
Chapter 4

Induction, Recursion, and
Recurrences

4.1 Mathematical Induction

Smallest Counter-Examples

In Section 3.3, we saw one way of proving statements about infinite universes: we considered a
“generic” member of the universe and derived the desired statement about that generic member.
When our universe is the universe of integers, or is in a one-to-one correspondence with the
integers, there is a second technique we can use.

Recall our our proof of Euclid’s Division Theorem (Theorem 2.12), which says that for each
pair (m, n) of positive integers, there are nonnegative integers q and r such that m = nq + r and
0 ≤ r < n. For the purpose of a proof by contradiciton, we assumed that the statement was
fales. Then we said the following. “Among all pairs (m, n) that make it false, choose the smallest
m that makes it false. We cannot have m < n because then the statement would be true with
q = 0 and r = m, and we cannot have m = n because then the statement is true with q = 1
and r = 0. This means m − n is a positive number smaller than m. We assumed that m was
the smallest value that made the theorem false, and so the theorem must be true for the pair
(m − n, n). Therefore, there must exist a q′ and r′ such that

m − n = q′n + r′, with 0 ≤ r′ < n.

Thus m = (q′+1)n+r′. Now, by setting q = q′+1 and r = r′, we can satisfy the theorem for the
pair (m, n), contradicting the assumption that the statement is false. Thus the only possibility
is that the statement is true.”

Focus on the sentences “This means m−n is a positive number smaller than m. We assumed
that m was the smallest value that made the theorem false, and so the theorem must be true for
the pair (m − n, n). Therefore, there must exist a q′ and r′ such that

m − n = q′n + r′, with 0 ≤ r′ < n.

Thus m = (q′ + 1)n + r′.” To analyze these sentences, let p(m, n) denote the statement “there
are nonnegative integers q and r with 0 ≤ r < n such that m = nq + r” The quoted sentences

117

118 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

we focused on provide a proof that p(m − n, n) ⇒ p(m, n). This implication is the crux of the
proof. Let us give an analysis of the proof that shows the pivotal role of this impliction.

• We assumed a counter-example with a smallest m existed.

• Then using the fact that p(m′, n) had to be true for every m′ smaller than m, we chose
m′ = m − n, and observed that p(m′, n) had to be true.

• Then we used the implication p(m − n, n) ⇒ p(m, n) to conclude the truth of p(m, n).

• But we had assumed that p(m, n) was false, so this is the assumption we contradicted in
the proof by contradiction.

Exercise 4.1-1 In Chapter 1 we learned Gauss’s trick for showing that for all positive
integers n,

1 + 2 + 3 + 4 + ... + n =
n(n + 1)

2
. (4.1)

Use the technique of asserting that if there is a counter-example, there is a smallest
counter-example and deriving a contradiction to prove that the sum is n(n + 1)/2.
What implication did you have to prove in the process?

Exercise 4.1-2 For what values of n ≥ 0 do you think 2n+1 ≥ n2 + 2? Use the technique
of asserting there is a smallest counter-example and deriving a contradiction to prove
you are right. What implication did you have to prove in the process?

Exercise 4.1-3 For what values of n ≥ 0 do you think 2n+1 ≥ n2 + 3? Is it possible
to use the technique of asserting there is a smallest counter-example and deriving a
contradiction to prove you are right? If so, do so and describe the implication you
had to prove in the process. If not, why not?

Exercise 4.1-4 Would it make sense to say that if there is a counter example there is a
largest counter-example and try to base a proof on this? Why or why not?

In Exercise 4.1-1, suppose the formula for the sum is false. Then there must be a smallest
n such that the formula does not hold for the sum of the first n positive integers. Thus for any
positive integer i smaller than n,

1 + 2 + · · · + i =
i(i + 1)

2
. (4.2)

Because 1 = 1 · 2/2, Equation 4.1 holds when n = 1, and therefore the smallest counterexample
is not when n = 1. So n > 1, and n − 1 is one of the positive integers i for which the formula
holds. Substituting n − 1 for i in Equation 4.2 gives us

1 + 2 + · · · + n − 1 =
(n − 1)n

2
.

Adding n to both sides gives

1 + 2 + · · · + n − 1 + n =
(n − 1)n

2
+ n

=
n2 − n + 2n

2

=
n(n + 1)

2
.

4.1. MATHEMATICAL INDUCTION 119

Thus n is not a counter-example after all, and therefore there is no counter-example to the
formula. Thus the formula holds for all positive integers n. Note that the crucial step was
proving that p(n − 1) ⇒ p(n), where p(n) is the formula

1 + 2 + · · · + n =
n(n + 1)

2
.

In Exercise 4.1-2, let p(n) be the statement that 2n+1 ≥ n2 + 2. Some experimenting with
small values of n leads us to believe this statement is true for all nonnegative integers. Thus we
want to prove p(n) is true for all nonnegative integers n. To do so, we assume that the statement
that “p(n) is true for all nonnegative integers n” is false. When a “for all” statement is false,
there must be some n for which it is false. Therefore, there is some smallest nonnegative integer
n so that 2n+1 �≥ n2 + 2. Assume now that n has this value. This means that for all nonnegative
integers i with i < n, 2i+1 ≥ i2 + 2. Since we know from our experimentation that n �= 0, we
know n − 1 is a nonnegative integer less than n, so using n − 1 in place of i, we get

2(n−1)+1 ≥ (n − 1)2 + 2,

or

2n ≥ n2 − 2n + 1 + 2
= n2 − 2n + 3. (4.3)

From this we want to draw a contradiction, presumably a contradiction to 2n+1 �≥ n2 + 2.

To get the contradiction, we want to convert the left-hand side of Equation 4.3 to 2n+1. For
this purpose, we multiply both sides by 2, giving

2n+1 = 2 · 2n

≥ 2n2 − 4n + 6 .

You may have gotten this far and wondered “What next?” Since we want to obtain a contra-
diction, we want to convert the right hand side into something like n2 + 2. More precisely, we
will convert the right-hand side into n2 + 2 plus an additional term. If we can show that the
additional term is nonnegative, the proof will be complete. Thus we write

2n+1 ≥ 2n2 − 4n + 6
= (n2 + 2) + (n2 − 4n + 4)
= n2 + 2 + (n − 2)2

≥ n2 + 2 , (4.4)

since (n − 2)2 ≥ 0. This is a contradiction, so there must not have been a smallest counter-
example, and thus there must be no counter-example. Therefore 2n ≥ n2 + 2 for all nonnegative
integers n.

What implication did we prove above? Let p(n) stand for 2n+1 ≥ n2 + 2. Then in Equations
4.3 and 4.4 we proved that p(n − 1) ⇒ p(n). Notice that at one point in our proof we had to
note that we had considered the case with n = 0 already. Although we have given a proof by
smallest counterexample, it is natural to ask whether it would make more sense to try to prove
the statement directly. Would it make more sense to forget about the contradiction now that we

120 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

have p(n − 1) ⇒ p(n) in hand and just observe that p(0) and p(n − 1) ⇒ p(n) implies p(1),that
p(1) and p(n − 1) ⇒ p(n) implies p(2), and so on so that we have p(k) for every k? We will
address this question shortly.

Now let’s consider Exercise 4.1-3. Notice that 2n+1 �> n2+3 for n = 0 and 1, but 2n+1 > n2+3
for any larger n we look at at. Let us try to prove that 2n+1 > n2 + 3 for n ≥ 2. We now let
p′(n) be the statement 2n+1 > n2 +3. We can easily prove p′(2): since 8 = 23 ≥ 22 +3 = 7. Now
suppose that among the integers larger than 2 there is a counter-example m to p′(n). That is,
suppose that there is an m such that m > 2 and p′(m) is false. Then there is a smallest such m, so
that for k between 2 and m−1, p′(k) is true. If you look back at your proof that p(n−1) ⇒ p(n),
you will see that, when n ≥ 2, essentially the same proof applies to p′ as well. That is, with
very similar computations we can show that p′(n − 1) ⇒ p′(n), so long as n ≥ 2. Thus since
p′(m − 1) is true, our implication tells us that p′(m) is also true. This is a contradiction to our
assumption that p′(m) is false. therefore, p′(m) is true. Again, we could conclude from p′(2) and
p′(2) ⇒ p′(3) that p′(3) is true, and similarly for p′(4), and so on. The implication we had to
prove was p′(n − 1) ⇒ p′(n).

For Exercise 4.1-4 if we have a counter-example to a statement p(n) about an integer n,
this means that there is an m such that p(m) is false. To find a smallest counter example we
would need to examine p(0), p(1), . . . , perhaps all the way up to p(m) in order to find a smallest
counter-example, that is a smallest number k such that p(k) is false. Since this involves only a
finite number of cases, it makes sense to assert that there is a smallest counter-example. But, in
answer to Exercise 4.1-4, it does not make sense to assert that there is a largest counter example,
because there are infinitely many cases n that we would have to check in hopes if finding a largest
one, and thus we might never find one. Even if we found one, we wouldn’t be able to figure out
that we had a largest counter-example just by checking larger and larger values of n, because we
would never run out of values of n to check. Sometimes there is a largest counter-example, as in
Exercise 4.1-3. To prove this, though, we didn’t check all cases. Instead, based on our intuition,
we guessed that the largest counter example was n = 1. Then we proved that we were right by
showing that among numbers greater than or equal to two, there is no smallest counter-example.
Sometimes there is no largest counter example n to a statement p(n); for example n2 < n is false
for all all integers n, and therefore there is no largest counter-example.

The Principle of Mathematical Induction

It may seem clear that repeatedly using the implication p(n−1) ⇒ p(n) will prove p(n) for all n (or
all n ≥ 2). That observation is the central idea of the Principle of Mathematical Induction, which
we are about to introduce. In a theoretical discussion of how one constructs the integers from first
principles, the principle of mathematical induction (or the equivalent principle that every set of
nonnegative integers has a smallest element, thus letting us use the “smallest counter-example”
technique) is one of the first principles we assume. The principle of mathematical induction is
usually described in two forms. The one we have talked about so far is called the “weak form.”
It applies to statements about integers n.

The Weak Principle of Mathematical Induction. If the statement p(b) is true, and the
statement p(n − 1) ⇒ p(n) is true for all n > b, then p(n) is true for all integers n ≥ b.

Suppose, for example, we wish to give a direct inductive proof that 2n+1 > n2 + 3 for n ≥ 2.
We would proceed as follows. (The material in square brackets is not part of the proof; it is a

4.1. MATHEMATICAL INDUCTION 121

running commentary on what is going on in the proof.)

We shall prove by induction that 2n+1 > n2 +3 for n ≥ 2. First, 22+1 = 23 = 8, while
22 + 3 = 7. [We just proved p(2). We will now proceed to prove p(n − 1) ⇒ p(n).]
Suppose now that n > 2 and that 2n > (n − 1)2 + 3. [We just made the hypothesis
of p(n − 1) in order to use Rule 8 of our rules of inference.]

Now multiply both sides of this inequality by 2, giving us

2n+1 > 2(n2 − 2n + 1) + 6
= n2 + 3 + n2 − 4n + 4 + 1
= n2 + 3 + (n − 2)2 + 1 .

Since (n − 2)2 + 1 is positive for n > 2, this proves 2n+1 > n2 + 3. [We just showed
that from the hypothesis of p(n − 1) we can derive p(n). Now we can apply Rule 8
to assert that p(n − 1) ⇒ p(n).] Therefore

2n > (n − 1)2 + 3 ⇒ 2n+1 > n2 + 3.

Therefore by the principle of mathematical induction, 2n+1 > n2 + 3 for n ≥ 2.

In the proof we just gave, the sentence “First, 22+1 = 23 = 8, while 22 + 3 = 7” is called
the base case. It consisted of proving that p(b) is true, where in this case b is 2 and p(n) is
2n+1 > n2 + 3. The sentence “Suppose now that n > 2 and that 2n > (n − 1)2 + 3.” is called
the inductive hypothesis. This is the assumption that p(n − 1) is true. In inductive proofs, we
always make such a hypothesis1 in order to prove the implication p(n− 1) ⇒ p(n). The proof of
the implication is called the inductive step of the proof. The final sentence of the proof is called
the inductive conclusion.

Exercise 4.1-5 Use mathematical induction to show that

1 + 3 + 5 + · · · + (2k − 1) = k2

for each positive integer k.

Exercise 4.1-6 For what values of n is 2n > n2? Use mathematical induction to show
that your answer is correct.

For Exercise 4.1-5, we note that the formula holds when k = 1. Assume inductively that the
formula holds when k = n − 1, so that 1 + 3 + · · · + (2n − 3) = (n − 1)2. Adding 2n − 1 to both
sides of this equation gives

1 + 3 + · · · + (2n − 3) + (2n − 1) = n2 − 2n + 1 + 2n − 1
= n2. (4.5)

Thus the formula holds when k = n, and so by the principle of mathematical induction, the
formula holds for all positive integers k.

1At times, it might be more convenient to assume that p(n) is true and use this assumption to prove that
p(n + 1) is true. This proves the implication p(n) ⇒ p(n + 1), which lets us reason in the same way.

122 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Notice that in our discussion of Exercise 4.1-5 we nowhere mentioned a statement p(n). In
fact, p(n) is the statement we get by substituting n for k in the formula, and in Equation 4.5 we
were proving p(n − 1) ⇒ p(n). Next notice that we did not explicitly say we were going to give
a proof by induction; instead we told the reader when we were making the inductive hypothesis
by saying “Assume inductively that” This convention makes the prose flow nicely but still
tells the reader that he or she is reading a proof by induction. Notice also how the notation in
the statement of the exercise helped us write the proof. If we state what we are trying to prove
in terms of a variable other than n, say k, then we can assume that our desired statement holds
when this variable (k) is n − 1 and then prove that the statement holds when k = n. Without
this notational device, we have to either mention our statement p(n) explicitly, or avoid any
discussion of substituting values into the formula we are trying to prove. Our proof above that
2n+1 > n2 + 3 demonstrates this last approach to writing an inductive proof in plain English.
This is usually the “slickest” way of writing an inductive proof, but it is often the hardest to
master. We will use this approach first for the next exercise.

For Exercise 4.1-6 we note that 2 = 21 > 12 = 1, but then the inequality fails for n = 2, 3, 4.
However, 32 > 25. Now we assume inductively that for n > 5 we have 2n−1 > (n − 1)2.
Multiplying by 2 gives us

2n > 2(n2 − 2n + 1) = n2 + n2 − 4n + 2
> n2 + n2 − n · n
= n2 ,

since n > 5 implies that −4n > −n·n. (We also used the fact that n2+n2−4n+2 > n2+n2−4n.)
Thus by the principle of mathematical induction, 2n > n2 for all n ≥ 5.

Alternatively, we could write the following. Let p(n) denote the inequality 2n > n2. Then p(5)
is true because 32 > 25. Assume that n > 5 and p(n − 1) is true. This gives us 2n−1 > (n − 1)2.
Multiplying by 2 gives

2n > 2(n2 − 2n + 1)
= n2 + n2 − 4n + 2
> n2 + n2 − n · n
= n2 ,

since n > 5 implies that −4n > −n · n. Therefore p(n − 1) ⇒ p(n). Thus by the principle of
mathematical induction, 2n > n2 for all n ≥ 5.

Notice how the “slick” method simply assumes that the reader knows we are doing a proof
by induction from our ”Assume inductively. . . ,” and mentally supplies the appropriate p(n) and
observes that we have proved p(n − 1) ⇒ p(n) at the right moment.

Here is a slight variation of the technique of changing variables. To prove that 2n > n2 when
n ≥ 5, we observe that the inequality holds when n = 5 since 32 > 25. Assume inductively that
the inequality holds when n = k, so that 2k > k2. Now when k ≥ 5, multiplying both sides of
this inequality by 2 yields

2k+1 > 2k2 = k2 + k2

≥ k2 + 5k

> k2 + 2k + 1
= (k + 1)2 ,

4.1. MATHEMATICAL INDUCTION 123

since k ≥ 5 implies that k2 ≥ 5k and 5k = 2k+3k > 2k+1. Thus by the principle of mathematical
induction, 2n > n2 for all n ≥ 5.

This last variation of the proof illustrates two ideas. First, there is no need to save the name
n for the variable we use in applying mathematical induction. We used k as our “inductive
variable” in this case. Second, as suggested in a footnote earlier, there is no need to restrict
ourselves to proving the implication p(n − 1) ⇒ p(n). In this case, we proved the implication
p(k) ⇒ p(k +1). Clearly these two implications are equivalent as n ranges over all integers larger
than b and as k ranges over all integers larger than or equal to b.

Strong Induction

In our proof of Euclid’s division theorem we had a statement of the form p(m, n) and, assuming
that it was false, we chose a smallest m such that p(m, n) is false for some n. This meant we
could assume that p(m′, n) is true for all m′ < m, and we needed this assumption, because we
ended up showing that p(m − n, n) ⇒ p(m, n) in order to get our contradiction. This situation
differs from the examples we used to introduce mathematical induction, for in those we used an
implication of the form p(n− 1) ⇒ p(n). The essence of our method in proving Euclid’s division
theorem is that we have a statement q(k) we want to prove. We suppose it is false, so that there
must be a smallest k for which q(k) is false. This means we may assume q(k′) is true for all k′

in the universe of q with k′ < k. We then use this assumption to derive a proof of q(k), thus
generating our contradiction.

Again, we can avoid the step of generating a contradiction in the following way. Suppose first
we have a proof of q(0). Suppose also that we have a proof that

q(0) ∧ q(1) ∧ q(2) ∧ . . . ∧ q(k − 1) ⇒ q(k)

for all k larger than 0. Then from q(0) we can prove q(1), from q(0) ∧ q(1) we can prove q(2),
from q(0)∧ q(1)∧ q(2) we can prove q(3) and so on, giving us a proof of q(n) for any n we desire.
This is another form of the mathematical induction principle. We use it when, as in Euclid’s
division theorem, we can get an implication of the form q(k′) ⇒ q(k) for some k′ < k or when
we can get an implication of the form q(0) ∧ q(1) ∧ q(2) ∧ . . . ∧ q(k − 1) ⇒ q(k). (As is the case
in Euclid’s division theorem, we often don’t really know what the k′ is, so in these cases the first
kind of situation is really just a special case of the second. Thus, we do not treat the first of
the two implications separately.) We have described the method of proof known as the Strong
Principle of Mathematical Induction.

