
IV I NDUCTION

This is a general purpose proof technique that works in a bottom-up fashion. Knowing that a statement is true for a
collection of instances, we argue that it is also true for a new instance, which we then add to the collection. Repeating this
step, we establish the statement for a countable collection.

11 Mathematical Induction
12 Recursion
13 Growth Rates
14 Solving Recurrence Relations

Homework Assignments
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11 Mathematical Induction

In philosophy,deductionis the process of taking a general
statement and applying it to a specific instance. For exam-
ple: all students must do homework, and I am a student;
therefore, I must do homework. In contrast,induction is
the process of creating a general statement from observa-
tions. For example: all cars I have owned need to be re-
paired at some point; therefore, all cars will need to be
repaired at some point. A similar concept is used in math-
ematics to prove that a statement is true for all integers.
To distinguish it from the less specific philosophical no-
tion, we call itmathematical inductionof which we will
introduce two forms. We begin by considering an example
from Section 4, showing that the idea behind Mathemati-
cal Induction is a familiar one.

Euclid’s Division Theorem. We find the smallest coun-
terexample in order to prove the following theorem.

EUCLID ’ S DIVISION THEOREM. Letting n ≥ 1, for
every non-negative integerm there are unique integersq
and0 ≤ r < n such thatm = nq + r.

PROOF. Assume the opposite, that is, there is a non-
negative integerm for which no suchq andr exist. We
choose the smallest suchm. Note thatm cannot be smaller
thann, else we haveq = 0 andr = m, andm cannot be
equal ton, else we haveq = 1 andr = 0. It follows that
m′ = m − n is a positive integer less thanm. Thus, there
exist integersq′ and0 ≤ r′ < n such thatm′ = nq′ + r′.
If we addn on both sides, we obtainm = (q′ + 1)n + r′.
If we takeq = q′ + 1 andr = r′, we getm = nq + r,
with 0 ≤ r < n. Thus, by the Principle of Reduction to
Absurdity, such integersq andr exist.

Let p(k) be the statement that there exist integersq and
0 ≤ r < n with k = nq + r. Then, the above proof can
be summarized by

p(m − n) ∧ ¬p(m) =⇒ p(m) ∧ ¬p(m).

This is the contradiction that implies¬p(m) cannot be
true. We now focus on the statementp(m − n) ⇒ p(m).
This is the idea of Mathematical Induction which bypasses
the construction of a contradiction.

Example: sum of integers. We consider the familiar
problem of summing the firstn positive integers. Recall
that

(

n+1
2

)

= n(n+1)
2 .

CLAIM . For alln ≥ 0, we have
∑n

i=0 i =
(

n+1
2

)

.

PROOF. First, we note that
∑0

i=0 i = 0 =
(

1
2

)

. Now, we
assume inductively that forn > 0, we have

n−1
∑

i=0

i =

(

n

2

)

.

If we addn on both sides, we obtain

n
∑

i=0

i =

(

n

2

)

+ n

=
(n − 1)n

2
+

2n

2

which is (n+1)n
2 =

(

n+1
2

)

. Thus, by the Principle of Math-
ematical Induction,

n
∑

i=0

i =

(

n + 1

2

)

for all non-negative integersn.

To analyze why this proof is correct, we letp(k) be the
statement that the claim is true forn = k. Forn = 1 we
havep(1)∧ [p(1) ⇒ p(2)]. Hence, we getp(2) by Modus
Ponens. We can see that this continues:

p(1) ∧ [p(1) ⇒ p(2)] hence p(2);

p(2) ∧ [p(2) ⇒ p(3)] hence p(3);

. . . . . . . . .

p(n − 1) ∧ [p(n − 1) ⇒ p(n)] hence p(n);

. . . . . . . . .

Thus,p(n0) andp(n − 1) ⇒ p(n) for all n > n0 implies
p(n) for all n ≥ n0.

The weak form. We formalize the proof technique into
the first, weak form of the principle. The vast majority of
applications of Mathematical Induction use this particular
form.

MATHEMATICAL INDUCTION (WEAK FORM). If the
statementp(n0) is true, and the statementp(n−1) ⇒ p(n)
is true for all n > n0, thenp(n) is true for all integers
n ≥ n0.

