2 else 0$
(%i13) plot2d (fs(u),[’u,-2,2],[’x,-3,3],[’y,-.5,2],

[style, [lines,5]],[ylabel,""],
[xlabel,""])$

which produces (approximately) the plot:

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3

Figure 17: Plot of a Discontinuous Function

or we can useqplot :

(%i14) load(qplot);
(%o14) c:/work2/qplot.mac
(%i15) qplot (fs(u),[’u,-2,2],[’x,-3,3],[’y,-.5,2],[x label,""])$

to get the same plot.

2.2 Working with Files Using the Package mfiles.mac

The chapter 2 package filemfiles.mac (which loadsmfiles1.lisp) has some Maxima tools for working with both
text and data files. Both files are available on the author’s webpage. Unless you use your initialization file to automatically
loadmfiles.mac when you start or restart Maxima, you will need to do an explicit load to use these functions.

2.2.1 Check File Existence with filesearch or probe file

To check for the existence of a file, you can use the standard Maxima functionfile_search or themfiles package function
probe_file (the latter is experimental and seems to work in a M.S. Windows version of Maxima). In the following, the file
ztemp.txt exists in the current working directory (c:/work2/), and the fileytemp.txt does not exist in this work folder.
Both functions returnfalse when the file is not found. You need to supply the full file name including any extension, as a string.

The XMaxima output shown here usesdisplay2d:true (the default). If you use the non-default setting
(display2d:false), strings will appear surrounded by double-quotes, but unpleasant backslash escape characters\ will appear
in the output.

20

In the following, we have not yet loadedmfiles.mac .

(%i1) file_search ("ztemp.txt");
(%o1) c:/work2/ztemp.txt
(%i2) probe_file ("ztemp.txt");
(%o2) probe_file(ztemp.txt)
(%i3) load(mfiles);
(%o3) c:/work2/mfiles.mac
(%i4) probe_file ("ztemp.txt");
(%o4) false
(%i5) probe_file ("c:/work2/ztemp.txt");
(%o5) c:/work2/ztemp.txt
(%i6) myf : mkp("ztemp.txt");
(%o6) c:/work2/ztemp.txt
(%i7) probe_file (myf);
(%o7) c:/work2/ztemp.txt
(%i8) file_search ("ztemp");
(%o8) false
(%i9) file_search ("ytemp.txt");
(%o9) false

Although the core Maxima functionfile_search does not need the complete path (due to ourmaxima.init file
contents), our homemade functions, such asprobe_file do need a complete path, due to recent changes in Maxima.
To ease the pain of typing the full path, you can use a functionwhich we callmkp (“make path”) which we define in our
maxima.init.mac file, whose contents are:

/ * this is c:\Documents and Settings\Edwin Woollett\maxima\ maxima-init.mac * /
maxima_userdir: "c:/work2" $
maxima_tempdir : "c:/work2"$
file_search_maxima : append(["c:/work2/###.{mac,mc}"] ,file_search_maxima)$
file_search_lisp : append(["c:/work2/###.lisp"],file_ search_lisp)$

bpath : "c:/work2/"$
mkp (_fname) := sconcat (bpath,_fname)$

We have used this function,mkp above, to getprobe_file to work. The string processing functionsconcat creates
a new string from two given strings (“string concatenation”):

(%i10) display2d:false$
(%i11) sconcat("a bc","xy z");
(%o11) "a bcxy z"

Note that we defined (in our maxima-init.mac file) a global variable bpath (“base of path” or “beginning of path”) in-
stead of using the global variablemaxima_userdir . This makes it more convenient for the user to redefinebpath
“on the fly” (inside a maxima session) instead of opening and editing maxima-init.mac , and restarting Maxima to
have the changes take effect.

We see thatfile_search is easier to use thanprobe_file .

2.2.2 Check for File Existence using ls or dir

Themfiles.mac package functionsls anddir accept the use of a wildcard pathname. Both functions are experimen-
tal and are not guaranteed to work with Maxima engines compiled with a Lisp version different from GCL (Gnu Common
Lisp) (which is the Lisp version used for the Windows binary used by the author).

21

Again, you must use the full path, and can make use of themkp function as in the above examples. The last examples
below refer to a folder different than the working folderc:/work2/ .

(%i12) ls(mkp(" * temp.txt"));
(%o12) [c:/work2/REPLACETEMP.TXT, c:/work2/temp.txt, c :/work2/ztemp.txt]
(%i13) ls("c:/work2/ * temp.txt");
(%o13) [c:/work2/REPLACETEMP.TXT, c:/work2/temp.txt, c :/work2/ztemp.txt]
(%i14) dir(mkp(" * temp.txt"));
(%o14) [REPLACETEMP.TXT, temp.txt, ztemp.txt]
(%i15) dir("c:/work2/ * temp.txt");
(%o15) [REPLACETEMP.TXT, temp.txt, ztemp.txt]
(%i16) ls ("c:/work3/dirac. * ");
(%o16) [c:/work3/dirac.mac, c:/work3/dirac.tex]
(%i17) dir ("c:/work3/dirac. * ");
(%o17) [dirac.mac, dirac.tex]

2.2.3 Type of File, Number of Lines, Number of Characters

The text file lisp1w.txt is a file with Windows line ending control characters which has three lines of text and no blank
lines.

(%i18) file_search("lisp1w.txt");
(%o18) c:/work2/lisp1w.txt
(%i19) file_lines("lisp1w.txt");
openr: file does not exist: lisp1w.txt
#0: file_lines(fnm=lisp1w.txt)(mfiles.mac line 637)

-- an error. To debug this try: debugmode(true);
(%i20) file_lines(mkp("lisp1w.txt"));
(%o20) [3, 3]
(%i21) file_lines("c:/work2/lisp1w.txt");
(%o21) [3, 3]

The output of thefile_lines function returns the list
[number of non-blank lines, total number of lines] .

(%i22) myf:mkp("lisp1w.txt");
(%o22) c:/work2/lisp1w.txt
(%i23) ftype(myf);
(%o23) windows
(%i24) file_length(myf);
(%o24) 131
(%i25) file_info(myf);
(%o25) [3, 3, windows, 131]

The functionftype (file type) returns eitherwindows , unix , or mac depending on the nature of the “end of line
chars”. The functionfile_length returns the number of characters (“chars”) in the file, including the end of line
chars. The functionfile_info combines the line number info, the file type, and the number ofcharacters into one list.

2.2.4 Print All or Some Lines of a File to the Console

For a small file the packge functionprint_file(file) is useful. For a larger file
print_lines(file,start,end) is useful.