The Strong Principle of Mathematical Induction. If the statement p(b) is true, and the
statement p(b) ∧ p(b + 1) ∧ . . . ∧ p(n − 1) ⇒ p(n) is true for all n > b, then p(n) is true for
all integers n ≥ b.

Exercise 4.1-7 Prove that every positive integer is either a power of a prime number or
the product of powers of prime numbers.

In Exercise 4.1-7 we can observe that 1 is a power of a prime number; for example 1 = 20.
Suppose now we know that every number less than n is a power of a prime number or a product
of powers of prime numbers. Then if n is not a prime number, it is a product of two smaller

124 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

numbers, each of which is, by our supposition, a power of a prime number or a product of powers
of prime numbers. Therefore n is a power of a prime number or a product of powers of prime
numbers. Thus, by the strong principle of mathematical induction, every positive integer is a
power of a prime number or a product of powers of prime numbers.

Note that there was no explicit mention of an implication of the form

p(b) ∧ p(b + 1) ∧ . . . ∧ p(n − 1) ⇒ p(n) .

This is common with inductive proofs. Note also that we did not explicitly identify the base case
or the inductive hypothesis in our proof. This is common too. Readers of inductive proofs are
expected to recognize when the base case is being given and when an implication of the form
p(n − 1) ⇒ p(n) or p(b) ∧ p(b + 1) ∧ · · · ∧ p(n − 1) ⇒ p(n) is being proved.

Mathematical induction is used frequently in discrete math and computer science. Many
quantities that we are interested in measuring, such as running time, space, or output of a
program, typically are restricted to positive integers, and thus mathematical induction is a natural
way to prove facts about these quantities. We will use it frequently throughout this book. We
typically will not distinguish between strong and weak induction, we just think of them both as
induction. (In Problems 14 and 15 at the end of the section you will be asked to derive each
version of the principle from the other.)

Induction in general

To summarize what we have said so far, a typical proof by mathematical induction showing that
a statement p(n) is true for all integers n ≥ b consists of three steps.

1. First we show that p(b) is true. This is called “establishing a base case.”

2. Then we show either that for all n > b, p(n − 1) ⇒ p(n), or that for all n > b,

p(b) ∧ p(b + 1) ∧ . . . ∧ p(n − 1) ⇒ p(n).

For this purpose, we make either the inductive hypothesis of p(n − 1) or the inductive
hypothesis p(b)∧ p(b + 1)∧ . . .∧ p(n− 1). Then we derive p(n) to complete the proof of the
implication we desire, either p(n − 1) ⇒ p(n) or p(b) ∧ p(b + 1) ∧ . . . ∧ p(n − 1) ⇒ p(n).

Instead we could

2.′ show either that for all n ≥ b, p(n) ⇒ p(n + 1) or

p(b) ∧ p(b + 1) ∧ · · · ∧ p(n) ⇒ p(n + 1).

For this purpose, we make either the inductive hypothesis of p(n) or the inductive hypothesis
p(b)∧p(b+1)∧ . . .∧p(n). Then we derive p(n = 1) to complete the proof of the implication
we desire, either p(n) ⇒ p(n = 1) or p(b) ∧ p(b + 1) ∧ . . . ∧ p(n) ⇒ p(n = 1).

3. Finally, we conclude on the basis of the principle of mathematical induction that p(n) is
true for all integers n greater than or equal to b.

4.1. MATHEMATICAL INDUCTION 125

The second step is the core of an inductive proof. This is usually where we need the most insight
into what we are trying to prove. In light of our discussion of Exercise 4.1-6, it should be clear
that step 2′ is simply a variation on the theme of writing an inductive proof.

It is important to realize that induction arises in some circumstances that do not fit the “pat”
typical description we gave above. These circumstances seem to arise often in computer science.
However, inductive proofs always involve three things. First we always need a base case or cases.
Second, we need to show an implication that demonstrates that p(n) is true given that p(n′) is
true for some set of n′ < n, or possibly we may need to show a set of such implications. Finally,
we reach a conclusion on the basis of the first two steps.

For example, consider the problem of proving the following statement:

n∑

i=0

⌊
i

2

⌋
=

n2

4 if n is even
n2−1

4 if n is odd
(4.6)

In order to prove this, one must show that p(0) is true, p(1) is true, p(n − 2) ⇒ p(n) if n is
odd, and that p(n− 2) ⇒ p(n), if n is even. Putting all these together, we see that our formulas
hold for all n ≥ 0. We can view this as either two proofs by induction, one for even and one
for odd numbers, or one proof in which we have two base cases and two methods of deriving
results from previous ones. This second view is more profitable, because it expands our view of
what induction means, and makes it easier to find inductive proofs. In particular we could find
situations where we have just one implication to prove but several base cases to check to cover
all cases, or just one base case, but several different implications to prove to cover all cases.

Logically speaking, we could rework the example above so that it fits the pattern of strong
induction. For example, when we prove a second base case, then we have just proved that the
first base case implies it, because a true statement implies a true statement. Writing a description
of mathematical induction that covers all kinds of base cases and implications one might want to
consider in practice would simply give students one more unnecessary thing to memorize, so we
shall not do so. However, in the mathematics literature and especially in the computer science
literature, inductive proofs are written with multiple base cases and multiple implications with
no effort to reduce them to one of the standard forms of mathematical induction. So long as it is
possible to ”cover” all the cases under consideration with such a proof, it can be rewritten as a
standard inductive proof. Since readers of such proofs are expected to know this is possible, and
since it adds unnecessary verbiage to a proof to do so, this is almost always left out.

Important Concepts, Formulas, and Theorems

1. Weak Principle of Mathematical Induction. The weak principle of mathematical induction
states that

If the statement p(b) is true, and the statement p(n − 1) ⇒ p(n) is true for all
n > b, then p(n) is true for all integers n ≥ b.

2. Strong Principle of Mathematical Induction. The strong principle of mathematical induc-
tion states that

If the statement p(b) is true, and the statement p(b)∧p(b+1)∧. . .∧p(n−1) ⇒ p(n)
is true for all n > b, then p(n) is true for all integers n ≥ b.

126 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

3. Base Case. Every proof by mathematical induction, strong or weak, begins with a base case
which establishes the result being proved for at least one value of the variable on which we
are inducting. This base case should prove the result for the smallest value of the variable
for which we are asserting the result. In a proof with multiple base cases, the base cases
should cover all values of the variable which are not covered by the inductive step of the
proof.

4. Inductive Hypothesis. Every proof by induction includes an inductive hypothesis in which
we assume the result p(n) we are trying to prove is true when n = k − 1 or when n < k (or
in which we assume an equivalent statement).

5. Inductive Step. Every proof by induction includes an inductive step in which we prove the
implication that p(k−1) ⇒ p(k) or the implication that p(b)∧p(b+1)∧· · ·∧p(k−1) ⇒ p(k),
or some equivalent implication.

6. Inductive Conclusion. A proof by mathematical induction should include, at least implicitly,
a concluding statement of the form “Thus by the principle of mathematical induction . . . ,”
which asserts that by the principle of mathematical induction the result p(n) which we are
trying to prove is true for all values of n including and beyond the base case(s).

Problems

1. This exercise explores ways to prove that 2
3 + 2

9 + · · · + 2
3n = 1 −

(
1
3

)n
for all positive

integers n.

(a) First, try proving the formula by contradiction. Thus you assume that there is some
integer n that makes the formula false. Then there must be some smallest n that makes
the formula false. Can this smallest n be 1? What do we know about 2

3 + 2
9 + · · ·+ 2

3i

when i is a positive integer smaller than this smallest n? Is n − 1 a positive integer
for this smallest n? What do we know about 2

3 + 2
9 + · · · + 2

3n−1 for this smallest n?
Write this as an equation and add 2

3n to both sides and simplify the right side. What
does this say about our assumption that the formula is false? What can you conclude

about the truth of the formula? If p(k) is the statement 2
3 + 2

9 + · · · + 2
3k = 1 −

(
1
3

)k
,

what implication did we prove in the process of deriving our contradiction?

(b) What is the base step in a proof by mathematical induction that 2
3 + 2

9 + · · ·+ 2
3n = 1−(

1
3

)n
for all positive integers n? What would you assume as an inductive hypothesis?

What would you prove in the inductive step of a proof of this formula by induction?
Prove it. What does the principle of mathematical induction allow you to conclude?

If p(k) is the statement 2
3 + 2

9 + · · ·+ 2
3k = 1−

(
1
3

)k
, what implication did we prove in

the process of doing our proof by induction?

2. Use contradiction to prove that 1 · 2 + 2 · 3 + · · · + n(n + 1) = n(n+1)(n+2)
3 .

3. Use induction to prove that 1 · 2 + 2 · 3 + · · · + n(n + 1) = n(n+1)(n+2)
3 .

4. Prove that 13 + 23 + 33 + · · · + n3 = n2(n+1)2

4 .

5. Write a careful proof of Euclid’s division theorem using strong induction.

4.1. MATHEMATICAL INDUCTION 127

6. Prove that
∑n

i=j

(i
j

)
=

(n+1
j+1

)
. As well as the inductive proof that we are expecting, there is

a nice “story” proof of this formula. It is well worth trying to figure it out.

7. Prove that every number greater than 7 is a sum of a nonnegative integer multiple of 3 and
a nonnegative integer multiple of 5.

8. The usual definition of exponents in an advanced mathematics course (or an intermediate
computer science course) is that a0 = 1 and an+1 = an · a. Explain why this defines an for
all nonnegative integers n. Prove the rule of exponents am+n = aman from this definition.

9. Our arguments in favor of the sum principle were quite intuitive. In fact the sum principle
for n sets follows from the sum principle for two sets. Use induction to prove the sum
principle for a union of n sets from the sum principle for a union of two sets.

10. We have proved that every positive integer is a power of a prime number or a product of
powers of prime numbers. Show that this factorization is unique in the following sense: If
you have two factorizations of a positive integer, both factorizations use exactly the same
primes, and each prime occurs to the same power in both factorizations. For this purpose,
it is helpful to know that if a prime divides a product of integers, then it divides one of the
integers in the product. (Another way to say this is that if a prime is a factor of a product
of integers, then it is a factor of one of the integers in the product.)

11. Prove that 14 + 24 + · · · + n4 = O(n5 − n4).

12. Find the error in the following “proof” that all positive integers n are equal. Let p(n) be
the statement that all numbers in an n-element set of positive integers are equal. Then
p(1) is true. Now assume p(n − 1) is true, and let N be the set of the first n integers. Let
N ′ be the set of the first n − 1 integers, and let N ′′ be the set of the last n − 1 integers.
Then by p(n − 1) all members of N ′ are equal and all members of N ′′ are equal. Thus the
first n − 1 elements of N are equal and the last n − 1 elements of N are equal, and so all
elements of N are equal. Thus all positive integers are equal.

13. Prove by induction that the number of subsets of an n-element set is 2n.

14. Prove that the Strong Principle of Mathematical Induction implies the Weak Principle of
Mathematical Induction.

15. Prove that the Weak Principal of Mathematical Induction implies the Strong Principal of
Mathematical Induction.

16. Prove (4.6).

128 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

4.2 Recursion, Recurrences and Induction

Recursion

Exercise 4.2-1 Describe the uses you have made of recursion in writing programs. Include
as many as you can.

Exercise 4.2-2 Recall that in the Towers of Hanoi problem we have three pegs numbered
1, 2 and 3, and on one peg we have a stack of n disks, each smaller in diameter than
the one below it as in Figure 4.1. An allowable move consists of removing a disk

Figure 4.1: The Towers of Hanoi

1 2 3 1 2 3

from one peg and sliding it onto another peg so that it is not above another disk of
smaller size. We are to determine how many allowable moves are needed to move the
disks from one peg to another. Describe the strategy you have used or would use in
a recursive program to solve this problem.

For the Tower of Hanoi problem, to solve the problem with no disks you do nothing. To solve
the problem of moving all disks to peg 2, we do the following

1. (Recursively) solve the problem of moving n − 1 disks from peg 1 to peg 3,

2. move disk n to peg 2,

3. (Recursively) solve the problem of moving n − 1 disks on peg 3 to peg 2.

Thus if M(n) is the number of moves needed to move n disks from peg i to peg j, we have

M(n) = 2M(n − 1) + 1.

This is an example of a recurrence equation or recurrence. A recurrence equation for a
function defined on the set of integers greater than or equal to some number b is one that tells
us how to compute the nth value of a function from the (n− 1)st value or some or all the values
preceding n. To completely specify a function on the basis of a recurrence, we have to give enough
information about the function to get started. This information is called the initial condition (or
the initial conditions) (which we also call the base case) for the recurrence. In this case we have
said that M(0) = 0. Using this, we get from the recurrence that M(1) = 1, M(2) = 3, M(3) = 7,
M(4) = 15, M(5) = 31, and are led to guess that M(n) = 2n − 1.

Formally, we write our recurrence and initial condition together as

M(n) =

{
0 if n = 0
2M(n − 1) + 1 otherwise

(4.7)

4.2. RECURSION, RECURRENCES AND INDUCTION 129

Now we give an inductive proof that our guess is correct. The base case is trivial, as we
have defined M(0) = 0, and 0 = 20 − 1. For the inductive step, we assume that n > 0 and
M(n − 1) = 2n−1 − 1. From the recurrence, M(n) = 2M(n − 1) + 1. But, by the inductive
hypothesis, M(n − 1) = 2n−1 − 1, so we get that:

M(n) = 2M(n − 1) + 1 (4.8)
= 2(2n−1 − 1) + 1 (4.9)
= 2n − 1. (4.10)

thus by the principle of mathematical induction, M(n) = 2n − 1 for all nonnegative integers n.

The ease with which we solved this recurrence and proved our solution correct is no accident.
Recursion, recurrences and induction are all intimately related. The relationship between recur-
sion and recurrences is reasonably transparent, as recurrences give a natural way of analyzing
recursive algorithms. Recursion and recurrences are abstractions that allow you to specify the
solution to an instance of a problem of size n as some function of solutions to smaller instances.
Induction also falls naturally into this paradigm. Here, you are deriving a statement p(n) from
statements p(n′) for n′ < n. Thus we really have three variations on the same theme.

We also observe, more concretely, that the mathematical correctness of solutions to recur-
rences is naturally proved via induction. In fact, the correctness of recurrences in describing the
number of steps needed to solve a recursive problem is also naturally proved by induction. The
recurrence or recursive structure of the problem makes it straightforward to set up the induction
proof.

First order linear recurrences

Exercise 4.2-3 The empty set (∅) is a set with no elements. How many subsets does it
have? How many subsets does the one-element set {1} have? How many subsets does
the two-element {1, 2} set have? How many of these contain 2? How many subsets
does {1, 2, 3} have? How many contain 3? Give a recurrence for the number S(n) of
subsets of an n-element set, and prove by induction that your recurrence is correct.

Exercise 4.2-4 When someone is paying off a loan with initial amount A and monthly
payment M at an interest rate of p percent, the total amount T (n) of the loan after n
months is computed by adding p/12 percent to the amount due after n−1 months and
then subtracting the monthly payment M . Convert this description into a recurrence
for the amount owed after n months.

Exercise 4.2-5 Given the recurrence

T (n) = rT (n − 1) + a,

where r and a are constants, find a recurrence that expresses T (n) in terms of T (n−2)
instead of T (n − 1). Now find a recurrence that expresses T (n) in terms of T (n − 3)
instead of T (n − 2) or T (n − 1). Now find a recurrence that expresses T (n) in terms
of T (n − 4) rather than T (n − 1), T (n − 2), or T (n − 3). Based on your work so far,
find a general formula for the solution to the recurrence

T (n) = rT (n − 1) + a,

with T (0) = b, and where r and a are constants.

130 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

If we construct small examples for Exercise 4.2-3, we see that ∅ has only 1 subset, {1} has 2
subsets, {1, 2} has 4 subsets, and {1, 2, 3} has 8 subsets. This gives us a good guess as to what
the general formula is, but in order to prove it we will need to think recursively. Consider the
subsets of {1, 2, 3}:

∅ {1} {2} {1, 2}
{3} {1, 3} {2, 3} {1, 2, 3}

The first four subsets do not contain three, and the second four do. Further, the first four
subsets are exactly the subsets of {1, 2}, while the second four are the four subsets of {1, 2} with 3
added into each one. This suggests that the recurrence for the number of subsets of an n-element
set (which we may assume is {1, 2, . . . , n}) is

S(n) =

{
2S(n − 1) if n ≥ 1
1 if n = 0

. (4.11)

To prove this recurrence is correct, we note that the subsets of an n-element set can be partitioned
by whether they contain element n or not. The subsets of {1, 2, . . . , n} containing element n can
be constructed by adjoining the element n to the subsets not containing element n. So the
number of subsets containing element n is the same as the number of subsets not containing
element n. The number of subsets not containing element n is just the number of subsets of an
n − 1-element set. Therefore each block of our partition has size equal to the number of subsets
of an n − 1-element set. Thus, by the sum principle, the number of subsets of {1, 2, . . . , n} is
twice the number of subsets of {1, 2, . . . , n− 1}. This proves that S(n) = 2S(n− 1) if n > 0. We
already observed that ∅ has no subsets, so we have proved the correctness of Recurrence 4.11.

For Exercise 4.2-4 we can algebraically describe what the problem said in words by

T (n) = (1 + .01p/12) · T (n − 1) − M,

with T (0) = A. Note that we add .01p/12 times the principal to the amount due each month,
because p/12 percent of a number is .01p/12 times the number.

Iterating a recurrence

Turning to Exercise 4.2-5, we can substitute the right hand side of the equation T (n − 1) =
rT (n − 2) + a for T (n − 1) in our recurrence, and then substitute the similar equations for
T (n − 2) and T (n − 3) to write

T (n) = r(rT (n − 2) + a) + a

= r2T (n − 2) + ra + a

= r2(rT (n − 3) + a) + ra + a

= r3T (n − 3) + r2a + ra + a

= r3(rT (n − 4) + a) + r2a + ra + a

= r4T (n − 4) + r3a + r2a + ra + a

4.2. RECURSION, RECURRENCES AND INDUCTION 131

From this, we can guess that

T (n) = rnT (0) + a
n−1∑

i=0

ri

= rnb + a
n−1∑

i=0

ri. (4.12)

The method we used to guess the solution is called iterating the recurrence because we re-
peatedly use the recurrence with smaller and smaller values in place of n. We could instead have
written

T (0) = b

T (1) = rT (0) + a

= rb + a

T (2) = rT (1) + a

= r(rb + a) + a

= r2b + ra + a

T (3) = rT (2) + a

= r3b + r2a + ra + a

This leads us to the same guess, so why have we introduced two methods? Having different
approaches to solving a problem often yields insights we would not get with just one approach.
For example, when we study recursion trees, we will see how to visualize the process of iterating
certain kinds of recurrences in order to simplify the algebra involved in solving them.

