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Preface

COPYING AND DISTRIBUTION POLICY
This document is part of a series of notes titled
"Maxima by Example" and is made available
via the author’s webpage http://www.csulb.edu/˜woollett/
to aid new users of the Maxima computer algebra system.

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them
to others as long as you charge no more than the costs of printing.

These notes (with some modifications) will be published in book form
eventually via Lulu.com in an arrangement which will continue
to allow unlimited free download of the pdf files as well as the option
of ordering a low cost paperbound version of these notes.

Feedback from readers is the best way for this series of notes to become more helpful to new users of Maxima. All
comments and suggestions for improvements will be appreciated and carefully considered.

LOADING FILES
The defaults allow you to use the brief version load(fft) to load in the
Maxima file fft.lisp.
To load in your own file, such as qxxx.mac
using the brief version load(qxxx), you either need to place
qxxx.mac in one of the folders Maxima searches by default, or
else put a line like:

file_search_maxima : append(["c:/work2/###.{mac,mc}"],file_search_maxima )$

in your personal startup file maxima-init.mac (see later in this chapter
for more information about this).

Otherwise you need to provide a complete path in double quotes,
as in load("c:/work2/qxxx.mac"),

We always use the brief load version in our examples, which are generated
using the XMaxima graphics interface on a Windows XP computer, and copied
into a fancy verbatim environment in a latex file which uses the fancyvrb
and color packages.

Maxima.sourceforge.net. Maxima, a Computer Algebra System. Version 5.18.1
(2009). http://maxima.sourceforge.net/

The homemade function fll(x) (first, last, length) is used to return the first and last elements of lists (as well as the length), and is
automatically loaded in with mbe1util.mac from Ch. 1. We will include a reference to this definition when working with lists.

This function has the definitions

fll(x) := [first(x),last(x),length(x)]$
declare(fll,evfun)$

Some of the examples used in these notes are from the Maxima html help manual or the Maxima mailing list:
http://maxima.sourceforge.net/maximalist.html.

The author would like to thank the Maxima developers for their friendly help via the Maxima mailing list.
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3.1 Solving Ordinary Differential Equations

3.2 Solution of One First Order Ordinary Differential Equation (ODE)

3.2.1 Summary Table

ode2 and ic1
gsoln : ode2 (de, u, t);

where de involves ’diff(u,t).

psoln : ic1 (gsoln, t = t0, u = u0);

desolve
gsoln : desolve(de, u(t) );

where de includes the equal sign (=)

and ’diff(u(t),t) and possibly u(t).

psoln : ratsubst(u0val,u(o),gsoln)

plotdf
plotdf ( dudt, [t,u], [trajectory_at, t0, u0],

[direction,forward], [t, tmin, tmax],

[u, umin, umax] )$

rk
points : rk ( dudt, u, u0, [t, t0, tlast, dt] )$

where dudt is a function of t and u which

determines diff(u,t).

Table 1: Methods for One First Order ODE

We will use these four different methods to solve the first order ordinary differential equation

du
d t

= e−t + u (3.1)

subject to the condition that when t = 2, u = −0.1.

3.2.2 Exact Solution with ode2 and ic1

Most ordinary differential equations have no known exact solution (or the exact solution is a complicated expression
involving many terms with special functions) and one normally uses approximate methods. However, some ordinary
differential equations have simple exact solutions, and many of these can be found using ode2, desolve, or contrib ode.
The manual has the following information about ode2

Function: ode2 (eqn, dvar, ivar)
The function ode2 solves an ordinary differential equation (ODE) of first or second order. It takes three
arguments: an ODE given by eqn, the dependent variable dvar, and the independent variable ivar. When
successful, it returns either an explicit or implicit solution for the dependent variable. %c is used to represent
the integration constant in the case of first-order equations, and %k1 and %k2 the constants for second-order
equations. The dependence of the dependent variable on the independent variable does not have to be written
explicitly, as in the case of desolve, but the independent variable must always be given as the third argument.
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If the differential equation has the structure Left(dudt,u,t) = Right(dudt,u,t) ( here u is the dependent variable and t is
the independent variable), we can always rewrite that differential equation as de = Left(dudt,u,t) - Right(dudt,u,t) = 0,
or de = 0.

We can use the syntax ode2(de,u,t), with the first argument an expression which includes derivatives, instead of the com-
plete equation including the ” = 0” on the end, and ode2 will assume we mean de = 0 for the differential equation. (Of
course you can also use ode2 ( de=0, u, t)

We rewrite our example linear first order differential equation Eq. 3.1 in the way just described, using the noun form
’diff, which uses a single quote. We then use ode2, and call the general solution gsoln.

(%i1) de : ’diff(u,t)- u - exp(-t);
du - t

(%o1) -- - u - %e
dt

(%i2) gsoln : ode2(de,u,t);
- 2 t

%e t
(%o2) u = (%c - -------) %e

2

The general solution returned by ode2 contains one constant of integration %c, and is an explicit solution for u as a func-
tion of t, although the above does not bind the symbol u.

We next find the particular solution which has t = 2, u = −0.1 using ic1, and call this particular solution psoln. We
then check the returned solution in two ways: 1. does it satisfy the conditions given to ic1?, and 2. does it produce a zero
value for our expression de?

(%i3) psoln : ic1(gsoln,t = 2, u = -0.1),ratprint:false;
- t - 4 2 2 t 4

%e ((%e - 5) %e + 5 %e )
(%o3) u = - -----------------------------------

10
(%i4) rhs(psoln),t=2,ratsimp;

1
(%o4) - --

10
(%i5) de,psoln,diff,ratsimp;
(%o5) 0

Both tests are passed by this particular solution. We can now make a quick plot of this solution using plot2d.

(%i6) us : rhs(psoln);
- t - 4 2 2 t 4

%e ((%e - 5) %e + 5 %e )
(%o6) - -----------------------------------

10
(%i7) plot2d(us,[t,0,7],

[style,[lines,5]],[ylabel," "],
[xlabel,"t0 = 2, u0 = -0.1, du/dt = exp(-t) + u"])$
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which looks like
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t0 = 2, u0 = -0.1, du/dt = exp(-t) + u

Figure 1: Solution for which t = 2, u = −0.1

3.2.3 Exact Solution Using desolve

desolve uses Laplace transform methods to find an exact solution. To be able to use desolve, we need to write our example
differential equation Eq.3.1 in a more explicit form, with every u -> u(t), and include the = sign in the definition of
the differential equation.

(%i1) eqn : ’diff(u(t),t) - exp(-t) - u(t) = 0;
d - t

(%o1) -- (u(t)) - u(t) - %e = 0
dt

(%i2) gsoln : desolve(eqn,u(t));
t - t

(2 u(0) + 1) %e %e
(%o2) u(t) = ---------------- - -----

2 2
(%i3) eqn,gsoln,diff,ratsimp;
(%o3) 0 = 0
(%i4) bc : subst ( t=2, rhs(gsoln)) = - 0.1;

2 - 2
%e (2 u(0) + 1) %e

(%o4) ---------------- - ----- = - 0.1
2 2

(%i5) solve ( eliminate ( [gsoln, bc],[u(0)]), u(t) ),ratprint:false;
- t t - 2 t - 4

- 5 %e - %e + 5 %e
(%o5) [u(t) = -------------------------------]

10
(%i6) us : rhs(%[1]);

- t t - 2 t - 4
- 5 %e - %e + 5 %e

(%o6) -------------------------------
10
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(%i7) us, t=2, ratsimp;
1

(%o7) - --
10

(%i8) plot2d(us,[t,0,7],
[style,[lines,5]],[ylabel," "],
[xlabel,"t0 = 2, u0 = -0.1, du/dt = exp(-t) + u"])$

and we get the same plot as before. The function desolve returns a solution in terms of the “initial value” u(0), which
here means u(t = 0), and we must go through an extra step to eliminate u(0) in a way that assures our chosen bound-
ary condition t = 2, u - -0.1 is satisfied.

We have checked that the general solution satisfies the given differential equation in %i3, and have checked that our
particular solution satisfies the desired condition at t = 2 in %i7.