To write a proof using the weak form of Mathematical In-
duction, we thus take the following four steps: it should
have the following components:
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Base Case:p(n0) is true.

Inductive Hypothesis:p(n − 1) is true.

Inductive Step:p(n − 1) ⇒ p(n).

Inductive Conclusion:p(n) for all n ≥ n0.

Very often but not always, the inductive step is the most
difficult part of the proof. In practice, we usually sketch
the inductive proof, only spelling out the portions that are
not obvious.

Example: sum of powers of two. If we can guess the
closed form expression for a finite sum, it is often easy to
use induction to prove that it is correct, if it is.

CLAIM . For all integersn ≥ 1, we have
∑n

i=1 2i−1 =
2n − 1.

PROOF. We prove the claim by the weak form of the Prin-
ciple of Mathematical Induction. We observe that the
equality holds whenn = 1 because

∑1
i=1 2i−1 = 1 =

21 − 1. Assume inductively that the claim holds forn− 1.
We get ton by adding2n−1 on both sides:

n
∑

i=1

2i−1 =

n−1
∑

i=1

2i−1 + 2n−1

= (2n−1 − 1) + 2n−1

= 2n − 1.

Here, we use the inductive assumption to go from the first
to the second line. Thus, by the Principle of Mathematical
Induction,

∑n
i=1 2i−1 = 2n − 1 for all n ≥ 1.

The strong form. Sometimes it is not enough to use the
validity of p(n−1) to derivep(n). Indeed, we havep(n−
2) available andp(n − 3) and so on. Why not use them?

MATHEMATICAL INDUCTION (STRONG FORM). If the
statementp(n0) is true and the statementp(n0) ∧ p(n0 +
1) ∧ · · · ∧ p(n − 1) ⇒ p(n) is true for alln > n0, then
p(n) is true for all integersn ≥ n0.

Notice that the strong form of the Principle of Mathemat-
ical Induction implies the weak form.

Example: prime factor decomposition. We use the
strong form to prove that every integer has a decompo-
sition into prime factors.

CLAIM . Every integern ≥ 2 is the product of prime
numbers.

PROOF. We know that2 is a prime number and thus also
a product of prime numbers. Suppose now that we know
that every positive number less thann is a product of prime
numbers. Then, ifn is a prime number we are done. Oth-
erwise,n is not a prime number. By definition of prime
number, we can write it is the product of two smaller pos-
itive integers,n = a · b. By our supposition, botha and
b are products of prime numbers. The product,a · b, is
obtained by merging the two products, which is again a
product of prime numbers. Therefore, by the strong form
of the Principle of Mathematical Induction, every integer
n ≥ 2 is a product of prime numbers.

We have used an even stronger statement before,
namely that the decomposition into prime factors is
unique. We can use the Reduction to Absurdity to prove
uniqueness. Supposen is the smallest positive integer that
has two different decompositions. Leta ≥ 2 be the small-
est prime factor in the two decompositions. It does not be-
long to the other decomposition, else we could cancel the
two occurrences ofa and get a smaller integer with two
different decompositions. Clearly,n mod a = 0. Further-
more,ri = bi mod a 6= 0 for each prime factorbi in the
other decomposition ofn. We have

n mod a =

(

∏

i

bi

)

mod a

=

(

∏

i

ri

)

mod a.

Since all theri are smaller thana anda is a prime number,
the latter product can only be zero if one or theri is zero.
But this contradicts that all thebi are prime numbers larger
thana. We thus conclude that every integer larger than one
has a unique decomposition into prime factors.

Summary. Mathematical Induction is a tool to prove
that a property is true for all positive integers. We used
Modus Ponens to prove the weak as well as the strong
form of the Principle of Mathematical Induction.
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12 Recursion

We now describe how recurrence relations arise from re-
cursive algorithms, and begin to look at ways of solving
them. We have just learned one method that can some-
times be used to solve such a relation, namely Mathemat-
ical Induction. In fact, we can think of recursion as back-
wards induction.