Geometric series

You may recognize that sum
∑n−1

i=0 ri in Equation 4.12. It is called a finite geometric series with
common ratio r. The sum

∑n−1
i=0 ari is called a finite geometric series with common ratio r and

initial value a. Recall from algebra the factorizations

(1 − x)(1 + x) = 1 − x2

(1 − x)(1 + x + x2) = 1 − x3

(1 − x)(1 + x + x2 + x3) = 1 − x4

These factorizations are easy to verify, and they suggest that (1−r)(1+r+r2+· · ·+rn−1) = 1−rn,
or

n−1∑

i=0

ri =
1 − rn

1 − r
. (4.13)

In fact this formula is true, and lets us rewrite the formula we got for T (n) in a very nice form.

Theorem 4.1 If T (n) = rT (n − 1) + a, T (0) = b, and r �= 1 then

T (n) = rnb + a
1 − rn

1 − r
(4.14)

for all nonnegative integers n.

132 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Proof: We will prove our formula by induction. Notice that the formula gives T (0) =
r0b + a1−r0

1−r which is b, so the formula is true when n = 0. Now assume that n > 0 and

T (n − 1) = rn−1b + a
1 − rn−1

1 − r
.

Then we have

T (n) = rT (n − 1) + a

= r

(
rn−1b + a

1 − rn−1

1 − r

)
+ a

= rnb +
ar − arn

1 − r
+ a

= rnb +
ar − arn + a − ar

1 − r

= rnb + a
1 − rn

1 − r
.

Therefore by the principle of mathematical induction, our formula holds for all integers n greater
than 0.

We did not prove Equation 4.13. However it is easy to use Theorem 4.1 to prove it.

Corollary 4.2 The formula for the sum of a geometric series with r �= 1 is
n−1∑

i=0

ri =
1 − rn

1 − r
. (4.15)

Proof: Define T (n) =
∑n−1

i=0 ri. Then T (n) = rT (n − 1) + 1, and since T (0) is a sum with no
terms, T (0) = 0. Applying Theorem 4.1 with b = 0 and a = 1 gives us T (n) = 1−rn

1−r .

Often, when we see a geometric series, we will only be concerned with expressing the sum
in big-O notation. In this case, we can show that the sum of a geometric series is at most the
largest term times a constant factor, where the constant factor depends on r, but not on n.

Lemma 4.3 Let r be a quantity whose value is independent of n and not equal to 1. Let t(n) be
the largest term of the geometric series

n−1∑

i=0

ri.

Then the value of the geometric series is O(t(n)).

Proof: It is straightforward to see that we may limit ourselves to proving the lemma for r > 0.
We consider two cases, depending on whether r > 1 or r < 1. If r > 1, then

n−1∑

i=0

ri =
rn − 1
r − 1

≤ rn

r − 1

= rn−1 r

r − 1
= O(rn−1).

4.2. RECURSION, RECURRENCES AND INDUCTION 133

On the other hand, if r < 1, then the largest term is r0 = 1, and the sum has value

1 − rn

1 − r
<

1
1 − r

.

Thus the sum is O(1), and since t(n) = 1, the sum is O(t(n)).

In fact, when r is nonnegative, an even stronger statement is true. Recall that we said that,
for two functions f and g from the real numbers to the real numbers that f = Θ(g) if f = O(g)
and g = O(f).

Theorem 4.4 Let r be a nonnegative quantity whose value is independent of n and not equal to
1. Let t(n) be the largest term of the geometric series

n−1∑

i=0

ri.

Then the value of the geometric series is Θ(t(n)).

Proof: By Lemma 4.3, we need only show that t(n) = O(rn−1
r−1). Since all ri are nonnegative,

the sum
∑n−1

i=0 ri is at least as large as any of its summands. But t(n) is one of these summands,
so t(n) = O(rn−1

r−1).

Note from the proof that t(n) and the constant in the big-O upper bound depend on r. We
will use this Theorem in subsequent sections.

First order linear recurrences

A recurrence of the form T (n) = f(n)T (n − 1) + g(n) is called a first order linear recurrence.
When f(n) is a constant, say r, the general solution is almost as easy to write down as in the
case we already figured out. Iterating the recurrence gives us

T (n) = rT (n − 1) + g(n)

= r
(
rT (n − 2) + g(n − 1)

)
+ g(n)

= r2T (n − 2) + rg(n − 1) + g(n)

= r2
(
rT (n − 3) + g(n − 2)

)
+ rg(n − 1) + g(n)

= r3T (n − 3) + r2g(n − 2) + rg(n − 1) + g(n)

= r3
(
rT (n − 4) + g(n − 3)

)
+ r2g(n − 2) + rg(n − 1) + g(n)

= r4T (n − 4) + r3g(n − 3) + r2g(n − 2) + rg(n − 1) + g(n)
...

= rnT (0) +
n−1∑

i=0

rig(n − i)

This suggests our next theorem.

134 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Theorem 4.5 For any positive constants a and r, and any function g defined on the nonnegative
integers, the solution to the first order linear recurrence

T (n) =

{
rT (n − 1) + g(n) if n > 0
a if n = 0

is

T (n) = rna +
n∑

i=1

rn−ig(i). (4.16)

Proof: Let’s prove this by induction.

Since the sum
∑n

i=1 rn−ig(i) in Equation 4.16 has no terms when n = 0, the formula gives
T (0) = 0 and so is valid when n = 0. We now assume that n is positive and T (n − 1) =
rn−1a +

∑n−1
i=1 r(n−1)−ig(i). Using the definition of the recurrence and the inductive hypothesis

we get that

T (n) = rT (n − 1) + g(n)

= r

(
rn−1a +

n−1∑

i=1

r(n−1)−ig(i)

)
+ g(n)

= rna +
n−1∑

i=1

r(n−1)+1−ig(i) + g(n)

= rna +
n−1∑

i=1

rn−ig(i) + g(n)

= rna +
n∑

i=1

rn−ig(i).

Therefore by the principle of mathematical induction, the solution to

T (n) =

{
rT (n − 1) + g(n) if n > 0
a if n = 0

is given by Equation 4.16 for all nonnegative integers n.

The formula in Theorem 4.5 is a little less easy to use than that in Theorem 4.1 because it
gives us a sum to compute. Fortunately, for a number of commonly occurring functions g the
sum

∑n
i=1 rn−ig(i) is reasonable to compute.

Exercise 4.2-6 Solve the recurrence T (n) = 4T (n − 1) + 2n with T (0) = 6.

Exercise 4.2-7 Solve the recurrence T (n) = 3T (n − 1) + n with T (0) = 10.

For Exercise 4.2-6, using Equation 4.16, we can write

T (n) = 6 · 4n +
n∑

i=1

4n−i · 2i

= 6 · 4n + 4n
n∑

i=1

4−i · 2i

4.2. RECURSION, RECURRENCES AND INDUCTION 135

= 6 · 4n + 4n
n∑

i=1

(1
2

)i

= 6 · 4n + 4n · 1
2
·

n−1∑

i=0

(1
2

)i

= 6 · 4n + (1 − (
1
2
)n) · 4n

= 7 · 4n − 2n

For Exercise 4.2-7 we begin in the same way and face a bit of a surprise. Using Equation
4.16, we write

T (n) = 10 · 3n +
n∑

i=1

3n−i · i

= 10 · 3n + 3n
n∑

i=1

i3−i

= 10 · 3n + 3n
n∑

i=1

i

(
1
3

)i

. (4.17)

Now we are faced with a sum that you may not recognize, a sum that has the form
n∑

i=1

ixi = x
n∑

i=1

ixi−1,

with x = 1/3. However by writing it in in this form, we can use calculus to recognize it as x
times a derivative. In particular, using the fact that 0x0 = 0, we can write

n∑

i=1

ixi = x
n∑

i=0

ixi−1 = x
d

dx

n∑

i=0

xi = x
d

dx

(
1 − xn+1

1 − x

)
.

But using the formula for the derivative of a quotient from calculus, we may write

x
d

dx

(
1 − xn+1

1 − x

)
= x

(1 − x)(−(n + 1)xn) − (1 − xn+1)(−1)
(1 − x)2

=
nxn+2 − (n + 1)xn+1 + x

(1 − x)2
.

Connecting our first and last equations, we get
n∑

i=1

ixi =
nxn+2 − (n + 1)xn+1 + x

(1 − x)2
. (4.18)

Substituting in x = 1/3 and simplifying gives us
n∑

i=1

i

(
1
3

)i

= −3
2

(n + 1)
(

1
3

)n+1

− 3
4

(
1
3

)n+1

+
3
4
.

Substituting this into Equation 4.17 gives us

T (n) = 10 · 3n + 3n

(
−3

2
(n + 1)

(
1
3

)n+1

− 3
4

(1/3)n+1 +
3
4

)

= 10 · 3n − n + 1
2

− 1
4

+
3n+1

4

=
43
4

3n − n + 1
2

− 1
4
.

136 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

The sum that arises in this exercise occurs so often that we give its formula as a theorem.

Theorem 4.6 For any real number x �= 1,

n∑

i=1

ixi =
nxn+2 − (n + 1)xn+1 + x

(1 − x)2
. (4.19)

Proof: Given before the statement of the theorem.

Important Concepts, Formulas, and Theorems

1. Recurrence Equation or Recurrence. A recurrence equation is one that tells us how to
compute the nth term of a sequence from the (n − 1)st term or some or all the preceding
terms.

2. Initial Condition. To completely specify a function on the basis of a recurrence, we have to
give enough information about the function to get started. This information is called the
initial condition (or the initial conditions) for the recurrence.

3. First Order Linear Recurrence. A recurrence T (n) = f(n)T (n − 1) + g(n) is called a first
order linear recurrence.

4. Constant Coefficient Recurrence. A recurrence in which T (n) is expressed in terms of a
sum of constant multiples of T (k) for certain values k < n (and perhaps another function
of n) is called a constant coefficient recurrence.

5. Solution to a First Order Constant Coefficient Linear Recurrence. If T (n) = rT (n−1)+a,
T (0) = b, and r �= 1 then

T (n) = rnb + a
1 − rn

1 − r

for all nonnegative integers n.

6. Finite Geometric Series. A finite geometric series with common ratio r is a sum of the
form

∑n−1
i=0 ri. The formula for the sum of a geometric series with r �= 1 is

n−1∑

i=0

ri =
1 − rn

1 − r
.

7. Big-Theta Bounds on the Sum of a Geometric Series. Let r be a nonnegative quantity
whose value is independent of n and not equal to 1. Let t(n) be the largest term of the
geometric series

n−1∑

i=0

ri.

Then the value of the geometric series is Θ(t(n)).

4.2. RECURSION, RECURRENCES AND INDUCTION 137

8. Solution to a First Order Linear Recurrence. For any positive constants a and r, and
any function g defined on the nonnegative integers, the solution to the first order linear
recurrence

T (n) =

{
rT (n − 1) + g(n) if n > 0
a if n = 0

is

T (n) = rna +
n∑

i=1

rn−ig(i).

9. Iterating a Recurrence. We say we are iterating a recurrence when we guess its solution by
using the equation that expresses T (n) in terms of T (k) for k smaller than n to re-express
T (n) in terms of T (k) for k smaller than n − 1, then for k smaller than n − 2, and so on
until we can guess the formula for the sum.

10. An Important Sum. For any real number x �= 1,

n∑

i=1

ixi =
nxn+2 − (n + 1)xn+1 + x

(1 − x)2
.

Problems

1. Prove Equation 4.15 directly by induction.

2. Prove Equation 4.18 directly by induction.

3. Solve the recurrence M(n) = 2M(n − 1) + 2, with a base case of M(1) = 1. How does it
differ from the solution to Recurrence 4.7?

4. Solve the recurrence M(n) = 3M(n − 1) + 1, with a base case of M(1) = 1. How does it
differ from the solution to Recurrence 4.7.

5. Solve the recurrence M(n) = M(n − 1) + 2, with a base case of M(1) = 1. How does it
differ from the solution to Recurrence 4.7.

6. There are m functions from a one-element set to the set {1, 2, . . . , m}. How many functions
are there from a two-element set to {1, 2, . . . , m}? From a three-element set? Give a
recurrence for the number T (n) of functions from an n-element set to {1, 2, . . . , m}. Solve
the recurrence.

7. Solve the recurrence that you derived in Exercise 4.2-4.

8. At the end of each year, a state fish hatchery puts 2000 fish into a lake. The number of fish
in the lake at the beginning of the year doubles due to reproduction by the end of the year.
Give a recurrence for the number of fish in the lake after n years and solve the recurrence.

9. Consider the recurrence T (n) = 3T (n − 1) + 1 with the initial condition that T (0) = 2.
We know that we could write the solution down from Theorem 4.1. Instead of using the
theorem, try to guess the solution from the first four values of T (n) and then try to guess
the solution by iterating the recurrence four times.

138 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

10. What sort of big-Θ bound can we give on the value of a geometric series 1+r+r2 + · · ·+rn

with common ratio r = 1?

11. Solve the recurrence T (n) = 2T (n − 1) + n2n with the initial condition that T (0) = 1.

12. Solve the recurrence T (n) = 2T (n − 1) + n32n with the initial condition that T (0) = 2.

13. Solve the recurrence T (n) = 2T (n − 1) + 3n with T (0) = 1.

14. Solve the recurrence T (n) = rT (n − 1) + rn with T (0) = 1.

15. Solve the recurrence T (n) = rT (n − 1) + r2n with T (0) = 1

16. Solve the recurrence T (n) = rT (n − 1) + sn with T (0) = 1.

17. Solve the recurrence T (n) = rT (n − 1) + n with T (0) = 1.

18. The Fibonacci numbers are defined by the recurrence

T (n) =

{
T (n − 1) + T (n − 2) if n > 0
1 if n = 0 or n = 1

(a) Write down the first ten Fibonacci numbers.

(b) Show that (1+
√

5
2)n and (1−

√
5

2)n are solutions to the equation F (n) = F (n − 1) +
F (n − 2).

(c) Why is

c1(
1 +

√
5

2
)n + c2(

1 −
√

5
2

)n

a solution to the equation F (n) = F (n − 1) + F (n − 2) for any real numbers c1 and
c2?

(d) Find constants c1 and c2 such that the Fibonacci numbers are given by

F (n) = c1(
1 +

√
5

2
)n + c2(

1 −
√

5
2

)n

4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 139

4.3 Growth Rates of Solutions to Recurrences

Divide and Conquer Algorithms

One of the most basic and powerful algorithmic techniques is divide and conquer. Consider, for
example, the binary search algorithm, which we will describe in the context of guessing a number
between 1 and 100. Suppose someone picks a number between 1 and 100, and allows you to ask
questions of the form “Is the number greater than k?” where k is an integer you choose. Your
goal is to ask as few questions as possible to figure out the number. Your first question should
be “Is the number greater than 50?” Why is this? Well, after asking if the number is bigger
than 50, you have learned either that the number is between one and 50, or that the number is
between 51 and 100. In either case have reduced your problem to one in which the range is only
half as big. Thus you have divided the problem up into a problem that is only half as big, and
you can now (recursively) conquer this remaining problem. (If you ask any other question, the
size of one of the possible ranges of values you could end up with would be more than half the
size of the original problem.) If you continue in this fashion, always cutting the problem size in
half, you will reduce the problem size down to one fairly quickly, and then you will know what
the number is. Of course it would be easier to cut the problem size exactly in half each time if
we started with a number in the range from one to 128, but the question doesn’t sound quite so
plausible then. Thus to analyze the problem we will assume someone asks you to figure out a
number between 0 and n, where n is a power of 2.

Exercise 4.3-1 Let T (n) be number of questions in binary search on the range of numbers
between 1 and n. Assuming that n is a power of 2, give a recurrence for T (n).

For Exercise 4.3-1 we get:

T (n) =

{
T (n/2) + 1 if n ≥ 2
1 if n = 1

(4.20)

That is, the number of guesses to carry out binary search on n items is equal to 1 step (the guess)
plus the time to solve binary search on the remaining n/2 items.

What we are really interested in is how much time it takes to use binary search in a computer
program that looks for an item in an ordered list. While the number of questions gives us a
feel for the amount of time, processing each question may take several steps in our computer
program. The exact amount of time these steps take might depend on some factors we have little
control over, such as where portions of the list are stored. Also, we may have to deal with lists
whose length is not a power of two. Thus a more realistic description of the time needed would
be

T (n) ≤
{

T (�n/2�) + C1 if n ≥ 2
C2 if n = 1,

(4.21)

where C1 and C2 are constants.

Note that �x� stands for the smallest integer larger than or equal to x, while
x� stands for
the largest integer less than or equal to x. It turns out that the solution to (4.20) and (4.21)
are roughly the same, in a sense that will hopefully become clear later. (This is almost always

140 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

the case.) For now, let us not worry about floors and ceilings and the distinction between things
that take 1 unit of time and things that take no more than some constant amount of time.

Let’s turn to another example of a divide and conquer algorithm, mergesort. In this algorithm,
you wish to sort a list of n items. Let us assume that the data is stored in an array A in positions
1 through n. Mergesort can be described as follows:

MergeSort(A,low,high)
if (low == high)

return
else

mid = (low + high)/2
MergeSort(A,low,mid)
MergeSort(A,mid+1,high)
Merge the sorted lists from the previous two steps

More details on mergesort can be found in almost any algorithms textbook. Suffice to say
that the base case (low = high) takes one step, while the other case executes 1 step, makes two
recursive calls on problems of size n/2, and then executes the Merge instruction, which can be
done in n steps.

Thus we obtain the following recurrence for the running time of mergesort:

T (n) =

{
2T (n/2) + n if n > 1
1 if n = 1

(4.22)

Recurrences such as this one can be understood via the idea of a recursion tree, which we
introduce below. This concept allows us to analyze recurrences that arise in divide-and-conquer
algorithms, and those that arise in other recursive situations, such as the Towers of Hanoi, as
well. A recursion tree for a recurrence is a visual and conceptual representation of the process of
iterating the recurrence.