If your problem requires that the value of the solution us be specified at t = 0, the route to the particular solution is
much simpler than what we used above. You simply use subst ( u(0) = -1, rhs (gsoln) ) if, for example,
you wanted a particular solution to have the property that when t = 0, u = -1.

(%i9) us : subst( u(0) = -1,rhs(gsoln) ),ratsimp;
- t 2 t

%e (%e + 1)
(%o9) - -----------------

2
(%i10) us,t=0,ratsimp;
(%o10) - 1

3.2.4 Numerical Solution and Plot with plotdf

We next use plotdf to numerically integrate the given first order ordinary differential equation, draw a direction field plot
which governs any particular solution, and draw the particular solution we have chosen.

The default color choice of plotdf is to use small blue arrows give the local direction of the trajectory of the partic-
ular solution passing though that point. This direction can be defined by an angle α such that if u′ = f(t,u), then
tan(α) = f(t,u), and at the point (t0, u0),

du = f(t0,u0)× d t = d t ×
(

du
d t

)

t=t0, u=u0

(3.2)

This equation determines the increase d u in the value of the dependent variable u induced by a small increase d t in the
independent variable t at the point (t0, u0). We then define a local vector with t component d t and u component d u, and
draw a small arrow in that direction at a grid of chosen points to construct a direction field associated with the given first
order differential equation. The length of the small arrow can be increased some to reflect large values of the magnitude
of du/d t.

For one first order ordinary differential equation, plotdf, has the syntax

plotdf( dudt,[t,u], [trajectory_at, t0, u0], options ... )

in which dudt is the function of (t,u) which determines the rate of change du/d t.
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(%i1) plotdf(exp(-t) + u, [t, u], [trajectory_at,2,-0.1],
[direction,forward], [t,0,7], [u, -6, 1] )$

produces the plot

0 1 2 3 4 5 6 7

-5

-4

-3

-2

-1

0

1
u

t

Figure 2: Direction Field for the Solution t = 2, u = −0.1

(We have thickened the red curve using the Config, Linewidth menu option of plotdf, followed by Replot).

The help manual has an extensive discussion and examples of the use of the direction field plot utility plotdf.

3.2.5 Numerical Solution with 4th Order Runge-Kutta: rk

Although the plotdf function is useful for orientation about the shapes and types of solutions possible, if you need a list
with coordinate points to use for other purposes, you can use the fourth order Runge-Kutta function rk.

For one first order ordinary differential equation, the syntax has some faint resemblance to that of plotdf:

rk ( dudt, u, u0, [ t, t0, tlast, dt ] )

in which we are assuming that u is the dependent variable and t is the independent variable, and dudt is that function of
(t, u) which locally determines the value of du/d t. This will numerically integrate the corresponding first order ordinary
differential equation and return a list of pairs of (t, u) on the solution curve which has been requested:

[ [t0, u0], [t0 + dt, y(t0 + dt)], .... ,[tlast, y(tlast)] ]
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For our example first order ordinary differential equation, choosing the same initial conditions as above, and choosing
dt = 0.01,

(%i1) fpprintprec:8$
(%i2) points : rk (exp(-t) + u, u, -0.1, [ t, 2, 7, 0.01 ] )$
(%i3) %, fll;
(%o3) [[2, - 0.1], [7.0, - 4.7990034], 501]
(%i4) plot2d( [ discrete, points ], [ t, 0, 7],

[style,[lines,5]],[ylabel," "],
[xlabel,"t0 = 2, u0 = -0.1, du/dt = exp(-t) + u"])$

(We have used our homemade function fll(x), loaded in at startup with the other functions defined in mbe1util.mac,
available with the Ch. 1 material. We have provided the definition of fll in the preface of this chapter. Instead of
%, fll ;, you could use [%[1],last(%),length(%)]; to get the same information.)

The plot looks like
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t0 = 2, u0 = -0.1, du/dt = exp(-t) + u

Figure 3: Runge-Kutta Solution with t = 2, u = −0.1
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3.3 Solution of One Second Order ODE or Two First Order ODE’s

3.3.1 Summary Table

ode2 and ic1
gsoln : ode2 (de, u, t); where de involves ’diff(u,t,2)

and possibly ’diff(u,t).

psoln : ic2 (gsoln, t = t0, u = u0, ’diff(u,t) = up0);

desolve
atvalue ( ’diff(u,t), t = 0, v(0) );

gsoln : desolve(de, u(t) );

where de includes the equal sign (=), ’diff(u(t),t,2),

and possibly ’diff(u(t),t) and u(t).

One type of particular solution is returned by using

psoln : subst([ u(o) = u0, v(0) = v0] , gsoln)

plotdf
plotdf ( [dudt, dvdt], [u, v], [trajectory_at, u0, v0],

[u, umin, umax],[v, vmin, vmax], [tinitial, t0],

[direction,forward], [versus_t, 1],[tstep, timestepval],

[nsteps, nstepsvalue] )$

rk
points : rk ([dudt, dvdt ],[u, v],[u0, v0],[t, t0, tlast, dt] )$

where dudt and dvdt are functions of t,u, and v which

determine diff(u,t) and diff(v,t).

Table 2: Methods for One Second Order or Two First Order ODE’s

We apply the above four methods to the simple second order ordinary differential equation:

d2 u
d t2

= 4u (3.3)

subject to the conditions that when t = 2, u = 1 and du/d t = 0.

3.3.2 Exact Solution with ode2, ic2, and eliminate

The main difference here is the use of ic2 rather than ic1.

(%i1) de : ’diff(u,t,2) - 4*u;
2
d u

(%o1) --- - 4 u
2

dt
(%i2) gsoln : ode2(de,u,t);

2 t - 2 t
(%o2) u = %k1 %e + %k2 %e
(%i3) de,gsoln,diff,ratsimp;
(%o3) 0
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(%i4) psoln : ic2(gsoln,t=2,u=1,’diff(u,t) = 0);
2 t - 4 4 - 2 t

%e %e
(%o4) u = --------- + ---------

2 2
(%i5) us : rhs(psoln);

2 t - 4 4 - 2 t
%e %e

(%o5) --------- + ---------
2 2

(%i6) us, t=2, ratsimp;
(%o6) 1
(%i7) plot2d(us,[t,0,4],[y,0,10],

[style,[lines,5]],[ylabel," "],
[xlabel," U versus t, U’’(t) = 4 U(t), U(2) = 1, U’(2) = 0 "])$

plot2d: expression evaluates to non-numeric value somewhere in plotting range.

which produces the plot

 0

 2

 4

 6

 8

 10

 0  0.5  1  1.5  2  2.5  3  3.5  4

 

 U versus t, U’’(t) = 4 U(t), U(2) = 1, U’(2) = 0 

Figure 4: Solution for which t = 2, u = 1, u′ = 0

Next we make a “phase space plot” which is a plot of v = du/d t versus u over the range 1 ≤ t ≤ 3.

(%i8) vs : diff(us,t),ratsimp;
- 2 t - 4 4 t 8

(%o8) %e (%e - %e )
(%i9) for i thru 3 do

d[i]:[discrete,[float(subst(t=i,[us,vs]))]]$
(%i10) plot2d( [[parametric,us,vs,[t,1,3]],d[1],d[2],d[3] ],

[x,0,8],[y,-12,12],
[style, [lines,5,1],[points,4,2,1],
[points,4,3,1],[points,4,6,1]],

[ylabel," "],[xlabel," "],
[legend," du/dt vs u "," t = 1 ","t = 2","t = 3"] )$
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which produces the plot
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 du/dt vs u 
 t = 1 
t = 2
t = 3

Figure 5: t = 2, y = 1, y′ = 0 Solution

If your boundary conditions are, instead, for t=0, u = 1, and for t = 2, u = 4, then one can eliminate the
two constants “by hand” instead of using ic2 (see also next section).

