CHAPTER 9

Operators on
Real Vector Spaces

In this chapter we delve deeper into the structure of operators on
real vector spaces. The important results here are somewhat more com-
plex than the analogous results from the last chapter on complex vector
spaces.

Recall that F denotes R or C.
Also, V is a finite-dimensional, nonzero vector space over F.

Some of the new results in this chapter are valid on complex vector
spaces, so we have not assumed that V is a real vector space.
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CHAPTER 9. Operators on Real Vector Spaces

Figenvalues of Square Matvrices

We have defined eigenvalues of operators; now we need to extend
that notion to square matrices. Suppose A is an n-by-n matrix with
entries in F. A number A € F is called an eigenvalue of A if there
exists a nonzero n-by-1 matrix x such that

Ax = Ax.

For example, 3 is an eigenvalue of [{ §] because

LA LS LA

As another example, you should verify that the matrix [‘1) ‘01] has no
eigenvalues if we are thinking of F as the real numbers (by definition,
an eigenvalue must be in F) and has eigenvalues i and —i if we are
thinking of F as the complex numbers.

We now have two notions of eigenvalue—one for operators and one
for square matrices. As you might expect, these two notions are closely
connected, as we now show.

9.1 Proposition: Suppose T € £(V) and A is the matrix of T with
respect to some basis of V. Then the eigenvalues of T are the same as
the eigenvalues of A.

PROOF: Let (vi,...,Vvy) be the basis of V with respect to which T
has matrix A. Let A € F. We need to show that A is an eigenvalue of T
if and only if A is an eigenvalue of A.

First suppose A is an eigenvalue of T. Let v € V be a nonzero vector
such that Tv = Av. We can write

9.2 V=a1Vi+---+anVn,
where aq,...,a, € F. Let x be the matrix of the vector v with respect
to the basis (v1,...,Vvy). Recall from Chapter 3 that this means
ay
9.3 x =

an



Block Upper-Triangular Matrices

195

We have
Ax = M(T)M(v) = M(Tv) = M(Av) = AM(v) = Ax,

where the second equality comes from 3.14. The equation above shows
that A is an eigenvalue of A, as desired.

To prove the implication in the other direction, now suppose A is an
eigenvalue of A. Let x be a nonzero n-by-1 matrix such that Ax = Ax.
We can write x in the form 9.3 for some scalars ai,...,a, € F. Define
v € V by 9.2. Then

M(Tv) = M(T)M(v) = Ax = Ax = M(Av).

where the first equality comes from 3.14. The equation above implies
that Tv = Av, and thus A is an eigenvalue of T, completing the proof. m

Because every square matrix is the matrix of some operator, the
proposition above allows us to translate results about eigenvalues of
operators into the language of eigenvalues of square matrices. For
example, every square matrix of complex numbers has an eigenvalue
(from 5.10). As another example, every n-by-n matrix has at most n
distinct eigenvalues (from 5.9).

Block Upper-Triangular Matrices

Earlier we proved that each operator on a complex vector space has
an upper-triangular matrix with respect to some basis (see 5.13). In
this section we will see that we can almost do as well on real vector
spaces.

In the last two chapters we used block diagonal matrices, which
extend the notion of diagonal matrices. Now we will need to use the
corresponding extension of upper-triangular matrices. A block upper-
triangular matrix is a square matrix of the form

Ay *

0 Am
where Aj,...,A,, are square matrices lying along the diagonal, all en-
tries below Ay, ..., A;, equal 0, and the % denotes arbitrary entries. For

example, the matrix

As usual, we use an
asterisk to denote
entries of the matrix
that play no important
role in the topics under
consideration.



196

CHAPTER 9. Operators on Real Vector Spaces

Every upper-triangular
matrix is also a block
upper-triangular matrix
with blocks of size
1-by-1 along the
diagonal. At the other
extreme, every square
matrix is a block
upper-triangular matrix
because we can take
the first (and only)
block to be the entire
matrix. Smaller blocks
are better in the sense
that the matrix then
has more 0’s.