(%i26) print_file (myf)$
Lisp (or LISP) is a family of computer programming
languages with a long history and a distinctive, fully
parenthesized syntax.
(%i27) myf : mkp("lisp2.txt");
(%o27) c:/work2/lisp2.txt

22

(%i28) file_info(myf);
(%o28) [8, 8, windows, 504]
(%i29) print_lines(myf,3,5)$
parenthesized syntax. Originally specified in 1958, Lisp i s
the second-oldest high-level programming language in
widespread use today; only Fortran is older (by one year).

2.2.5 Rename a File using renamefile

Themfiles.mac package functionrename_file (oldname,newname) is an experimental function which works
as follows in a Windows version of Maxima (again we must use the complete path):

(%i30) file_search("foo1.txt");
(%o30) false
(%i31) file_search("bar1.txt");
(%o31) c:/work2/bar1.txt
(%i32) rename_file(mkp("bar1.txt"),mkp("foo1.txt"));
(%o32) c:/work2/foo1.txt
(%i33) file_search("foo1.txt");
(%o33) c:/work2/foo1.txt
(%i34) file_search("bar1.txt");
(%o34) false

2.2.6 Delete a File with deletefile

Themfiles.mac package functiondelete_file (filename) does what its name implies:

(%i35) file_search("bar2.txt");
(%o35) c:/work2/bar2.txt
(%i36) delete_file(mkp("bar2.txt"));
(%o36) done
(%i37) file_search("bar2.txt");
(%o37) false

2.2.7 Copy a File using copyfile

The mfiles.mac package functioncopy_file(fsource,fdest) will preserve the file type, but will not warn
you if you are over-writing a previous file name.

(%i38) file_search("foo2.txt");
(%o38) false
(%i39) file_info(mkp("foo1.txt"));
(%o39) [3, 3, windows, 59]
(%i40) copy_file(mkp("foo1.txt"),mkp("foo2.txt"));
(%o40) c:/work2/foo2.txt
(%i41) file_info(mkp("foo2.txt"));
(%o41) [3, 3, windows, 59]

2.2.8 Change the File Type using fileconvert

Here, “file type” refers to the text file typesunix , windows , andmac, each distinguised by the use of different conven-
tions in indicating the end of a text file line.

Syntax:file_convert(file, newtype) or
file_convert (oldfile, newfile,newtype)
The acceptable values ofnewtype arewindows , unix , andmac.

23

For example, we can change a unix file to a windows file usingfile_convert(f,windows) which replaces the pre-
vious file, or we can change a unix file to a windows file with a newname usingfile_convert(fold,fnew,windows) .

It is easy to check the end of line characters using the Notepad2 View menu. Notepad2 also easily lets you change the end
of line characters, so writing Maxima code for this task is somewhat unneeded, though instructive as a coding challenge.

(%i42) file_search("bar1.txt");
(%o42) c:/work2/bar1.txt
(%i43) file_search("bar2.txt");
(%o43) c:/work2/bar2.txt
(%i44) print_file(mkp("bar1.txt"))$
This is line one.
This is line two.
This is line three.
(%i45) file_info(mkp("bar1.txt"));
(%o45) [3, 3, windows, 59]
(%i46) file_convert(mkp("bar1.txt"),mkp("bar11u.txt"),unix);
(%o46) c:/work2/bar11u.txt
(%i47) file_info(mkp("bar11u.txt"));
(%o47) [3, 3, unix, 56]
(%i48) print_file(mkp("bar2.txt"));
This is line one.
This is line two.
This is line three.
(%o48) c:/work2/bar2.txt
(%i49) file_info(mkp("bar2.txt"));
(%o49) [3, 3, windows, 59]
(%i50) file_convert(mkp("bar2.txt"),mac);
(%o50) c:/work2/bar2.txt
(%i51) file_info(mkp("bar2.txt"));
(%o51) [3, 3, mac, 56]
(%i52) print_file(mkp("bar2.txt"));
This is line one.
This is line two.
This is line three.
(%o52) c:/work2/bar2.txt

2.2.9 Breaking File Lines with pbreak lines or pbreak()

Four paragraphs of the Lisp entry from part of Paul Graham’s web site were copied into a text fileztemp.txt . In
Notepad2, each paragraph was one long line.

Inside Maxima, we then used themfiles package functionpbreak_lines (file,nmax) to break the lines (at a
space) and print the results to the console screen of Xmaxima.

(%i53) file_info(mkp("ztemp.txt"));
(%o53) [7, 13, windows, 1082]
(%i54) print_lines(mkp("ztemp.txt"),1,1);
6. Programs composed of expressions. Lisp programs are tree s ...[continues]
(%o54) c:/work2/ztemp.txt
(%i55) pbreak_lines(mkp("ztemp.txt"),60)$
6. Programs composed of expressions. Lisp programs are
trees of expressions, each of which returns a value. (In
some Lisps expressions can return multiple values.) This is
in contrast to Fortran and most succeeding languages, which
distinguish between expressions and statements.

It was natural to have this distinction in Fortran because
(not surprisingly in a language where the input format was
punched cards) the language was line-oriented. You could
not nest statements. And so while you needed expressions

24

for math to work, there was no point in making anything
else return a value, because there could not be anything
waiting for it.

This limitation went away with the arrival of
block-structured languages, but by then it was too late.
The distinction between expressions and statements was
entrenched. It spread from Fortran into Algol and thence to
both their descendants.

When a language is made entirely of expressions, you can
compose expressions however you want. You can say either
(using Arc syntax)

(if foo (= x 1) (= x 2))

or

(= x (if foo 1 2))

Once the line breaking text appears on the console screen, one can copy and paste into a text file for further use.

It is simpler to use the functionpbreak() which hasnmax = 72 hardwired in the code, as well as the name
"ztemp.txt" ; this could be used in the above example aspbreak() , and is easy to use since you don’t have to type
either the text file name or the value ofnmax.

The package functionpbreak() uses the current definition ofbpath andmkp, as well as the file name"ztemp.txt" .

(%i56) pbreak();
6. Programs composed of expressions. Lisp programs are tree s of
expressions, each of which returns a value. (In some Lisps ex pressions
can return multiple values.) This is in contrast to Fortran a nd most
succeeding languages, which distinguish between expressi ons and
statements.

It was natural to have this distinction in Fortran because (n ot
surprisingly in a language where the input format was punche d cards)
the language was line-oriented. You could not nest statemen ts. And so
while you needed expressions for math to work, there was no po int in
making anything else return a value, because there could not be
anything waiting for it.

