
In this chapter we will learn how a computer manipulates data and

communicates with peripheral devices such as printers and key-

boards. In doing so, we will explore the basics of computer archi-

tecture and learn how computers are programmed by means of

encoded instructions, called machine language instructions.
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In Chapter 1 we studied topics relating to the storage of data inside a computer.
In this chapter we will see how a computer manipulates that data. This manipu-
lation consists of moving data from one location to another as well as performing
operations such as arithmetic calculations, text editing, and image manipulation.
We begin by extending our understanding of computer architecture beyond that
of data storage systems.

2.1 Computer Architecture
The circuitry in a computer that controls the manipulation of data is called the
central processing unit, or CPU (often referred to as merely the processor). In
the machines of the mid-twentieth century, CPUs were large units comprised of
perhaps several racks of electronic circuitry that reflected the significance of the
unit. However, technology has shrunk these devices drastically. The CPUs found
in today’s desktop computers and notebooks are packaged as small flat squares
(approximately two inches by two inches) whose connecting pins plug into a
socket mounted on the machine’s main circuit board (called the motherboard).
In smartphones, mini-notebooks, and other Mobile Internet Devices (MID),
CPU’s are around half the size of a postage stamp. Due to their small size, these
processors are called microprocessors.

CPU Basics
A CPU consists of three parts (Figure 2.1): the arithmetic/logic unit, which
contains the circuitry that performs operations on data (such as addition and
subtraction); the control unit, which contains the circuitry for coordinating the
machine’s activities; and the register unit, which contains data storage cells
(similar to main memory cells), called registers, that are used for temporary
storage of information within the CPU.

Some of the registers within the register unit are considered general-purpose
registers whereas others are special-purpose registers. We will discuss some of
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Figure 2.1 CPU and main memory connected via a bus
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the special-purpose registers in Section 2.3. For now, we are concerned only with
the general-purpose registers.

General-purpose registers serve as temporary holding places for data being
manipulated by the CPU. These registers hold the inputs to the arithmetic/logic
unit’s circuitry and provide storage space for results produced by that unit. To per-
form an operation on data stored in main memory, the control unit transfers the
data from memory into the general-purpose registers, informs the arithmetic/logic
unit which registers hold the data, activates the appropriate circuitry within the
arithmetic/logic unit, and tells the arithmetic/logic unit which register should
receive the result.

For the purpose of transferring bit patterns, a machine’s CPU and main memory
are connected by a collection of wires called a bus (see again Figure 2.1). Through
this bus, the CPU extracts (reads) data from main memory by supplying the address
of the pertinent memory cell along with an electronic signal telling the memory cir-
cuitry that it is supposed to retrieve the data in the indicated cell. In a similar man-
ner, the CPU places (writes) data in memory by providing the address of the
destination cell and the data to be stored together with the appropriate electronic sig-
nal telling main memory that it is supposed to store the data being sent to it.

Based on this design, the task of adding two values stored in main memory
involves more than the mere execution of the addition operation. The data must
be transferred from main memory to registers within the CPU, the values must
be added with the result being placed in a register, and the result must then be
stored in a memory cell. The entire process is summarized by the five steps
listed in Figure 2.2.

The Stored-Program Concept
Early computers were not known for their flexibility—the steps that each device
executed were built into the control unit as a part of the machine. To gain more
flexibility, some of the early electronic computers were designed so that the CPU
could be conveniently rewired. This flexibility was accomplished by means of a
pegboard arrangement similar to old telephone switchboards in which the ends
of jumper wires were plugged into holes.

Step 1.

Step 2. Get the other value to be 
              added from memory and 
              place it in another register.

Step 3. Activate the addition circuitry 
              with the registers used in 
              Steps 1 and 2 as inputs and 
              another register designated 
              to hold the result.

Step 4. Store the result in memory.

Step 5. Stop.

Get one of the values to be 
added from memory and 
place it in a register.

Figure 2.2 Adding values stored in memory
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A breakthrough (credited, apparently incorrectly, to John von Neumann)
came with the realization that a program, just like data, can be encoded and
stored in main memory. If the control unit is designed to extract the program
from memory, decode the instructions, and execute them, the program that the
machine follows can be changed merely by changing the contents of the com-
puter’s memory instead of rewiring the CPU.

The idea of storing a computer’s program in its main memory is called
the stored-program concept and has become the standard approach used
today—so standard, in fact, that it seems obvious. What made it difficult orig-
inally was that everyone thought of programs and data as different entities:
Data were stored in memory; programs were part of the CPU. The result was
a prime example of not seeing the forest for the trees. It is easy to be caught
in such ruts, and the development of computer science might still be in
many of them today without our knowing it. Indeed, part of the excitement
of the science is that new insights are constantly opening doors to new theo-
ries and applications.

Cache Memory
It is instructive to compare the memory facilities within a computer in relation to their
functionality. Registers are used to hold the data immediately applicable to the oper-
ation at hand; main memory is used to hold data that will be needed in the near
future; and mass storage is used to hold data that will likely not be needed in the
immediate future. Many machines are designed with an additional memory level,
called cache memory. Cache memory is a portion (perhaps several hundred KB) of
high-speed memory located within the CPU itself. In this special memory area, the
machine attempts to keep a copy of that portion of main memory that is of current
interest. In this setting, data transfers that normally would be made between regis-
ters and main memory are made between registers and cache memory. Any changes
made to cache memory are then transferred collectively to main memory at a more
opportune time. The result is a CPU that can execute its machine cycle more rapidly
because it is not delayed by main memory communication.