(%i4) bc1 : subst(t=0,rhs(gsoln)) = 1$
(%i5) bc2 : subst(t = 2, rhs(gsoln)) = 4$
(%i6) solve(

eliminate([gsoln,bc1,bc2],[%k1,%k2]), u ),
ratsimp, ratprint:false;

- 2 t 4 4 t 8 4
%e ((4 %e - 1) %e + %e - 4 %e )

(%o6) [u = -----------------------------------------]
8

%e - 1
(%i7) us : rhs(%[1]);

- 2 t 4 4 t 8 4
%e ((4 %e - 1) %e + %e - 4 %e )

(%o7) -----------------------------------------
8

%e - 1
(%i8) us,t=0,ratsimp;
(%o8) 1
(%i9) us,t=2,ratsimp;
(%o9) 4
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3.3.3 Exact Solution with desolve, atvalue, and eliminate

The function desolve uses Laplace transform methods which are set up to expect the use of initial values for dependent
variables and their derivatives. (However, we will show how you can impose more general boundary conditions.) If the
dependent variable is u(t), for example, the solution is returned in terms of a constant u(0), which refers to the value
of u(t = 0) (here we are assuming that the independent variable is t). To get a simple result from desolve which we
can work with (for the case of a second order ordinary differential equation), we can use the atvalue function with the
syntax (for example):

atvalue ( ’diff(u,t), t = 0, v(0) )

which will allow desolve to return the solution to a second order ODE in terms of the pair of constants( u(0), v(0) ).
Of course, there is nothing sacred about using the symbol v(0) here. The function atvalue should be invoked before the
use of desolve.

If the desired boundary conditions for a particular solution refer to t = 0, then you can immediately find that particular
solution using the syntax (if ug is the general solution, say)

us : subst( [ u(0) = u0val, v(0) = v0val], ug ),

or else by using ratsubst twice.

In our present example, the desired boundary conditions refer to t = 2 , and impose conditions on the value of u and
its first derivative at that value of t. This requires a little more work, and we use eliminate to get rid of the constants
(u(0), v(0)) in a way that allows our desired conditions to be satisfied.

(%i1) eqn : ’diff(u(t),t,2) - 4*u(t) = 0;
2

d
(%o1) --- (u(t)) - 4 u(t) = 0

2
dt

(%i2) atvalue ( ’diff(u(t),t), t=0, v(0) )$
(%i3) gsoln : desolve(eqn,u(t));

2 t - 2 t
(v(0) + 2 u(0)) %e (v(0) - 2 u(0)) %e

(%o3) u(t) = --------------------- - -----------------------
4 4

(%i4) eqn,gsoln,diff,ratsimp;
(%o4) 0 = 0
(%i5) ug : rhs(gsoln);

2 t - 2 t
(v(0) + 2 u(0)) %e (v(0) - 2 u(0)) %e

(%o5) --------------------- - -----------------------
4 4

(%i6) vg : diff(ug,t),ratsimp$
(%i7) ubc : subst(t = 2,ug) = 1$
(%i8) vbc : subst(t = 2,vg) = 0$
(%i9) solve (

eliminate([gsoln, ubc, vbc],[u(0), v(0)]), u(t) ),
ratsimp,ratprint:false;

- 2 t - 4 4 t 8
%e (%e + %e )

(%o9) [u(t) = -------------------------]
2
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(%i10) us : rhs(%[1]);
- 2 t - 4 4 t 8

%e (%e + %e )
(%o10) -------------------------

2
(%i11) subst(t=2, us),ratsimp;
(%o11) 1
(%i12) vs : diff(us,t),ratsimp;

- 2 t - 4 4 t 8
(%o12) %e (%e - %e )
(%i13) subst(t = 2,vs),ratsimp;
(%o13) 0
(%i14) plot2d(us,[t,0,4],[y,0,10],

[style,[lines,5]],[ylabel," "],
[xlabel," U versus t, U’’(t) = 4 U(t), U(2) = 1, U’(2) = 0 "])$

plot2d: expression evaluates to non-numeric value somewhere in plotting range.
(%i15) for i thru 3 do

d[i]:[discrete,[float(subst(t=i,[us,vs]))]]$
(%i16) plot2d( [[parametric,us,vs,[t,1,3]],d[1],d[2],d[3] ],

[x,0,8],[y,-12,12],
[style, [lines,5,1],[points,4,2,1],
[points,4,3,1],[points,4,6,1]],

[ylabel," "],[xlabel," "],
[legend," du/dt vs u "," t = 1 ","t = 2","t = 3"] )$

which generates the same plots found with the ode2 method above.

If the desired boundary conditions are that u have given values at t = 0 and t = 3, then we can proceed from the
same general solution above as follows with up being a partially defined particular solution (assume u(0) = 1 and
u(3) = 2):

(%i17) up : subst(u(0) = 1, ug);
2 t - 2 t

(v(0) + 2) %e (v(0) - 2) %e
(%o17) ---------------- - ------------------

4 4
(%i18) ubc : subst ( t=3, up) = 2;

6 - 6
%e (v(0) + 2) %e (v(0) - 2)

(%o18) -------------- - ---------------- = 2
4 4

(%i19) solve(
eliminate ( [ u(t) = up, ubc ],[v(0)] ), u(t) ),

ratsimp, ratprint:false;
- 2 t 6 4 t 12 6

%e ((2 %e - 1) %e + %e - 2 %e )
(%o19) [u(t) = ------------------------------------------]

12
%e - 1

(%i20) us : rhs (%[1]);
- 2 t 6 4 t 12 6

%e ((2 %e - 1) %e + %e - 2 %e )
(%o20) ------------------------------------------

12
%e - 1

(%i21) subst(t = 0, us),ratsimp;
(%o21) 1
(%i22) subst (t = 3, us),ratsimp;
(%o22) 2
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(%i23) plot2d(us,[t,0,4],[y,0,10],
[style,[lines,5]],[ylabel," "],
[xlabel," U versus t, U’’(t) = 4 U(t), U(0) = 1, U(3) = 2 "])$

plot2d: expression evaluates to non-numeric value somewhere in plotting range.

which produces the plot
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 U versus t, U’’(t) = 4 U(t), U(0) = 1, U(3) = 2 

Figure 6: Solution for u(0) = 1, u(3) = 2

If instead, you need to satisfy u(1) = -1 and u(3) = 2, you could proceed from gsoln and ug as follows:

(%i24) ubc1 : subst ( t=1, ug) = -1$
(%i25) ubc2 : subst ( t=3, ug) = 2$
(%i26) solve(

eliminate ( [gsoln, ubc1, ubc2],[u(0),v(0)]), u(t) ),
ratsimp, ratprint:false;

- 2 t 4 4 t 12 8
%e ((2 %e + 1) %e - %e - 2 %e )

(%o26) [u(t) = ------------------------------------------]
10 2

%e - %e
(%i27) us : rhs(%[1]);

- 2 t 4 4 t 12 8
%e ((2 %e + 1) %e - %e - 2 %e )

(%o27) ------------------------------------------
10 2

%e - %e
(%i28) subst ( t=1, us), ratsimp;
(%o28) - 1
(%i29) subst ( t=3, us), ratsimp;
(%o29) 2
(%i30) plot2d ( us, [t,0,4], [y,-2,8],

[style,[lines,5]],[ylabel," "],
[xlabel," U versus t, U’’(t) = 4 U(t), U(1) = -1, U(3) = 2 "])$
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which produces the plot
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 U versus t, U’’(t) = 4 U(t), U(1) = -1, U(3) = 2 

Figure 7: Solution for u(1) = −1, u(3) = 2

The simplest case of using desolve is the case in which you impose conditions on the solution and its first derivative at
t = 0, in which case you simply use:

(%i4) psoln : subst([u(0) = 1,v(0)=0],gsoln);
2 t - 2 t

%e %e
(%o4) u(t) = ----- + -------

2 2
(%i5) us : rhs(psoln);

2 t - 2 t
%e %e

(%o5) ----- + -------
2 2

in which we have chosen the initial conditions u(0) = 1, and v(0) = 0.
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3.3.4 Numerical Solution and Plot with plotdf

Given a second order autonomous ODE, one needs to introduce a second dependent variable v(t), say, which is defined
as the first derivative of the original single dependent variable u(t). Then for our example, the starting ODE

d2 u
d t2

= 4u (3.4)

is converted into two first order ODE’s
du
d t

= v,
dv
d t

= 4u (3.5)

and the plotdf syntax for two first order ODE’s is

plotdf ( [dudt, dvdt], [u, v], [trajectory_at, u0, v0], [u, umin, umax],
[v, vmin, vmax], [tinitial, t0], [versus_t, 1],
[tstep, timestepval], [nsteps, nstepsvalue] )$

in which at t = t0, u = u0 and v = v0. If t0 = 0 you can omit the option [tinitial, t0]. The options
[u, umin, umax] and [v, vmin, vmax] allow you to control the horizontal and vertical extent of the phase
space plot (here v versus u) which will be produced. The option [versus_t,1] tells plotdf to create a separate plot
of both u and v versus the dependent variable. The last two options are only needed if you are not satisfied with the plots
and want to experiment with other than the default values of tstep and nsteps.