This limitation went away with the arrival of block-structu red
languages, but by then it was too late. The distinction betwe en
expressions and statements was entrenched. It spread from F ortran into
Algol and thence to both their descendants.

When a language is made entirely of expressions, you can comp ose
expressions however you want. You can say either (using Arc s yntax)

(if foo (= x 1) (= x 2))

or

(= x (if foo 1 2))
(%o56) done

25

Alternatively, one can employ themfiles package functionbreak_file_lines (fold,fnew,nmax) to dump
the folded lines into created filefnew .

(%i57) break_file_lines (mkp("ztemp.txt"),mkp("ztemp1 .txt"),72);
(%o57) c:/work2/ztemp1.txt
(%i58) print_lines(mkp("ztemp1.txt"),1,2);
6. Programs composed of expressions. Lisp programs are tree s of
expressions, each of which returns a value. (In some Lisps ex pressions
(%o58) c:/work2/ztemp1.txt
(%i59) file_info(mkp("ztemp.txt"));
(%o59) [7, 13, windows, 1082]
(%i60) file_info(mkp("ztemp1.txt"));
(%o60) [20, 26, windows, 1095]

2.2.10 Search Text Lines for Strings with searchfile

the default two arg behavior:
search_file(filename, substring)

is to return line number and line text only for lines in whichsubstring is a distinct word, as defined by the package
functionsword , used by the package functionwsearch .

Using the form
search_file (filename,substring,word)

produces exactly the same as the two arg default mode above.

Using the form
search_file (filename,substring,all)

will return line numbers and line text for all lines in which the package functionssearch returns an integer, ie., all lines
in which the substring appears, regardless of being a distinct word.

The simplest syntaxsearch_file (file, search-string) is first demonstrated with two searches of the file
ndata1.dat , which happens to be a purely text file.

(%i61) file_info (mkp("ndata1.dat"));
(%o61) [5, 9, windows, 336]
(%i62) print_file (mkp("ndata1.dat"))$
The calculation of the effective cross section is much simpl ified if only

those collisions are considered for which the impact parame ter is large, so

that the field U is weak and the angles of deflection are small . The

calculation can be carried out in the laboratory system, and the center

of mass frame need not be used.
(%i63) search_file (mkp("ndata1.dat"),"is")$
c:/work2/ndata1.dat

1 The calculation of the effective cross section is much simp lified if only
3 those collisions are considered for which the impact param eter is large, so
5 that the field U is weak and the angles of deflection are smal l. The

(%i64) search_file (mkp("ndata1.dat"),"is much")$
c:/work2/ndata1.dat

1 The calculation of the effective cross section is much simp lified if only

26

We next demonstrate all three possible syntax forms with a purely text filetext1.txt .

(%i65) file_info (mkp("text1.txt"));
(%o65) [5, 5, windows, 152]
(%i66) print_file (mkp("text1.txt"))$
is this line one? Yes, this is line one.
This might be line two.
Here is line three.
I insist that this be line four.
This is line five, isn’t it?
(%i67) search_file (mkp("text1.txt"),"is")$
c:/work2/text1.txt

1 is this line one? Yes, this is line one.
3 Here is line three.
5 This is line five, isn’t it?

(%i68) search_file (mkp("text1.txt"),"is",word)$
c:/work2/text1.txt

1 is this line one? Yes, this is line one.
3 Here is line three.
5 This is line five, isn’t it?

(%i69) search_file (mkp("text1.txt"),"is",all)$
c:/work2/text1.txt

1 is this line one? Yes, this is line one.
2 This might be line two.
3 Here is line three.
4 I insist that this be line four.
5 This is line five, isn’t it?

2.2.11 Search for a Text String in Multiple Files with searchmfiles

The most general syntax issearch_mfiles (file or path,string,options...) in which the options
recognised areword, all, cs, ic , used in the same way as described above forsearch_file . The simplest
syntax issearch_mfiles (file or path,string) which defaults to case sensitive (cs) and isolated word
(word) as options. An example of over-riding the default behavior(cs andword) would be
search_mfiles (file or path, string,ic, all) and the options args can be in either order.

First an example of searching one file in the working directory.

(%i1) load(mfiles);
(%o1) c:/work2/mfiles.mac
(%i2) print_file(mkp("text1.txt"))$
is this line one? Yes, this is line one.
This might be line two.
Here is line three.
I insist that this be line four.
This is line five, isn’t it?
(%i3) search_mfiles(mkp("text1.txt"),"is")$
c:/work2/text1.txt

1 is this line one? Yes, this is line one.
3 Here is line three.
5 This is line five, isn’t it?

(%i4) search_mfiles(mkp("text1.txt"),"Is")$
(%i5)

27

Next we use a wildcard type file name for a search in the workingdirectory.

(%i5) search_mfiles(mkp("ndata * .dat"),"is")$
c:/work2/ndata1.dat

1 The calculation of the effective cross section is much simp lified if only
3 those collisions are considered for which the impact param eter is large, so
5 that the field U is weak and the angles of deflection are smal l. The

Next we return to a search of the single filetext1.txt , but look for lines containing the string"is" whether or not it
is an instance of an isolated word.

(%i6) search_mfiles(mkp("text1.txt"),"is",all)$
c:/work2/text1.txt

1 is this line one? Yes, this is line one.
2 This might be line two.
3 Here is line three.
4 I insist that this be line four.
5 This is line five, isn’t it?

We now usesearch_mfiles to look for a text string in a fileatext1.txt which is not in the current working
directory.