The towers of Hanoi. Recurrence relations naturally
arise in the analysis of the towers of Hanoi problem. Here
we have three pegs,A, B, C, and initially n disks atA,
sorted from large to small; see Figure 10. The task is to
move then disks fromA to C, one by one, without ever
placing a larger disk onto a smaller disk. The following

A B C

Figure 10: We have a sorted stack of disks atA and useB for
temporary storage to move one disk at a time toC. We needB
to avoid any inversions among the disks.

three steps solve this problem:

• recursively moven − 1 disks fromA to B;

• move then-th disk fromA to C;

• recursively moven − 1 disks fromB to C.

When we move disks from one peg to another, we use the
third peg to help. For the main task, we useB to help.
For the first step, we exchange the roles ofB andC, and
for the third step, we exchange the roles ofA andB. The
number of moves is given by the solution to the recurrence
relation

M(n) = 2M(n − 1) + 1,

with initial conditionM(0) = 0. We may use induction to
show thatM(n) = 2n − 1.

Loan payments. Another example in which recurrence
relations naturally arise is the repayment of loans. This

is an iterative process in which we alternate the payment
of a constant sum with the accumulation of interest. The
iteration ends when the entire loan is payed off. Suppose
A0 is the initial amount of your loan,m is your monthly
payment, andp is the annual interest payment rate. What
is the amount you owe aftern months? We can express it
in terms of the amount owed aftern − 1 months:

T (n) =
(

1 +
p

12

)

T (n − 1) − m.

This is a recurrence relation, and figuring out how much
you owe is the same as solving the recurrence relation.
The number that we are most interested in isn0m, where
n0 is the number of months it takes to getT (n0) = 0.
Instead of attacking this question directly, let us look at a
more abstract, mathematical setting.

Iterating the recursion. Consider the following recur-
rence relation,

T (n) = rT (n − 1) + a,

wherer anda are some fixed real numbers. For example,
we could setr = 1+ p

12 anda = −m to get the recurrence
that describes how much money you owe. After replacing
T (n) by rT (n − 1) + a, we may take another step and
replaceT (n−1) by rT (n−2)+a to getT (n) = r(rT (n−
2) + a) + a. Iterating like this, we get

T (n) = rT (n − 1) + a

= r2T (n− 2) + ra + a

= r3T (n− 3) + r2a + ra + a

. . . . . .

= rnT (0) + a

n−1
∑

i=0

ri.

The first term on the right hand side is easy, namelyrn

times the initial condition, sayT (0) = b. The second term
is a sum, which we now turn into a nicer form.

Geometric series. The sequence of terms inside a sum
of the form

∑n−1
i=0 ri is referred to as ageometric series.

If r = 1 then this sum is equal ton. To find a similarly
easy expression for other values ofr, we expand both the
sum and itsr-fold multiple:

n−1
∑

i=0

ri = r0 + r1 + r2 + . . . + rn−1;

r

n−1
∑

i=0

ri = r1 + r2 + . . . + rn−1 + rn.
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Subtracting the second line from the first, we get

(1 − r)

n−1
∑

i=0

ri = r0 − rn

and therefore
∑n−1

i=0 ri = 1−rn

1−r . Now, this allows us to
rewrite the solution to the recurrence as

T (n) = rnb + a
1 − rn

1 − r
,

whereb = T (0) andr 6= 1. Let us consider the possible
scenarios:

Case 1. r = 0. Then,T (n) = a for all n.

Case 2. 0 < r < 1. Then,limn→∞ rn = 0. There-
fore, limn→∞ T (n) = a

1−r .

Case 3. r > 1. The factorsrn of b and rn−1
r−1 of a both

grow with growingn. For positive values ofa and
b, we can expectT (n) = 0 for a negative value ofn.
Multiplying with r−1, we getrnb(r−1)+arn−a =
0 or, equivalently,rn(br − b + a) = a. Dividing by
br − b + a, we getrn = a

br−b+a , and taking the
logarithm to the baser, we get

n = logr

(

a

br − b + a

)

.

For positive values ofa andb, we take the logarithm
of a positive number smaller than one. The solution
is a negative numbern.

We note that the loan example falls into Case 3, withr =
1 + p

12 > 1, b = A0, anda = −m. Hence, we are now
in a position to find out after how many months it takes to
pay back the loan, namely

n0 = logr

(

m

m − A0
p
12

)

.