4 10 11 12 13
0 -3 -3 14 25
A= 0 -3 -3 16 17
0o 0 o0 5 5
0 0 0 5 5

is a block upper-triangular matrix with

A k
A= Ap ,
0 Aj

where

-3 -3 5 5
Ar=[4], A2=[_3 _3]. A3=[5 5].
Now we prove that for each operator on a real vector space, we can

find a basis that gives a block upper-triangular matrix with blocks of
size at most 2-by-2 on the diagonal.

9.4 Theorem: Suppose V is a real vector space and T € L(V).
Then there is a basis of V with respect to which T has a block upper-
triangular matrix

Ay k
9-5 .'. )
0 Am

where each Aj is a 1-by-1 matrix or a 2-by-2 matrix with no eigenvalues.

PROOF: Clearly the desired result holds if dimV = 1.

Next, consider the case where dimV = 2. If T has an eigenvalue A,
then let v; € V be any nonzero eigenvector. Extend (v,) to a basis
(v1,v2) of V. With respect to this basis, T has an upper-triangular
matrix of the form

A a
0]

In particular, if T has an eigenvalue, then there is a basis of V with
respect to which T has an upper-triangular matrix. If T has no eigen-
values, then choose any basis (v, Vv») of V. With respect to this basis,
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the matrix of T has no eigenvalues (by 9.1). Thus regardless of whether
T has eigenvalues, we have the desired conclusion when dimV = 2.
Suppose now that dimV > 2 and the desired result holds for all real
vector spaces with smaller dimension. If T has an eigenvalue, let U be a
one-dimensional subspace of V that is invariant under T; otherwise let
U be a two-dimensional subspace of V that is invariant under T (5.24
guarantees that we can choose U in this fashion). Choose any basis
of U and let A; denote the matrix of T|y with respect to this basis. If
Aj is a 2-by-2 matrix, then T has no eigenvalues (otherwise we would
have chosen U to be one-dimensional) and thus T |y has no eigenvalues.
Hence if A; is a 2-by-2 matrix, then A; has no eigenvalues (see 9.1).
Let W be any subspace of V such that

V=UesW,

2.13 guarantees that such a W exists. Because W has dimension less
than the dimension of V, we would like to apply our induction hypoth-
esis to T'|w. However, W might not be invariant under T, meaning that
T|w might not be an operator on W. We will compose with the pro-
jection Py y to get an operator on W. Specifically, define S € L(W)
by

Sw = PW,U(TW)

for w € W. Note that

Tw = Pyw(Tw) + Pwuy(Tw)
9.6 = PUlw(TW) + Sw

for every w € W.
By our induction hypothesis, there is a basis of W with respect to
which S has a block upper-triangular matrix of the form

Ao %
0 Am

where each A; is a 1-by-1 matrix or a 2-by-2 matrix with no eigenvalues.
Adjoin this basis of W to the basis of U chosen above, getting a basis
of V. A minute’s thought should convince you (use 9.6) that the matrix

of T with respect to this basis is a block upper-triangular matrix of the
form 9.5, completing the proof. ]

Recall that if

v =w + u, where
weWandueU,
then Py yv = w.
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The Characteristic Polynomial

For operators on complex vector spaces, we defined characteristic
polynomials and developed their properties by making use of upper-
triangular matrices. In this section we will carry out a similar procedure
for operators on real vector spaces. Instead of upper-triangular matri-
ces, we will have to use the block upper-triangular matrices furnished
by the last theorem.

In the last chapter, we did not define the characteristic polynomial
of a square matrix with complex entries because our emphasis is on
operators rather than on matrices. However, to understand operators
on real vector spaces, we will need to define characteristic polynomials
of 1-by-1 and 2-by-2 matrices with real entries. Then, using block-upper
triangular matrices with blocks of size at most 2-by-2 on the diagonal,
we will be able to define the characteristic polynomial of an operator
on a real vector space.

To motivate the definition of characteristic polynomials of square
matrices, we would like the following to be true (think about the Cayley-
Hamilton theorem; see 8.20): if T € £(V) has matrix A with respect
to some basis of V and g is the characteristic polynomial of A, then
qa(T) = 0.