Questions & Exercises

1. What sequence of events do you think would be required to move the
contents of one memory cell in a computer to another memory cell?

2. What information must the CPU supply to the main memory circuitry to
write a value into a memory cell?

3. Mass storage, main memory, and general-purpose registers are all stor-
age systems. What is the difference in their use?
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2.2 Machine Language
To apply the stored-program concept, CPUs are designed to recognize instruc-
tions encoded as bit patterns. This collection of instructions along with the
encoding system is called the machine language. An instruction expressed in
this language is called a machine-level instruction or, more commonly, a
machine instruction.

The Instruction Repertoire
The list of machine instructions that a typical CPU must be able to decode and
execute is quite short. In fact, once a machine can perform certain elementary
but well-chosen tasks, adding more features does not increase the machine’s the-
oretical capabilities. In other words, beyond a certain point, additional features
may increase such things as convenience but add nothing to the machine’s fun-
damental capabilities.

The degree to which machine designs should take advantage of this fact has
lead to two philosophies of CPU architecture. One is that a CPU should be designed
to execute a minimal set of machine instructions. This approach leads to what is
called a reduced instruction set computer (RISC). The argument in favor of
RISC architecture is that such a machine is efficient, fast, and less expensive to
manufacture. On the other hand, others argue in favor of CPUs with the ability to
execute a large number of complex instructions, even though many of them are
technically redundant. The result of this approach is known as a complex
instruction set computer (CISC). The argument in favor of CISC architecture is
that the more complex CPU can better cope with the ever increasing complexities

Who Invented What?
Awarding a single individual credit for an invention is always a dubious undertaking.
Thomas Edison is credited with inventing the incandescent lamp, but other
researchers were developing similar lamps, and in a sense Edison was lucky to be the
one to obtain the patent. The Wright brothers are credited with inventing the airplane,
but they were competing with and benefited from the work of many contemporaries,
all of whom were preempted to some degree by Leonardo da Vinci, who toyed with the
idea of flying machines in the fifteenth century. Even Leonardo’s designs were appar-
ently based on earlier ideas. Of course, in these cases the designated inventor still
has legitimate claims to the credit bestowed. In other cases, history seems to have
awarded credit inappropriately—an example is the stored-program concept. Without
a doubt, John von Neumann was a brilliant scientist who deserves credit for numerous
contributions. But one of the contributions for which popular history has chosen to
credit him, the stored-program concept, was apparently developed by researchers led
by J. P. Eckert at the Moore School of Electrical Engineering at the University of
Pennsylvania. John von Neumann was merely the first to publish work reporting the
idea and thus computing lore has selected him as the inventor.
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of today’s software. With CISC, programs can exploit a powerful rich set of instruc-
tions, many of which would require a multi-instruction sequence in a RISC design.

In the 1990s and into the millennia, commercially available CISC and RISC
processors were actively competing for dominance in desktop computing. Intel
processors, used in PCs, are examples of CISC architecture; PowerPC processors
(developed by an alliance between Apple, IBM, and Motorola) are examples of
RISC architecture and were used in the Apple Macintosh. As time progressed,
the manufacturing cost of CISC was drastically reduced; thus Intel’s processors
(or their equivalent from AMD—Advanced Micro Devices, Inc.) are now found in
virtually all desktop and laptop computers (even Apple is now building comput-
ers based on Intel products).

While CISC secured its place in desktop computers, it has an insatiable thirst
for electrical power. In contrast, the company Advanced RISC Machine (ARM) has
designed a RISC architecture specifically for low power consumption. (Advanced
RISC Machine was originally Acorn Computers and is now ARM Holdings.) Thus,
ARM-based processors, manufactured by a host of vendors including Qualcomm
and Texas Instruments, are readily found in game controllers, digital TVs, naviga-
tion systems, automotive modules, cellular telephones, smartphones, and other
consumer electronics.

Regardless of the choice between RISC and CISC, a machine’s instructions
can be categorized into three groupings: (1) the data transfer group, (2) the
arithmetic/logic group, and (3) the control group.

Data Transfer The data transfer group consists of instructions that request the
movement of data from one location to another. Steps 1, 2, and 4 in Figure 2.2 fall
into this category. We should note that using terms such as transfer or move to iden-
tify this group of instructions is actually a misnomer. It is rare that the data being
transferred is erased from its original location. The process involved in a transfer
instruction is more like copying the data rather than moving it. Thus terms such as
copy or clone better describe the actions of this group of instructions.

While on the subject of terminology, we should mention that special terms
are used when referring to the transfer of data between the CPU and main
memory. A request to fill a general-purpose register with the contents of a

Variable-Length Instructions
To simplify explanations in the text, the machine language used for examples in this
chapter (and described in Appendix C) uses a fixed size (two bytes) for all instruc-
tions. Thus, to fetch an instruction, the CPU always retrieves the contents of two con-
secutive memory cells and increments its program counter by two. This consistency
streamlines the task of fetching instructions and is characteristic of RISC machines.
CISC machines, however, have machine languages whose instructions vary in length.
Today’s Intel processors, for example, have instructions that range from single-byte
instructions to multiple-byte instructions whose length depends on the exact use of
the instruction. CPUs with such machine languages determine the length of the
incoming instruction by the instruction’s op-code. That is, the CPU first fetches the
op-code of the instruction and then, based on the bit pattern received, knows how
many more bytes to fetch from memory to obtain the rest of the instruction.
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memory cell is commonly referred to as a LOAD instruction; conversely, a
request to transfer the contents of a register to a memory cell is called a STORE
instruction. In Figure 2.2, Steps 1 and 2 are LOAD instructions, and Step 4 is a
STORE instruction.