Another option you can add is [direction,forward], which will display the trajectory for t greater than or equal
to t0, rather than for a default interval around the value t0 which corresponds to [direction,both].
Here we invoke plotdf for our example.

(%i1) plotdf ( [v, 4*u], [u, v], [trajectory_at, 1, 0],
[u, 0, 8], [v, -10, 10], [versus_t, 1],

[tinitial, 2])$

The plot versus t is

0.8 1.2 1.6 2 2.4 2.8 3.2
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t

Figure 8: u(t) and u’(t) vs. t for u(2) = 1, u′(2) = 0
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and the phase space plot is

1 2 3 4 5 6 7

-8

-4

0

4

8

v

u

Figure 9: u’(t) vs. u(t) for u(2) = 1, u′(2) = 0

In both of these plots we used the Config menu to increase the linewidth, and then clicked on Replot. We also cut and
pasted the color red to be the second choice on the color cycle (instead of green) used in the plot versus the independent
variable t. Note that no matter what you call your independent variable, it will always be called t on the plot of the
dependent variables versus the independent variable.

3.3.5 Numerical Solution with 4th Order Runge-Kutta: rk

To use the fourth order Runge-Kutta numerical integrator rk for this example, we need to follow the procedure used in
the previous section using plotdf, converting the second order ODE to a pair of first order ODE’s.

The syntax for two first order ODE’s with dependent variables [u,v] and independent variable t is

rk ( [ dudt, dvdt ], [u,v], [u0,v0], [t, t0, tmax, dt] )

which will produce the list of lists:

[ [t0, u0,v0],[t0+dt, u(t0+dt),v(t0+dt)], ..., [tmax, u(tmax),v(tmax)] ]

For our example, following our discussion in the previous section with plotdf, we use

points : rk ( [v, 4*u], [u, v], [1, 0], [t, 2, 3.6, 0.01] )

We again use the homemade function fll (see the preface) to look at the first element, the last element, and the length
of various lists.

(%i1) fpprintprec:8$
(%i2) points : rk([v,4*u],[u,v],[1,0],[t,2,3.6,0.01])$
(%i3) %, fll;
(%o3) [[2, 1, 0], [3.6, 12.286646, 24.491768], 161]
(%i4) uL : makelist([points[i][1],points[i][2]],i,1,length(points))$
(%i5) %, fll;
(%o5) [[2, 1], [3.6, 12.286646], 161]
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(%i6) vL : makelist([points[i][1],points[i][3]],i,1,length(points))$
(%i7) %, fll;
(%o7) [[2, 0], [3.6, 24.491768], 161]
(%i8) plot2d([ [discrete,uL],[discrete,vL]],[x,1,5],

[style,[lines,5]],[y,-1,24],[ylabel," "],
[xlabel,"t"],[legend,"u(t)","v(t)"])$

which produces the plot
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Figure 10: Runge-Kutta for u(2) = 1, u′(2) = 0

Next we make a phase space plot of v versus u from the result of the Runge-Kutta integration.

(%i9) uvL : makelist([points[i][2],points[i][3]],i,1,length(points))$
(%i10) %, fll;
(%o10) [[1, 0], [12.286646, 24.491768], 161]
(%i11) plot2d( [ [discrete,uvL]],[x,0,13],[y,-1,25],

[style,[lines,5]],[ylabel," "],
[xlabel," v vs. u "])$

which produces the phase space plot
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 v vs. u 

Figure 11: R-K Phase Space Plot for u(2) = 1, u′(2) = 0
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3.4 Examples of ODE Solutions

3.4.1 Ex. 1: Fall in Gravity with Air Friction: Terminal Velocity

Let’s explore a problem posed by Patrick T. Tam (A Physicist’s Guide to Mathematica, Academic Press, 1997, page 349).

A small body falls downward with an initial velocity v0 from a height h near the surface of the earth. For
low velocities (less than about 24m/s), the effect of air resistance may be approximated by a frictional
force proportional to the velocity. Find the displacement and velocity of the body, and determine the terminal
velocity. Plot the speed as a function of time for several initial velocities.

The net vector force F acting on the object is thus assumed to be the (constant) force of gravity and the (variable) force
due to air friction, which is in a direction opposite to the direction of the velocity vector v. We can then write Newton’s
Law of motion in the form

F = mg − bv = m
dv
d t

(3.6)

In this vector equation, m is the mass in kg., g is a vector pointing downward with magnitude g, and b is a positive
constant which depends on the size and shape of the object and on the viscosity of the air. The velocity vector v points
down during the fall.

If we choose the y axis positive downward, with the point y = 0 the launch point, then the net y components of the force
and Newton’s Law of motion are:

Fy = mg − b vy = m
d vy

d t
(3.7)

where g is the positive number 9.8m/s2 and since the velocity component vy > 0 during the fall, the effects of gravity
and air resistance are in competition.

We see that the rate of change of velocity will become zero at the instant that mg − b vy = 0, or vy = mg/b, and the
downward velocity stops increasing at that moment, the ”terminal velocity” having been attained.

While working with Maxima, we can simplify our notation and let vy → v and (b/m) → a so both v and a represent
positive numbers. We then use Maxima to solve the equation d v/d t = g − a v. The dimension of each term of this
equation must evidently be the dimension of v/t, so a has dimension 1/t.

(%i1) de : ’diff(v,t) - g + a*v;
dv

(%o1) -- + a v - g
dt

(%i2) gsoln : ode2(de,v,t);
a t

- a t g %e
(%o2) v = %e (------- + %c)

a
(%i3) de, gsoln, diff,ratsimp;
(%o3) 0

We then use ic1 to get a solution such that v = v0 when t = 0.

(%i4) psoln : expand ( ic1 (gsoln,t = 0, v = v0 ) );
- a t

- a t g %e g
(%o4) v = %e v0 - --------- + -

a a
(%i5) vs : rhs(psoln);

- a t
- a t g %e g

(%o5) %e v0 - --------- + -
a a
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For consistency, we must get the correct terminal speed for large t:

(%i6) assume(a>0)$
(%i7) limit( vs, t, inf );

g
(%o7) -

a

which agrees with our analysis.

To make some plots, we can introduce a dimensionless time u with the replacement t → u = a t, and a dimensionless
speed w with the replacement v → w = a v/g.

(%i8) expand(vs*a/g);
- a t

a %e v0 - a t
(%o8) ------------ - %e + 1

g
(%i9) %,[t=u/a,v0=w0*g/a];

- u - u
(%o9) %e w0 - %e + 1
(%i10) ws : collectterms (%, exp (-u));

- u
(%o10) %e (w0 - 1) + 1

As our dimensionless time u gets large, ws → 1, which is the value of the terminal speed in dimensionless units.

Let’s now plot three cases, two cases with initial speed less than terminal speed and one case with initial speed greater
than the terminal speed. (The use of dimensionless units for plots generates what are called “universal curves”, since they
are generally valid, no matter what the actual numbers are).

(%i11) plot2d([[discrete,[[0,1],[5,1]]],subst(w0=0,ws),subst(w0=0.6,ws),
subst(w0=1.5,ws)],[u,0,5],[y,0,2],

[style,[lines,2,7],[lines,4,1],[lines,4,2],[lines,4,3]],
[legend,"terminal speed", "w0 = 0", "w0 = 0.6", "w0 = 1.5"],

[ylabel, " "],
[xlabel, " dimensionless speed w vs dimensionless time u"])$

which produces:
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Figure 12: Dimensionless Speed Versus Dimensionless Time



21

An object thrown down with an initial speed greater than the terminal speed (as in the top curve) slows down until its
speed is the terminal speed.