Let’s begin with the trivial case of 1-by-1 matrices. Suppose V is a
real vector space with dimension 1 and T € £(V). If [A] equals the
matrix of T with respect to some basis of V, then T equals AI. Thus
if we let g be the degree 1 polynomial defined by g(x) = x — A, then
q(T) = 0. Hence we define the characteristic polynomial of [A] to be
x —A.

Now let’s look at 2-by-2 matrices with real entries. Suppose V is a
real vector space with dimension 2 and T € L(V). Suppose

bl

is the matrix of T with respect to some basis (vq,v2) of V. We seek
a monic polynomial g of degree 2 such that q(T) = 0. If b = 0, then
the matrix above is upper triangular. If in addition we were dealing
with a complex vector space, then we would know that T has charac-
teristic polynomial (z — a)(z — d). Thus a reasonable candidate might
be (x — a)(x — d), where we use x instead of z to emphasize that
now we are working on a real vector space. Let’s see if the polynomial
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(x —a)(x — d), when applied to T, gives 0 even when b # 0. We have
(T —al)(T —dl)v, = (T —dI)(T —al)v, = (T —dI)(bvs) = bcv;

and
(T —al)(T —dI)vy = (T —al)(cvy) = bcvy.

Thus (T — al)(T — dlI) is not equal to 0 unless bc = 0. However, the
equations above show that (T — al)(T — dI) — bcl = 0 (because this
operator equals O on a basis, it must equal 0 on V). Thus if g(x) =
(x —a)(x—-d) — bc, then q(T) = 0.

Motivated by the previous paragraph, we define the characteristic
polynomial of a 2-by-2 matrix [ 5] to be (x — a)(x — d) — bc. Here
we are concerned only with matrices with real entries. The next re-
sult shows that we have found the only reasonable definition for the
characteristic polynomial of a 2-by-2 matrix.

9.7 Proposition: SupposeV is a real vector space with dimension 2
and T € L(V) has no eigenvalues. Let p € P(R) be a monic polynomial
with degree 2. Suppose A is the matrix of T with respect to some basis
of V.

(@)  If p equals the characteristic polynomial of A, then p(T) = 0.

(b)  If p does not equal the characteristic polynomial of A, then p(T)
is invertible.

PROOF: We already proved (a) in our discussion above. To prove (b),
let g denote the characteristic polynomial of A and suppose that p # g.
We can write p(x) = x2 + &1 x + B1 and g(x) = x? + x2x + B> for some
o1, B1, 02, B2 € R. Now

p(T) = p(T) —q(T) = (1 — &2) T + (B1 — B2)I.

If ¢y = otp, then B; # B2 (otherwise we would have p = g). Thus if
®] = oy, then p(T) is a nonzero multiple of the identity and hence is
invertible, as desired. If «; # o, then
p(T) = (o — o) (T - P2=B1p)
X1 — X
which is an invertible operator because T has no eigenvalues. Thus (b)
holds. [

Part (b) of this
proposition would be
false without the
hypothesis that T has
no eigenvalues. For
example, define

T € £L(R?) by
T(x1,x2) = (0,x2).
Take p(x) = x(x = 2).
Then p is not the
characteristic
polynomial of the
matrix of T with
respect to the standard
basis, but p(T) is not
invertible.
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Suppose V is a real vector space with dimension 2 and T € £(V) has
no eigenvalues. The last proposition shows that there is precisely one
monic polynomial with degree 2 that when applied to T gives 0. Thus,
though T may have different matrices with respect to different bases,
each of these matrices must have the same characteristic polynomial.
For example, consider T € £(R?) defined by

9.8 T(x1,x2) = (3x1 + 5X2,—2X1 — X2).

The matrix of T with respect to the standard basis of R? is

25

The characteristic polynomial of this matrix is (x — 3)(x + 1) + 2 - 5,
which equals x2 — 2x + 7. As you should verify, the matrix of T with
respect to the basis ((-2,1),(1,2)) equals

1 -6

1 1 |
The characteristic polynomial of this matrix is (x — 1)(x — 1) + 1 - 6,
which equals x2 — 2x + 7, the same result we obtained by using the
standard basis.