(%i1) load(mfiles);
(%o1) c:/work2/mfiles.mac
(%i2) search_mfiles ("c:/work2/temp1/atext1.txt","is");
c:/work2/temp1/atext1.txt

2 Is this line two? Yes, this is line two.
6 This is line six, Isn’t it?

(%o2) done

If you want to searchall files in the folderc:/work2/temp1 , you use the syntax:

(%i3) search_mfiles ("c:/work2/temp1/","is")$
c:/work2/temp1/atext1.txt

2 Is this line two? Yes, this is line two.
6 This is line six, Isn’t it?

c:/work2/temp1/atext2.txt
2 Is this line two? Yes, this is line two.
6 This is line six, Isn’t it?

c:/work2/temp1/calc1news.txt
9 The organization of chapter six is then:
96 The Maxima output is the list of the vector curl components in the
98 a reminder to the user of what the current coordinate syste m is
102 Thus the syntax is based on lists and is similar to (althou gh better
105 There is a separate function to change the current coordi nate system.
112 plotderiv(..) which is useful for "automating" the plot ting

c:/work2/temp1/ndata1.dat
1 The calculation of the effective cross section is much simp lified if only
3 those collisions are considered for which the impact param eter is large, so
5 that the field U is weak and the angles of deflection are smal l. The

c:/work2/temp1/stavros-tricks.txt
34 Not a bug, but Maxima doesn’t know that the beta function is symmetric:

28

c:/work2/temp1/text1.txt
1 is this line one? Yes, this is line one.
3 Here is line three.
5 This is line five, isn’t it?

c:/work2/temp1/trigsimplification.txt
13 (1) Is there a Maxima command that indicates whether expr i s a product of
76 > (1) Is there a Maxima command that indicates whether expr is a product of
91 Well, that is inherent in their definition. Trigreduce re places all
94 is sin(x) * cos(x), since the individual terms are not products of trigs .
95 There is no built-in function which tries to find the small est expression,
151 is better. If the user wants to expand the contents of sin t o discover
153 is right that Maxima avoids potentially very expensive o perations in

c:/work2/temp1/wu-d.txt
1 As a dedicated windows xp user who is delighted to have windo ws binaries
3 all who are considering windows use that there is no problem with keeping previous

2.2.12 Replace Text in File with ftextreplace

The simplest syntaxftext_replace(file,sold,snew) replaces distinct substringssold (separate words) by
snew.

The four arg syntaxftext_replace(file,sold,snew,word) does exactly the same thing.

The four arg syntaxftext_replace(file,sold,snew,all) instead replacesall substringssold by snew,
whether or not they are distinct words.

In all cases, the text file type (unix, windows, or mac) is preserved.

The package functionftext_replace calls the package function
replace_file_text (fsource, fdest, sold,snew, optional- mode) which allows the replacement
to occur in a newly created file with a namefdest .

(%i4) file_info(mkp("text1w.txt"));
(%o4) [5, 5, windows, 152]
(%i5) print_file(mkp("text1w.txt"));
is this line one? Yes, this is line one.
This might be line two.
Here is line three.
I insist that this be line four.
This is line five, isn’t it?
(%o5) c:/work2/text1w.txt
(%i6) ftext_replace(mkp("text1w.txt"),"is","was");
(%o6) c:/work2/text1w.txt
(%i7) print_file(mkp("text1w.txt"));
was this line one? Yes, this was line one.
This might be line two.
Here was line three.
I insist that this be line four.
This was line five, isn’t it?
(%o7) c:/work2/text1w.txt
(%i8) file_info(mkp("text1w.txt"));
(%o8) [5, 5, windows, 156]
(%i9) ftext_replace(mkp("text1w.txt"),"was","is");
(%o9) c:/work2/text1w.txt

29

(%i10) print_file(mkp("text1w.txt"));
is this line one? Yes, this is line one.
This might be line two.
Here is line three.
I insist that this be line four.
This is line five, isn’t it?
(%o10) c:/work2/text1w.txt

2.2.13 Email Reply Format Using replyto

The package functionreply_to (name-string) reads an email message (or part of an email message) which has
been dumped into the current working directory file calledztemp.txt (the name chosen so the file is easy to find) and
writes a version of that file to the console screen with a supplied name prefixing each line, suitable for a copy/paste into a
reply email message.

It will be obvious if the message lines need breaking. If so, then usepbreak() , which will place the broken line mes-
sage on the Xmaxima console screen, which can be copied and pasted over the original contents ofztemp.txt .

Once you are satisfied with the appearance of the message inztemp.txt , usereply_to("Ray") for example, which
will print out on the console screen the email message with each line prefixed by"Ray" . This output can then be copied
from the Xmaxima screen and pasted into the email message being designed as a reply.

(%i11) reply_to("");
>Could you file a bug report on this? I know about some of these issues
>and am working on them (slowly). The basic parts work, but th e corner
>cases need more work (especically since my approach fails i n some cases
>where the original gave correct answers).
>
(%o11) done

or

(%i12) reply_to(" ray")$
ray>Could you file a bug report on this? I know about some of th ese issues
ray>and am working on them (slowly). The basic parts work, bu t the corner
ray>cases need more work (especically since my approach fai ls in some cases
ray>where the original gave correct answers).
ray>

2.2.14 Reading a Data File with readdata

An important advantage ofread_data is the ability to work correctly with all three types of text files (unix, windows,
and mac).

Our first example data file has the data items separated by commas on the first line and by spaces on the second line. The
data items are a mixture of integers, rational numbers, strings, and floating point numbers. None of the strings contain
spaces.

The functionread_data places the items of each line in the data file into a separate list.

(%i13) print_file(mkp("ndata2w.dat"))$
2 , 4.8, -3/4, "xyz", -2.8e-9
3 22.2 7/8 "abc" 4.4e10

30

(%i14) read_data(mkp("ndata2w.dat"));
3

(%o14) [[2, 4.8, - -, xyz, - 2.7999999999999998E-9],
4

7
[3, 22.2, -, abc, 4.4E+10]]

8
(%i15) display2d:false$
(%i16) read_data(mkp("ndata2w.dat"));
(%o16) [[2,4.8,-3/4,"xyz",-2.7999999999999998E-9],[3 ,22.2,7/8,"abc",4.4E+10]]
(%i17) fpprintprec:8$
(%i18) read_data(mkp("ndata2w.dat"));
(%o18) [[2,4.8,-3/4,"xyz",-2.8E-9],[3,22.2,7/8,"abc" ,4.4E+10]]

This simplest syntax mode ofread_data does not care where the commas and spaces are, they can be randomly used
as data item separators, and the data is read into lists correctly:

(%i19) print_file(mkp("ndata2wa.dat"))$
2 , 4.8 -3/4, "xyz" -2.8e-9
3 22.2, 7/8 "abc", 4.4e10
(%i20) read_data(mkp("ndata2wa.dat"));
(%o20) [[2,4.8,-3/4,"xyz",-2.8E-9],[3,22.2,7/8,"abc" ,4.4E+10]]

Next is a case in which the data item separator is consistently a semicolon; . In such a case we must include as a second
argument toread_data the string";" .

(%i21) print_file(mkp("ndata3w.dat"))$
2.0; -3/7; (x:1,y:2,x+y); block([fpprec:24],bfloat(%pi)); foo
(%i22) read_data(mkp("ndata3w.dat"),";");
(%o22) [[2.0,-3/7,(x:1,y:2,y+x),block([fpprec:24],bf loat(%pi)),foo]]

(If some of the data items include semicolons, then you wouldnot want to use semicolons as data item separators; rather
you might choose a dollar sign$ as the separator, and so indicate as the second argument.)