Thus far we have been only concerned with the relation between velocity and time. We can now focus on the implications
for distance versus time. A dimensionless length z is a2 y/g and the relation dy/d t = v becomes dz/du = w, or
dz = wdu, which can be integrated over corresponding intervals: z over the interval [0, zf ], and u over the interval
[0,uf ].

(%i12) integrate(1,z,0,zf) = integrate(ws,u,0,uf);
- uf uf

(%o12) zf = - %e (w0 - uf %e - 1) + w0 - 1
(%i13) zs : expand(rhs(%)),uf = u;

- u - u
(%o13) - %e w0 + w0 + %e + u - 1
(%i14) zs, u=0;
(%o14) 0

(Remember the object is launched at y = 0 which means at z = 0). Let’s make a plot of distance travelled vs time
(dimensionless units) for the three cases considered above.

(%i15) plot2d([subst(w0=0,zs),subst(w0=0.6,zs),
subst(w0=1.5,zs)],[u,0,1],[style,[lines,4,1],[lines,4,2],

[lines,4,3]], [legend,"w0 = 0", "w0 = 0.6", "w0 = 1.5"],
[ylabel," "],
[xlabel,"dimensionless distance z vs dimensionless time u"],
[gnuplot_preamble,"set key top left;"])$

which produces:
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Figure 13: Dimensionless Distance Versus Dimensionless Time
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3.4.2 Ex. 2: One Nonlinear First Order ODE

Let’s solve
x2 y

dy
dx

= xy2 + x3 − 1 (3.8)

for a solution such that when x = 1, y = 1.

(%i1) de : xˆ2*y*’diff(y,x) - x*yˆ2 - xˆ3 + 1;
2 dy 2 3

(%o1) x y -- - x y - x + 1
dx

(%i2) gsoln : ode2(de,y,x);
2 3

3 x y - 6 x log(x) - 2
(%o2) ------------------------ = %c

3
6 x

(%i3) psoln : ic1(gsoln,x=1,y=1);
2 3

3 x y - 6 x log(x) - 2 1
(%o3) ------------------------ = -

3 6
6 x

This implicitly determines y as a function of the independent variable x By inspection, we see that x = 0 is a singular
point we should stay away from, so we assume from now on that x 6= 0.

To look at explicit solutions y(x) we use solve, which returns a list of two expressions depending on x. Since the implicit
solution is a quadratic in y, we will get two solutions from solve, which we call y1 and y2.

(%i4) [y1,y2] : map(’rhs, solve(psoln,y) );
2 2 2 2 2 2

sqrt(6 x log(x) + x + -) sqrt(6 x log(x) + x + -)
x x

(%o4) [- --------------------------, --------------------------]
sqrt(3) sqrt(3)

(%i5) [y1,y2], x = 1, ratsimp;
(%o5) [- 1, 1]
(%i6) de, diff, y= y2, ratsimp;
(%o6) 0

We see from the values at x = 1 that y2 is the particular solution we are looking for, and we have checked that y2 satisfies
the original differential equation. From this example, we learn the lesson that ic1 sometimes needs some help in finding
the particular solution we are looking for.

Let’s make a plot of the two solutions found.

(%i7) plot2d([y1,y2],[x,0.01,5],
[style,[lines,5]],[ylabel, " Y "],

[xlabel," X "] , [legend,"Y1", "Y2"],
[gnuplot_preamble,"set key bottom center;"])$
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which produces:
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Figure 14: Positive X Solutions

3.4.3 Ex. 3: One First Order ODE Which is Not Linear in Y’

The differential equation to solve is (
dx
d t

)2

+ 5x2 = 8 (3.9)

with the initial conditions t = 0, x = 0.

(%i1) de: ’diff(x,t)ˆ2 + 5*xˆ2 - 8;
dx 2 2

(%o1) (--) + 5 x - 8
dt

(%i2) ode2(de,x,t);
dx 2 2

(%t2) (--) + 5 x - 8
dt

first order equation not linear in y’

(%o2) false

We see that direct use of ode2 does not succeed. We can use solve to get equations which are linear in the first derivative,
and then using ode2 on each of the resulting linear ODE’s.

(%i3) solve(de,’diff(x,t));
dx 2 dx 2

(%o3) [-- = - sqrt(8 - 5 x ), -- = sqrt(8 - 5 x )]
dt dt

(%i4) ode2 ( %[2], x, t );
5 x

asin(----------)
2 sqrt(10)

(%o4) ---------------- = t + %c
sqrt(5)
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(%i5) solve(%,x);
2 sqrt(10) sin(sqrt(5) t + sqrt(5) %c)

(%o5) [x = --------------------------------------]
5

(%i6) gsoln2 : %[1];
2 sqrt(10) sin(sqrt(5) t + sqrt(5) %c)

(%o6) x = --------------------------------------
5

(%i7) trigsimp ( ev (de,gsoln2,diff ) );
(%o7) 0
(%i8) psoln : ic1 (gsoln2, t=0, x=0);
solve: using arc-trig functions to get a solution.
Some solutions will be lost.

2 sqrt(10) sin(sqrt(5) t)
(%o8) x = -------------------------

5
(%i9) xs : rhs(psoln);

2 sqrt(10) sin(sqrt(5) t)
(%o9) -------------------------

5
(%i10) xs,t=0;
(%o10) 0

We have selected only one of the linear ODE’s to concentrate on here. We have shown that the solution satisfies the
original differential equation and the given boundary condition.

3.4.4 Ex. 4: Linear Oscillator with Damping

The equation of motion for a particle of mass m executing one dimensional motion which is subject to a linear restoring
force proportional to |x| and subject to a frictional force proportional to its speed is

m
d2 x
d t2

+ b
dx
d t

+ kx = 0 (3.10)

Dividing by the mass m, we note that if there were no damping, this motion would reduce to a linear oscillator with the
angular frequency

ω0 =
(

k
m

)1/2

. (3.11)

In the presence of damping, we can define

γ =
b

2m
(3.12)

and the equation of motion becomes
d2 x
d t2

+ 2γ
dx
d t

+ ω2
0 x = 0 (3.13)

In the presence of damping, there are now two natural time scales

t1 =
1

ω0
, t2 =

1
γ

(3.14)

and we can introduce a dimensionless time θ = ω0 t and the dimensionless positive constant a = γ/ω0, to get

d2 x
dθ2 + 2a

dx
dθ

+ x = 0 (3.15)
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The “underdamped” case corresponds to γ < ω0, or a < 1 and results in damped oscillations around the final x = 0.
The “critically damped” case corresponds to a = 1, and the “overdamped” case corresponds to a > 1. We specialize to
solutions which have the initial conditions θ = 0, x = 1, dx/d t = 0 ⇒ dx/dθ = 0.

(%i1) de : ’diff(x,th,2) + 2*a*’diff(x,th) + x ;
2

d x dx
(%o1) ---- + 2 a --- + x

2 dth
dth

(%i2) for i thru 3 do
x[i] : rhs ( ic2 (ode2 (subst(a=i/2,de),x,th), th=0,x=1,diff(x,th)=0))$

(%i3) plot2d([x[1],x[2],x[3]],[th,0,10],
[style,[lines,4]],[ylabel," "],
[xlabel," Damped Linear Oscillator " ],
[gnuplot_preamble,"set zeroaxis lw 2"],
[legend,"a = 0.5","a = 1","a = 1.5"])$

which produces
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Figure 15: Damped Linear Oscillator

and illustrates why engineers seek the critical damping case, which brings the system to x = 0 most rapidly.
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Now for a phase space plot with dx/dth versus x, drawn for the underdamped case:

(%i4) v1 : diff(x[1],th)$
(%i5) fpprintprec:8$
(%i6) [x5,v5] : [x[1],v1],th=5,numer;
(%o6) [- 0.0745906, 0.0879424]
(%i7) plot2d ( [ [parametric, x[1], v1, [th,0,10],[nticks,80]],

[discrete,[[1,0]]], [discrete,[ [x5,v5] ] ] ],
[x, -0.4, 1.2],[y,-0.8,0.2], [style,[lines,3,7],

[points,3,2,1],[points,3,6,1] ],
[ylabel," "],[xlabel,"th = 0, x = 1, v = 0"],
[legend," v vs x "," th = 0 "," th = 5 "])$

which shows
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Figure 16: Underdamped Phase Space Plot

Using plotdf for the Damped Linear Oscillator

Let’s use plotdf to show the phase space plot of our underdamped linear oscillator, using the syntax

plotdf ( [dudt, dvdt],[u,v], options...)

which requires that we convert our single second order ODE to an equivalent pair of first order ODE’s. If we let
dx/dθ = v, assume the dimensionless damping parameter a = 1/2, we then have dv/dθ = −v − x, and we use
the plotdf syntax

plotdf ( [dxdth, dvdth], [x, v], options... ).