When analyzing upper-triangular matrices of an operator T on a
complex vector space V, we found that subspaces of the form

null(T — A7)dmV

played a key role (see 8.10). Those spaces will also play a role in study-
ing operators on real vector spaces, but because we must now consider
block upper-triangular matrices with 2-by-2 blocks, subspaces of the
form

null(T? + «T + BI)4™V

will also play a key role. To get started, let’s look at one- and two-
dimensional real vector spaces.

First suppose that V is a one-dimensional real vector space and that
T € L(V). If A € R, then null(T — AI) equals V if A is an eigenvalue
of T and {0} otherwise. If &, 8 € R with & < 48, then
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null(T? + «T + BI) = {0}.

(Proof: Because V is one-dimensional, there is a constant A € R such
that Tv = Av for all v € V. Thus (T? + &T + BI)v = (A®> + xA + B)v.
However, the inequality «® < 48 implies that A? + @A + 8 # 0, and thus
null(T? + «T + BI) = {0}.)

Now suppose V is a two-dimensional real vector space and T € L(V)
has no eigenvalues. If A € R, then null(T — AI) equals {0} (because T
has no eigenvalues). If «, B € R with & < 48, then null(T? + «T + BI)
equals V if x2 + ax + B is the characteristic polynomial of the matrix
of T with respect to some (or equivalently, every) basis of V and equals
{0} otherwise (by 9.7). Note that for this operator, there is no middle
ground—the null space of T? + «T + BI is either {0} or the whole space;
it cannot be one-dimensional.

Now suppose that V is a real vector space of any dimension and
T € L(V). We know that V has a basis with respect to which T has
a block upper-triangular matrix with blocks on the diagonal of size at
most 2-by-2 (see 9.4). In general, this matrix is not unique—V may
have many different bases with respect to which T has a block upper-
triangular matrix of this form, and with respect to these different bases
we may get different block upper-triangular matrices.

We encountered a similar situation when dealing with complex vec-
tor spaces and upper-triangular matrices. In that case, though we might
get different upper-triangular matrices with respect to the different
bases, the entries on the diagonal were always the same (though possi-
bly in a different order). Might a similar property hold for real vector
spaces and block upper-triangular matrices? Specifically, is the num-
ber of times a given 2-by-2 matrix appears on the diagonal of a block
upper-triangular matrix of T independent of which basis is chosen?
Unfortunately this question has a negative answer. For example, the
operator T € L£(R?) defined by 9.8 has two different 2-by-2 matrices,
as we saw above.

Though the number of times a particular 2-by-2 matrix might appear
on the diagonal of a block upper-triangular matrix of T can depend on
the choice of basis, if we look at characteristic polynomials instead
of the actual matrices, we find that the number of times a particular
characteristic polynomial appears is independent of the choice of basis.
This is the content of the following theorem, which will be our key tool
in analyzing the structure of an operator on a real vector space.

Recall that o < 4
implies that

x2 + ax + B has no real
roots; see 4.11.
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This result implies that
null(T? + «T + BI)dmV
must have even
dimension.

This proof uses the
same ideas as the proof
of the analogous result
on complex vector
spaces (8.10). As usual,
the real case is slightly
more complicated but
requires no new
creativity.

9.9 Theorem: Suppose V is a real vector space and T € L(V).
Suppose that with respect to some basis of V, the matrix of T is

Aq *
9.10 )

0 Am
where each Aj is a 1-by-1 matrix or a 2-by-2 matrix with no eigenvalues.
(@ If A € R, then precisely dimnull(T — AI)Y™V of the matrices

Aq,...,An equal the 1-by-1 matrix [A].
(b) If &, B €R satisty «? < 4, then precisely
dimnull(T? + «T + BI)dmV
2

of the matrices A1, ..., Ay have characteristic polynomial equal
to x2 + ax + B.