Recursion Trees

We will introduce the idea of a recursion tree via several examples. It is helpful to have an
“algorithmic” interpretation of a recurrence. For example, (ignoring for a moment the base case)
we can interpret the recurrence

T (n) = 2T (n/2) + n (4.23)

as “in order to solve a problem of size n we must solve 2 problems of size n/2 and do n units of
additional work.” Similarly we can interpret

T (n) = T (n/4) + n2

as “in order to solve a problem of size n we must solve one problem of size n/4 and do n2 units
of additional work.”

We can also interpret the recurrence

T (n) = 3T (n − 1) + n

4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 141

Figure 4.2: The initial stage of drawing a recursion tree diagram.

Problem Size

n

Work

n

n/2

as “in order to solve a problem of size n, we must solve 3 subproblems of size n − 1 and do n
additional units of work.

In Figure 4.2 we draw the beginning of the recursion tree diagram for (4.23). For now, assume
n is a power of 2. A recursion tree diagram has three parts, a left, a middle, and a right. On
the left, we keep track of the problem size, in the middle we draw the tree, and on right we keep
track of the work done. We draw the diagram in levels, each level of the diagram representing
a level of recursion. Equivalently, each level of the diagram represents a level of iteration of the
recurrence. So to begin the recursion tree for (4.23), we show, in level 0 on the left, that we
have problem of size n. Then by drawing a root vertex with two edges leaving it, we show in the
middle that we are splitting our problem into 2 problems. We note on the right that we do n
units of work in addition to whatever is done on the two new problems we created. In the next
level, we draw two vertices in the middle representing the two problems into which we split our
main problem and show on the left that each of these problems has size n/2.

You can see how the recurrence is reflected in levels 0 and 1 of the recursion tree. The
top vertex of the tree represents T (n), and on the next level we have two problems of size n/2,
representing the recursive term 2T (n/2) of our recurrence. Then after we solve these two problems
we return to level 0 of the tree and do n additional units of work for the nonrecursive term of
the recurrence.

Now we continue to draw the tree in the same manner. Filling in the rest of level one and
adding a few more levels, we get Figure 4.3.

Let us summarize what the diagram tells us so far. At level zero (the top level), n units of
work are done. We see that at each succeeding level, we halve the problem size and double the
number of subproblems. We also see that at level 1, each of the two subproblems requires n/2
units of additional work, and so a total of n units of additional work are done. Similarly level
2 has 4 subproblems of size n/4 and so 4(n/4) = n units of additional work are done. Notice
that to compute the total work done on a level we multiply the number of subproblems by the
amount of additional work per subproblem.

To see how iteration of the recurrence is reflected in the diagram, we iterate the recurrence
once, getting

T (n) = 2T (n/2) + n

T (n) = 2(2T (n/4) + n/2) + n

T (n) = 4T (n/4) + n + n = 4T (n/4) + 2n

142 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Figure 4.3: Four levels of a recursion tree diagram.

8(n/8) = n

Problem Size

n

n/2

n

Work

n/4

n/8

n/2 + n/2 = n

n/4 + n/4 + n/4 + n/4 = n

If we examine levels 0, 1, and 2 of the diagram, we see that at level 2 we have four vertices which
represent four problems, each of size n/4 This corresponds to the recursive term that we obtained
after iterating the recurrence. However after we solve these problems we return to level 1 where
we twice do n/2 additional units of work and to level 0 where we do another n additional units
of work. In this way each time we add a level to the tree we are showing the result of one more
iteration of the recurrence.

We now have enough information to be able to describe the recursion tree diagram in general.
To do this, we need to determine, for each level, three things:

• the number of subproblems,

• the size of each subproblem,

• the total work done at that level.

We also need to figure out how many levels there are in the recursion tree.

We see that for this problem, at level i, we have 2i subproblems of size n/2i. Further, since
a problem of size 2i requires 2i units of additional work, there are (2i)[n/(2i)] = n units of work
done per level. To figure out how many levels there are in the tree, we just notice that at each
level the problem size is cut in half, and the tree stops when the problem size is 1. Therefore
there are log2 n + 1 levels of the tree, since we start with the top level and cut the problem size
in half log2 n times.2 We can thus visualize the whole tree in Figure 4.4.

The computation of the work done at the bottom level is different from the other levels. In
the other levels, the work is described by the recursive equation of the recurrence; in this case
the amount of work is the n in T (n) = 2T (n/2) + n. At the bottom level, the work comes from
the base case. Thus we must compute the number of problems of size 1 (assuming that one is
the base case), and then multiply this value by T (1) = 1. In our recursion tree in Figure 4.4,
the number of nodes at the bottom level is 2log2 n = n. Since T (1) = 1, we do n units of work at

2To simplify notation, for the remainder of the book, if we omit the base of a logarithm, it should be assumed
to be base 2.

4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 143

Figure 4.4: A finished recursion tree diagram.

levels

Problem Size

n

n/2

n

Work

n/4

n/8

n/2 + n/2 = n

n/4 + n/4 + n/4 + n/4 = n

8(n/8) = n

1 n(1) = n

log n +1

the bottom level of the tree. Had we chosen to say that T (1) was some constant other than 1,
this would not have been the case. We emphasize that the correct value always comes from the
base case; it is just a coincidence that it sometimes also comes from the recursive equation of the
recurrence.

The bottom level of the tree represents the final stage of iterating the recurrence. We have
seen that at this level we have n problems each requiring work T (1) = 1, giving us total work n
at that level. After we solve the problems represented by the bottom level, we have to do all the
additional work from all the earlier levels. For this reason, we sum the work done at all the levels
of the tree to get the total work done. Iteration of the recurrence shows us that the solution to
the recurrence is the sum of all the work done at all the levels of the recursion tree.

The important thing is that we now know how much work is done at each level. Once we
know this, we can sum the total amount of work done over all the levels, giving us the solution
to our recurrence. In this case, there are log2 n + 1 levels, and at each level the amount of work
we do is n units. Thus we conclude that the total amount of work done to solve the problem
described by recurrence (4.23) is n(log2 n + 1). The total work done throughout the tree is the
solution to our recurrence, because the tree simply models the process of iterating the recurrence.
Thus the solution to recurrence (4.22) is T (n) = n(log n + 1).

Since one unit of time will vary from computer to computer, and since some kinds of work
might take longer than other kinds, we are usually interested in the big-θ behavior of T (n). For
example, we can consider a recurrence that it identical to (4.22), except that T (1) = a, for some
constant a. In this case, T (n) = an + n log n, because an units of work are done at level 1 and
n additional units of work are done at each of the remaining log n levels. It is still true that
T (n) = Θ(n log n), because the different base case did not change the solution to the recurrence
by more than a constant factor3. Although recursion trees can give us the exact solutions (such
as T (n) = an + n log n above) to recurrences, our interest in the big-Θ behavior of solutions will
usually lead us to use a recursion tree to determine the big-Θ or even, in complicated cases, just
the big-O behavior of the actual solution to the recurrence. In Problem 10 we explore whether

3More precisely, n log n < an + n log n < (a + 1)n log n for any a > 0.

144 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

the value of T (1) actually influences the big-Θ behavior of the solution to a recurrence.

Let’s look at one more recurrence.

T (n) =

{
T (n/2) + n if n > 1
1 if n = 1

(4.24)

Again, assume n is a power of two. We can interpret this as follows: to solve a problem of
size n, we must solve one problem of size n/2 and do n units of additional work. We draw the
tree for this problem in Figure 4.5 and see that the problem sizes are the same as in the previous
tree. The remainder, however, is different. The number of subproblems does not double, rather

Figure 4.5: A recursion tree diagram for Recurrence 4.24.

Problem Size

n

n/2

1

n

Work

n/4

n/8

1

log n + 1
levels

n/2

n/4

n/8

it remains at one on each level. Consequently the amount of work halves at each level. Note that
there are still log n + 1 levels, as the number of levels is determined by how the problem size is
changing, not by how many subproblems there are. So on level i, we have 1 problem of size n/2i,
for total work of n/2i units.

We now wish to compute how much work is done in solving a problem that gives this recur-
rence. Note that the additional work done is different on each level, so we have that the total
amount of work is

n + n/2 + n/4 + · · · + 2 + 1 = n

(
1 +

1
2

+
1
4

+ · · · +
(

1
2

)log2 n
)

,

which is n times a geometric series. By Theorem 4.4, the value of a geometric series in which the
largest term is one is Θ(1). This implies that the work done is described by T (n) = Θ(n).

We emphasize that there is exactly one solution to recurrence (4.24); it is the one we get by
using the recurrence to compute T (2) from T (1), then to compute T (4) from T (2), and so on.
What we have done here is show that T (n) = Θ(n). In fact, for the kinds of recurrences we have
been examining, once we know T (1) we can compute T (n) for any relevant n by repeatedly using
the recurrence, so there is no question that solutions do exist and can, in principle, be computed
for any value of n. In most applications, we are not interested in the exact form of the solution,
but a big-O upper bound, or Big-Θ bound on the solution.

4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 145

Exercise 4.3-2 Find a big-Θ bound for the solution to the recurrence

T (n) =

{
3T (n/3) + n if n ≥ 3
1 if n < 3

using a recursion tree. Assume that n is a power of 3.

Exercise 4.3-3 Solve the recurrence

T (n) =

{
4T (n/2) + n if n ≥ 2
1 if n = 1

using a recursion tree. Assume that n is a power of 2. Convert your solution to a
big-Θ statement about the behavior of the solution.

Exercise 4.3-4 Can you give a general big-Θ bound for solutions to recurrences of the
form T (n) = aT (n/2) + n when n is a power of 2? You may have different answers
for different values of a.

The recurrence in Exercise 4.3-2 is similar to the mergesort recurrence. One difference is
that at each step we divide into 3 problems of size n/3. Thus we get the picture in Figure 4.6.
Another difference is that the number of levels, instead of being log2 n + 1 is now log3 n + 1, so

Figure 4.6: The recursion tree diagram for the recurrence in Exercise 4.3-2.

Problem Size

n n

Work

n/3 + n/3 + n/3 = n

1 n(1) = n

log n + 1
levels

n/3

n/9 9(n/9) = n

the total work is still Θ(n log n) units. (Note that logb n = Θ(log2 n) for any b > 1.)

Now let’s look at the recursion tree for Exercise 4.3-3. Here we have 4 children of size n/2,
and we get Figure 4.7. Let’s look carefully at this tree. Just as in the mergesort tree there are
log2 n + 1 levels. However, in this tree, each node has 4 children. Thus level 0 has 1 node, level
1 has 4 nodes, level 2 has 16 nodes, and in general level i has 4i nodes. On level i each node
corresponds to a problem of size n/2i and hence requires n/2i units of additional work. Thus
the total work on level i is 4i(n/2i) = 2in units. This formula applies on level log2 n (the bottom

146 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Figure 4.7: The Recursion tree for Exercise 4.3-3.

Problem Size

n n

Work

n/2 + n/2 + n/2 + n/2 = 2n

1 n^2(1) = n^2

log n + 1
levels

n/2

n/4 16(n/4) = 4n

level) as well since there are n2 = 2log2 nn nodes, each requiring T (1) = 1 work. Summing over
the levels, we get

log2 n∑

i=0

2in = n

log2 n∑

i=0

2i.

There are many ways to simplify that expression, for example from our formula for the sum
of a geometric series we get

T (n) = n

log2 n∑

i=0

2i

= n
1 − 2(log2 n)+1

1 − 2

= n
1 − 2n

−1
= 2n2 − n

= Θ(n2).

More simply, by Theorem 4.4 we have that T (n) = nΘ(2log n) = Θ(n2).

Three Different Behaviors

Now let’s compare the recursion tree diagrams for the recurrences T (n) = 2T (n/2) + n, T (n) =
T (n/2) + n and T (n) = 4T (n/2) + n. Note that all three trees have depth 1 + log2 n, as this is
determined by the size of the subproblems relative to the parent problem, and in each case, the
size of each subproblem is 1/2 the size of of the parent problem. The trees differ, however, in the
amount of work done per level. In the first case, the amount of work on each level is the same.
In the second case, the amount of work done on a level decreases as you go down the tree, with
the most work being at the top level. In fact, it decreases geometrically, so by Theorem 4.4 the

4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 147

total work done is bounded above and below by a constant times the work done at the root node.
In the third case, the number of nodes per level is growing at a faster rate than the problem
size is decreasing, and the level with the largest amount of work is the bottom one. Again we
have a geometric series, and so by Theorem 4.4 the total work is bounded above and below by a
constant times the amount of work done at the last level.

If you understand these three cases and the differences among them, you now understand the
great majority of the recursion trees that arise in algorithms.

So to answer Exercise 4.3-4, which asks for a general Big-Θ bound for the solutions to recur-
rences of the form T (n) = aT (n/2) + n, we can conclude the following:

Lemma 4.7 Suppose that we have a recurrence of the form

T (n) = aT (n/2) + n,

where a is a positive integer and T (1) is nonnegative. Thus we have the following big-Theta
bounds on the solution.

1. If a < 2 then T (n) = Θ(n).

2. If a = 2 then T (n) = Θ(n log n)

3. If a > 2 then T (n) = Θ(nlog2 a)

Proof: Cases 1 and 2 follow immediately from our observations above. We can verify case 3
as follows. At each level i we have ai nodes, each corresponding to a problem of size n/2i. Thus
at level i the total amount of work is ai(n/2i) = n(a/2)i units. Summing over the log2 n levels,
we get

alog2 nT (1) + n

(log2 n)−1∑

i=0

(a/2)i.

The sum given by the summation sign is a geometric series, so, since a/2 �= 1, the sum will be
big-Θ of the largest term (see Theorem 4.4). Since a > 2, the largest term in this case is clearly
the last one, namely n(a/2)(log2 n)−1, and applying rules of exponents and logarithms, we get that
n times the largest term is

n

(
a

2

)(log2 n)−1

=
2
a
· n · alog2 n

2log2 n
=

2
a
· n · alog2 n

n
=

2
a
· alog2 n

=
2
a
alog2(alog2a

=
2
a
· 2log2 a log2 n =

2
a
· nlog2 a. (4.25)

Thus T (1)alog2 n = T (1)nlog2 a. Since 2
a and T (1) are both nonnegative, the total work done is

Θ(nlog2 a).

In fact Lemma 4.7 holds for all positive real numbers a; we can iterate the recurrence to see
this. Since a recursion tree diagram is a way to visualize iterating the recurrence when a is an
integer, iteration is the natural thing to try when a is not an integer.

Notice that in the last two equalities of computation we made in Equation 4.25, we showed
that alog n = nlog a. This is a useful and, perhaps, surprising fact, so we state it (in slightly more
generality) as a corollary to the proof.

Corollary 4.8 For any base b, we have alogb n = nlogb a.

148 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Important Concepts, Formulas, and Theorems

1. Divide and Conquer Algorithm. A divide and conquer algorithm is one that solves a problem
by dividing it into problems that are smaller but otherwise of the same type as the original
one, recursively solves these problems, and then assembles the solution of these so-called
subproblems into a solution of the original one. Not all problems can be solved by such a
strategy, but a great many problems of interest in computer science can.

2. Mergesort. In mergesort we sort a list of items that have some underlying order by dividing
the list in half, sorting the first half (by recursively using mergesort), sorting the second
half (by recursively using mergesort), and then merging the two sorted list. For a list of
length one mergesort returns the same list.

3. Recursion Tree. A recursion tree diagram for a recurrence of the form T (n) = aT (n/b)+g(n)
has three parts, a left, a middle, and a right. On the left, we keep track of the problem
size, in the middle we draw the tree, and on right we keep track of the work done. We
draw the diagram in levels, each level of the diagram representing a level of recursion. The
tree has a vertex representing the initial problem and one representing each subproblem
we have to solve. Each non-leaf vertex has a children. The vertices are divided into levels
corresponding to (sub-)problems of the same size; to the left of a level of vertices we write
the size of the problems the vertices correspond to; to the right of the vertices on a given
level we write the total amount of work done at that level by an algorithm whose work is
described by the recurrence, not including the work done by any recursive calls from that
level.

4. The Base Level of a Recursion Tree. The amount of work done on the lowest level in a
recursion tree is the number of nodes times the value given by the initial condition; it is not
determined by attempting to make a computation of “additional work” done at the lowest
level.

5. Bases for Logarithms. We use log n as an alternate notation for log2 n. A fundamental fact
about logarithms is that logb n = Θ(log2 n) for any real number b > 1.

6. An Important Fact About Logarithms. For any b > 0, alogb n = nlogb a.

7. Three behaviors of solutions. The solution to a recurrence of the form T (n) = aT (n/2) + n
behaves in one of the following ways:

(a) if a < 2 then T (n) = Θ(n).

(b) if a = 2 then T (n) = Θ(n log n)

(c) if a > 2 then T (n) = Θ(nlog2 a).

Problems

1. Draw recursion trees and find big-Θ bounds on the solutions to the following recurrences.
For all of these, assume that T (1) = 1 and n is a power of the appropriate integer.

(a) T (n) = 8T (n/2) + n

(b) T (n) = 8T (n/2) + n3

4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 149

(c) T (n) = 3T (n/2) + n

(d) T (n) = T (n/4) + 1

(e) T (n) = 3T (n/3) + n2

2. Draw recursion trees and find exact solutions to the following recurrences. For all of these,
assume that T (1) = 1 and n is a power of the appropriate integer.

(a) T (n) = 8T (n/2) + n

(b) T (n) = 8T (n/2) + n3

(c) T (n) = 3T (n/2) + n

(d) T (n) = T (n/4) + 1

(e) T (n) = 3T (n/3) + n2

3. Find the exact solution to Recurrence 4.24.

4. Show that logb n = Θ(log2 n), for any constant b > 1.

5. Prove Corollary 4.8 by showing that alogb n = nlogb a for any b > 0.

6. Recursion trees will still work, even if the problems do not break up geometrically, or even
if the work per level is not nc units. Draw recursion trees and and find the best big-O
bounds you can for solutions to the following recurrences. For all of these, assume that
T (1) = 1.

(a) T (n) = T (n − 1) + n

(b) T (n) = 2T (n − 1) + n

(c) T (n) = T (
√n�) + 1 (You may assume n has the form n = 22i
.)

(d) T (n) = 2T (n/2) + n log n (You may assume n is a power of 2.)