Our next example is a data file which includes some strings which include spaces inside the strings. The data file should
use commas as data item separators, and the correct syntax toread the data isread_data(file,",") .

(%i23) print_file(mkp("ndata6.dat"));
1, 2/3, 3.4, 2.3e9, "file ndata6.dat"
"line two" , -3/4 , 6 , -4.8e-7 , 5.5
7/13, "hi there", 8, 3.3e4, -7.3
4,-3/9,"Jkl", 44.6, 9.9e-6
(%o23) "c:/work2/ndata6.dat"
(%i24) read_data(mkp("ndata6.dat"),",");
(%o24) [[1,2/3,3.4,2.3E+9,"file ndata6.dat"],["line tw o",-3/4,6,-4.8E-7,5.5],

[7/13,"hi there",8,33000.0,-7.3],[4,-1/3,"Jkl",44.6, 9.9E-6]]

The package functionread_data ignores blank lines in the data file (as it should):

(%i25) print_file(mkp("ndata10w.dat"))$
2 4.8 -3/4 "xyz" -2.8e-9

2 4.8 -3/4 "xyz" -2.8e-9

2 4.8 -3/4 "xyz" -2.8e-9

(%i26) read_data(mkp("ndata10w.dat"));
(%o26) [[2,4.8,-3/4,"xyz",-2.8E-9],[2,4.8,-3/4,"xyz" ,-2.8E-9],

[2,4.8,-3/4,"xyz",-2.8E-9]]
(%i27) file_info (mkp("ndata10w.dat"));
(%o27) [3,6,windows,98]

31

2.2.15 File Lines to List of Strings using readtext

The package functionread_text(path) preserves blank lines in the source file, and returns a list ofstrings, one for
each physical line in the source file.

(%i28) print_file(mkp("ndata1.dat"))$
The calculation of the effective cross section is much simpl ified if only

those collisions are considered for which the impact parame ter is large, so

that the field U is weak and the angles of deflection are small . The

calculation can be carried out in the laboratory system, and the center

of mass frame need not be used.

(%i29) read_text(mkp("ndata1.dat"));
(%o29) ["The calculation of the effective cross section is m uch simplified if only",

"",
"those collisions are considered for which the impact param eter is large, so",
"",
"that the field U is weak and the angles of deflection are smal l. The",
"",
"calculation can be carried out in the laboratory system, an d the center",
"","of mass frame need not be used."]

2.2.16 Writing Data to a Data File One Line at a Time Using withstdout

The core Maxima functionwith_stdout can be used to write loop results to a file instead of to the screen. This can be
used to create a separate data file as a byproduct of your Maxima work. The function has the syntax
with_stdout (file,expr1,expr2,...) and writes any output generated withprint , display , or grind
(for example) to the indicated file, overwriting any pre-existing file, and creating a unix type file.

(%i30) with_stdout (mkp("tmp.out"),
for i thru 10 do

print (i,",",iˆ2,",",iˆ3))$
(%i31) print_file (mkp("tmp.out"))$
1 , 1 , 1
2 , 4 , 8
3 , 9 , 27
4 , 16 , 64
5 , 25 , 125
6 , 36 , 216
7 , 49 , 343
8 , 64 , 512
9 , 81 , 729
10 , 100 , 1000
(%i32) read_data (mkp("tmp.out"));
(%o32) [[1,1,1],[2,4,8],[3,9,27],[4,16,64],[5,25,125],[6,36,216],[7,49,343],

[8,64,512],[9,81,729],[10,100,1000]]
(%i33) file_info (mkp("tmp.out"));
(%o33) [10,10,unix,134]

Notice that if you don’t provide the full path to your work directory with the file name (with the Maxima function
with_stdout), the file will be created in the../bin/ folder of Maxima.

32

2.2.17 Creating a Data File from a Nested List Using writedata

The core Maxima functionwrite_data can be used to write the contents of a nested list to a named file, writ-
ing one line for each sublist, overwriting the contents of any pre-existing file of that name, creating a unix type file
with space separator as the default. The simplest syntax,write_data (list, filename) produces the default
space separation of the sublist items. You can get comma separation or semicolon separation by using respectively
write_data (list,filename,comma) or write_data (list,filename,semicolon) .

Note again that you need to supply the full path as well as the file name, or else the file will be created bywrite_data
in .../bin/ .

(This same function can also be used to write a Maxima matrix object to a data file.)

(%i34) dataL : [[0,2],[1,3],[2,4]]$
(%i35) write_data(dataL,mkp("tmp.out"))$
(%i36) file_search("tmp.out");
(%o36) "c:/work2/tmp.out"
(%i37) print_file(mkp("tmp.out"))$
0 2
1 3
2 4
(%i38) file_info(mkp("tmp.out"));
(%o38) [3,3,unix,12]
(%i39) write_data(dataL,mkp("tmp.out"),comma)$
(%i40) print_file(mkp("tmp.out"))$
0,2
1,3
2,4
(%i41) file_info(mkp("tmp.out"));
(%o41) [3,3,unix,12]
(%i42) write_data(dataL,mkp("tmp.out"),semicolon)$
(%i43) print_file(mkp("tmp.out"))$
0;2
1;3
2;4

Here is a simple example taken from a question from the Maximamailing list. Suppose you compute the expression
(1 - z)/(1 + z) for a number of values ofz , and you want to place the numbersz , f(z) in a data file for later
use.

The easiest way to do this in Maxima is to create a list of sublists, with each sublist being a row in your new data file. You
can then use the Maxima functionwrite_data , which has the syntax:write_data (datalist, filename) .

Let’s keep the example really simple and just use five integral values ofz , starting with an empty list we will calldataL .
(The finalL is useful (but not necessary) to remind us that it stands for alist.)