An important group of instructions within the data transfer category consists
of the commands for communicating with devices outside the CPU-main memory
context (printers, keyboards, display screens, disk drives, etc.). Since these
instructions handle the input/output (I/O) activities of the machine, they are
called I/O instructions and are sometimes considered as a category in their own
right. On the other hand, Section 2.5 describes how these I/O activities can be
handled by the same instructions that request data transfers between the CPU
and main memory. Thus, we shall consider the I/O instructions to be a part of the
data transfer group.

Arithmetic/Logic The arithmetic/logic group consists of the instructions that tell
the control unit to request an activity within the arithmetic/logic unit. Step 3 in
Figure 2.2 falls into this group. As its name suggests, the arithmetic/logic unit is
capable of performing operations other than the basic arithmetic operations. Some
of these additional operations are the Boolean operations AND, OR, and XOR,
introduced in Chapter 1, which we will discuss in more detail later in this chapter.

Another collection of operations available within most arithmetic/logic units
allows the contents of registers to be moved to the right or the left within the reg-
ister. These operations are known as either SHIFT or ROTATE operations,
depending on whether the bits that “fall off the end” of the register are merely
discarded (SHIFT) or are used to fill the holes left at the other end (ROTATE).

Control The control group consists of those instructions that direct the execution
of the program rather than the manipulation of data. Step 5 in Figure 2.2 falls
into this category, although it is an extremely elementary example. This group
contains many of the more interesting instructions in a machine’s repertoire,
such as the family of JUMP (or BRANCH) instructions used to direct the CPU to
execute an instruction other than the next one in the list. These JUMP instruc-
tions appear in two varieties: unconditional jumps and conditional jumps.

Step 1. LOAD a register with a value 
              from memory.

Step 2. LOAD another register with 
              another value from memory.

Step 3. If this second value is zero,
              JUMP to Step 6.

Step 4. Divide the contents of the 
              first register by the second 
              register and leave the result 
              in a third register.

Step 5. STORE the contents of the
              third register in memory.

Step 6. STOP.

Figure 2.3 Dividing values stored in memory
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An example of the former would be the instruction “Skip to Step 5”; an example
of the latter would be, “If the value obtained is 0, then skip to Step 5.” The dis-
tinction is that a conditional jump results in a “change of venue” only if a certain
condition is satisfied. As an example, the sequence of instructions in Figure 2.3
represents an algorithm for dividing two values where Step 3 is a conditional
jump that protects against the possibility of division by zero.

An Illustrative Machine Language
Let us now consider how the instructions of a typical computer are encoded.
The machine that we will use for our discussion is described in Appendix C and
summarized in Figure 2.4. It has 16 general-purpose registers and 256 main
memory cells, each with a capacity of 8 bits. For referencing purposes, we label
the registers with the values 0 through 15 and address the memory cells with
the values 0 through 255. For convenience we think of these labels and
addresses as values represented in base two and compress the resulting bit pat-
terns using hexadecimal notation. Thus, the registers are labeled 0 through F,
and the memory cells are addressed 00 through FF.

The encoded version of a machine instruction consists of two parts: the op-code
(short for operation code) field and the operand field. The bit pattern appearing
in the op-code field indicates which of the elementary operations, such as
STORE, SHIFT, XOR, and JUMP, is requested by the instruction. The bit patterns
found in the operand field provide more detailed information about the opera-
tion specified by the op-code. For example, in the case of a STORE operation, the
information in the operand field indicates which register contains the data to be
stored and which memory cell is to receive the data.

The entire machine language of our illustrative machine (Appendix C) con-
sists of only twelve basic instructions. Each of these instructions is encoded
using a total of 16 bits, represented by four hexadecimal digits (Figure 2.5). The
op-code for each instruction consists of the first 4 bits or, equivalently, the first
hexadecimal digit. Note (Appendix C) that these op-codes are represented by 
the hexadecimal digits 1 through C. In particular, the table in Appendix C shows
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00
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Figure 2.4 The architecture of the machine described in Appendix C
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us that an instruction beginning with the hexadecimal digit 3 refers to a STORE
instruction, and an instruction beginning with hexadecimal A refers to a
ROTATE instruction.

The operand field of each instruction in our illustrative machine consists
of three hexadecimal digits (12 bits), and in each case (except for the HALT
instruction, which needs no further refinement) clarifies the general instruc-
tion given by the op-code. For example (Figure 2.6), if the first hexadecimal
digit of an instruction were 3 (the op-code for storing the contents of a regis-
ter), the next hexadecimal digit of the instruction would indicate which regis-
ter is to be stored, and the last two hexadecimal digits would indicate which
memory cell is to receive the data. Thus the instruction 35A7 (hexadecimal)
translates to the statement “STORE the bit pattern found in register 5 in the
memory cell whose address is A7.” (Note how the use of hexadecimal notation
simplifies our discussion. In reality, the instruction 35A7 is the bit pattern
0011010110100111.)

(The instruction 35A7 also provides an explicit example of why main mem-
ory capacities are measured in powers of two. Because 8 bits in the instruction
are reserved for specifying the memory cell utilized by this instruction, it is pos-
sible to reference exactly 28 different memory cells. It behooves us therefore to
build main memory with this many cells—addressed from 0 to 255. If main
memory had more cells, we would not be able to write instructions that distin-
guished between them; if main memory had fewer cells, we would be able to
write instructions that referenced nonexisting cells.)