7. In each case in the previous problem, is the big-O bound you found a big-Θ bound?

8. If S(n) = aS(n − 1) + g(n) and g(n) < cn with 0 ≤ c < a, how fast does S(n) grow (in
big-Θ terms)?

9. If S(n) = aS(n−1)+g(n) and g(n) = cn with 0 < a ≤ c, how fast does S(n) grow in big-Θ
terms?

10. Given a recurrence of the form T (n) = aT (n/b) + g(n) with T (1) = c > 0 and g(n) > 0
for all n and a recurrence of the form S(n) = aS(n/b) + g(n) with S(1) = 0 (and the same
a, b, and g(n)), is there any difference in the big-Θ behavior of the solutions to the two
recurrences? What does this say about the influence of the initial condition on the big-Θ
behavior of such recurrences?

150 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

4.4 The Master Theorem

Master Theorem

In the last section, we saw three different kinds of behavior for recurrences of the form

T (n) =

{
aT (n/2) + n if n > 1
d if n = 1.

These behaviors depended upon whether a < 2, a = 2, or a > 2. Remember that a was the
number of subproblems into which our problem was divided. Dividing by 2 cut our problem size
in half each time, and the n term said that after we completed our recursive work, we had n
additional units of work to do for a problem of size n. There is no reason that the amount of
additional work required by each subproblem needs to be the size of the subproblem. In many
applications it will be something else, and so in Theorem 4.9 we consider a more general case.
Similarly, the sizes of the subproblems don’t have to be 1/2 the size of the parent problem. We
then get the following theorem, our first version of a theorem called the Master Theorem. (Later
on we will develop some stronger forms of this theorem.)

Theorem 4.9 Let a be an integer greater than or equal to 1 and b be a real number greater than
1. Let c be a positive real number and d a nonnegative real number. Given a recurrence of the
form

T (n) =

{
aT (n/b) + nc if n > 1
d if n = 1

in which n is restricted to be a power of b,

1. if logb a < c, T (n) = Θ(nc),

2. if logb a = c, T (n) = Θ(nc log n),

3. if logb a > c, T (n) = Θ(nlogb a).

Proof: In this proof, we will set d = 1, so that the work done at the bottom level of the tree
is the same as if we divided the problem one more time and used the recurrence to compute the
additional work. As in Footnote 3 in the previous section, it is straightforward to show that we
get the same big-Θ bound if d is positive. It is only a little more work to show that we get the
same big-Θ bound if d is zero.

Let’s think about the recursion tree for this recurrence. There will be 1 + logb n levels. At
each level, the number of subproblems will be multiplied by a, and so the number of subproblems
at level i will be ai. Each subproblem at level i is a problem of size (n/bi). A subproblem of size
n/bi requires (n/bi)c additional work and since there are ai problems on level i, the total number
of units of work on level i is

ai(n/bi)c = nc

(
ai

bci

)
= nc

(
a

bc

)i

. (4.26)

Recall from Lemma 4.7 that the different cases for c = 1 were when the work per level was
decreasing, constant, or increasing. The same analysis applies here. From our formula for work

4.4. THE MASTER THEOREM 151

on level i, we see that the work per level is decreasing, constant, or increasing exactly when (a
bc)i

is decreasing, constant, or increasing, respectively. These three cases depend on whether (a
bc) is

less than one, equal to one, or greater than one, respectively. Now observe that

(a
bc) = 1

⇔ a = bc

⇔ logb a = c logb b

⇔ logb a = c.

This shows us where the three cases in the statement of the theorem come from. Now we
need to show the bound on T (n) in the different cases. In the following paragraphs, we will use
the facts (whose proof is a straightforward application of the definition of logarithms and rules
of exponents) that for any x, y and z, each greater than 1, xlogy z = zlogy x (see Corollary 4.8,
Problem 5 at the end of the previous section, and Problem 3 at the end of this section) and that
logx y = Θ(log2 y) (see Problem 4 at the end of the previous section).

In general, the total work done is computed by summing the expression for the work per level
given in Equation 4.26 over all the levels, giving

logb n∑

i=0

nc
(

a

bc

)i

= nc
logb n∑

i=0

(
a

bc

)i

In case 1, (part 1 in the statement of the theorem) this is nc times a geometric series with a ratio
of less than 1. Theorem 4.4 tells us that

nc
logb n∑

i=0

(
a

bc

)i

= Θ(nc).

Exercise 4.4-1 Prove Case 2 (part 2 of the statement) of the Master Theorem.

Exercise 4.4-2 Prove Case 3 (part 3 of the statement) of the Master Theorem.

In Case 2 we have that a
bc = 1 and so

nc
logb n∑

i=0

(
a

bc

)i

= nc
logb n∑

i=0

1i

= nc(1 + logb n)
= Θ(nc log n).

In Case 3, we have that a
bc > 1. So in the series

logb n∑

i=0

nc
(

a

bc

)i

= nc
logb n∑

i=0

(
a

bc

)i

,

the largest term is the last one, so by Theorem 4.4,the sum is Θ
(
nc

(
a
bc

)logb n
)
. But

152 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

nc
(

a

bc

)logb n

= nc · alogb n

(bc)logb n

= nc · nlogb a

nlogb bc

= nc · nlogb a

nc

= nlogb a.

Thus the solution is Θ(nlogb a).

We note that we may assume that a is a real number with a > 1 and give a somewhat similar
proof (replacing the recursion tree with an iteration of the recurrence), but we do not give the
details here.

Solving More General Kinds of Recurrences

Exercise 4.4-3 What can you say about the big-θ behavior of the solution to

T (n) =

{
2T (n/3) + 4n3/2 if n > 1
d if n = 1,

where n can be any nonnegative power of three?

Exercise 4.4-4 If f(n) = n
√

n + 1, what can you say about the Big-Θ behavior of solu-
tions to

S(n) =

{
2S(n/3) + f(n) if n > 1
d if n = 1,

where n can be any nonnegative power of three?

For Exercise 4.4-3, the work done at each level of the tree except for the bottom level will be
four times the work done by the recurrence

T ′(n) =

{
2T ′(n/3) + n3/2 if n > 1
d if n = 1,

Thus the work done by T will be no more than four times the work done by T ′, but will be
larger than the work done by T ′. Therefore T (n) = Θ(T ′(n)). Thus by the master theorem, since
log3 2 < 1 < 3/2, we have that T (n) = Θ(n3/2).

For Exercise 4.4-4, Since n
√

n + 1 > n
√

n = n3/2 we have that S(n) is at least as big as the
solution to the recurrence

T ′(n) =

{
2T ′(n/3) + n3/2 if n > 1
d if n = 1,

where n can be any nonnegative power of three. But the solution to the recurrence for S will be
no more than the solution to the recurrence in Exercise 4.4-3 for T , because n

√
n + 1 ≤ 4n3/2

for n ≥ 0. Since T (n) = Θ(T ′(n)), then S(n) = Θ(T ′(n)) as well.

4.4. THE MASTER THEOREM 153

Extending the Master Theorem

As Exercise 4.4-3 and Exercise 4.4-4 suggest, there is a whole range of interesting recurrences that
do not fit the master theorem but are closely related to recurrences that do. These recurrences
have the same kind of behavior predicted by our original version of the Master Theorem, but the
original version of the Master Theorem does not apply to them, just as it does not apply to the
recurrences of Exercise 4.4-3 and Exercise 4.4-4.

We now state a second version of the Master Theorem that covers these cases. A still stronger
version of the theorem may be found in Introduction to Algorithms by Cormen, et. al., but the
version here captures much of the interesting behavior of recurrences that arise from the analysis
of algorithms.

Theorem 4.10 Let a and b be positive real numbers with a ≥ 1 and b > 1. Let T (n) be defined
for powers n of b by

T (n) =

{
aT (n/b) + f(n) if n > 1
d if n = 1.

Then

1. if f(n) = Θ(nc) where logb a < c, then T (n) = Θ(nc) = Θ(f(n)).

2. if f(n) = Θ(nc), where logb a = c, then T (n) = Θ(nlogb a logb n)

3. if f(n) = Θ(nc), where logb a > c, then T (n) = Θ(nlogb a).

Proof: We construct a recursion tree or iterate the recurrence. Since we have assumed that
f(n) = Θ(nc), there are constants c1 and c2, independent of the level, so that the work at each
level is between c1n

c
(

a
bc

)i and c2n
c
(

a
bc

)i so from this point on the proof is largely a translation
of the original proof.

Exercise 4.4-5 What does the Master Theorem tell us about the solutions to the recur-
rence

T (n) =

{
3T (n/2) + n

√
n + 1 if n > 1

1 if n = 1?

As we saw in our solution to Exercise 4.4-4 x
√

x + 1 = Θ(x3/2). Since 23/2 =
√

23 =
√

8 < 3,
we have that log2 3 > 3/2. Then by conclusion 3 of version 2 of the Master Theorem, T (n) =
Θ(nlog2 3).

The remainder of this section is devoted to carefully analyzing divide and conquer recurrences
in which n is not a power of b and T (n/b) is replaced by T (�n/b�). While the details are
somewhat technical, the end result is that the big-Θ behavior of such recurrences is the same as
the corresponding recurrences for functions defined on powers of b. In particular, the following
theorem is a consequence of what we prove.

154 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Theorem 4.11 Let a and b be positive real numbers with a ≥ 1 and b ≥ 2. Let T (n) satisfy the
recurrence

T (n) =

{
aT (�n/b�) + f(n) if n > 1
d if n = 1.

Then

1. if f(n) = Θ(nc) where logb a < c, then T (n) = Θ(nc) = Θ(f(n)).

2. if f(n) = Θ(nc), where logb a = c, then T (n) = Θ(nlogb a logb n)

3. if f(n) = Θ(nc), where logb a > c, then T (n) = Θ(nlogb a).

(The condition that b ≥ 2 can be changed to B > 1 with an appropriate change in the base case
of the recurrence, but the base case will then depend on b.) The reader should be able to skip
over the remainder of this section without loss of continuity.

More realistic recurrences (Optional)

So far, we have considered divide and conquer recurrences for functions T (n) defined on integers
n which are powers of b. In order to consider a more realistic recurrence in the master theorem,
namely

T (n) =

{
aT (�n/b�) + nc if n > 1
d if n = 1,

or

T (n) =

{
aT (
n/b�) + nc if n > 1
d if n = 1,

or even

T (n) =

{
a′T (�n/b�) + (a − a′)T (
n/b�) + nc if n > 1
d if n = 1,

it turns out to be easiest to first extend the domain for our recurrences to a much bigger set than
the nonnegative integers, either the real or rational numbers, and then to work backwards.

For example, we can write a recurrence of the form

t(x) =

{
f(x)t(x/b) + g(x) if x ≥ b
k(x) if 1 ≤ x < b

for two (known) functions f and g defined on the real [or rational] numbers greater than 1 and
one (known) function k defined on the real [or rational] numbers x with 1 ≤ x < b. Then so long
as b > 1 it is possible to prove that there is a unique function t defined on the real [or rational]
numbers greater than or equal to 1 that satisfies the recurrence. We use the lower case t in this
situation as a signal that we are considering a recurrence whose domain is the real or rational
numbers greater than or equal to 1.

Exercise 4.4-6 How would we compute t(x) in the recurrence

t(x) =

{
3t(x/2) + x2 if x ≥ 2
5x if 1 ≤ x < 2

if x were 7? How would we show that there is one and only one function t that satisfies
the recurrence?

4.4. THE MASTER THEOREM 155

Exercise 4.4-7 Is it the case that there is one and only one solution to the recurrence

T (n) =

{
f(n)T (�n/b�) + g(n) if n > 1
k if n = 1

when f and g are (known) functions defined on the positive integers, and k and b are
(known) constants with b an integer larger than or equal to 2?

To compute t(7) in Exercise 4.4-6 we need to know t(7/2). To compute t(7/2), we need to
know t(7/4). Since 1 < 7/4 < 2, we know that t(7/4) = 35/4. Then we may write

t(7/2) = 3 · 35
4

+
49
4

=
154
4

=
77
2

.

Next we may write

t(7) = 3t(7/2) + 72

= 3 · 77
2

+ 49

=
329
2

.

Clearly we can compute t(x) in this way for any x, though we are unlikely to enjoy the arithmetic.
On the other hand suppose all we need to do is to show that there is a unique value of t(x)
determined by the recurrence, for all real numbers x ≥ 1. If 1 ≤ x < 2, then t(x) = 5x, which
uniquely determines t(x). Given a number x ≥ 2, there is a smallest integer i such that x/2i < 2,
and for this i, we have 1 ≤ x/2i. We can now prove by induction on i that t(x) is uniquely
determined by the recurrence relation.

In Exercise 4.4-7 there is one and only one solution. Why? Clearly T (1) is determined by
the recurrence. Now assume inductively that n > 1 and that T (m) is uniquely determined for
positive integers m < n. We know that n ≥ 2, so that n/2 ≤ n − 1. Since b ≥ 2, we know
that n/2 ≥ n/b, so that n/b ≤ n − 1. Therefore �n/b� < n, so that we know by the inductive
hypothesis that T (�n/b�) is uniquely determined by the recurrence. Then by the recurrence,

T (n) = f(n)T
(⌈

n

b

⌉)
+ g(n),

which uniquely determines T (n). Thus by the principle of mathematical induction, T (n) is
determined for all positive integers n.

For every kind of recurrence we have dealt with, there is similarly one and only one solution.
Because we know solutions exist, we don’t find formulas for solutions to demonstrate that solu-
tions exist, but rather to help us understand properties of the solutions. In this section and the
last section, for example, we were interested in how fast the solutions grew as n grew large. This
is why we were finding Big-O and Big-Θ bounds for our solutions.

Recurrences for general n (Optional)

We will now show how recurrences for arbitrary real numbers relate to recurrences involving
floors and ceilings. We begin by showing that the conclusions of the Master Theorem apply to
recurrences for arbitrary real numbers when we replace the real numbers by “nearby” powers
of b.

156 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Theorem 4.12 Let a and b be positive real numbers with b > 1 and c and d be real numbers.
Let t(x) be the solution to the recurrence

t(x) =

{
at(x/b) + xc if x ≥ b
d if 1 ≤ x < b.

Let T (n) be the solution to the recurrence

T (n) =

{
aT (n/b) + nc if n ≥ 0
d if n = 1,

defined for n a nonnegative integer power of b. Let m(x) be the largest integer power of b less
than or equal to x. Then t(x) = Θ(T (m(x)))

Proof: If we iterate (or, in the case that a is an integer, draw recursion trees for) the two
recurrences, we can see that the results of the iterations are nearly identical. This means the
solutions to the recurrences have the same big-Θ behavior. See the Appendix to this Section for
details.

Removing Floors and Ceilings (Optional)

We have also pointed out that a more realistic Master Theorem would apply to recurrences of
the form T (n) = aT (
n/b�) + nc, or T (n) = aT (�n/b�) + nc, or even T (n) = a′T (�n/b�) + (a −
a′)T (
n/b�)+nc. For example, if we are applying mergesort to an array of size 101, we really break
it into pieces, of size 50 and 51. Thus the recurrence we want is not really T (n) = 2T (n/2) + n,
but rather T (n) = T (
n/2�) + T (�n/2�) + n.

We can show, however, that one can essentially “ignore” the floors and ceilings in typical
divide-and-conquer recurrences. If we remove the floors and ceilings from a recurrence relation,
we convert it from a recurrence relation defined on the integers to one defined on the rational
numbers. However we have already seen that such recurrences are not difficult to handle.

The theorem below says that in recurrences covered by the master theorem, if we remove
ceilings, our recurrences still have the same big-Θ bounds on their solutions. A similar proof
shows that we may remove floors and still get the same big-Θ bounds. Without too much more
work we can see that we can remove floors and ceilings simultaneously without changing the
big-Θ bounds on our solutions. Since we may remove either floors or ceilings, that means that we
may deal with recurrences of the form T (n) = a′T (�n/b�)+ (a−a′)T (
n/b�)+nc. The condition
that b > 2 can be replaced by b > 1, but the base case for the recurrence will depend on b.

Theorem 4.13 Let a and b be positive real numbers with b ≥ 2 and let c and d be real numbers.
Let T (n) be the function defined on the integers by the recurrence

T (n) =

{
aT (�n/b�) + nc if n > 1
d n = 1,

and let t(x) be the function on the real numbers defined by the recurrence

t(x) =

{
at(x/b) + xc if x ≥ b
d if 1 ≤ x < b

Then T (n) = Θ(t(n)). The same statement applies with ceilings replaced by floors.

4.4. THE MASTER THEOREM 157

Proof: As in the previous theorem, we can consider iterating the two recurrences. It is
straightforward (though dealing with the notation is difficult) to show that for a given value of
n, the iteration for computing T (n) has at most two more levels than the iteration for computing
t(n). The work per level also has the same Big-Θ bounds at each level, and the work for the two
additional levels of the iteration for T (n) has the same Big-Θ bounds as the work at the bottom
level of the recursion tree for t(n). We give the details in the appendix at the end of this section.

Theorem 4.12 and Theorem 4.13 tell us that the Big-Θ behavior of solutions to our more
realistic recurrences

T (n) =

{
aT (�n/b�) + nc if n > 1
d n=1

is determined by their Big-Θ behavior on powers of the base b.

Floors and ceilings in the stronger version of the Master Theorem (Optional)

In our first version of the master theorem, we showed that we could ignore ceilings and assume
our variables were powers of b. In fact we can ignore them in circumstances where the function
telling us the “work” done at each level of our recursion tree is Θ(xc) for some positive real
number c. This lets us apply the second version of the master theorem to recurrences of the form
T (n) = aT (�n/b�) + f(n).

Theorem 4.14 Theorems 4.12 and 4.13 apply to recurrences in which the xc or nc term is
replaced by f(x) or f(n) for a function f with f(x) = Θ(xc).

Proof: We iterate the recurrences or construct recursion trees in the same way as in the proofs
of the original theorems, and find that the condition f(x) = Θ(xc) gives us enough information
to again bound the solution above and below with multiples of the solution of the recurrence
with xc. The details are similar to those in the original proofs.

Appendix: Proofs of Theorems (Optional)

For convenience, we repeat the statements of the earlier theorems whose proofs we merely out-
lined.

Theorem 4.12 Let a and b be positive real numbers with b > 1 and c and d be real numbers.
Let t(x) be the solution to the recurrence

t(x) =

{
at(x/b) + xc if x ≥ b
d if 1 ≤ x < b.