This number is well defined as long asm > A0
p
12 , which

means your monthly payment should exceed the monthly
interest payment. It better happen, else the amount you
owe grows and the day in which the loan will be payed off
will never arrive.

First-order linear recurrences. The above is an exam-
ple of a more general class of recurrence relations, namely
thefirst-order linear recurrencesthat are of the form

T (n) = f(n)T (n − 1) + g(n).

For the constant functionf(n) = r, we have

T (n) = rnT (0) +

n−1
∑

i=0

rig(n − i)

= rnT (0) +

n−1
∑

i=0

rn−ig(i).

We see that ifg(n) = a, then we have the recurrence we
used above. We consider the exampleT (n) = 2T (n −
1) + n in whichr = 2 andg(i) = i. Hence,

T (n) = 2nT (0) +

n−1
∑

i=0

i

2n−i

= 2nT (0) +
1

2n

n−1
∑

i=0

i2i.

It is not difficult to find a closed form expression for the
sum. Indeed, it is the special case forx = 2 of the follow-
ing result.

CLAIM . Forx 6= 1, we have

n
∑

i=1

ixi =
nxn+2 − (n − 1)xn+1 + x

(1 − x)2
.

PROOF. One way to prove the relation is by induction.
Writing R(n) for the right hand side of the relation, we
haveR(1) = x, which shows that the claimed relation
holds forn = 1. To make the step fromn − 1 to n, we
need to show thatR(n − 1) + xn = R(n). It takes but a
few algebraic manipulations to show that this is indeed the
case.

Summary. Today, we introduced recurrence relations.
To find the solution, we often have to defineT (n) in terms
of T (n0) rather thanT (n − 1). We also saw that differ-
ent recurrences can have the same general form. Knowing
this will help us to solve new recurrences that are similar
to others that we have already seen.
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13 Growth Rates

How does the time to iterate through a recursive algorithm
grow with the size of the input? We answer this question
for two algorithms, one for searching and the other for
sorting. In both case, we find the answer by solving a
recurrence relation.

Binary Search. We begin by considering a familiar al-
gorithm, binary search. Suppose we have a sorted array,
A[1..n], and we wish to find a particular item,x. Starting
in the middle, we ask whetherx = A[(n + 1)/2]? If it is,
we are done. If not, we have cut the problem in half. We
give a more detailed description in pseudo-code.

l = 1; r = n;
while l ≤ r do m = (l + r)/2;
if x = A[m] then print(m); exit
elseif x < A[m] then r = m − 1;
elseif x > A[m] then l = m + 1

endif
endwhile.

Assumingn = 2k − 1, there are2k−1 − 1 items to the left
and to the right of the middle. LetT (n) be the number
of times we check whetherl ≤ r. We check once at the
beginning, forn = 2k − 1 items, and then some number
of times for half the items. In total, we have

T (n) =

{

T (n−1
2 ) + 1 if n ≥ 2;

1 if n = 1.

In each iteration,k decreases by one and we getT (n) =
k+1. Sincek = log2(n+1), this givesT (n) = 1+log2 n.
We could verify this by induction.

A similar recurrence relation. Let us consider another
example, without specific algorithm. Suppose we solve a
problem of sizen by first solving one problem of sizen/2
and then doingn units of additional work. Assumingn is
a power of2, we get the following recurrence relation:

T (n) =

{

T (n
2 ) + n if n ≥ 2;

0 if n = 1.
(1)

Figure 11 visualizes the computation by drawing a node
for each level of the recursion. Even though the sequence
of nodes forms a path, we call this therecursion treeof
the computation. The problem size decreases by a factor

of two from one level to the next. After dividinglog2 n
times, we arrive at size one. This implies that there are
only 1 + log2 n levels. Similarly, the work at each level
decreases by a factor of two from one level to the next.
Assumingn = 2k, we get

T (n) = n +
n

2
+ . . . + 2 + 1

= 2k + 2k−1 + . . . + 21 + 20

= 2k+1 − 1.

Hence,T (n) = 2n − 1.

n
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/4

/8

n

n

n

n

/2

/4

/8

n
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n

n

/2

/4

/8

n

n

n

level #nodes size

1 1

2 1

3 1

4 1

work
per
node

work
per
level

Figure 11: The recursion tree for the relation in Equation (1).