Op-code Operand

0011 0101 1010 0111

3 5 A 7

Actual bit pattern (16 bits)

Hexadecimal form (4 digits)

Figure 2.5 The composition of an instruction for the machine in Appendix C

3 5 A 7

This part of the operand identifies
the address of the memory cell
that is to receive data.

This part of the operand identifies
the register whose contents are
to be stored.

Op-code 3 means
to store the contents
of a register in a
memory cell.

Instruction

Figure 2.6 Decoding the instruction 35A7
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As another example of how the operand field is used to clarify the general
instruction given by op-code, consider an instruction with the op-code 7 (hexa-
decimal), which requests that the contents of two registers be ORed. (We will see
what it means to OR two registers in Section 2.4. For now we are interested
merely in how instructions are encoded.) In this case, the next hexadecimal digit
indicates the register in which the result should be placed, while the last two
hexadecimal digits indicate which two registers are to be ORed. Thus the instruc-
tion 70C5 translates to the statement “OR the contents of register C with the con-
tents of register 5 and leave the result in register 0.”

A subtle distinction exists between our machine’s two LOAD instructions.
Here we see that the op-code 1 (hexadecimal) identifies an instruction that loads
a register with the contents of a memory cell, whereas the op-code 2 (hexa-
decimal) identifies an instruction that loads a register with a particular value.
The difference is that the operand field in an instruction of the first type con-
tains an address, whereas in the second type the operand field contains the
actual bit pattern to be loaded.

Note that the machine has two ADD instructions: one for adding two’s com-
plement representations and one for adding floating-point representations. This
distinction is a consequence of the fact that adding bit patterns that represent val-
ues encoded in two’s complement notation requires different activities within the
arithmetic/logic unit from adding values encoded in floating-point notation.

We close this section with Figure 2.7, which contains an encoded version of
the instructions in Figure 2.2. We have assumed that the values to be added are
stored in two’s complement notation at memory addresses 6C and 6D and the
sum is to be placed in the memory cell at address 6E.

156C

166D

5056

306E

C000

Load register 5 with the bit pattern
found in the memory cell at
address 6C.

Load register 6 with the bit pattern
found in the memory cell at
address 6D.

Add the contents of register 5 and
6 as though they were two’s
complement representation and
leave the result in register 0.

Store the contents of register 0
in the memory cell at address 6E.

Halt.

Encoded
instructions Translation

Figure 2.7 An encoded version of the instructions in Figure 2.2
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2.3 Program Execution
A computer follows a program stored in its memory by copying the instructions
from memory into the CPU as needed. Once in the CPU, each instruction is
decoded and obeyed. The order in which the instructions are fetched from mem-
ory corresponds to the order in which the instructions are stored in memory
unless otherwise altered by a JUMP instruction.

To understand how the overall execution process takes place, it is necessary
to consider two of the special purpose registers within the CPU: the instruction
register and the program counter (see again Figure 2.4). The instruction regis-
ter is used to hold the instruction being executed. The program counter contains
the address of the next instruction to be executed, thereby serving as the
machine’s way of keeping track of where it is in the program.

The CPU performs its job by continually repeating an algorithm that guides
it through a three-step process known as the machine cycle. The steps in the

Questions & Exercises

1. Why might the term move be considered an incorrect name for the oper-
ation of moving data from one location in a machine to another?

2. In the text, JUMP instructions were expressed by identifying the desti-
nation explicitly by stating the name (or step number) of the destination
within the JUMP instruction (for example, “Jump to Step 6”). A draw-
back of this technique is that if an instruction name (number) is later
changed, we must be sure to find all jumps to that instruction and
change that name also. Describe another way of expressing a JUMP
instruction so that the name of the destination is not explicitly stated.

3. Is the instruction “If 0 equals 0, then jump to Step 7” a conditional or
unconditional jump? Explain your answer.

4. Write the example program in Figure 2.7 in actual bit patterns.
5. The following are instructions written in the machine language

described in Appendix C. Rewrite them in English.

a. 368A b. BADE c. 803C d. 40F4

6. What is the difference between the instructions 15AB and 25AB in the
machine language of Appendix C?

7. Here are some instructions in English. Translate each of them into the
machine language of Appendix C.

a. LOAD register number 3 with the hexadecimal value 56.
b. ROTATE register number 5 three bits to the right.
c. AND the contents of register A with the contents of register 5 and

leave the result in register 0.
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machine cycle are fetch, decode, and execute (Figure 2.8). During the fetch step,
the CPU requests that main memory provide it with the instruction that is stored
at the address indicated by the program counter. Since each instruction in our
machine is two bytes long, this fetch process involves retrieving the contents of
two memory cells from main memory. The CPU places the instruction received
from memory in its instruction register and then increments the program
counter by two so that the counter contains the address of the next instruction
stored in memory. Thus the program counter will be ready for the next fetch.

With the instruction now in the instruction register, the CPU decodes the
instruction, which involves breaking the operand field into its proper compo-
nents based on the instruction’s op-code.

The CPU then executes the instruction by activating the appropriate cir-
cuitry to perform the requested task. For example, if the instruction is a load
from memory, the CPU sends the appropriate signals to main memory, waits for
main memory to send the data, and then places the data in the requested regis-
ter; if the instruction is for an arithmetic operation, the CPU activates the appro-
priate circuitry in the arithmetic/logic unit with the correct registers as inputs
and waits for the arithmetic/logic unit to compute the answer and place it in the
appropriate register.