Let T (n) be the solution to the recurrence

T (n) =

{
aT (n/b) + nc if n ≥ 0
d if n = 1,

defined for n is a nonnegative integer power of b. Let m(x) be the largest integer power of b less
than or equal to x. Then t(x) = Θ(T (m(x)))

158 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Proof: By iterating each recursion 4 times (or using a four level recursion tree in the case
that a is an integer), we see that

t(x) = a4t
(x

b4

)
+

(a

bc

)3
xc +

(a

bc

)2
xc +

a

bc
xc

and
T (n) = a4T

(n

b4

)
+

(a

bc

)3
nc +

(a

bc

)2
nc +

a

bc
nc.

Thus, continuing until we have a solution, in both cases we get a solution that starts with a raised
to an exponent that we will denote as either e(x) or e(n) when we want to distinguish between
them and e when it is unnecessary to distinguish. The solution for t will be ae times t(x/be)

plus xc times a geometric series
∑e−1

i=0

(
a
bc

)i
. The solution for T will be ae times d plus nc times

a geometric series
∑e−1

i=0

(
a
bc

)i
. In both cases t(x/be) (or T (n/be)) will be d. In both cases the

geometric series will be Θ(1), Θ(e) or Θ
(

a
bc

)e
, depending on whether a

bc is less than 1, equal to 1,
or greater than one. Clearly e(n) = logb n. Since we must divide x by b an integer number greater
than logb x− 1 times in order to get a value in the range from 1 to b, e(x) =
logb x�. Thus, if m
is the largest integer power of b less than or equal to x, then 0 ≤ e(x) − e(m) < 1. Let us use r
to stand for the real number a

bc . Then we have r0 ≤ re(x)−e(m) < r, or re(m) ≤ re(x) ≤ r · re(m).
Thus we have re(x) = Θ(re(m)) Finally, mc ≤ xc ≤ bcmc, and so xc = Θ(mc). Therefore, every
term of t(x) is Θ of the corresponding term of T (m). Further, there are only a fixed number of
different constants involved in our Big-Θ bounds. Therefore since t(x) is composed of sums and
products of these terms, t(x) = Θ(T (m)).

Theorem 4.13 Let a and b be positive real numbers with b ≥ 2 and let c and d be real numbers.
Let T (n) be the function defined on the integers by the recurrence

T (n) =

{
aT (�n/b�) + nc if n ≥ b
d n = 1,

and let t(x) be the function on the real numbers defined by the recurrence

t(x) =

{
at(x/b) + xc if x ≥ b
d if 1 ≤ x < b.

Then T (n) = Θ(t(n)).

Proof: As in the previous proof, we can iterate both recurrences. Let us compare what the
results will be of iterating the recurrence for t(n) and the recurrence for T (n) the same number
of times. Note that

�n/b� < n/b + 1
��n/b�/b� < �n/b2 + 1/b� < n/b2 + 1/b + 1

���n/b�/b�/b� < �n/b3 + 1/b2 + 1/b� < n/b3 + 1/b2 + 1/b + 1

This suggests that if we define n0 = n, and ni = �ni−1/b�, then, using the fact that b ≥ 2, it
is straightforward to prove by induction, or with the formula for the sum of a geometric series,

4.4. THE MASTER THEOREM 159

that ni < n/bi + 2. The number ni is the argument of T in the ith iteration of the recurrence
for T . We have just seen that it differs from the argument of t in the ith iteration of t by at
most 2. In particular, we might have to iterate the recurrence for T twice more than we iterate
the recurrence for t to reach the base case. When we iterate the recurrence for t, we get the
same solution we got in the previous theorem, with n substituted for x. When we iterate the
recurrence for T , we get for some integer j that

T (n) = ajd +
j−1∑

i=0

ainc
i ,

with n
bi ≤ ni ≤ n

bi + 2. But, so long as n/bi ≥ 2, we have n/bi + 2 ≤ n/bi−1. Since the number of
iterations of T is at most two more than the number of iterations of t, and since the number of
iterations of t is
logb n�, we have that j is at most
logb n� + 2. Therefore all but perhaps the
last three values of ni are less than or equal to n/bi−1, and these last three values are at most b2,
b, and 1. Putting all these bounds together and using n0 = n gives us

j−1∑

i=0

ai
(n

bi

)c
≤

j−1∑

i=0

ainc
i

≤ nc +
j−4∑

i=1

ai
(n

bi−1

)c
+ aj−2(b2)c + aj−1bc + aj1c,

or
j−1∑

i=0

ai
(n

bi

)c
≤

j−1∑

i=0

ainc
i

≤ nc + b
j−4∑

i=1

ai
(n

bi

)c
+ aj−2

(
bj

bj−2

)c

+ aj−1

(
bj

bj−1

)c

+ aj

(
bj

bj

)c

.

As we shall see momentarily these last three “extra” terms and the b in front of the summation
sign do not change the Big-Θ behavior of the right-hand side.

As in the proof of the master theorem, the Big-Θ behavior of the left hand side depends on
whether a/bc is less than 1, in which case it is Θ(nc), equal to 1, in which case it is Θ(nc logb n),
or greater than one in which case it is Θ(nlogb a). But this is exactly the Big-Θ behavior of the
right-hand side, because n < bj < nb2, so bj = Θ(n), which means that

(
bj

bi

)c
= Θ

((
n
bi

)c)
,

and the b in front of the summation sign does not change its Big-Θ behavior. Adding ajd to
the middle term of the inequality to get T (n) does not change this behavior. But this modified
middle term is exactly T (n). Since the left and right hand sides have the same big-Θ behavior
as t(n), we have T(n) = Θ(t(n)).

Important Concepts, Formulas, and Theorems

1. Master Theorem, simplified version. The simplified version of the Master Theorem states:
Let a be an integer greater than or equal to 1 and b be a real number greater than 1. Let c
be a positive real number and d a nonnegative real number. Given a recurrence of the form

T (n) =

{
aT (n/b) + nc if n > 1
d if n = 1

then for n a power of b,

160 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

(a) if logb a < c, T (n) = Θ(nc),

(b) if logb a = c, T (n) = Θ(nc log n),

(c) if logb a > c, T (n) = Θ(nlogb a).

2. Properties of Logarithms. For any x, y and z, each greater than 1, xlogy z = zlogy x. Also,
logx y = Θ(log2 y).

3. Master Theorem, More General Version. Let a and b be positive real numbers with a ≥ 1
and b ≥ 2. Let T (n) be defined for powers n of b by

T (n) =

{
aT (n/b) + f(n) if n > 1
d if n = 1

Then

(a) if f(n) = Θ(nc) where logb a < c, then T (n) = Θ(nc) = Θ(f(n)).

(b) if f(n) = Θ(nc), where logb a = c, then T (n) = Θ(nlogb a logb n)

(c) if f(n) = Θ(nc), where logb a > c, then T (n) = Θ(nlogb a).

A similar result with a base case that depends on b holds when 1 < b < 2.

4. Important Recurrences have Unique Solutions. (Optional.) The recurrence

T (n) =

{
f(n)T (�n/b�) + g(n) if n > 1
k if n = 1

has a unique solution when f and g are (known) functions defined on the positive integers,
and k and b are (known) constants with b an integer larger than 2.

5. Recurrences Defined on the Positive Real Numbers and Recurrences Defined on the Positive
Integers. (Optional.) Let a and b be positive real numbers with b > 1 and c and d be real
numbers. Let t(x) be the solution to the recurrence

t(x) =

{
at(x/b) + xc if x ≥ b
d if 1 ≤ x < b.

Let T (n) be the solution to the recurrence

T (n) =

{
aT (n/b) + nc if n ≥ 0
d if n = 1,

where n is a nonnegative integer power of b. Let m(x) be the largest integer power of b less
than or equal to x. Then t(x) = Θ(T (m(x)))

6. Removing Floors and Ceilings from Recurrences. (Optional.) Let a and b be positive real
numbers with b ≥ 2 and let c and d be real numbers. Let T (n) be the function defined on
the integers by the recurrence

T (n) =

{
aT (�n/b�) + nc if n > 1
d n = 1

,

4.4. THE MASTER THEOREM 161

and let t(x) be the function on the real numbers defined by the recurrence

t(x) =

{
at(x/b) + xc if x ≥ b
d if 1 ≤ x < b

.

Then T (n) = Θ(t(n)). The same statement applies with ceilings replaced by floors.

7. Extending 5 and 6 (Optional.) In the theorems summarized in 5 and 6 the nc or xc term
may be replaced by a function f with f(x) = Θ(xc).

8. Solutions to Realistic Recurrences. The theorems summarized in 5, 6, and 7 tell us that
the Big-Θ behavior of solutions to our more realistic recurrences

T (n) =

{
aT (�n/b�) + f(n) if n > 1
d n=1,

where f(n) = Θ(nc), is determined by their Big-Θ behavior on powers of the base b and
with f(n) = nc.

Problems

1. Use the master theorem to give Big-Θ bounds on the solutions to the following recurrences.
For all of these, assume that T (1) = 1 and n is a power of the appropriate integer.

(a) T (n) = 8T (n/2) + n

(b) T (n) = 8T (n/2) + n3

(c) T (n) = 3T (n/2) + n

(d) T (n) = T (n/4) + 1

(e) T (n) = 3T (n/3) + n2

2. Extend the proof of the Master Theorem, Theorem 4.9 to the case T (1) = d.

3. Show that for any x, y and z, each greater than 1, xlogy z = zlogy x.

4. (Optional) Show that for each real number x ≥ 0 there is one and only one value of t(x)
given by the recurrence

t(x) =

{
7xt(x − 1) + 1 if x ≥ 1
1 if 0 ≤ x < 1.

5. (Optional) Show that for each real number x ≥ 1 there is one and only one value of t(x)
given by the recurrence

t(x) =

{
3xT (x/2) + x2 if x ≥ 2
1 if 1 ≤ x < 2

.

162 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

6. (Optional) How many solutions are there to the recurrence

T (n) =

{
f(n)T (�n/b�) + g(n) if n > 1
k if n = 1

if b < 2? If b = 10/9, by what would we have to replace the condition that T (n) = k if
n = 1 in order to get a unique solution?

7. Give a big-Θ bound on the solution to the recurrence

T (n) =

{
3T (�n/2�) +

√
n + 3 if n > 1

d if n = 1.

8. Give a big-Θ bound on the solution to the recurrence

T (n) =

{
3T (�n/2�) +

√
n3 + 3 if n > 1

d if n = 1.

9. Give a big-Θ bound on the solution to the recurrence

T (n) =

{
3T (�n/2�) +

√
n4 + 3 if n > 1

d if n = 1.

10. Give a big-Θ bound on the solution to the recurrence

T (n) =

{
2T (�n/2�) +

√
n2 + 3 if n > 1

d if n = 1.

11. (Optional) Explain why theorem 4.11 is a consequence of Theorem 4.12 and Theorem 4.13

4.5. MORE GENERAL KINDS OF RECURRENCES 163

4.5 More general kinds of recurrences

Recurrence Inequalities

The recurrences we have been working with are really idealized versions of what we know about
the problems we are working on. For example, in merge-sort on a list of n items, we say we
divide the list into two parts of equal size, sort each part, and then merge the two sorted parts.
The time it takes to do this is the time it takes to divide the list into two parts plus the time
it takes to sort each part, plus the time it takes to merge the two sorted lists. We don’t specify
how we are dividing the list, or how we are doing the merging. (We assume the sorting is done
by applying the same method to the smaller lists, unless they have size 1, in which case we do
nothing.) What we do know is that any sensible way of dividing the list into two parts takes no
more than some constant multiple of n time units (and might take no more than constant time if
we do it by leaving the list in place and manipulating pointers) and that any sensible algorithm
for merging two lists will take no more than some (other) constant multiple of n time units. Thus
we know that if T (n) is the amount of time it takes to apply merge sort to n data items, then
there is a constant c (the sum of the two constant multiples we mentioned) such that

T (n) ≤ 2T (n/2) + cn. (4.27)

Thus real world problems often lead us to recurrence inequalities rather than recurrence
equations. These are inequalities that state that T (n) is less than or equal to some expression
involving values of T (m) for m < n. (We could also include inequalities with a greater than
or equal to sign, but they do not arise in the applications we are studying.) A solution to a
recurrence inequality is a function T that satisfies the inequality. For simplicity we will expand
what we mean by the word recurrence to include either recurrence inequalities or recurrence
equations.

In Recurrence 4.27 we are implicitly assuming that T is defined only on positive integer values
and, since we said we divided the list into two equal parts each time, our analysis only makes
sense if we assume that n is a power of 2.

Note that there are actually infinitely many solutions to Recurrence 4.27. (For example for
any c′ < c, the unique solution to

T (n) =

{
2T (n/2) + c′n if n ≥ 2
k if n = 1

(4.28)

satisfies Inequality 4.27 for any constant k.) The idea that Recurrence 4.27 has infinitely many
solutions, while Recurrence 4.28 has exactly one solution is analogous to the idea that x− 3 ≤ 0
has infinitely many solutions while x − 3 = 0 has one solution. Later in this section we shall see
how to show that all the solutions to Recurrence 4.27 satisfy T (n) = O(n log2 n). In other words,
no matter how we sensibly implement merge sort, we have a O(n log2 n) time bound on how long
the merge sort process takes.

Exercise 4.5-1 Carefully prove by induction that for any function T defined on the non-
negative powers of 2, if

T (n) ≤ 2T (n/2) + cn

for some constant c, then T (n) = O(n log n).

164 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

A Wrinkle with Induction

We can analyze recurrence inequalities via a recursion tree. The process is virtually identical to
our previous use of recursion trees. We must, however, keep in mind that on each level, we are
really computing an upper bound on the work done on that level. We can also use a variant of the
method we used a few sections ago, guessing an upper bound and verifying by induction. We use
this method for the recurrence in Exercise 4.5-1. Here we wish to show that T (n) = O(n log n).
From the definition of Big-O, we can see that we wish to show that T (n) ≤ kn log n for some
positive constant k (so long as n is larger than some value n0).

We are going to do something you may find rather curious. We will consider the possibility
that we have a value of k for which the inequality holds. Then in analyzing the consequences
of this possibility, we will discover that there are assumptions that we need to make about k in
order for such a k to exist. What we will really be doing is experimenting to see how we will
need to choose k to make an inductive proof work.

We are given that T (n) ≤ 2T (n/2) + cn for all positive integers n that are powers of 2. We
want to prove there is another positive real number k > 0 and an n0 > 0 such that for n > n0,
T (n) ≤ kn log n. We cannot expect to have the inequality T (n) ≤ kn log n hold for n = 1,
because log 1 = 0. To have T (2) ≤ k · 2 log 2 = k · 2, we must choose k ≥ T (2)

2 . This is the first
assumption we must make about k. Our inductive hypothesis will be that if n is a power of 2 and
m is a power of 2 with 2 ≤ m < n then T (m) ≤ km log m. Now n/2 < n, and since n is a power
of 2 greater than 2, we have that n/2 ≥ 2, so (n/2) log n/2 ≥ 2. By the inductive hypothesis,
T (n/2) ≤ k(n/2) log n/2. But then

T (n) ≤ 2T (n/2) + cn ≤ 2k
n

2
log

n

2
+ cn (4.29)

= kn log
n

2
+ cn (4.30)

= kn log n − kn log 2 + cn (4.31)
= kn log n − kn + cn. (4.32)

Recall that we are trying to show that T (n) ≤ kn log n. But that is not quite what Line 4.32
tells us. This shows that we need to make another assumption about k, namely that −kn+cn ≤ 0,
or k ≥ c. Then if both our assumptions about k are satisfied, we will have T (n) < kn log n, and
we can conclude by the principle of mathematical induction that for all n > 1 (so our n0 is 2),
T (n) ≤ kn log n, so that T (n) = O(n log n).

A full inductive proof that T (n) = O(n log n) is actually embedded in the discussion above,
but since it might not appear to everyone to be a proof, below we will summarize our observations
in a more traditional looking proof. However you should be aware that some authors and teachers
prefer to write their proofs in a style that shows why we make the choices about k that we do,
and so you should learn how to to read discussions like the one above as proofs.

We want to show that if T (n) ≤ T (n/2) + cn, then T (n) = O(n log n). We are given a real
number c > 0 such that T (n) ≤ 2T (n/2) + cn for all n > 1. Choose k to be larger than or equal
to T (2)

2 and larger than or equal to c. Then

T (2) ≤ k · 2 log 2

4.5. MORE GENERAL KINDS OF RECURRENCES 165

because k ≥ T (n0)/2 and log 2 = 1. Now assume that n > 2 and assume that for m with
2 ≤ m < n, we have T (m) ≤ km log m. Since n is a power of 2, we have n ≥ 4, so that n/2 is an
m with 2 ≤ m < n. Thus, by the inductive hypothesis,

T

(
n

2

)
≤ k

n

2
log

n

2.

Then by the recurrence,

T (n) ≤ 2k
n

2
log

n

2
+ cn

= kn(log n − 1) + cn

= kn log n + cn − kn

≤ kn log n,

since k ≥ c. Thus by the principle of mathematical induction, T (n) ≤ kn log n for all n > 2, and
therefore T (n) = O(n log n).

There are three things to note about this proof. First without the preceding discussion, the
choice of k seems arbitrary. Second, without the preceding discussion, the implicit choice of 2 for
the n0 in the big-O statement also seems arbitrary. Third, the constant k is chosen in terms of
the previous constant c. Since c was given to us by the recurrence, it may be used in choosing the
constant we use to prove a Big-O statement about solutions to the recurrence. If you compare
the formal proof we just gave with the informal discussion that preceded it, you will find each
step of the formal proof actually corresponds to something we said in the informal discussion.
Since the informal discussion explained why we were making the choices we did, it is natural that
some people prefer the informal explanation to the formal proof.

Further Wrinkles in Induction Proofs

Exercise 4.5-2 Suppose that c is a real number greater than zero. Show by induction
that any solution T (n) to the recurrence

T (n) ≤ T (n/3) + cn

with n restricted to integer powers of 3 has T (n) = O(n).

Exercise 4.5-3 Suppose that c is a real number greater than zero. Show by induction
that any solution T (n) to the recurrence

T (n) ≤ 4T (n/2) + cn

with n restricted to integer powers of 2 has T (n) = O(n2).