Merge Sort. Next, we consider the problem of sorting a
list of n items. We assume the items are stored in unsorted
order in an arrayA[1..n]. The list is sorted if it consists
of only one item. If there are two or more items then we
sort the firstn/2 items and the lastn/2 items and finally
merge the two sorted lists. We provide the pseudo-code
below. We call the function withℓ = 1 andr = n.

void MERGESORT(ℓ, r)
if ℓ < r then m = (ℓ + r)/2;

MERGESORT(ℓ, m);
MERGESORT(m + 1, r);
MERGE(ℓ, m, r)

endif.

We merge the two sorted lists by scanning them from left
to right, usingn comparisons. It is convenient to relocate
both lists fromA to another array,B, and to add a so-
called stopper after each sublist. These are items that are
larger than all given items. In other words, we assume the
two lists are stored inB[ℓ..m] andB[m + 2..r + 1], with
B[m + 1] = B[r + 2] = ∞. When we scan the two lists,
we move the items back toA, one at a time.
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void MERGE(ℓ, m, r)
i = ℓ; j = m + 2;
for k = ℓ to r do
if B[i] < B[j] then A[k] = B[i]; i = i + 1;

else A[k] = B[j]; j = j + 1
endif

endfor.

Assumen = 2k so that the sublists are always of the same
length. The total number of comparisons is then

T (n) =

{

2T (n
2 ) + n if n ≥ 2;

0 if n = 1.

To analyze this recurrence, we look at its recursion tree.

Recursion Tree. We begin with a list of lengthn, from
which we create two shorter lists of lengthn/2 each. After
sorting the shorter lists recursively, we usen comparisons
to merge them. In Figure 12, we show how much work is
done on the first four levels of the recursion. In this ex-

n
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/8

n

n

n

n

/2
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n

n

n

level

1

2

4

84

3

2

1 n

n

n

n

node
per

work work
per
level

#nodes size

Figure 12: The recursion tree for the merge sort algorithm.

ample, there aren units of work per level, and1 + log2 n
levels in the tree. Thus, sorting with the merge sort algo-
rithm takesT (n) = n log2 n + n comparisons. You can
verify this using Mathematical Induction.

Unifying the findings. We have seen several examples
today, and we now generalize what we have found.

CLAIM . Let a ≥ 1 be an integer andd a non-negative
real number. LetT (n) be defined for integers that are
powers of2 by

T (n) =

{

aT (n
2 ) + n if n ≥ 2;

d if n = 1.

Then we have the following:

• T (n) = Θ(n) if a < 2;

• T (n) = Θ(n logn) if a = 2;

• T (n) = Θ(nlog
2

a) if a > 2.

In the next lecture, we will generalize this result further
so it includes our finding that binary search takes only a
logarithmic number of comparisons. We will also see a
justification of the three cases.

Summary. Today, we looked at growth rates. We saw
that binary search grows logarithmically with respect to
the input size, and merge sort grows at a rate of order
n log2 n. We also discovered a pattern in a class recur-
rence relations.
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14 Solving Recurrence Relations

Solving recurrence relations is a difficult business and
there is no catch all method. However, many relations aris-
ing in practice are simple and can be solved with moderate
effort.

A few functions. A solution to a recurrence relation
is generally given in terms of a function, eg.f(n) =
n log2 n, or a class of similar functions, eg.T (n) =
O(n log2 n). It is therefore useful to get a feeling for some
of the most common functions that occur. By plotting the
graphs, as in Figure 13, we get an initial picture. Here we
see a sequence of progressively faster growing functions:
constant, logarithmic, linear, and exponential. However,

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

8

7

Figure 13: The graphs of a small set of functions,f(x) = 1,
f(x) = log2 x, f(x) = x, f(x) = 2x.

such plots can be confusing because they depend on the
scale. For example, the exponential function,f(x) = 2x,
grows a lot faster than the quadratic function,f(x) = x2,
but this would not be obvious if we only look at a small
portion of the plane like in Figure 13.