One has to experiment with the number of steps, the step size, and the horizontal and vertical views. The v(θ) values
determine the vertical position and the x(boldsymbolθ) values determine the horizontal position of a point on the phase
space plot curve. The symbols used for the horizontal and vertical ranges should correspond to the symbols used in the
second argument (here [x,v]). Since we want to get a phase space plot which agrees with our work above, we require
the trajectory begin at θ = 0, x = 1, v = 0, and we integrate forward in dimensionless time θ.
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(%i8) plotdf([v,-v-x],[x,v],[trajectory_at,1,0],
[direction,forward],[x,-0.4,1.2],[v,-0.6,0.2],
[nsteps,400],[tstep,0.01])$

This will bring up the phase space plot v vs. x, and you can thicken the red curve by clicking the Config button (which
brings up the Plot Setup panel), increasing the linewidth to 3, and then clicking ok. To actually see the thicker line, you
must then click on the Replot button. This plot is
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Figure 17: Underdamped Phase Space Plot Using plotdf

To see the separate curves v(θ) and x(θ), you can click on the Plot Versus t button. (The symbol t is simply a placeholder
for the independent variable, which in our case is θ.) Again, you can change the linewidth and colors (we changed green
to red) via the Config and Replot button process, which yields
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Figure 18: x(θ) and v(θ) Using plotdf
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3.4.5 Ex. 5: Underdamped Linear Oscillator with Sinusoidal Driving Force

We extend our previous oscillator example by adding a sinusoidal driving force. The equation of motion is now

m
d2 x
d t2

+ b
dx
d t

+ kx = Acos(ω t) (3.16)

We again divide by the mass m and let

ω0 =
(

k
m

)1/2

. (3.17)

As before, we define

γ =
b

2m
. (3.18)

Finally, let B = A/m. The equation of motion becomes

d2 x
d t2

+ 2γ
dx
d t

+ ω2
0 x = Bcos(ω t) (3.19)

There are now three natural time scales

t1 =
1

ω0
, t2 =

1
γ

, t3 =
1
ω

(3.20)

and we can introduce a dimensionless time θ = ω0 t, the dimensionless positive damping constant a = γ/ω0, the di-
mensionless oscillator displacement y = x/B, and the dimensionless driving angular frequency q = ω/ω0 to get

d2 y
dθ2 + 2a

dy
dθ

+ y = cos(q θ) (3.21)

The “underdamped” case corresponds to γ < ω0, or a < 1, and we specialize to the case a = 1/2.

(%i1) de : ’diff(y,th,2) + ’diff(y,th) + y - cos(q*th);
2

d y dy
(%o1) ---- + --- + y - cos(q th)

2 dth
dth

(%i2) gsoln : ode2(de,y,th);
2

q sin(q th) + (1 - q ) cos(q th)
(%o2) y = --------------------------------

4 2
q - q + 1

- th/2 sqrt(3) th sqrt(3) th
+ %e (%k1 sin(----------) + %k2 cos(----------))

2 2
(%i3) psoln : ic2(gsoln,th=0,y=1,diff(y,th)=0);

2
q sin(q th) + (1 - q ) cos(q th)

(%o3) y = --------------------------------
4 2

q - q + 1
4 2 sqrt(3) th 4 sqrt(3) th

(q - 2 q ) sin(----------) q cos(----------)
- th/2 2 2

+ %e (--------------------------------- + ------------------)
4 2 4 2

sqrt(3) q - sqrt(3) q + sqrt(3) q - q + 1
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We now specialize to a high (dimensionless) driving angular frequency case, q = 4, which means that we are assuming
that the actual driving angular frequency is four times as large as the natural angular frequency of this oscillator.

(%i4) ys : subst(q=4,rhs(psoln));
sqrt(3) th sqrt(3) th

224 sin(----------) 256 cos(----------)
- th/2 2 2

(%o4) %e (------------------- + -------------------)
241 sqrt(3) 241

4 sin(4 th) - 15 cos(4 th)
+ --------------------------

241
(%i5) vs : diff(ys,th)$

We now plot both the dimensionless oscillator amplitude and the dimensionless oscillator velocity on the same plot.

(%i6) plot2d([ys,vs],[th,0,12],
[nticks,100],
[style,[lines,5]],
[legend," Y "," V "],
[xlabel," dimensionless Y and V vs. theta"])$
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Figure 19: Dimensionless Y and V versus Dimensionless Time θ

We see that the driving force soon dominates the motion of the underdamped linear oscillator, which is forced to
oscillate at the driving frequency. This dominance evidently has nothing to do with the actual strength A newtons of the
peak driving force, since we are solving for a dimensionless oscillator amplitude, and we get the same qualitative curve
no matter what the size of A is.
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We next make a phase space plot for the early “capture” part of the motion of this system. (Note that plotdf cannot
numerically integrate this differential equation because of the explicit appearance of the dependent variable.)

(%i7) plot2d([parametric,ys,vs,[th,0,8]],
[style,[lines,5]],[nticks,100],
[xlabel," V (vert) vs. Y (hor) "])$

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2  0  0.2  0.4  0.6  0.8  1

 V (vert) vs. Y (hor) 

Figure 20: Dimensionless V Versus Dimensionless Y: Early History

We see the phase space plot being driven to regular oscillations about y = 0 and v = 0.

3.4.6 Ex. 6: Regular and Chaotic Motion of a Driven Damped Planar Pendulum

The motion is pure rotation in a fixed plane (one degree of freedom), and if the pendulum is a simple pendulum with all
the mass m concentrated at the end of a weightless support of length L, then the moment of inertia about the support point
is I = mL2, and the angular acceleration is α, and rotational dynamics implies the equation of motion

Iα = mL2 d2θ

d t2
= τ z = −mgLsin θ − c

dθ

d t
+ Acos(ωd t) (3.22)

We introduce a dimensionless time τ = ω0 t and a dimensionless driving angular frequency ω = ωd/ω0, where ω2
0 = g/L,

to get the equation of motion
d2θ

d τ 2
= −sin θ − a

dθ

d τ
+ bcos(ω τ ) (3.23)

To simplify the notation for our exploration of this differential equation, we make the replacements θ → u, τ → t, and
ω → w ( parameters a, b, and w are dimensionless) to work with the differential equation:

d2 u
d t2

= −sinu− a
du
d t

+ bcos(wt) (3.24)

where now both t and u are dimensionless, with the measure of u being radians, and the physical values of the pendulum
angle being limited to the range −π ≤ u ≤ π, both extremes being the “flip-over-point” at the top of the motion.

We will use both plotdf and rk to explore this system, with

du
d t

= v,
dv
d t

= −sinu− av + bcos(wt) (3.25)
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3.4.7 Free Oscillation Case

Using plotdf, the phase space plot for NO friction and NO driving torque is

(%i1) plotdf([v,-sin(u)],[u,v],[trajectory_at,float(2*%pi/3),0],
[direction,forward],[u,-2.5,2.5],[v,-2.5,2.5],
[tstep, 0.01],[nsteps,600])$
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Figure 21: No Friction, No Driving Torque: V Versus Angle U

and now we use the Plot Versus t button of plotdf to show the angle u radians and the dimensionless rate of change of
angle v
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Figure 22: No Friction, No Driving Torque: Angle U [blue] and V [red]
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3.4.8 Damped Oscillation Case

We now include some damping with a = 1/2.