Once the instruction in the instruction register has been executed, the CPU
again begins the machine cycle with the fetch step. Observe that since the pro-
gram counter was incremented at the end of the previous fetch, it again provides
the CPU with the correct address.

A somewhat special case is the execution of a JUMP instruction. Consider, for
example, the instruction B258 (Figure 2.9), which means “JUMP to the instruction
at address 58 (hexadecimal) if the contents of register 2 is the same as that of reg-
ister 0.” In this case, the execute step of the machine cycle begins with the com-
parison of registers 2 and 0. If they contain different bit patterns, the execute step

1.  Retrieve the next
     instruction from
     memory (as indicated
     by the program
     counter) and then
     increment the
     program counter.

Fe
tc

h

D
ecode

Execute

3. Perform the action
    required by the
    instruction in the
    instruction register.

2. Decode the bit pattern
    in the instruction register.

Figure 2.8 The machine cycle
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terminates and the next machine cycle begins. If, however, the contents of these
registers are equal, the machine places the value 58 (hexadecimal) in its program
counter during the execute step. In this case, then, the next fetch step finds 58 in
the program counter, so the instruction at that address will be the next instruction
to be fetched and executed.

Note that if the instruction had been B058, then the decision of whether the
program counter should be changed would depend on whether the contents of
register 0 was equal to that of register 0. But these are the same registers and
thus must have equal content. In turn, any instruction of the form B0XY will
cause a jump to be executed to the memory location XY regardless of the con-
tents of register 0.

B 2 5 8

This part of the operand is the
address to be placed in the 
program counter.

This part of the operand identifies
the register to be compared to
register 0.

Op-code B means to 
change  the value of 
the program counter
if the contents of the
indicated register is
the same as that in 
register 0.

Instruction

Figure 2.9 Decoding the instruction B258

Comparing Computer Power
When shopping for a personal computer, you will find that clock speeds are often
used to compare machines. A computer’s clock is a circuit, called an oscillator, which
generates pulses that are used to coordinate the machine’s activities—the faster this
oscillating circuit generates pulses, the faster the machine performs its machine
cycle. Clock speeds are measured in hertz (abbreviated as Hz) with one Hz equal to
one cycle (or pulse) per second. Typical clock speeds in desktop computers are in the
range of a few hundred MHz (older models) to several GHz. (MHz is short for mega-
hertz, which is a million Hz. GHz is short for gigahertz, which is 1000 MHz.)

Unfortunately, different CPU designs might perform different amounts of work in
one clock cycle, and thus clock speed alone fails to be relevant in comparing
machines with different CPUs. If you are comparing a machine based on an Intel
processor to one based on ARM, it would be more meaningful to compare perform-
ance by means of benchmarking, which is the process of comparing the performance
of different machines when executing the same program, known as a benchmark. By
selecting benchmarks representing different types of applications, you get meaning-
ful comparisons for various market segments.
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An Example of Program Execution
Let us follow the machine cycle applied to the program presented in Figure 2.7,
which retrieves two values from main memory, computes their sum, and stores
that total in a main memory cell. We first need to put the program somewhere in
memory. For our example, suppose the program is stored in consecutive
addresses, starting at address A0 (hexadecimal). With the program stored in this
manner, we can cause the machine to execute it by placing the address (A0) of the
first instruction in the program counter and starting the machine (Figure 2.10).

The CPU begins the fetch step of the machine cycle by extracting the
instruction stored in main memory at location A0 and placing this instruction
(156C) in its instruction register (Figure 2.11a). Notice that, in our machine,
instructions are 16 bits (two bytes) long. Thus the entire instruction to be fetched
occupies the memory cells at both address A0 and A1. The CPU is designed to
take this into account so it retrieves the contents of both cells and places the bit
patterns received in the instruction register, which is 16 bits long. The CPU then
adds two to the program counter so that this register contains the address of the
next instruction (Figure 2.11b). At the end of the fetch step of the first machine
cycle, the program counter and instruction register contain the following data:

Program Counter: A2
Instruction Register: 156C

Next, the CPU analyzes the instruction in its instruction register and con-
cludes that it is to load register 5 with the contents of the memory cell at address
6C. This load activity is performed during the execution step of the machine
cycle, and the CPU then begins the next cycle.

This cycle begins by fetching the instruction 166D from the two memory
cells starting at address A2. The CPU places this instruction in the instruction

CPU Main memory

Registers

Program counter

Instruction register

Bus
0

1

2

F

A0

CellsAddress

15A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

6C

16

6D

50

56

30

6E

C0

00

Program counter contains
address of first instructions.

Program is 
stored in
main memory
beginning at 
address A0.

.

.

.

Figure 2.10 The program from Figure 2.7 stored in main memory ready for execution
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register and increments the program counter to A4. The values in the program
counter and instruction register therefore become the following:

Program Counter: A4
Instruction Register: 166D

Now the CPU decodes the instruction 166D and determines that it is to load
register 6 with the contents of memory address 6D. It then executes the instruc-
tion. It is at this time that register 6 is actually loaded.

Since the program counter now contains A4, the CPU extracts the next
instruction starting at this address. The result is that 5056 is placed in the
instruction register, and the program counter is incremented to A6. The CPU
now decodes the contents of its instruction register and executes it by activating
the two’s complement addition circuitry with inputs being registers 5 and 6.