PROOF: We will construct one proof that can be used to prove both
(a) and (b). To do this, let A, &, B € R with &® < 4. Define p € P(R)
by

x—-A if we are trying to prove (a);
px) = { x°? + ax + B if we are trying to prove (b).
Let d denote the degree of p. Thus d = 1 if we are trying to prove (a)
and d = 2 if we are trying to prove (b).

We will prove this theorem by induction on m, the number of blocks
along the diagonal of 9.10. If m = 1, then dimV =1 or dimV = 2; the
discussion preceding this theorem then implies that the desired result
holds. Thus we can assume that m > 1 and that the desired result
holds when m is replaced with m — 1.

For convenience let n = dim V. Consider a basis of V with respect
to which T has the block upper-triangular matrix 9.10. Let U; denote
the span of the basis vectors corresponding to A;. Thus dimU; = 1
if Ajis a 1-by-1 matrix and dimU; = 2 if Aj is a 2-by-2 matrix. Let
U=U, + -+ Up-1. Clearly U is invariant under T and the matrix
of T|y with respect to the obvious basis (obtained from the basis vec-
tors corresponding to Aj,..., A1) 1S

A *
9.11 .
0 Am—l
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Thus, by our induction hypothesis,

precisely (1/d) dimnull p(T|y)™ of the matrices

212 Ay,...,A;u-1 have characteristic polynomial p.

Actually the induction hypothesis gives 9.12 with exponent dim U in-
stead of n, but then we can replace dim U with n (by 8.6) to get the
statement above.

Suppose U, € Upy,. Let S € L(U,,) be the operator whose matrix
(with respect to the basis corresponding to Uy,) equals A,. In particu-
lar, Sum = Py,,,u Tum. Now

T’l/lm = PU,Um Tum + PUm,UTum
=%y + SuUum,

where *xy denotes a vector in U. Note that Su,, € U,,; thus applying
T to both sides of the equation above gives

Tzum = *U + Szum,

where again *y denotes a vector in U, though perhaps a different vector
than the previous usage of *y (the notation *y is used when we want
to emphasize that we have a vector in U but we do not care which
particular vector—each time the notation * is used, it may denote a
different vector in U). The last two equations show that

9.13 p(Mum = *y +p(Sum

for some *xy € U. Note that p(S)u,, € Up; thus iterating the last
equation gives

9.14 p(D)"Uum = *xy +p(S)"um

for some xy € U.

The proof now breaks into two cases. First consider the case where
the characteristic polynomial of A;,, does not equal p. We will show
that in this case

9.15 nullp(T)" c U.
Once this has been verified, we will know that

null p(T)" =null p(T|y)",
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and hence 9.12 will tell us that precisely (1/d) dimnull p(T)" of the

matrices Ay, ..., A, have characteristic polynomial p, completing the
proof in the case where the characteristic polynomial of A,, does not
equal p.

To prove 9.15 (still assuming that the characteristic polynomial of
Ay, does not equal p), suppose v € null p(T)"™. We can write v in the
form v = u + uyy,, where u € U and u, € Uy,. Using 9.14, we have

O=p(M™v =p(M"u+p(T) Uy = p(T)"u + *xy + p(S)"um

for some *xy € U. Because the vectors p(T)"u and *y are in U and
p(S)"uy, € Uy, this implies that p(S)"u,, = 0. However, p(S) is in-
vertible (see the discussion preceding this theorem about one- and two-
dimensional subspaces and note that dim U,, < 2), so u;,, = 0. Thus
v =u € U, completing the proof of 9.15.

Now consider the case where the characteristic polynomial of A,
equals p. Note that this implies dim U,, = d. We will show that