(%i44) dataL : []$
(%i45) for x thru 5 do (

px : subst (x,z, (1-z)/(1+z)),
dataL : cons ([x, px], dataL))$

(%i46) dataL;
(%o46) [[5,-2/3],[4,-3/5],[3,-1/2],[2,-1/3],[1,0]]
(%i47) dataL : reverse (dataL);
(%o47) [[1,0],[2,-1/3],[3,-1/2],[4,-3/5],[5,-2/3]]

33

(%i48) write_data (dataL, mkp("mydata1.dat"))$
(%i49) print_file (mkp("mydata1.dat"))$
1 0
2 -1/3
3 -1/2
4 -3/5
5 -2/3
(%i50) read_data (mkp("mydata1.dat"));
(%o50) [[1,0],[2,-1/3],[3,-1/2],[4,-3/5],[5,-2/3]]
(%i51) file_info (mkp("mydata1.dat"));
(%o51) [5,5,unix,32]

If you open the unix text filemydata1.dat using the older version of the Windows text file application Notepad, you
may only see one line, which looks like:

1 02 -1/33 -1/24 -3/55 -2/3

which occurs because Maxima creates text files having Unix style line endings which older native Windows applications
don’t recognise.

In order to see the two columns of numbers (using a text editor), you should use the freely available Windows text editor
Notepad2. (Just Google it.) Notepad2 recognises unix, mac and windows line ending control characters, and in fact has a
signal (LF for unix) at the bottom of the screen which tells you what the line ending control characters are.

The alternative choice provided by the standard Maxima system to created a nested list from a data file is the function
read_nested_list . This is not as good a choice as our package functionread_data , as is shown here:

(%i52) read_nested_list (mkp("mydata1.dat"));
(%o52) [[1,0],[2,-1,\/,3],[3,-1,\/,2],[4,-3,\/,5],[5 ,-2,\/,3]]
(%i53) display2d:true$
(%i54) read_nested_list (mkp("mydata1.dat"));
(%o54) [[1, 0], [2, - 1, /, 3], [3, - 1, /, 2], [4, - 3, /, 5],

[5, - 2, /, 3]]

2.3 Least Squares Fit to Experimental Data

2.3.1 Maxima and Least Squares Fits: lsquaresestimates

Suppose we are given a list of[x,y] pairs which are thought to be roughly described by the relationy = a * xˆb + c ,
where the three parameters are all of order1. We can use the data of[x,y] pairs to find the “best” values of the unknown
parameters[a, b, c] , such that the data is described by the equationy = a * xˆb + c (a three parameter fit to the
data).

We are using one of the Manual examples forlsquares estimates.

(%i1) dataL : [[1, 1], [2, 7/4], [3, 11/4], [4, 13/4]]$
(%i2) display2d:false$
(%i3) dataM : apply (’matrix, dataL);
(%o3) matrix([1,1],[2,7/4],[3,11/4],[4,13/4])
(%i4) load (lsquares);
(%o4) "C:/PROGRA˜1/MAXIMA˜3.2/share/maxima/5.31.2/sh are/lsquares/lsquares.mac"
(%i5) fpprintprec:6$
(%i6) lsquares_estimates (dataM, [x,y], y=a * xˆb+c,

[a,b,c], initial=[3,3,3], iprint=[-1,0]);
(%o6) [[a = 1.37575,b = 0.7149,c = -0.4021]]
(%i7) myfit : a * xˆb + c , % ;
(%o7) 1.37575 * xˆ0.7149-0.4021

34

Note that we must useload (lsquares); to use this method. We can now make a plot of both the discrete data
points and the least squares fit to those four data points.

(%i8) plot2d ([myfit,[discrete,dataL]],[x,0,5],
[style,[lines,5],[points,4,2,1]],

[legend,"myfit", "data"],
[gnuplot_preamble,"set key bottom;"])$

which produces the plot

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5

x

myfit
data

Figure 18: Three Parameter Fit to Four Data Points

2.3.2 Syntax of lsquaresestimates

Theminimal syntax is

lsquares_estimates (data-matrix, data-variable-list, f it-eqn, param-list);

in which thedata-variable-list assigns a variable name to the corresponding column of thedata-matrix ,
and thefit-eqn is an equation which is a relation among the data variable symbols and the equation parameters
which appear inparam-list . The function returns the ”best fit” values of the equation parameters in the form
[[p1 = p1val, p2 = p2val, ...]] .

In the example above, the data variable list was[x, y] and the parameter list was[a, b, c] .

If an exact solution cannot be found, a numerical approximation is attempted usinglbfgs, in which case, all the elements
of the data matrix should be ”numbers”numberp(x) -> true . This means that%pi and%e, for example, should
be converted to explicit numbers before use of this method.

(%i1) expr : 2 * %pi + 3 * exp(-4);
- 4

(%o1) 2 %pi + 3 %e
(%i2) listconstvars:true$
(%i3) listofvars(expr);
(%o3) [%e, %pi]
(%i4) map(’numberp,%);
(%o4) [false, false]
(%i5) fullmap(’numberp,expr);

true
(%o5) false true + false true
(%i6) float(expr);
(%o6) 6.338132223845789
(%i7) numberp(%);
(%o7) true

35

Optional arguments tolsquares estimatesare (in any order)

initial = [p10, p20,...], iprint = [n, m], tol = search-toler ance

The list [p10, p20, ...] is the optional list of initial values of the equation parameters, and without including your
own guess for starting values this list defaults (in the code) to [1, 1, ...] .

The first integern in the iprint list controls how often progress messages are printed to thescreen. The default is
n = 1 which causes a new progress message printout each iterationof the search method. Usingn = -1 surpresses all
progress messages. Usingn = 5 allows one progress message every five iterations.

The second integermin the iprint list controls the verbosity, withm = 0giving minimum information andm = 3
giving maximum information.

The optioniprint = [-1,0] will hide the details of the search process.

The default value of thesearch-tolerance is 1e-3 , so by using the optiontol = 1e-8 you might find a more
accurate solution.

Many examples of the use of thelsquares package are found in the filelsquares.mac , which is found in the
...share/contrib folder. You can also see great examples of efficient programming in the Maxima language in
that file.

2.3.3 Coffee Cooling Model

”Newton’s law of cooling” (only approximate and not a law) assumes the rate of decrease of temperature (celsius degrees
per minute) is proportional to the instantaneous difference between the temperatureT(t) of the coffee in the cup and the
surrounding ambient temperatureTs, the latter being treated as a constant. If we use the symbolr for the ”rate constant”
of proportionality, we then assume the cooling of the coffeeobeys the first order differential equation

dT

dt
= −r (T(t)−Ts) (2.1)

SinceT has dimension degrees Celsius, andt has dimension minute, the dimension of the rate constantr must be1/min .