During this execution step, the arithmetic/logic unit performs the requested
addition, leaves the result in register 0 (as requested by the control unit), and
reports to the control unit that it has finished. The CPU then begins another
machine cycle. Once again, with the aid of the program counter, it fetches the

Bus

Bus

CPU Main memory

CellsAddress

15A0

A1

A2

A3

6C

16

6D

Instruction register

Program counter
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156C

a. At the beginning of the fetch step the instruction starting at address A0 is 
    retrieved from memory and placed in the instruction register.

CPU Main memory
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A3 6D

Instruction register

Program counter

A2

156C

b. Then the program counter is incremented so that it points to the next instruction.

Figure 2.11 Performing the fetch step of the machine cycle
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next instruction (306E) from the two memory cells starting at memory location
A6 and increments the program counter to A8. This instruction is then decoded
and executed. At this point, the sum is placed in memory location 6E.

The next instruction is fetched starting from memory location A8, and the
program counter is incremented to AA. The contents of the instruction register
(C000) are now decoded as the halt instruction. Consequently, the machine stops
during the execute step of the machine cycle, and the program is completed.

In summary, we see that the execution of a program stored in memory
involves the same process you and I might use if we needed to follow a detailed
list of instructions. Whereas we might keep our place by marking the instructions
as we perform them, the CPU keeps its place by using the program counter. After
determining which instruction to execute next, we would read the instruction and
extract its meaning. Then, we would perform the task requested and return to the
list for the next instruction in the same manner that the CPU executes the instruc-
tion in its instruction register and then continues with another fetch.

Programs Versus Data
Many programs can be stored simultaneously in a computer’s main memory, as
long as they occupy different locations. Which program will be run when the
machine is started can then be determined merely by setting the program
counter appropriately.

One must keep in mind, however, that because data are also contained in main
memory and encoded in terms of 0s and 1s, the machine alone has no way of know-
ing what is data and what is program. If the program counter were assigned the
address of data instead of the address of the desired program, the CPU, not knowing
any better, would extract the data bit patterns as though they were instructions and
execute them. The final result would depend on the data involved.

We should not conclude, however, that providing programs and data with a
common appearance in a machine’s memory is bad. In fact, it has proved a use-
ful attribute because it allows one program to manipulate other programs (or
even itself) the same as it would data. Imagine, for example, a program that mod-
ifies itself in response to its interaction with its environment and thus exhibits
the ability to learn, or perhaps a program that writes and executes other pro-
grams in order to solve problems presented to it.

Questions & Exercises

1. Suppose the memory cells from addresses 00 to 05 in the machine
described in Appendix C contain the (hexadecimal) bit patterns given in
the following table:

Address Contents
00 14
01 02
02 34
03 17
04 C0
05 00
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If we start the machine with its program counter containing 00, what bit
pattern is in the memory cell whose address is hexadecimal 17 when the
machine halts?

2. Suppose the memory cells at addresses B0 to B8 in the machine
described in Appendix C contain the (hexadecimal) bit patterns given in
the following table:

a. If the program counter starts at B0, what bit pattern is in register
number 3 after the first instruction has been executed?

b. What bit pattern is in memory cell B8 when the halt instruction 
is executed?

3. Suppose the memory cells at addresses A4 to B1 in the machine
described in Appendix C contain the (hexadecimal) bit patterns given in
the following table:

Address Contents
B0 13
B1 B8
B2 A3
B3 02
B4 33
B5 B8
B6 C0
B7 00
B8 0F

Address Contents
A4 20
A5 00
A6 21
A7 03
A8 22
A9 01
AA B1
AB B0
AC 50
AD 02
AE B0
AF AA
B0 C0
B1 00

When answering the following questions, assume that the machine is
started with its program counter containing A4.

a. What is in register 0 the first time the instruction at address AA 
is executed?

b. What is in register 0 the second time the instruction at address AA 
is executed?

c. How many times is the instruction at address AA executed before the
machine halts?
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2.4 Arithmetic/Logic Instructions
As indicated earlier, the arithmetic/logic group of instructions consists of
instructions requesting arithmetic, logic, and shift operations. In this section, we
look at these operations more closely.

Logic Operations
We introduced the logic operations AND, OR, and XOR (exclusive or) in Chapter 1
as operations that combine two input bits to produce a single output bit. These
operations can be extended to operations that combine two strings of bits to pro-
duce a single output string by applying the basic operation to individual
columns. For example, the result of ANDing the patterns 10011010 and 11001001
results in

10011010
AND 11001001

10001000

where we have merely written the result of ANDing the 2 bits in each column at the
bottom of the column. Likewise, ORing and XORing these patterns would produce

4. Suppose the memory cells at addresses F0 to F9 in the machine
described in Appendix C contain the (hexadecimal) bit patterns
described in the following table:

Address Contents
F0 20
F1 C0
F2 30
F3 F8
F4 20
F5 00
F6 30
F7 F9
F8 FF
F9 FF

If we start the machine with its program counter containing F0, what
does the machine do when it reaches the instruction at address F8?

10011010
OR 11001001

11011011

10011010
XOR 11001001

01010011

One of the major uses of the AND operation is for placing 0s in one part of a
bit pattern while not disturbing the other part. Consider, for example, what hap-
pens if the byte 00001111 is the first operand of an AND operation. Without know-
ing the contents of the second operand, we still can conclude that the four most
significant bits of the result will be 0s. Moreover, the four least significant bits of
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the result will be a copy of that part of the second operand, as shown in the fol-
lowing example:

00001111
AND 10101010

00001010

This use of the AND operation is an example of the process called masking.
Here one operand, called a mask, determines which part of the other operand
will affect the result. In the case of the AND operation, masking produces a
result that is a partial replica of one of the operands, with 0s occupying the
nonduplicated positions.