9.16 dimnull p(T)" = dimnull p(T|y)™ + d,

which along with 9.12 will complete the proof.
Using the formula for the dimension of the sum of two subspaces
(2.18), we have

dimnull p(T)" = dim(U nnull p(T)") + dim(U + null p(T)") — dim U
=dimnull p(T|y)" + dm(U + null p(T)") — (n — d).
IfU+nullp(T)" =V, then dim(U +null p(T)") = n, which when com-
bined with the last formula above for dimnull p (T)" would give 9.16,
as desired. Thus we will finish by showing that U + null p(T)" = V.
To prove that U + null p(T)" = V, suppose u,, € U,,. Because the

characteristic polynomial of the matrix of S (namely, A,;) equals p, we
have p(S) = 0. Thus p(T)uy € U (from 9.13). Now

p(T)"upm = p(T)" L (p(T)um) € range p(T|y)" ! = range p(T|y)™,

where the last equality comes from 8.9. Thus we can choose u € U
such that p(T)"uy;, = p(T|y)"u. Now
p(T)" (um —u) = p(T)"um — p(T)"u
=p(D)"um —p(Tly)"u
=0.
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Thus U, —u € null p(T)", and hence u,,, which equals u + (U, — u),
isin U + null p(T)"™. In other words, U, C U + null p(T)". Therefore
V=U+Uy, C U+null p(T)", and hence U+null p(T)"™ = V, completing
the proof. ]

As we saw in the last chapter, the eigenvalues of an operator on a
complex vector space provide the key to analyzing the structure of the
operator. On a real vector space, an operator may have fewer eigen-
values, counting multiplicity, than the dimension of the vector space.
The previous theorem suggests a definition that makes up for this defi-
ciency. We will see that the definition given in the next paragraph helps
make operator theory on real vector spaces resemble operator theory
on complex vector spaces.

Suppose V is a real vector space and T € £(V). An ordered pair
(«, B) of real numbers is called an eigenpair of T if x* < 48 and

T? + «T + BI

is not injective. The previous theorem shows that T can have only
finitely many eigenpairs because each eigenpair corresponds to the
characteristic polynomial of a 2-by-2 matrix on the diagonal of 9.10
and there is room for only finitely many such matrices along that diag-
onal. Guided by 9.9, we define the multiplicity of an eigenpair («, )

of T to be , .
dimnull(T? + «T + BI)4mV

2
From 9.9, we see that the multiplicity of (&, ) equals the number of
times that x2 + «x + B is the characteristic polynomial of a 2-by-2 matrix
on the diagonal of 9.10.
As an example, consider the operator T € £(R?) whose matrix (with
respect to the standard basis) equals

3 -1 -2
3 2 -3
1 2 0

You should verify that (—4, 13) is an eigenpair of T with multiplicity 1;
note that T2 — 4T + 131 is not injective because (-1,0,1) and (1,1,0)
are in its null space. Without doing any calculations, you should verify
that T has no other eigenpairs (use 9.9). You should also verify that 1 is
an eigenvalue of T with multiplicity 1, with corresponding eigenvector
(1,0,1), and that T has no other eigenvalues.

Though the word
eigenpair was chosen
to be consistent with
the word eigenvalue,
this terminology is not
in widespread use.
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This proposition shows
that though an
operator on a real
vector space may have
no eigenvalues, or it
may have no
eigenpairs, it cannot be
lacking in both these
useful objects. It also
shows that an operator
on a real vector space
V can have at most
(dim V) /2 distinct
eigenpairs.

Note that the roots of
the characteristic
polynomial of T equal
the eigenvalues of T, as
was true on complex
vector spaces.

In the example above, the sum of the multiplicities of the eigenval-
ues of T plus twice the multiplicities of the eigenpairs of T equals 3,
which is the dimension of the domain of T. The next proposition shows
that this always happens on a real vector space.

9.17 Proposition: If V is a real vector space and T € L(V), then
the sum of the multiplicities of all the eigenvalues of T plus the sum
of twice the multiplicities of all the eigenpairs of T equals dimV'.