(This attempt to employ a rough mathematical model which canbe used for the cooling of a cup of coffee avoids a
bottom-up approach to the problem, which would require mathematical descriptions of the four distinct physical mecha-
nisms which contribute to the decrease of thermal energy in the system hot coffee plus cup to the surroundings: thermal
radiation (net electromagnetic radiation flux, approximately black body) energy transport across the surface of the liquid
and cup, collisional heat conduction due to the presence of the surrounding air molecules, convective energy transportdue
to local air temperature rise, and finally evaporation whichis the escape of the fastest coffee molecules which are able to
escape the binding surface forces at the liquid surface. If the temperature difference between the coffee and the ambient
surroundings is not too large, experiment shows that the simple relation above is roughly true.)

This differential equation is easy to solve ”by hand” , sincewe can write

dT

dt
=

d (T−Ts)

d t
=

dy

d t
(2.2)

and then divide both sides byy = (T−Ts), multiply both sides byd t, and usedy/y = d ln(y) and finally integrate
both sides over corresponding intervals to getln(y)− ln(y0) = ln(y/y0) = −r t, wherey0 = T(0)−Ts involves
the initial temperature att = 0. Since

eln(A) = A, (2.3)

36

by equating the exponential of the left side to that of the right side, we get

T(t) = Ts + (T(0) −Ts) e
−r t. (2.4)

Usingode2, ic1, expand, andcollectterms, we can also use Maxima just for fun:

(%i1) de : ’diff(T,t) + r * (T - Ts);
dT

(%o1) -- + r (T - Ts)
dt

(%i2) gsoln : ode2(de,T,t);
- r t r t

(%o2) T = %e (%e Ts + %c)
(%i3) de, gsoln, diff, ratsimp;
(%o3) 0
(%i4) ic1 (gsoln, t = 0, T = T0);

- r t r t
(%o4) T = %e (T0 + (%e - 1) Ts)
(%i5) expand (%);

- r t - r t
(%o5) T = %e T0 - %e Ts + Ts
(%i6) Tcup : collectterms (rhs(%), exp(-r * t));

- r t
(%o6) %e (T0 - Ts) + Ts
(%i7) Tcup, t = 0;
(%o7) T0

We arrive at the same solution as found “by hand”. We have checked the particular solution for the initial condition and
checked that our original differential equation is satisfied by the general solution.

2.3.4 Experiment Data for Coffee Cooling

Let’s take some “real world” data for this problem (p. 21, An Introduction to Computer Simulation Methods, 2nd ed.,
Harvey Gould and Jan Tobochnik, Addison-Wesley, 1996) which is in a data filec:\work2\coffee.dat on the author’s
Window’s XP computer (data file available with this chapter on the author’s webpage).

This file contains three columns of tab separated numbers, column one being the elapsed time in minutes, column two
is the Celsius temperature of the system glass plus coffee for black coffee, and column three is the Celsius temperature
for the system glass plus creamed coffee. The glass-coffee temperature was recorded with an estimated accuracy of
0.1◦C. The ambient temperature of the surroundings was17 ◦C. The functionread_data automatically replaces tabs
(ascii(9)) in the data by spaces (ascii(32)) as each line is read in.

We need to remind the reader that we are using a functionmkp to create a complete path to a file name. This function
was discussed at the beginning of the section on file manipulation methods. For convenience, we repeat some of that
discussion here:

To ease the pain of typing the full path, you can use a functionwhich we callmkp (“make path”) which we define in our
maxima.init.mac file, whose contents are:

/ * this is c:\Documents and Settings\Edwin Woollett\maxima\ maxima-init.mac * /
maxima_userdir: "c:/work2" $
maxima_tempdir : "c:/work2"$
file_search_maxima : append(["c:/work2/###.{mac,mc}"] ,file_search_maxima)$
file_search_lisp : append(["c:/work2/###.lisp"],file_ search_lisp)$

bpath : "c:/work2/"$
mkp (_fname) := sconcat (bpath,_fname)$

37

We will use this function,mkp, below for example withprint_file andread_data . The string processing function
sconcat creates a new string from two given strings (“string concatenation”):

(%i8) display2d:false$
(%i9) sconcat("a bc","xy z");
(%o9) "a bcxy z"

Note that we used a global variablebpath (“base of path” or “beginning of path”) instead of the globalvariable
maxima_userdir . This makes it more convenient for the user to redefinebpath “on the fly” instead of opening
and editingmaxima-init.mac , and restarting Maxima to have the changes take effect.

(%i10) file_search("coffee.dat");
(%o10) c:/work2/coffee.dat
(%i11) (display2d:false,load(mfiles));
(%o11) "c:/work2/mfiles.mac"
(%i12) print_file(mkp("coffee.dat"))$
0 82.3 68.8
2 78.5 64.8
4 74.3 62.1
6 70.7 59.9
8 67.6 57.7
10 65.0 55.9
12 62.5 53.9
14 60.1 52.3
16 58.1 50.8
18 56.1 49.5
20 54.3 48.1
22 52.8 46.8
24 51.2 45.9
26 49.9 44.8
28 48.6 43.7
30 47.2 42.6
32 46.1 41.7
34 45.0 40.8
36 43.9 39.9
38 43.0 39.3
40 41.9 38.6
42 41.0 37.7
44 40.1 37.0

We now useread_data which will create a list of sublists, one sublist per row.

(%i13) fpprintprec:6$
(%i14) cdata : read_data(mkp("coffee.dat"));
(%o14) [[0,82.3,68.8],[2,78.5,64.8],[4,74.3,62.1],[6 ,70.7,59.9],[8,67.6,57.7],

[10,65.0,55.9],[12,62.5,53.9],[14,60.1,52.3],[16,58 .1,50.8],
[18,56.1,49.5],[20,54.3,48.1],[22,52.8,46.8],[24,51 .2,45.9],
[26,49.9,44.8],[28,48.6,43.7],[30,47.2,42.6],[32,46 .1,41.7],
[34,45.0,40.8],[36,43.9,39.9],[38,43.0,39.3],[40,41 .9,38.6],
[42,41.0,37.7],[44,40.1,37.0]]

We now usemakelist to create a (time, temperature) list based on theblack coffee data and then based on thewhite
(creamed coffee) data.