Such an operation is useful when manipulating a bit map, a string of bits in
which each bit represents the presence or absence of a particular object. We have
already encountered bit maps in the context of representing images, where each
bit is associated with a pixel. As another example, a string of 52 bits, in which
each bit is associated with a particular playing card, can be used to represent a
poker hand by assigning 1s to those 5 bits associated with the cards in the hand
and 0s to all the others. Likewise, a bit map of 52 bits, of which thirteen are 1s,
can be used to represent a hand of bridge, or a bit map of 32 bits can be used to
represent which of thirty-two ice cream flavors are available.

Suppose, then, that the 8 bits in a memory cell are being used as a bit map,
and we want to find out whether the object associated with the third bit from the
high-order end is present. We merely need to AND the entire byte with the mask
00100000, which produces a byte of all 0s if and only if the third bit from the
high-order end of the bit map is itself 0. A program can then act accordingly by
following the AND operation with a conditional branch instruction. Moreover, if
the third bit from the high-order end of the bit map is a 1, and we want to change
it to a 0 without disturbing the other bits, we can AND the bit map with the mask
11011111 and then store the result in place of the original bit map.

Where the AND operation can be used to duplicate a part of a bit string while
placing 0s in the nonduplicated part, the OR operation can be used to duplicate a
part of a string while putting 1s in the nonduplicated part. For this we again use
a mask, but this time we indicate the bit positions to be duplicated with 0s and
use 1s to indicate the nonduplicated positions. For example, ORing any byte with
11110000 produces a result with 1s in its most significant 4 bits while its remain-
ing bits are a copy of the least significant 4 bits of the other operand, as demon-
strated by the following example:

11110000
OR 10101010

11111010

Consequently, whereas the mask 11011111 can be used with the AND operation to
force a 0 in the third bit from the high-order end of a byte, the mask 00100000 can
be used with the OR operation to force a 1 in that position.

A major use of the XOR operation is in forming the complement of a bit
string. XORing any byte with a mask of all 1s produces the complement of the
byte. For example, note the relationship between the second operand and the
result in the following example:

11111111
XOR 10101010

01010101
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In the machine language described in Appendix C, op-codes 7, 8, and 9 are
used for the logic operations OR, AND, and XOR, respectively. Each requests
that the corresponding logic operation be performed between the contents of
two designated registers and that the result be placed in another designated reg-
ister. For example, the instruction 7ABC requests that the result of ORing the
contents of registers B and C be placed in register A.

Rotation and Shift Operations
The operations in the class of rotation and shift operations provide a means for
moving bits within a register and are often used in solving alignment prob-
lems. These operations are classified by the direction of motion (right or left)
and whether the process is circular. Within these classification guidelines are
numerous variations with mixed terminology. Let us take a quick look at the
ideas involved.

Consider a register containing a byte of bits. If we shift its contents 1 bit to the
right, we imagine the rightmost bit falling off the edge and a hole appearing at the
leftmost end. What happens with this extra bit and the hole is the distinguishing
feature among the various shift operations. One technique is to place the bit that
fell off the right end in the hole at the left end. The result is a circular shift, also
called a rotation. Thus, if we perform a right circular shift on a byte-size bit pat-
tern eight times, we obtain the same bit pattern we started with.

Another technique is to discard the bit that falls off the edge and always fill
the hole with a 0. The term logical shift is often used to refer to these opera-
tions. Such shifts to the left can be used for multiplying two’s complement rep-
resentations by two. After all, shifting binary digits to the left corresponds to
multiplication by two, just as a similar shift of decimal digits corresponds to mul-
tiplication by ten. Moreover, division by two can be accomplished by shifting the
binary string to the right. In either shift, care must be taken to preserve the sign
bit when using certain notational systems. Thus, we often find right shifts that
always fill the hole (which occurs at the sign bit position) with its original value.
Shifts that leave the sign bit unchanged are sometimes called arithmetic shifts.

Among the variety of shift and rotate instructions possible, the machine
language described in Appendix C contains only a right circular shift, desig-
nated by op-code A. In this case the first hexadecimal digit in the operand spec-
ifies the register to be rotated, and the rest of the operand specifies the number
of bits to be rotated. Thus the instruction A501 means “Rotate the contents of
register 5 to the right by 1 bit.” In particular, if register 5 originally contained
the bit pattern 65 (hexadecimal), then it would contain B2 after this instruction
is executed (Figure 2.12). (You may wish to experiment with how other shift
and rotate instructions can be produced with combinations of the instructions
provided in the machine language of Appendix C. For example, since a register
is 8 bits long, a right circular shift of 3 bits produces the same result as a left
circular shift of 5 bits.)

Arithmetic Operations
Although we have already mentioned the arithmetic operations of add, sub-
tract, multiply, and divide, a few loose ends should still be connected. First, we
have already seen that subtraction can be simulated by means of addition and
negation. Moreover, multiplication is merely repeated addition and division is
repeated subtraction. (Six divided by two is three because three two’s can be
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subtracted from six.) For this reason, some small CPUs are designed with only
the add or perhaps only the add and subtract instructions.