Three regimes. In a recurrence relation, we distinguish
between thehomogeneouspart, the recursive terms, and
the inhomogeneouspart, the work that occurs. The solu-
tion of depends on the relative size of the two, exhibiting
qualitatively different behavior if one dominates the other
or the two are in balance. Recurrence relations that exhibit
this three-regime behavior are so common that it seems
worthwhile to study this behavior in more detail. We sum-
marize the findings.

MASTER THEOREM. Let a ≥ 1 andb > 1 be integers
andc ≥ 0 andd > 0 real numbers. LetT (n) be defined
for integers that are powers ofb by

T (n) =

{

aT (n
b ) + nc if n > 1
d if n = 1.

Then we have the following:

• T (n) = Θ(nc) if logb a < c;

• T (n) = Θ(nc log n) if logb a = c;

• T (n) = Θ(nlog
b

a) if logb a > c.

This behavior can be explained by recalling the formula
for a geometric series,(r0 + . . .+ rn−1)A = 1−rn

1−r A, and
focusing on the magnitude of the constant factor,r. For
0 < r < 1, the sum is roughlyA, the first term, forr = 1,
the sum isn, the number of terms, and forr > 1, the sum
is roughlyrn−1A, the last term.

Let us consider again the recursion tree and, in partic-
ular, the total work at itsi-th level, starting withi = 0 at
the root. There areai nodes and the work at each node is
( n

bi )
c. The work at thei-th level is therefore

ai
( n

bi

)c

= nc ai

bic
.

There are1 + logb n levels, and the total work is the sum
over the levels. This sum is a geometric series, with factor
r = a

bc . It is therefore dominated by the first term ifr < 1,
all terms are the same ifr = 0, and it is dominated by
the last term ifr > 1. To distinguish between the three
cases, we take the logarithm ofr, which is negative, zero,
positive ifr < 1, r = 1, r > 1. It is convenient to take the
logarithm to the basisb. This way we get

logb

a

bc
= logb a − logb bc

= logb a − c.

We haver < 1 iff logb a < c, In which case the dom-
inating term in the series isnc. We haver = 1 iff
logb a = c, in which case the total work isnc logb n. We
haver > 1 iff logb a > c, in which case the dominating
term isd · alog

b
n = d · nlog

b
a. This explains the three

cases in the theorem.

There are extensions of this result that discuss the cases
in whichn is not a lower ofb, we have floors and ceilings
in the relation,a andb are not integers, etc. The general
behavior of the solution remains the same.
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Using induction. Once we know (or feel) what the solu-
tion to a recurrence relation is, we can often use induction
to verify. Here is a particular relation defined for integers
that are powers of4:

T (n) =

{

T (n
2 ) + T (n

4 ) + n if n > 1
1 if n = 1.

To get a feeling for the solution, we group nodes with
equal work together. We getn once, n

2 once, n
4 twice,

n
8 three times,n16 five times, etc. These are the Fibonacci
numbers, which grow exponentially, with basis equal to
the golden ratio, which is roughly1.6. On the other hand,
the work shrinks exponentially, with basis2. Hence, we
have a geometric series with factor roughly0.8, which is
less than one. The dominating term is therefore the first,
and we would guess that the solution is some constant
timesn. We can prove this by induction.

CLAIM . There exists a positive constantc such that
T (n) ≤ cn.

PROOF. For n = 1, we haveT (1) = 1. Hence, the
claimed inequality is true providedc ≥ 1. Using the
strong form of Mathematical Induction, we get

T (n) = T
(n

2

)

+ T
(n

4

)

+ n

= c
n

2
+ c

n

4
+ n

=

(

3c

4
+ 1

)

n.

This is at mostcn provided 3c
4 + 1 ≤ c or, equivalently,

c ≥ 4.

The inductive proof not only verified what we thought
might be the case, but it also gave us the smallest constant,
c = 4, for whichT (n) ≤ cn is true.

Finding the median. Similar recurrence relations arise
in practice. A classic example is an algorithm for finding
thek-smallest of an unsorted set ofn items. We assume
the items are all different. A particularly interesting case
is the middle item, which is called themedian. For odd
n, this is thek-smallest withk = n+1

2 . For evenn, we
setk equal to either the floor or the ceiling ofn+1

2 . The
algorithm takes four steps to find thek-smallest item.

STEP 1. Partition the set into groups of size5 and find the
median in each group.