In Exercise 4.5-2 we are given a constant c such that T (n) ≤ T (n/3) + cn if n > 1. Since
we want to show that T (n) = O(n), we want to find two more constants n0 and k such that
T (n) ≤ kn whenever n > n0.

We will choose n0 = 1 here. (This was not an arbitrary choice; it is based on observing that
T (1) ≤ kn is not an impossible condition to satisfy when n = 1.) In order to have T (n) ≤ kn for

166 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

n = 1, we must assume k ≥ T (1). Now assuming inductively that T (m) ≤ km when 1 ≤ m < n
we can write

T (n) ≤ T (n/3) + cn

≤ k(n/3) + cn

= kn +
(

c − 2k

3

)
n

Thus, as long as c − 2k
3 ≤ 0, i.e. k ≥ 3

2c, we may conclude by mathematical induction that
T (n) ≤ kn for all n ≥ 1. Again, the elements of an inductive proof are in the preceding
discussion. Again you should try to learn how to read the argument we just finished as a valid
inductive proof. However, we will now present something that looks more like an inductive proof.

We choose k to be the maximum of T (1) and 3c/2 and we choose n0 = 1. To prove by
induction that T (x) ≤ kx we begin by observing that T (1) ≤ k · 1. Next we assume that n > 1
and assume inductively that for m with 1 ≤ m < n we have T (m) ≤ km. Now we may write

T (n) ≤ T (n/3) + cn ≤ kn/3 + cn = kn + (c − 2k/3)n ≤ kn,

because we chose k to be at least as large as 3c/2, making c − 2k/3 negative or zero. Thus by
the principle of mathematical induction we have T (n) ≤ kn for all n ≥ 1 and so T (n) = O(n).

Now let’s analyze Exercise 4.5-3. We won’t dot all the i’s and cross all the t’s here because
there is only one major difference between this exercise and the previous one. We wish to prove
that there are an n0 and a k such that T (n) ≤ kn2 for n > n0. Assuming that we have chosen n0

and k so that the base case holds, we can bound T (n) inductively by assuming that T (m) ≤ km2

for m < n and reasoning as follows:

T (n) ≤ 4T

(
n

2

)
+ cn

≤ 4

(
k

(
n

2

)2
)

+ cn

= 4

(
kn2

4

)
+ cn

= kn2 + cn.

To proceed as before, we would like to choose a value of k so that cn ≤ 0. But we see that
we have a problem because both c and n are always positive! What went wrong? We have a
statement that we know is true, and we have a proof method (induction) that worked nicely for
similar problems.

The usual way to describe the problem we are facing is that, while the statement is true, it
is too weak to be proved by induction. To have a chance of making the inductive proof work,
we will have to make an inductive hypothesis that puts some sort of negative quantity, say a
term like −kn, into the last line of our display above. Let’s see if we can prove something that is
actually stronger than we were originally trying to prove, namely that for some positive constants
k1 and k2, T (n) ≤ k1n

2 − k2n. Now proceeding as before, we get

T (n) ≤ 4T (n/2) + cn

4.5. MORE GENERAL KINDS OF RECURRENCES 167

≤ 4

(
k1

(
n

2

)2

− k2

(
n

2

))
+ cn

= 4

(
k1n

2

4
− k2

(
n

2

))
+ cn

= k1n
2 − 2k2n + cn

= k1n
2 − k2n + (c − k2)n.

Now we have to make (c − k2)n ≤ 0 for the last line to be at most k1n
2 − k2n, and so we just

choose k2 ≥ c (and greater than whatever we need in order to make a base case work). Since
T (n) ≤ k1n

2 − k2n for some constants k1 and k2, then T (n) = O(n2).

At first glance, this approach seems paradoxical: why is it easier to prove a stronger statement
than it is to prove a weaker one? This phenomenon happens often in induction: a stronger
statement is often easier to prove than a weaker one. Think carefully about an inductive proof
where you have assumed that a bound holds for values smaller than n and you are trying to
prove a statement for n. You use the bound you have assumed for smaller values to help prove
the bound for n. Thus if the bound you used for smaller values is actually weak, then that is
hindering you in proving the bound for n. In other words when you want to prove something
about p(n) you are using p(1)∧ . . .∧ p(n− 1). Thus if these are stronger, they will be of greater
help in proving p(n). In the case above, the problem was that the statements, p(1), . . . , p(n− 1)
were too weak, and thus we were not able to prove p(n). By using a stronger p(1), . . . , p(n − 1),
however, we were able to prove a stronger p(n), one that implied the original p(n) we wanted.
When we give an induction proof in this way, we say that we are using a stronger inductive
hypothesis.

Dealing with Functions Other Than nc

Our statement of the Master Theorem involved a recursive term plus an added term that was
Θ(nc). Sometimes algorithmic problems lead us to consider other kinds of functions. The most
common such is example is when that added function involves logarithms. For example, consider
the recurrence:

T (n) =

{
2T (n/2) + n log n if n > 1
1 if n = 1,

where n is a power of 2. Just as before, we can draw a recursion tree; the whole methodology
works, but our sums may be a little more complicated. The tree for this recurrence is shown in
Figure 4.8.

This is similar to the tree for T (n) = 2T (n/2)+n, except that the work on level i is n log
(

n
2i

)

for i ≥ 2, and, for the bottom level, it is n, the number of subproblems, times 1. Thus if we sum
the work per level we get

log n−1∑

i=0

n log
(

n

2i

)
+ n = n

log n−1∑

i=0

log
(

n

2i

)
+ 1

= n

log n−1∑

i=0

(log n − log 2i) + 1

168 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Figure 4.8: The recursion tree for T (n) = 2T (n/2) + n log n if n > 1 and T (1) = 1.

n log n

n/2 log(n/2) + n/2 log(n/2) = n log(n/2)

4(n/4 log(n/4)) = n log(n/4)

8(n/8 log(n/8)) = n log(n/8)

n/2(n/(n/2) log(n/(n/2))) = n

WorkProblem Size

n

n/2

n/4

n/8

2

log n +1
levels

1 n(1) = n

= n

log n−1∑

i=0

log n −
log n−1∑

i=0

i

 + n

= n

(
(log n)(log n) − (log n)(log n − 1)

2

)
+ n

= O(n log2 n) .

A bit of mental arithmetic in the second last line of our equations shows that the log2 n will not
cancel out, so our solution is in fact Θ(n log2 n).

Exercise 4.5-4 Find the best big-O bound you can on the solution to the recurrence

T (n) =

{
T (n/2) + n log n if n > 1
1 if n = 1,

assuming n is a power of 2. Is this bound a big-Θ bound?

The tree for this recurrence is in Figure 4.9

Notice that the work done at the bottom nodes of the tree is determined by the statement
T (1) = 1 in our recurrence; it is not 1 log 1. Summing the work, we get

1 +
log n−1∑

i=0

n

2i
log

(
n

2i

)
= 1 + n

log n−1∑

i=0

1
2i

(log n − log 2i)

= 1 + n

log n−1∑

i=0

(
1
2

)i

(log(n) − i)

≤ 1 + n

log n
log n−1∑

i=0

(
1
2

)i

4.5. MORE GENERAL KINDS OF RECURRENCES 169

Figure 4.9: The recursion tree for the recurrence T (n) = T (n/2) + n log n if n > 1 and T (1) = 1.

Problem Size

n

n/2

n

Work

n/4

n/8

2

log n
levels

n/2 log(n/2)

n/4 log(n/4)

n/8 log(n/8)

2 log 2

≤ 1 + n(log n)(2)
= O(n log n).

Note that the largest term in the sum in our second line of equations is log(n), and none of the
terms in the sum are negative. This means that n times the sum is at least n log n. Therefore,
we have T (n) = Θ(n log n).

Removing Ceilings and Using Powers of b. (Optional)

We showed that in our versions of the master theorem, we could ignore ceilings and assume our
variables were powers of b. It might appear that the two theorems we used do not apply to the
more general functions we have studied in this section any more than the master theorem does.
However, they actually only depend on properties of the powers nc and not the three different
kinds of cases, so it turns out we can extend them.

Notice that (xb)c = bcxc, and this proportionality holds for all values of x with constant
of proportionality bc. Putting this just a bit less precisely, we can write (xb)c = O(xc). This
suggests that we might be able to obtain Big-Θ bounds on T (n) when T satisfies a recurrence of
the form

T (n) = aT (n/b) + f(n)

with f(nb) = Θ(f(n)), and we might be able to obtain Big-O bounds on T when T satisfies a
recurrence of the form

T (n) ≤ aT (n/b) + f(n)

with f(nb) = O(f(n)). But are these conditions satisfied by any functions of practical interest?
Yes. For example if f(x) = log(x), then

f(bx) = log(b) + log(x) = Θ(log(x)).

Exercise 4.5-5 Show that if f(x) = x2 log x, then f(bx) = Θ(f(x)).

170 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Exercise 4.5-6 If f(x) = 3x and b = 2, is f(bx) = Θ(f(x))? Is f(b(x)) = O(f(x))?

For Exercise 4.5-5 if f(x) = x2 log x, then

f(bx) = (bx)2 log bx = b2x2(log b + log x) = Θ(x2 log x).

However, if f(x) = 3x, then
f(2x) = 32x = (3x)2 = 3x · 3x,

and there is no way that this can be less than or equal to a constant multiple of 3x, so it is
neither Θ(3x) nor O(3x). Our exercises suggest the kinds of functions that satisfy the condition
f(bx) = O(f(x)) might include at least some of the kinds of functions of x which arise in the
study of algorithms. They certainly include the power functions and thus polynomial functions
and root functions, or functions bounded by such functions.

There was one other property of power functions nc that we used implicitly in our discussions
of removing floors and ceilings and assuming our variables were powers of b. Namely, if x > y (and
c ≥ 0) then xc ≥ yc. A function f from the real numbers to the real numbers is called (weakly)
increasing if whenever x > y, then f(x) ≥ f(y). Functions like f(x) = log x and f(x) = x log x
are increasing functions. On the other hand, the function defined by

f(x) =

{
x if x is a power of b
x2 otherwise

is not increasing even though it does satisfy the condition f(bx) = Θ(f(x)).

Theorem 4.15 Theorems 4.12 and 4.13 apply to recurrences in which the xc term is replaced
by an increasing function f for which f(bx) = Θ(f(x)).

Proof: We iterate the recurrences in the same way as in the proofs of the original theorems,
and find that the condition f(bx) = Θ(f(x)) applied to an increasing function gives us enough
information to again bound the solution to one kind of recurrence above and below with a multiple
of the solution of the other kind. The details are similar to those in the original proofs so we
omit them.

In fact there are versions of Theorems 4.12 and 4.13 for recurrence inequalities also. The
proofs involve a similar analysis of iterated recurrences or recursion trees, and so we omit them.

Theorem 4.16 Let a and b be positive real numbers with b > 2 and let f : R+ → R+ be an
increasing function such that f(bx) = O(f(x)). Then every solution t(x) to the recurrence

t(x) ≤
{

at(x/b) + f(x) if x ≥ b
c if 1 ≤ x < b,

where a, b, and c are constants, satisfies t(x) = O(h(x)) if and only if every solution T (n) to the
recurrence

T (n) ≤
{

aT (n/b) + f(n) if n > 1
d if n = 1,

where n is restricted to powers of b, satisfies T (n) = O(h(n)).

4.5. MORE GENERAL KINDS OF RECURRENCES 171

Theorem 4.17 Let a and b be positive real numbers with b ≥ 2 and let f : R+ → R+ be an
increasing function such that f(bx) = O(f(x)). Then every solution T (n) to the recurrence

T (n) ≤
{

at(�n/b�) + f(n) if n > 1
d if n = 1,

satisfies T (n) = O(h(n)) if and only if every solution t(x) to the recurrence

t(x) ≤
{

aT (x/b) + f(x) if x ≥ b
d if 1 ≤ x < b,

satisfies t(x) = O(h(x)).

Important Concepts, Formulas, and Theorems

1. Recurrence Inequality. Recurrence inequalities are inequalities that state that T (n) is less
than or equal to some expression involving values of T (m) for m < n. A solution to a
recurrence inequality is a function T that satisfies the inequality.

2. Recursion Trees for Recurrence Inequalities. We can analyze recurrence inequalities via a
recursion tree. The process is virtually identical to our previous use of recursion trees. We
must, however, keep in mind that on each level, we are really computing an upper bound
on the work done on that level.

3. Discovering Necessary Assumptions for an Inductive Proof. If we are trying to prove a
statement that there is a value k such that an inequality of the form f(n) ≤ kg(n) or
some other statement that involves the parameter k is true, we may start an inductive
proof without knowing a value for k and determine conditions on k by assumptions that
we need to make in order for the inductive proof to work. When written properly, such an
explanation is actually a valid proof.

4. Making a Stronger Inductive Hypothesis. If we are trying to prove by induction a statement
of the form p(n) ⇒ q(n) and we have a statement s(n) such that s(n) ⇒ q(n), it is sometimes
useful to try to prove the statement p(n) ⇒ s(n). This process is known as proving a
stronger statement or making a stronger inductive hypothesis. It sometimes works because
it gives us an inductive hypothesis which suffices to prove the stronger statement even
though our original statement q(n) did not give an inductive hypothesis sufficient to prove
the original statement. However we must be careful in our choice of s(n), because we have
to be able to succeed in proving p(n) ⇒ s(n).

5. When the Master Theorem does not Apply. To deal with recurrences of the form

T (n) =

{
aT (�n/b�) + f(n) if n > 1
d if n = 1

where f(n) is not Θ(nc), recursion trees and iterating the recurrence are appropriate tools
even though the Master Theorem does not apply. The same holds for recurrence inequalities.

6. Increasing function. (Optional.) A function f : R → R is said to be (weakly) increasing if
whenever x > y, f(x) ≥ f(y)

172 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

7. Removing Floors and Ceilings when the Master Theorem does not Apply. (Optional.) To
deal with big-Θ bounds with recurrences of the form

T (n) =

{
aT (�n/b�) + f(n) if n > 1
d if n = 1

where f(n) is not Θ(nc), we may remove floors and ceilings and replace n by powers of b
if f is increasing and satisfies the condition f(nb) = Θ(f(n)). To deal with big-O bounds
for a similar recurrence inequality we may remove floors and ceilings if f is increasing and
satisfies the condition that f(nb) = O(f(n)).

Problems

1. (a) Find the best big-O upper bound you can to any solution to the recurrence

T (n) =

{
4T (n/2) + n log n if n > 1
1 if n = 1.

(b) Assuming that you were able to guess the result you got in part (a), prove by induction
that your answer is correct.

2. Is the big-O upper bound in the previous problem actually a big-Θ bound?

3. Show by induction that

T (n) =

{
8T (n/2) + n log n if n > 1
d if n = 1

has T (n) = O(n3) for any solution T (n).

4. Is the big-O upper bound in the previous problem actually a big-Θ bound?

5. Show by induction that any solution to a recurrence of the form

T (n) ≤ 2T (n/3) + c log3 n

is O(n log3 n). What happens if you replace 2 by 3 (explain why)? Would it make a
difference if we used a different base for the logarithm (only an intuitive explanation is
needed here)?

6. What happens if you replace the 2 in Problem 5 by 4? (Hint: one way to attack this is
with recursion trees.)

7. Is the big-O upper bound in Problem 5 actually a big Θ bound?

8. (Optional) Give an example (different from any in the text) of a function for which f(bx) =
O(f(x)). Give an example (different from any in the text) of a function for which f(bx) is
not O(f(x)).

9. Give the best big O upper bound you can for the solution to the recurrence T (n) = 2T (n/3−
3) + n, and then prove by induction that your upper bound is correct.

4.5. MORE GENERAL KINDS OF RECURRENCES 173

10. Find the best big-O upper bound you can to any solution to the recurrence defined on
nonnegative integers by

T (n) ≤ 2T (�n/2� + 1) + cn.

Prove by induction that your answer is correct.

174 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

4.6 Recurrences and Selection

The idea of selection

One common problem that arises in algorithms is that of selection. In this problem you are given
n distinct data items from some set which has an underlying order. That is, given any two items
a and b, you can determine whether a < b. (Integers satisfy this property, but colors do not.)
Given these n items, and some value i, 1 ≤ i ≤ n, you wish to find the ith smallest item in the
set. For example in the set

{3, 1, 8, 6, 4, 11, 7}, (4.33)

the first smallest (i = 1) is 1, the third smallest (i = 3) is 4 and the seventh smallest (i = n = 7)
is 11. An important special case is that of finding the median, which is the case of i = �n/2�.
Another important special case is finding percentiles; for example the 90th percentile is the case
i = �.9n�. As this suggests, i is frequently given as some fraction of n.

Exercise 4.6-1 How do you find the minimum (i = 1) or maximum (i = n) in a set?
What is the running time? How do you find the second smallest element? Does this
approach extend to finding the ith smallest? What is the running time?

Exercise 4.6-2 Give the fastest algorithm you can to find the median (i = �n/2�).

In Exercise 4.6-1, the simple O(n) algorithm of going through the list and keeping track of
the minimum value seen so far will suffice to find the minimum. Similarly, if we want to find the
second smallest, we can go through the list once, find the smallest, remove it and then find the
smallest in the new list. This also takes O(n + n − 1) = O(n) time. If we extend this to finding
the ith smallest, the algorithm will take O(in) time. Thus for finding the median, this method
takes O(n2) time.

A better idea for finding the median is to first sort the items, and then take the item in
position n/2. Since we can sort in O(n log n) time, this algorithm will take O(n log n) time. Thus
if i = O(log n) we might want to run the algorithm of the previous paragraph, and otherwise run
this algorithm.4

All these approaches, when applied to the median, take at least some multiple of (n log n)
units of time.5 The best sorting algorithms take O(n log n) time also, and one can prove every
comparison-based sorting algorithm takes Ω(n log n) time. This raises the natural question of
whether it is possible to do selection any faster than sorting. In other words, is the problem of
finding the median element, or of finding the ith smallest element of a set, significantly easier
than the problem of ordering (sorting) the whole set?

A recursive selection algorithm

Suppose for a minute that we magically knew how to find the median in O(n) time. That is, we
have a routine MagicMedian, that given as input a set A, returns the median. We could then
use this in a divide and conquer algorithm for Select as follows:

4We also note that the running time can be improved to O(n + i log n) by first creating a heap, which takes
O(n) time, and then performing a Delete-Min operation i times.