(%i2) plotdf([v,-sin(u)-0.5*v],[u,v],[trajectory_at,float(2*%pi/3),0],
[direction,forward],[u,-1,2.5],[v,-1.5,1],
[tstep, 0.01],[nsteps,450])$
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Figure 23: With Friction, but No Driving Force: V Versus Angle U

and now we use the Plot Versus t button of plotdf to show the angle u radians and the dimensionless rate of change of
angle y for the friction present case.
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Figure 24: With Friction, but No Driving Force: Angle U [blue] and V [red]
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3.4.9 Including a Sinusoidal Driving Torque

We now use the Runge-Kutta function rk to integrate the differential equation set forward in time for ncycles, which
is the same as setting the final dimensionless tmax equal to ncycles*2*%pi/w, or ncycles*T, where we can call
T the dimensionless period defined by the dimensionless angular frequency w. The physical meaning of T is the ratio of
the period of the driving torque to the period of unforced and undamped small oscillations of the free simple pendulum.

For simplicity of exposition, we will call t the “time” and T the “period”. We again use our homemade function fll
described in the preface.

One cycle (period) of time is divided into nsteps subdivisions, so dt = T/nsteps.

For both the regular and chaotic parameter cases, we have used the same parameters as used in Mathematica in Theo-
retical Physics, by Gerd Baumann, Springer/Telos, 1996, pages 46 - 53.

3.4.10 Regular Motion Parameters Case

We find regular motion of this driven system with a = 0.2, b = 0.52, and w = 0.694, and with u0 = 0.8 rad,
and v0 = 0.8 rad/unit-time.

(%i1) fpprintprec:8$
(%i2) (nsteps : 31, ncycles : 30, a : 0.2, b : 0.52, w : 0.694)$
(%i3) [dudt : v, dvdt : -sin(u) - a*v + b*cos(w*t),

T : float(2*%pi/w ) ];
(%o3) [v, - 0.2 v - sin(u) + 0.52 cos(0.694 t), 9.0535811]
(%i4) [dt : T/nsteps, tmax : ncycles*T ];
(%o4) [0.292051, 271.60743]
(%i5) tuvL : rk ([dudt,dvdt],[u,v],[0.8,0.8],[t,0,tmax, dt])$
(%i6) %, fll;
(%o6) [[0, 0.8, 0.8], [271.60743, - 55.167003, 1.1281164], 931]
(%i7) 930*dt;
(%o7) 271.60743

Plot of u(t) and v(t)

Plot of u(t) and v(t) against t

(%i8) tuL : makelist ([tuvL[i][1],tuvL[i][2]],i,1,length(tuvL))$
(%i9) %, fll;
(%o9) [[0, 0.8], [271.60743, - 55.167003], 931]
(%i10) tvL : makelist ([tuvL[i][1],tuvL[i][3]],i,1,length(tuvL))$
(%i11) %, fll;
(%o11) [[0, 0.8], [271.60743, 1.1281164], 931]
(%i12) plot2d([ [discrete,tuL], [discrete,tvL]],[x,0,280],

[style,[lines,3]],[xlabel,"t"],
[legend, "u", "v"],
[gnuplot_preamble,"set key bottom left;"])$
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which produces
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Figure 25: Angle u(t) and v(t)

The above plot shows nine flips of the pendulum at the top:
the first passage over the top at u = -3 pi/2 = -4.7 rad,
the second passage over the top at u = -7 pi/2 = -11 rad ,
and so on.

Phase Space Plot

We next construct a phase space plot.

(%i13) uvL : makelist ([tuvL[i][2],tuvL[i][3]],i,1,length(tuvL))$
(%i14) %, fll;
(%o14) [[0.8, 0.8], [- 55.167003, 1.1281164], 931]
(%i15) plot2d ( [discrete,uvL],[x,-60,5],[y,-5,5],

[style,[lines,3]],
[ylabel," "],[xlabel," v vs u "] )$

which produces (note that we include the early points which are more heavily influenced by the initial conditions):
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Figure 26: Non-Reduced Phase Space Plot
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Reduced Phase Space Plot

Let’s define a Maxima function reduce which brings u back to the interval (-pi, pi ) and then make a reduced phase space
plot. Since this is a strictly numerical task, we can simplify Maxima’s efforts by defining a floating point number pi once
and for all, and simply work with that definition. You can see the origin of our definition of reduce in the manual’s
entry on Maxima’s modulus function mod.

(%i16) pi : float(%pi);
(%o16) 3.1415927
(%i17) reduce(yy) := pi - mod (pi - yy,2*pi)$
(%i18) float( [-7*%pi/2,-3*%pi/2 ,3*%pi/2, 7*%pi/2] );
(%o18) [- 10.995574, - 4.712389, 4.712389, 10.995574]
(%i19) map(’reduce, % );
(%o19) [1.5707963, 1.5707963, - 1.5707963, - 1.5707963]
(%i20) uvL_red : makelist ( [ reduce( tuvL[i][2]),

tuvL[i][3]],i,1,length(tuvL))$
(%i21) %, fll;
(%o21) [[0.8, 0.8], [1.3816647, 1.1281164], 931]

To make a reduced phase space plot with our reduced regular motion points, we will only use the last two thirds of the
pairs (u,v). This will then show the part of the motion which has been “captured” by the driving torque and shows little
influence of the initial conditions.

We use the Maxima function rest (list, n) which returns list with its first n elements removed if n is positive. Thus we
use rest (list, num/3) to get the last two thirds.

(%i22) uvL_regular : rest (uvL_red, round(length (uvL_red)/3) )$
(%i23) %, fll;
(%o23) [[0.787059, - 1.2368529], [1.3816647, 1.1281164], 621]
(%i24) plot2d ( [discrete,uvL_regular],[x,-3.2,3.2],[y,-3.2,3.2],

[style,[lines,2]],
[ylabel," "],[xlabel,"reduced phase space v vs u "] )$

which produces

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

 

reduced phase space v vs u 

Figure 27: Reduced Phase Space Plot of Regular Motion Points
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Poincare Plot

We next construct a Poincare plot of the regular (reduced) phase space points by using a “stroboscopic view” of this phase
space, displaying only phase space points which correspond to times separated by the driving period T. We select (u,v)
pairs which correspond to intervals of time n*T, where n = 10, 11, ..., 30 which will give us 21 phase space
points for our plot (this is roughly the same as taking the last two thirds of the points).

The time t = 30*T corresponds to t = 30*31*dt = 930*dt which is the time associated with element 931,
the last element) of uvL_red. The value of j used to select the last Poincare point is the solution of the equation
1 + 10*nsteps + j*nsteps = 1 + ncycles*nsteps, which for this case is equivalent to
311 + j*31 = 931.

(%i25) solve(311 + j*31 = 931);
(%o25) [j = 20]
(%i26) pL : makelist (1+10*nsteps + j*nsteps, j, 0, 20);
(%o26) [311, 342, 373, 404, 435, 466, 497, 528, 559, 590, 621, 652, 683, 714,

745, 776, 807, 838, 869, 900, 931]
(%i27) length(pL);
(%o27) 21
(%i28) poincareL : makelist (uvL_red[i], i, pL)$
(%i29) %,fll;
(%o29) [[0.787059, - 1.2368529], [1.3816647, 1.1281164], 21]
(%i30) plot2d ( [discrete,poincareL],[x,-0.5,2],[y,-1.5,1.5],

[style,[points,1,1,1 ]],
[ylabel," "],[xlabel," Poincare Section v vs u "] )$

which produces the plot
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Figure 28: Reduced Phase Space Plot of Regular Motion Points

For this regular motion parameters case, the Poincare plot shows the phase space point coming back to one of three
general locations in phase space at times separated by the period T.
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3.4.11 Chaotic Motion Parameters Case.

To exhibit an example of chaotic motion for this system, we use the same initial conditions for u and v, but use the
parameter set a = 1/2, b = 1.15, w = 2/3.