STEP 2. Find the median of the medians.

STEP 3. Split the set intoS, the items smaller than the
median of the medians, andL, the items larger than
the median of the medians.

STEP 4. Lets = |S|. If s < k−1 then return the(k−s)-
smallest item inL. If s = k − 1 then return the
median of the medians. ifs > k − 1 then return the
k-smallest item inS.

The algorithm is recursive, computing the median of
roughly n

5 medians in Step 2, and then computing an item
either inL or in S. To prove that the algorithm terminates,
we need to show that the sets considered recursively get
strictly smaller. This is easy as long asn is large but tricky
for smalln. We ignore these difficulties.

Figure 14: The upper left shaded region consists of items smaller
than the median of the medians. Symmetrically, the lower right
shaded region consists of items larger than the median of the
medians. Both contain about three tenth of all items.

To get a handle on the running time, we need to estimate
how much smaller thann the setsS andL are. Consider
Figure 14. In one iteration of the algorithm, we eliminate
either all items smaller or all items larger than the median
of the medians. The number of such items is at least the
number in one of the two shaded regions, each containing
roughly 3n

10 items. Hence, the recurrence relation describ-
ing the running time of the algorithm is

T (n) =

{

T (7n
10 ) + T (n

5 ) + n if n > n0

n0 if n ≤ n0,

for some large enough constantn0. Since 7
10 + 1

5 is strictly
less than one, we guess that the solution to this recurrence
relation is againO(n). This can be verified by induction.
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Fourth Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is 18 March 2009.

Question 1. (20 = 10 + 10 points).

(a) Prove the following claim:

1 + 7 + · · · + (3n2 − 3n + 1) = n3.

(b) (Problem 4.1-11 in our textbook). Find the error
in the following proof that all positive integers
n are equal. Letp(n) be the statement that all
numbers in ann-element set of positive integers
are equal. Thenp(1) is true. Letn ≥ 2 and
write N for the set ofn first positive integers.
LetN ′ andN ′′ be the sets ofn−1 first andn−1
last integers inN . By p(n− 1), all members of
N ′ are equal, and all members ofN ′′ are equal.
Thus, the firstn − 1 elements ofN are equal
and the lastn− 1 elements ofN are equal, and
so all elements ofN are equal. Therefore, all
positive integers are equal.

Question 2. (20 points). Recall the Chinese Remain-
der Theorem stated for two positive, relatively prime
moduli,m andn, in Section 7. Assuming this theo-
rem, prove the following generalization by induction
onk.

CLAIM . Let n1, n2, . . . , nk be positive, pairwise
relative prime numbers. Then for every sequence of
integersai ∈ Zni

, 1 ≤ i ≤ k, the system ofk linear
equations,

x mod ni = ai,

has a unique solution inZN , whereN =
∏k

i=1 ni.

Question 3. (20 = 10 + 10 points).

(a) (Problem 4.2-13 in our textbook). Solve the
recurrenceT (n) = 2T (n − 1) + 3n, with
T (0) = 1.

(b) (Problem 4.2-17 in our textbook). Solve the re-
currenceT (n) = rT (n−1)+n, with T (0) = 1.
(Assume thatr 6= 1.)

Question 4. (20 = 7 + 7 + 6 points). Consider the fol-
lowing algorithm segment.

int FUNCTION(n)
if n > 0 then

n = FUNCTION(⌊n/a⌋) + FUNCTION(⌊n/b⌋)
endif
returnn.

We can assume thata, b > 1, so the algorithm ter-
minates. In the following questions, letan be the
number of iterations of thewhile loop.

(a) Find a recurrence relation foran.

(b) Find an explicit formula foran.

(c) How fast doesn grow? (bigΘ terms)

Question 5. (20 = 4+4+4+4+4points). (Problem 4.4-
1 in our textbook). Use the Master Theorem to solve
the following recurrence relations. For each, assume
T (1) = 1 andn is a power of the appropriate integer.

(a) T (n) = 8T (n
2 ) + n.

(b) T (n) = 8T (n
2 ) + n3.

(c) T (n) = 3T (n
2 ) + n.

(d) T (n) = T (n
4 ) + 1.

(e) T (n) = 3T (n
3 ) + n2.
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