PROOF: Suppose V is a real vector space and T € £(V). Then there
is a basis of V with respect to which the matrix of T is as in 9.9. The
multiplicity of an eigenvalue A equals the number of times the 1-by-1
matrix [A] appears on the diagonal of this matrix (from 9.9). The multi-
plicity of an eigenpair («, ) equals the number of times x2 + xx + 8 is
the characteristic polynomial of a 2-by-2 matrix on the diagonal of this
matrix (from 9.9). Because the diagonal of this matrix has length dim V,
the sum of the multiplicities of all the eigenvalues of T plus the sum of
twice the multiplicities of all the eigenpairs of T must equal dimV. =

Suppose V is a real vector space and T € L£(V). With respect to
some basis of V, T has a block upper-triangular matrix of the form

Ay *
9.]8 ’
0 Am

where each A; is a 1-by-1 matrix or a 2-by-2 matrix with no eigenval-
ues (see 9.4). We define the characteristic polynomial of T to be the
product of the characteristic polynomials of A1, ..., A,,. Explicitly, for
each j, define g; € P(R) by

9.19 ;) = { x—2A if A; equals [A];

(x —a)(x —d) —bc if Ajequals [§§].
Then the characteristic polynomial of T is
a1(x)...qm(x).

Clearly the characteristic polynomial of T has degree dimV. Fur-
thermore, 9.9 insures that the characteristic polynomial of T depends
only on T and not on the choice of a particular basis.
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Now we can prove a result that was promised in the last chapter,
where we proved the analogous theorem (8.20) for operators on com-
plex vector spaces.

9.20 Cayley-Hamilton Theorem: Suppose V is a real vector space
and T € L(V). Let q denote the characteristic polynomial of T. Then
a(T) = 0.

PROOF: Choose a basis of V with respect to which T has a block
upper-triangular matrix of the form 9.18, where each A; is a 1-by-1
matrix or a 2-by-2 matrix with no eigenvalues. Suppose Uj is the one- or
two-dimensional subspace spanned by the basis vectors corresponding
to Aj. Define g; as in 9.19. To prove that g(T) = 0, we need only show
that q(T) |y, = 0 for j = 1,...,m. To do this, it suffices to show that

9.21 ai(T)...q;(T) |y, =0

forj=1,...,m.

We will prove 9.21 by induction on j. To get started, suppose that
J = 1. Because M(T) is given by 9.18, we have g, (T)|y, = 0 (obvious if
dim U; = 1; from 9.7(a) if dim U; = 2), giving 9.21 when j = 1.

Now suppose that 1 < j < n and that

0= QI(T)|U1
0=q:1(T)q2(T)ly,

O0=q:(T)...qj-1(D)|y, -
If v € Uj, then from 9.18 we see that
a;(T)v =u+q;(S)v,

where u € Uy + --- + Uj—1 and S € L(Uj) has characteristic poly-
nomial g;. Because g;(S) = 0 (obvious if dimU; = 1; from 9.7(a) if
dim U; = 2), the equation above shows that

qj(T)v elUy+---+Uj

whenever v € U;. Thus, by our induction hypothesis, q1(T) ...q;-1(T)
applied to q;(T)v gives 0O whenever v € U;. In other words, 9.21 holds,
completing the proof. ]

This proof uses the
same ideas as the proof
of the analogous result
on complex vector
spaces (8.20).
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Either m or M
might be 0.

This proof uses the
same ideas as the proof
of the analogous result
on complex vector
spaces (8.23).

Suppose V is a real vector space and T € L(V). Clearly the Cayley-
Hamilton theorem (9.20) implies that the minimal polynomial of T has
degree at most dimV, as was the case on complex vector spaces. If
the degree of the minimal polynomial of T equals dim V, then, as was
also the case on complex vector spaces, the minimal polynomial of T
must equal the characteristic polynomial of T. This follows from the
Cayley-Hamilton theorem (9.20) and 8.34.

Finally, we can now prove a major structure theorem about oper-
ators on real vector spaces. The theorem below should be compared
to 8.23, the corresponding result on complex vector spaces.

9.22 Theorem: SupposeV is areal vector space and T € L(V). Let
Al,...,Am be the distinct eigenvalues of T, with Uy,...,Uy, the corre-
sponding sets of generalized eigenvectors. Let (1, 1),..., (v, Bm)
be the distinct eigenpairs of T and let Vj = null(T? + o;T + B,;1)4mV.
Then

(@ V=Ueo---oUyeVie---oVy;
(b)  each U; and each V; is invariant under T;

(0  each (T — AjI)|y, and each (T? + «;T + B;I)|v, is nilpotent.