(%i1) fpprintprec:8$
(%i2) (nsteps : 31, ncycles : 240, a : 1/2, b : 1.15, w : 2/3)$
(%i3) [dudt : v, dvdt : -sin(u) - a*v + b*cos(w*t),

T : float(2*%pi/w ) ];
v 2 t

(%o3) [v, - - - sin(u) + 1.15 cos(---), 9.424778]
2 3

(%i4) [dt : T/nsteps, tmax : ncycles*T ];
(%o4) [0.304025, 2261.9467]
(%i5) tuvL : rk ([dudt,dvdt],[u,v],[0.8,0.8],[t,0,tmax, dt])$
(%i6) %, fll;
(%o6) [[0, 0.8, 0.8], [2261.9467, 26.374502, 0.937008], 7441]
(%i7) dt*( last(%) - 1 );
(%o7) 2261.9467
(%i8) tuL : makelist ([tuvL[i][1],tuvL[i][2]],i,1,length(tuvL))$
(%i9) %, fll;
(%o9) [[0, 0.8], [2261.9467, 26.374502], 7441]
(%i10) tvL : makelist ([tuvL[i][1],tuvL[i][3]],i,1,length(tuvL))$
(%i11) %, fll;
(%o11) [[0, 0.8], [2261.9467, 0.937008], 7441]
(%i12) plot2d([ [discrete,tuL], [discrete,tvL]],[x,0,2000],

[y,-15,30],
[style,[lines,2]],[xlabel,"t"], [ylabel, " "],
[legend, "u","v" ] ,[gnuplot_preamble,"set key bottom;"])$

which produces a plot of u(t) and v(t) over 0 <= t <= 2000:
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Figure 29: Angle u(t), and v(t) for Chaotic Parameters Choice
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Phase Space Plot

We next construct a non-reduced phase space plot, but show only the first 2000 reduced phase space points.

(%i13) uvL : makelist ([tuvL[i][2],tuvL[i][3]],i,1,length(tuvL))$
(%i14) %, fll;
(%o14) [[0.8, 0.8], [26.374502, 0.937008], 7441]
(%i15) uvL_first : rest(uvL, -5441)$
(%i16) %, fll;
(%o16) [[0.8, 0.8], [23.492001, 0.299988], 2000]
(%i17) plot2d ( [discrete,uvL_first],[x,-12,30],[y,-3,3],

[style,[points,1,1,1]],
[ylabel," "],[xlabel," v vs u "])$

which produces
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Figure 30: non-reduced phase space plot using first 2000 points

If we use the discrete default style option lines instead of points,

(%i18) plot2d ( [discrete,uvL_first],[x,-12,30],[y,-3,3],
[ylabel," "],[xlabel," v vs u "])$

we get the non-reduced phase space plot drawn with lines between the points:
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Figure 31: non-reduced phase space plot using first 2000 points
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Reduced Phase Space Plot

We now construct the reduced phase space points as in the regular motion case and then omit the first 400.

(%i19) pi : float(%pi);
(%o19) 3.1415927
(%i20) reduce(yy) := pi - mod (pi - yy,2*pi)$
(%i21) uvL_red : makelist ( [ reduce( first( uvL[i] )),

second( uvL[i] ) ],i,1,length(tuvL))$
(%i22) %, fll;
(%o22) [[0.8, 0.8], [1.2417605, 0.937008], 7441]
(%i23) uvL_cut : rest(uvL_red, 400)$
(%i24) %, fll;
(%o24) [[0.25464, 1.0166641], [1.2417605, 0.937008], 7041]

We have discarded the first 400 reduced phase space points in defining uvL_cut. If we now only plot the first 1000 of
the points retained in uvL_cut:

(%i25) uvL_first : rest (uvL_cut, -6041)$
(%i26) %, fll;
(%o26) [[0.25464, 1.0166641], [2.2678603, 0.608686], 1000]
(%i27) plot2d ( [discrete,uvL_first],[x,-3.5,3.5],[y,-3,3],

[style,[points,1,1,1]],
[ylabel," "],[xlabel,"reduced phase space v vs u "])$

we get the plot
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Figure 32: 1000 points reduced phase space plot

and the same set of points drawn with the default lines option:

(%i28) plot2d ( [discrete,uvL_first],[x,-3.5,3.5],[y,-3,3],
[ylabel," "],[xlabel,"reduced phase space v vs u "])$
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produces the plot
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Figure 33: 1000 points reduced phase space plot

3000 point phase space plot

We next draw the same reduced phase space plot, but use the first 3000 points of uvL_cut.

(%i29) uvL_first : rest (uvL_cut, -4041)$
(%i30) %, fll;
(%o30) [[0.25464, 1.0166641], [- 2.2822197, - 0.532184], 3000]
(%i31) plot2d ( [discrete,uvL_first],[x,-3.5,3.5],[y,-3,3],

[style,[points,1,1,1]],
[ylabel," "],[xlabel,"reduced phase space v vs u "])$

which produces
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Figure 34: 3000 points reduced phase space plot
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and again, the same set of points drawn with the default lines option

(%i32) plot2d ( [discrete,uvL_first],[x,-3.5,3.5],[y,-3,3],
[ylabel," "],[xlabel,"reduced phase space v vs u "])$

which produces the plot
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Figure 35: 3000 points reduced phase space plot
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Poincare Plot

We now construct the Poincare section plot as before, using all the points available in uvL_red.

(%i33) pL : makelist(1+10*nsteps + j*nsteps, j, 0, ncycles - 10)$
(%i34) %, fll;
(%o34) [311, 7441, 231]
(%i35) poincareL : makelist(uvL_red[i], i, pL)$
(%i36) %, fll;
(%o36) [[- 2.2070801, 1.3794391], [1.2417605, 0.937008], 231]
(%i37) plot2d ( [discrete,poincareL],[x,-3,3],[y,-4,4],

[style,[points,1,1,1]],
[ylabel," "],[xlabel," Poincare Section v vs u "] )$

which produces the plot
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Figure 36: 231 poincare section points



43

3.5 Using contrib ode for ODE’s

The syntax of contrib ode is the same as ode. Let’s first solve the same first order ODE example used in the first sections.

(%i1) de : ’diff(u,t)- u - exp(-t);
du - t

(%o1) -- - u - %e
dt

(%i2) gsoln : ode2(de,u,t);
- 2 t

%e t
(%o2) u = (%c - -------) %e

2
(%i3) contrib_ode(de,u,t);

du - t
(%o3) contrib_ode(-- - u - %e , u, t)

dt
(%i4) load(’contrib_ode);
(%o4) C:/PROGRA˜1/MAXIMA˜3.1/share/maxima/5.18.1/share/contrib/diffequations/c\
ontrib_ode.mac
(%i5) contrib_ode(de,u,t);

- 2 t
%e t

(%o5) [u = (%c - -------) %e ]
2

(%i6) ode_check(de, %[1] );
(%o6) 0

We see that contrib_ode, with the same syntax as ode, returns a list (here with one solution, but in general more than
one solution) rather than simply one answer.

Moreover, the package includes the Maxima function ode check which can be used to confirm the general solution.

Here is a comparison for our second order ODE example.

(%i7) de : ’diff(u,t,2) - 4*u;
2
d u

(%o7) --- - 4 u
2

dt
(%i8) gsoln : ode2(de,u,t);

2 t - 2 t
(%o8) u = %k1 %e + %k2 %e
(%i9) contrib_ode(de,u,t);

2 t - 2 t
(%o9) [u = %k1 %e + %k2 %e ]
(%i10) ode_check(de, %[1] );
(%o10) 0

Here is an example of an ODE which ode2 cannot solve, but contrib ode can solve.

(%i11) de : ’diff(u,t,2) + ’diff(u,t) + t*u;
2

d u du
(%o11) --- + -- + t u

2 dt
dt

(%i12) ode2(de,u,t);
(%o12) false
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(%i13) gsoln : contrib_ode(de,u,t);
3/2

1 (4 t - 1) - t/2
(%o13) [u = bessel_y(-, ------------) %k2 sqrt(4 t - 1) %e

3 12
3/2

1 (4 t - 1) - t/2
+ bessel_j(-, ------------) %k1 sqrt(4 t - 1) %e ]

3 12
(%i14) ode_check(de, %[1] );
(%o14) 0

This section will probably be augmented in the future with more examples of using contrib ode.