5An alternate notation for f(x) = O(g(x)) is g(x) = Ω(f(x)). Notice the change in roles of f and g. In this
notation, we say that all of these algorithms take Ω(n log n) time.

4.6. RECURRENCES AND SELECTION 175

Select(A, i, n)
(selects the ith smallest element in set A, where n = |A|)
(1) if (n = 1)
(2) return the one item in A
(3) else
(4) p = MagicMedian(A)
(5) Let H be the set of elements greater than p
(6) Let L be the set of elements less than or equal to p
(7) if (i ≤ |L|)
(8) Return Select(L, i, |L|)
(9) else
(10) Return Select(H, i − |L|, |H|).

By H we do not mean the elements that come after p in the list, but the elements of the
list which are larger than p in the underlying ordering of our set. This algorithm is based on
the following simple observation. If we could divide the set A up into a “lower half” (L) and an
“upper” half (H), then we know in which of these two sets the ith smallest element in A will be.
Namely, if i ≤ �n/2�, it will be in L, and otherwise it will be in H. Thus, we can recursively look
in one or the other set. We can easily partition the data into two sets by making two passes,
in the first we copy the numbers smaller than p into L, and in the second we copy the numbers
larger than p into H.6

The only additional detail is that if we look in H, then instead of looking for the ith smallest,
we look for the i − �n/2�th smallest, as H is formed by removing the �n/2� smallest elements
from A.

For example, if the input is the set given in 4.33, and p is 6, the set L would be {3, 1, 6, 4},
and H would be {8, 11, 7}. If i were 2, we would recurse on the set L, with i = 2. On the other
hand, if i were 6, we would recurse on the set H, with i = 6 − 4 = 2. Observe that the second
smallest element in H is 8, as is the sixth smallest element in the original set.

We can express the running time of Select by the following recurrence:

T (n) ≤ T (n/2) + cn . (4.34)

From the master theorem, we know any function which satisfies this recurrence has T (n) = O(n).

So we can conclude that if we already know how to find the median in linear time, we
can design a divide and conquer algorithm that will solve the selection problem in linear time.
However, this is nothing to write home about (yet)!

Selection without knowing the median in advance

Sometimes a knowledge of solving recurrences can help us design algorithms. What kinds of
recurrences do we know about that have solutions T (n) with T (n) = O(n)? In particular,
consider recurrences of the form T (n) ≤ T (n/b) + cn, and ask when they have solutions with
T (n) = O(n). Using the master theorem, we see that as long as logb 1 < 1 (and since logb 1 = 0

6We can do this more efficiently, and “in place”, using the partition algorithm of quicksort.

176 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

for any b, then any b allowed by the master theorem works; that is, any b > 1 will work), all
solutions to this recurrence will have T (n) = O(n). (Note that b does not have to be an integer.)
If we let b′ = 1/b, we can say equivalently that as long as we can solve a problem of size n by
solving (recursively) a problem of size b′n, for some b′ < 1, and also doing O(n) additional work,
our algorithm will run in O(n) time. Interpreting this in the selection problem, it says that as
long as we can, in O(n) time, choose p to ensure that both L and H have size at most b′n, we
will have a linear time algorithm. (You might ask “What about actually dividing our set into L
and H, doesn’t that take some time too?” The answer is yes it does, but we already know we
can do the division into H and L in time O(n), so if we can find p in time O(n) also, then we
can do both these things in time O(n).)

In particular, suppose that, in O(n) time, we can choose p to ensure that both L and H have
size at most (3/4)n. Then the running time is described by the recurrence T (n) = T (3n/4)+O(n)
and we will be able to solve the selection problem in linear time.

To see why (3/4)n is relevant, suppose instead of the “black box” MagicMedian, we have a
much weaker magic black box, one which only guarantees that it will return some number in
the middle half of our set in time O(n). That is, it will return a number that is guaranteed to
be somewhere between the n/4th smallest number and the 3n/4th smallest number. If we use
the number given by this magic box to divide our set into H and L, then neither will have size
more than 3n/4. We will call this black box a MagicMiddle box, and can use it in the following
algorithm:

Select1(A,i,n)
(selects the ith smallest element in set A, where n = |A|)
(1) if (n = 1)
(2) return the one item in A
(3) else
(4) p = MagicMiddle(A)
(5) Let H be the set of elements greater than p
(6) Let L be the set of elements less than or equal to p
(7) if (i ≤ |L|)
(8) Return Select1(L, i, |L|)
(9) else
(10) Return Select1(H, i − |L|, |H|).

The algorithm Select1 is similar to Select. The only difference is that p is now only guaranteed
to be in the middle half. Now, when we recurse, we decide whether to recruse on L or H based
on whether i is less than or equal to |L|. The element p is called a partition element, because it
is used to partition our set A into the two sets L and H.

This is progress, as we now don’t need to assume that we can find the median in order to
have a linear time algorithm, we only need to assume that we can find one number in the middle
half of the set. This problem seems simpler than the original problem, and in fact it is. Thus our
knowledge of which recurrences have solutions which are O(n) led us toward a more plausible
algorithm.

It takes a clever algorithm to find an item in the middle half of our set. We now describe
such an algorithm in which we first choose a subset of the numbers and then recursively find the
median of that subset.

4.6. RECURRENCES AND SELECTION 177

An algorithm to find an element in the middle half

More precisely, consider the following algorithm in which we assume that |A| is a multiple of 5.
(The condition that n < 60 in line 2 is a technical condition that will be justified later.)

MagicMiddle(A)
(1) Let n = |A|
(2) if (n < 60)
(3) use sorting to return the median of A
(4) else
(5) Break A into k = n/5 groups of size 5, G1, . . . , Gk

(6) for i = 1 to k
(7) find mi, the median of Gi (by sorting)
(8) Let M = {m1, . . . , mk}
(9) return Select1 (M, �k/2�, k).

In this algorithm, we break A into n/5 sets of size 5, and then find the median of each set.
We then (using Select1 recursively) find the median of medians and return this as our p.

Lemma 4.18 The value returned by MagicMiddle(A) is in the middle half of A.

Proof: Consider arranging the elements as follows. List each set of 5 vertically in sorted
order, with the smallest element on top. Then line up all n/5 of these lists, ordered by their
medians, smallest on the left. We get the picture in Figure 4.10. In this picture, the medians

Figure 4.10: Dividing a set into n/5 parts of size 5, finding the median of each part and the
median of the medians.

are in white, the median of medians is cross-hatched, and we have put in all the inequalities that
we know from the ordering information that we have. Now, consider how many items are less
than or equal to the median of medians. Every smaller median is clearly less than the median

178 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

of medians and, in its 5 element set, the elements smaller than the median are also smaller than
the median of medians. Now in Figure 4.11 we circle a set of elements that is guaranteed to be
smaller than the median of medians. In one fewer (or in the case of an odd number of columns

Figure 4.11: The circled elements are less than the median of the medians.

as in Figure 4.11, one half fewer) than half the columns, we have circled 3 elements and in one
column we have circled 2 elements. Therefore, we have circled at least7

(
1
2

(
n

5

)
− 1

)
3 + 2 =

3n

10
− 1

elements.

So far we have assumed n is an exact multiple of 5, but we will be using this idea in cir-
cumstances when it is not. If it is not an exact multiple of 5, we will have �n/5� columns (in
particular more than n/5 columns), but in one of them we might have only one element. It is
possible that this column is one of the ones we counted on for 3 elements, so our estimate could
be two elements too large.8 Thus we have circled at least

3n

10
− 1 − 2 =

3n

10
− 3

elements. It is a straightforward argument with inequalities that as long as n ≥ 60, this quantity
is at least n/4. So if at least n/4 items are guaranteed to be less than the median, then at most
3n/4 items can be greater than the median, and hence |H| ≤ 3n/4.

A set of elements that is guaranteed to be larger than the median of medians is circled in the
Figure 4.12. We can make the same argument about the number of larger elements circled when
the number of columns is odd; when the number of columns is even, a similar argument shows
that we circle even more elements. By the same argument as we used with |H|, this shows that
the size of L is at most 3n/4.

7We say “at least” because our argument applies exactly when n is even, but underestimates the number of
circled elements when n is odd.

8A bit less than 2 because we have more than n/5 columns.

4.6. RECURRENCES AND SELECTION 179

Figure 4.12: The circled elements are greater than the median of the medians.

Note that we don’t actually identify all the nodes that are guaranteed to be, say, less than
the median of medians, we are just guaranteed that the proper number exists.

Since we only have the guarantee that MagicMiddle gives us an element in the middle half of
the set if the set has at least sixty elements, we modify Select1 to start out by checking to see if
n < 60, and sorting the set to find the element in position i if n < 60. Since 60 is a constant,
sorting and finding the desired element takes at most a constant amount of time.

An analysis of the revised selection algorithm

Exercise 4.6-3 Let T (n) be the running time of the modified Select1 on n items. How
can you express the running time of Magic Middle in terms of T (n)?

Exercise 4.6-4 What is a recurrence for the running time of Select1? Hint: how could
Exercise 4.6-3 help you?

Exercise 4.6-5 Can you prove by induction that each solution to the recurrence for Select1
is O(n)?

For Exercise 4.6-3, we have the following steps.

• The first step of MagicMiddle is to divide the items into sets of five; this takes O(n) time.

• We then have to find the median of each five-element set. (We can find this median by any
straightforward method we choose and still only take at most a constant amount of time;
we don’t use recursion here.) There are n/5 sets and we spend no more than some constant
time per set, so the total time is O(n).

• Next we recursively call Select1 to find the median of medians; this takes T (n/5) time.

• Finally, we partition A into those elements less than or equal to the “magic middle” and
those that are not, which takes O(n) time.

180 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Thus the total running time is T (n/5)+O(n), which implies that for some n0 there is a constant
c0 > 0 such that, for all n > n0, the running time is no more than c0n. Even if n0 > 60, there
are only finitely many cases between 60 and n0 so there is a constant c such that for n ≥ 60, the
running time of Magic Middle is no more than T (n/5) + cn.

We now get a recurrence for the running time of Select1. Note that for n ≥ 60 Select1 has to
call Magic Middle and then recurse on either L or H, each of which has size at most 3n/4. For
n < 60, note that it takes time no more than some constant amount d of time to find the median
by sorting. Therefore we get the following recurrence for the running time of Select1:

T (n) ≤
{

T (3n/4) + T (n/5) + c′n if n ≥ 60
d if n < 60.

(4.35)

This answers Exercise 4.6-4.

As Exercise 4.6-5 requests, we can now verify by induction that T (n) = O(n). What we want
to prove is that there is a constant k such that T (n) ≤ kn. What the recurrence tells us is that
there are constants c and d such that T (n) ≤ T (3n/4) + T (n/5) + cn if n ≥ 60, and otherwise
T (n) ≤ d. For the base case we have T (n) ≤ d ≤ dn for n < 60, so we choose k to be at least d
and then T (n) ≤ kn for n < 60. We now assume that n ≥ 60 and T (m) ≤ km for values m < n,
and get

T (n) ≤ T (3n/4) + T (n/5) + cn

≤ 3kn/4 + kn/5 + cn

= 19/20kn + cn

= kn + (c − k/20)n .

As long as k ≥ 20c, this is at most kn; so we simply choose k this big and by the principle of
mathematical induction, we have T (n) < kn for all positive integers n.

Uneven Divisions

The kind of recurrence we found for the running time of Select1 is actually an instance of a more
general class which we will now explore.

Exercise 4.6-6 We already know that when g(n) = O(n), then every solution of T (n) =
T (n/2) + g(n) satisfies T (n) = O(n). Use the master theorem to find a Big-O bound
to the solution of T (n) = T (cn) + g(n) for any constant c < 1, assuming that g(n) =
O(n).

Exercise 4.6-7 Use the master theorem to find Big-O bounds to all solutions of T (n) =
2T (cn) + g(n) for any constant c < 1/2, assuming that g(n) = O(n).

Exercise 4.6-8 Suppose g(n) = O(n) and you have a recurrence of the form T (n) =
T (an) + T (bn) + g(n) for some constants a and b. What conditions on a and b
guarantee that all solutions to this recurrence have T (n) = O(n)?

Using the master theorem for Exercise 4.6-6, we get T (n) = O(n), since log1/c 1 < 1. We also
get T (n) = O(n) for Exercise 4.6-7, since log1/c 2 < 1 for c < 1/2. You might now guess that as

4.6. RECURRENCES AND SELECTION 181

long as a + b < 1, any solution to the recurrence T (n) ≤ T (an) + T (bn) + cn has T (n) = O(n).
We will now see why this is the case.

First, let’s return to the recurrence we had, T (n) = T (3/4n)+T (n/5)+g(n), were g(n) = O(n)
and let’s try to draw a recursion tree. This recurrence doesn’t quite fit our model for recursion
trees, as the two subproblems have unequal size (thus we can’t even write down the problem size
on the left), but we will try to draw a recursion tree anyway and see what happens. As we draw

Figure 4.13: Attempting a recursion tree for T (n) = T (3/4n) + T (n/5) + g(n).

n

3/4 n 1/5 n

(3/4)(1/5)n (1/5)(3/4)n (1/5)(1/5)n(3/4)(3/4)n

Work

n

(3/4+1/5)n

((3/4)(3/4)
+ (3/4)(1/5)
+(1/5)(3/4)
+(1/5)(1/5)) n

levels one and two, we see that at level one, we have (3/4 + 1/5)n work. At level two we have
((3/4)2 +2(3/4)(1/5)+(1/5)2)n work. Were we to work out the third level we would see that we
have ((3/4)3 + 3(3/4)2(1/5) + 3(3/4)(1/5)2 + (1/5)3)n. Thus we can see a pattern emerging. At
level one we have (3/4+1/5)n work. At level 2 we have, by the binomial theorem, (3/4+1/5)2n
work. At level 3 we have, by the binomial theorem, (3/4 + 1/5)3n work. And, similarly, at level

i of the tree, we have
(

3
4 + 1

5

)i
n =

(
19
20

)i
n work. Thus summing over all the levels, the total

amount of work is
O(log n)∑

i=0

(
19
20

)i

n ≤
(

1
1 − 19/20

)
n = 20n.

We have actually ignored one detail here. In contrast to a recursion tree in which all subproblems
at a level have equal size, the “bottom” of the tree is more complicated. Different branches of
the tree will reach problems of size 1 and terminate at different levels. For example, the branch
that follows all 3/4’s will bottom out after log4/3 n levels, while the one that follows all 1/5’s will
bottom out after log5 n levels. However, the analysis above overestimates the work. That is, it
assumes that nothing bottoms out until everything bottoms out, i.e. at log20/19 n levels. In fact,
the upper bound we gave on the sum “assumes” that the recurrence never bottoms out.

We see here something general happening. It seems as if to understand a recurrence of the
form T (n) = T (an) + T (bn) + g(n), with g(n) = O(n), we can study the simpler recurrence
T (n) = T ((a + b)n) + g(n) instead. This simplifies things (in particular, it lets us use the
Master Theorem) and allows us to analyze a larger class of recurrences. Turning to the median
algorithm, it tells us that the important thing that happened there was that the sizes of the two
recursive calls, namely 3/4n and n/5, summed to less than 1. As long as that is the case for an

182 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

algorithm with two recursive calls and an O(n) additional work term, whose recurrence has the
form T (n) = T (an) + T (bn) + g(n), with g(n) = O(n), the algorithm will work in O(n) time.

Important Concepts, Formulas, and Theorems

1. Median. The median of a set (with an underlying order) of n elements is the element that
would be in position �n/2� if the set were sorted into a list in order.

2. Percentile. The pth percentile of a set (with an underlying order) is the element that would
be in position � p

100n� if the set were sorted into a list in order.

3. Selection. Given an n-element set with some underlying order, the problem of selection of
the ith smallest element is that of finding the element that would be in the ith position if
the set were sorted into a list in order. Note that often i is expressed as a fraction of n.

4. Partition Element. A partition element in an algorithm is an element of a set (with an
underlying order) which is used to divide the set into two parts, those that come before
or are equal to the element (in the underlying order), and the remaining elements. Notice
that the set as given to the algorithm is not necessarily (in fact not usually) given in the
underlying order.

5. Linear Time Algorithms. If the running time of an algorithm satisfies a recurrence of the
form T (n) ≤ T (an) + cn with 0 ≤ a < 1, or a recurrence of the form T (n) ≤ T (an) +
T (bn) + cn with a and b nonnegative and a + b < 1, then T (n) = O(n).

6. Finding a Good Partition Element. If a set (with an underlying order) has sixty or more
elements, then the procedure of breaking the set into pieces of size 5 (plus one leftover piece
if necessary), finding the median of each piece and then finding the median of the medians
gives an element guaranteed to be in the middle half of the set.

7. Selection algorithm. The Selection algorithm that runs in linear time sorts a set of size less
than sixty to find the element in the ith position; otherwise

• it recursively uses the median of medians of five to find a partition element,

• it uses that partition element to divide the set into two pieces and

• then it looks for the appropriate element in the appropriate piece recursively.

Problems

1. In the MagicMiddle algorithm, suppose we broke our data up into n/3 sets of size 3. What
would the running time of Select1 be?

2. In the MagicMiddle algorithm, suppose we broke our data up into n/7 sets of size 7. What
would the running time of Select1 be?

3. Let

T (n) =

{
T (n/3) + T (n/2) + n if n ≥ 6
1 otherwise,

4.6. RECURRENCES AND SELECTION 183

and let

S(n) =

{
S(5n/6) + n if n ≥ 6
1 otherwise.

Draw recursion trees for T and S. What are the big-O bounds we get on solutions to the
recurrences? Use the recursion trees to argue that, for all n, T (n) ≤ S(n).

4. Find a (big-O) upper bound (the best you know how to get) on solutions to the recurrence
T (n) = T (n/3) + T (n/6) + T (n/4) + n.

5. Find a (big-O) upper bound (the best you know how to get) on solutions the recurrence
T (n) = T (n/4) + T (n/2) + n2.

6. Note that we have chosen the median of an n-element set to be the element in position
�n/2�. We have also chosen to put the median of the medians into the set L of algorithm
Select1. Show that this lets us prove that T (n) ≤ T (3n/4) + T (n/5) + cn for n ≥ 40 rather
than n ≥ 60. (You will need to analyze the case where �n/5� is even and the case where it
is odd separately.) Is 40 the least value possible?

184 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