PROOF: From 8.22, we get (b). Clearly (c) follows from the defini-
tions.

To prove (a), recall that dim U; equals the multiplicity of A; as an
eigenvalue of T and dim V; equals twice the multiplicity of («;, B;) as
an eigenpair of T. Thus

9.23 dimV =dimU; + - - +dimUy,, + dimV; + - - - + Vi,

this follows from 9.17. Let U = Uy + - - - + Uy, + V1 + - - - + V. Note
that U is invariant under T. Thus we can define S € £(U) by

S=Tly.

Note that S has the same eigenvalues, with the same multiplicities, as T
because all the generalized eigenvectors of T are in U, the domain of S.
Similarly, S has the same eigenpairs, with the same multiplicities, as T.
Thus applying 9.17 to S, we get

dimU =dimU; + - - - +dim Uy, + dimVy + - - - + V.
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This equation, along with 9.23, shows that dimV = dim U. Because U
is a subspace of V, this implies that V = U. In other words,

V=U+--+Upn+Vi+---+Vpy.

This equation, along with 9.23, allows us to use 2.19 to conclude that
(a) holds, completing the proof. ]
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Clearly Exercise 4 is a
stronger statement
than Exercise 3. Even
so, you may want to do
Exercise 3 first because
it is easier than
Exercise 4.

Exercises

Prove that 1 is an eigenvalue of every square matrix with the
property that the sum of the entries in each row equals 1.

Consider a 2-by-2 matrix of real numbers

a c
A= [ ac ] .
Prove that A has an eigenvalue (in R) if and only if
(a—da)? +4bc = 0.

Suppose A is a block diagonal matrix

Ay 0
A= ,
0 Am
where each A; is a square matrix. Prove that the set of eigenval-
ues of A equals the union of the eigenvalues of Ay,..., Ap.

Suppose A is a block upper-triangular matrix

Ay *
A= :
0 Am
where each A; is a square matrix. Prove that the set of eigenval-
ues of A equals the union of the eigenvalues of Ay,..., Apy.

Suppose V is areal vector spaceand T € L(V). Suppose &, 8 € R
are such that T? + «T + BI = 0. Prove that T has an eigenvalue
if and only if «? = 48.

Suppose V is a real inner-product space and T € L(V). Prove
that there is an orthonormal basis of V with respect to which T
has a block upper-triangular matrix

Aq >k
0 A
where each A; is a 1-by-1 matrix or a 2-by-2 matrix with no eigen-
values.
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10.

11.

12.

13.

14.

15.

Prove that if T € L(V) and j is a positive integer such that
Jj <dimV, then T has an invariant subspace whose dimension
equals j — 1 or j.

Prove that there does not exist an operator T € £(R7) such that
T2 + T +1 is nilpotent.

Give an example of an operator T € £(C7) such that T2 + T + 1
is nilpotent.

Suppose V is areal vector spaceand T € L(V). Suppose &, 8 € R
are such that «? < 4. Prove that

null(T? + «T + Bk
has even dimension for every positive integer k.

Suppose V is areal vector spaceand T € L(V). Suppose , B € R
are such that «® < 48 and T2 + «T + BI is nilpotent. Prove that
dimV is even and

(T% + &T + BN)4™V/2 = 0.

Prove thatif T € £(R3) and 5, 7 are eigenvalues of T, then T has
no eigenpairs.

Suppose V is a real vector space with dimV =nand T € L(V)
is such that
null 7%°2 # null T .

Prove that T has at most two distinct eigenvalues and that T has
no eigenpairs.

Suppose V is a vector space with dimension 2 and T € L(V).

Prove that if
a c
b d

is the matrix of T with respect to some basis of V, then the char-
acteristic polynomial of T equals (z — a)(z —d) — bc.

Suppose V is areal inner-product space and S € £(V) is an isom-
etry. Prove that if («x, B) is an eigenpair of S, then 8 = 1.

You do not need to find
the eigenvalues of T to
do this exercise. As
usual unless otherwise
specified, here V may
be a real or complex
vector space.