(%i15) black_data : makelist([first(cdata[i]),second(c data[i])],
i,1,length(cdata));

(%o15) [[0,82.3],[2,78.5],[4,74.3],[6,70.7],[8,67.6] ,[10,65.0],[12,62.5],
[14,60.1],[16,58.1],[18,56.1],[20,54.3],[22,52.8],[24,51.2],[26,49.9],
[28,48.6],[30,47.2],[32,46.1],[34,45.0],[36,43.9],[38,43.0],[40,41.9],
[42,41.0],[44,40.1]]

38

(%i16) white_data : makelist([first(cdata[i]),third(cd ata[i])],
i,1,length(cdata));

(%o16) [[0,68.8],[2,64.8],[4,62.1],[6,59.9],[8,57.7] ,[10,55.9],[12,53.9],
[14,52.3],[16,50.8],[18,49.5],[20,48.1],[22,46.8],[24,45.9],[26,44.8],
[28,43.7],[30,42.6],[32,41.7],[34,40.8],[36,39.9],[38,39.3],[40,38.6],
[42,37.7],[44,37.0]]

2.3.5 Least Squares Fit of Coffee Cooling Data

We now uselsquares estimatesto use a least squares fit with each of our data sets to our phenomenological model, that is
finding the ”best” value of the cooling rate constantr that appears in Eq. (2.4). The functionlsquares estimates(datamatrix,
eqnvarlist,eqn,paramlist) is available after usingload(lsquares).

To save space in this chapter we usedisplay2d:falseto surpress the default two dimensional display of a Maximamatrix
object.

(%i17) black_matrix : apply (’matrix, black_data);
(%o17) matrix([0,82.3],[2,78.5],[4,74.3],[6,70.7],[8 ,67.6],[10,65.0],[12,62.5],

[14,60.1],[16,58.1],[18,56.1],[20,54.3],[22,52.8],[24,51.2],
[26,49.9],[28,48.6],[30,47.2],[32,46.1],[34,45.0],[36,43.9],
[38,43.0],[40,41.9],[42,41.0],[44,40.1])

(%i18) white_matrix : apply (’matrix, white_data);
(%o18) matrix([0,68.8],[2,64.8],[4,62.1],[6,59.9],[8 ,57.7],[10,55.9],

[12,53.9],[14,52.3],[16,50.8],[18,49.5],[20,48.1],[22,46.8],
[24,45.9],[26,44.8],[28,43.7],[30,42.6],[32,41.7],[34,40.8],
[36,39.9],[38,39.3],[40,38.6],[42,37.7],[44,37.0])

We now loadlsquares.macand calculate the ”best fit” values of the cooling rate constant r for both cases. For the black
coffee case,T0 = 82.3 deg C andTs = 17 deg C and we surpress the units.

(%i19) load(lsquares);
(%o19) "C:/PROGRA˜1/MAXIMA˜1.1-G/share/maxima/5.25.1 /share/contrib/lsquares.mac"
(%i20) black_eqn : T = 17 + 65.3 * exp(-r * t);
(%o20) T = 65.3 * %eˆ-(r * t)+17
(%i21) lsquares_estimates (black_matrix, [t,T], black_e qn, [r],

iprint = [-1,0]);
(%o21) [[r = 0.02612]]
(%i22) black_fit : rhs (black_eqn), %;
(%o22) 65.3 * %eˆ-(0.02612 * t)+17

Thusrblack is roughly0.026 minˆ(-1) .

For the white coffee case,T0 = 68.8 deg C andTs = 17 deg C .

(%i23) white_eqn : T = 17 + 51.8 * exp(-r * t);
(%o23) T = 51.8 * %eˆ-(r * t)+17
(%i24) lsquares_estimates (white_matrix, [t,T], white_e qn, [r],

iprint = [-1,0]);
(%o24) [[r = 0.02388]]
(%i25) white_fit : rhs (white_eqn), %;
(%o25) 51.8 * %eˆ-(0.02388 * t)+17

Thusrwhite is roughly0.024 minˆ(-1) , a slightly smaller value than for the black coffee (which isreasonable since
a black body is a better radiator of thermal energy than a white surface).

39

A prudent check on mathematical reasonableness can be made by using, say, the two data points fort = 0 andt = 24min
to solve for a rough value ofr . For this rough check, the author concludes thatrblack is roughly0.027 minˆ(-1)
andrwhite is roughly0.024 minˆ(-1) .

We can now plot the temperature data against the best fit modelcurve, first for the black coffee case.

(%i26) plot2d([black_fit ,[discrete,black_data]],
[t,0,50], [style, [lines,5], [points,2,2,6]],
[ylabel," "] ,
[xlabel," Black Coffee T(deg C) vs. t(min) with r = 0.026/min "],
[legend,"black fit","black data"])$

which produces the plot

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 0 10 20 30 40 50

 Black Coffee T(deg C) vs. t(min) with r = 0.026/min

black fit
black data

Figure 19: Black Coffee Data and Fit

and next plot the white coffee data and fit:

(%i27) plot2d([white_fit ,[discrete, white_data]],
[t,0,50], [style, [lines,5], [points,2,2,6]],
[ylabel," "] ,
[xlabel," White Coffee T(deg C) vs. t(min) with r = 0.024/min "],
[legend,"white fit","white data"])$

which yields the plot

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 10 20 30 40 50

 White Coffee T(deg C) vs. t(min) with r = 0.024/min

white fit
white data

Figure 20: White Coffee Data and Fit

40

Cream at Start or Later?

Let’s use the above approximate values for the cooling rate constants to find the fastest method to use to get the temperature
of hot coffee down to a drinkable temperature. Let’s assume we start with a glass of very hot coffee,T0 = 90◦C, and
want to compare two methods of getting the temperature down to 75◦C, which we assume is low enough to start sipping.
We will assume that adding cream lowers the temperature of the coffee by5◦C for both options we explore. Option 1
(white option) is to immediately add cream and let the creamed coffee cool down from85◦C to 75◦C. We first write
down a general expression as a function ofT0 andr , and then substitute values appropriate to the white coffeecooldown.

(%i28) T : 17 + (T0 -17) * exp(-r * t);
(%o28) %eˆ-(r * t) * (T0-17)+17
(%i29) T1 : T, [T0 = 85, r = 0.02388];
(%o29) 68 * %eˆ-(0.02388 * t)+17
(%i30) t1 : find_root(T1 - 75,t,2,10);
(%o30) 6.661

The ”white option” requires about6.7min for the coffee to be sippable.

Option 2 (the black option) lets the black coffee cool from90◦C to 80◦C, and then adds cream, immediately getting the
temperature down from80◦C to 75◦C

(%i31) T2 : T, [T0 = 90, r = 0.02612];
(%o31) 73 * %eˆ-(0.02612 * t)+17
(%i32) t2 : find_root(T2 - 80,t,2,10);
(%o32) 5.6403

The black option (option 2) is the fastest method to cool the coffee, taking about5.64min which is about61 sec less
than the white option 1.