We should also mention that numerous variations exist for each arithmetic
operation. We have already alluded to this in relation to the add operations avail-
able on our machine in Appendix C. In the case of addition, for example, if the
values to be added are stored in two’s complement notation, the addition process
must be performed as a straightforward column by column addition. However, if
the operands are stored as floating-point values, the addition process must
extract the mantissa of each, shift them right or left according to the exponent
fields, check the sign bits, perform the addition, and translate the result into
floating-point notation. Thus, although both operations are considered addition,
the action of the machine is not the same.

1 The original bit pattern0 1 1 0 0 1 0

The bits move one position
to the right. The rightmost
bit “falls off” the end and
is placed in the hole at the
other end.

The final bit pattern1 0 1 1 0 0 1 0

0 1 1 0 0 1 0

Figure 2.12 Rotating the bit pattern 65 (hexadecimal) one bit to the right

Questions & Exercises

1. Perform the indicated operations.

a. 01001011 b. 10000011 c. 11111111
AND 10101011 AND 11101100 AND 00101101

d. 01001011 e. 10000011 f. 11111111
OR  10101011 OR  11101100 OR  00101101

g. 01001011 h. 10000011 i. 11111111
XOR 10101011 XOR 11101100 XOR 00101101

2. Suppose you want to isolate the middle 4 bits of a byte by placing 0s in
the other 4 bits without disturbing the middle 4 bits. What mask must
you use together with what operation?
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2.5 Communicating with Other Devices
Main memory and the CPU form the core of a computer. In this section, we
investigate how this core, which we will refer to as the computer, communicates
with peripheral devices such as mass storage systems, printers, keyboards, mice,
display screens, digital cameras, and even other computers.

3. Suppose you want to complement the 4 middle bits of a byte while leav-
ing the other 4 bits undisturbed. What mask must you use together with
what operation?

4. a. Suppose you XOR the first 2 bits of a string of bits and then continue
down the string by successively XORing each result with the next bit
in the string. How is your result related to the number of 1s appearing
in the string?

b. How does this problem relate to determining what the appropriate
parity bit should be when encoding a message?

5. It is often convenient to use a logical operation in place of a numeric
one. For example, the logical operation AND combines 2 bits in the same
manner as multiplication. Which logical operation is almost the same as
adding 2 bits, and what goes wrong in this case?

6. What logical operation together with what mask can you use to change
ASCII codes of lowercase letters to uppercase? What about uppercase
to lowercase?

7. What is the result of performing a 3-bit right circular shift on the follow-
ing bit strings:

a. 01101010 b. 00001111 c. 01111111

8. What is the result of performing a 1-bit left circular shift on the following
bytes represented in hexadecimal notation? Give your answer in hexa-
decimal form.

a. AB b. 5C c. B7 d. 35

9. A right circular shift of 3 bits on a string of 8 bits is equivalent to a left cir-
cular shift of how many bits?

10. What bit pattern represents the sum of 01101010 and 11001100 if the pat-
terns represent values stored in two’s complement notation? What if the
patterns represent values stored in the floating-point format discussed in
Chapter 1?

11. Using the machine language of Appendix C, write a program that places
a 1 in the most significant bit of the memory cell whose address is A7
without modifying the remaining bits in the cell.

12. Using the machine language of Appendix C, write a program that copies
the middle 4 bits from memory cell E0 into the least significant 4 bits of
memory cell E1, while placing 0s in the most significant 4 bits of the cell
at location E1.
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The Role of Controllers
Communication between a computer and other devices is normally handled
through an intermediary apparatus known as a controller. In the case of a per-
sonal computer, a controller may consist of circuitry permanently mounted on
the computer’s motherboard or, for flexibility, it may take the form of a circuit
board that plugs into a slot on the motherboard. In either case, the controller
connects via cables to peripheral devices within the computer case or perhaps to
a connector, called a port, on the back of the computer where external devices
can be attached. These controllers are sometimes small computers themselves,
each with its own memory circuitry and simple CPU that performs a program
directing the activities of the controller.

A controller translates messages and data back and forth between forms
compatible with the internal characteristics of the computer and those of the
peripheral device to which it is attached. Originally, each controller was
designed for a particular type of device; thus, purchasing a new peripheral
device often required the purchase of a new controller as well.

Recently, steps have been taken within the personal computer arena to
develop standards, such as the universal serial bus (USB) and FireWire, by
which a single controller is able to handle a variety of devices. For example, a
single USB controller can be used as the interface between a computer and any
collection of USB-compatible devices. The list of devices on the market today
that can communicate with a USB controller includes mice, printers, scanners,
mass storage devices, digital cameras, and smartphones.

Each controller communicates with the computer itself by means of connec-
tions to the same bus that connects the computer’s CPU and main memory
(Figure 2.13). From this position it is able to monitor the signals being sent between
the CPU and main memory as well as to inject its own signals onto the bus.

With this arrangement, the CPU is able to communicate with the controllers
attached to the bus in the same manner that it communicates with main mem-
ory. To send a bit pattern to a controller, the bit pattern is first constructed in one
of the CPU’s general-purpose registers. Then an instruction similar to a STORE
instruction is executed by the CPU to “store” the bit pattern in the controller.

CD drive

Controller

Controller Controller

Modem

Controller

Disk driveMonitor

Bus
CPU

Main
memory

Figure 2.13 Controllers attached to a machine’s bus
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Likewise, to receive a bit pattern from a controller, an instruction similar to a
LOAD instruction is used.

In some computer designs the transfer of data to and from controllers is
directed by the same LOAD and STORE op-codes that are already provided for
communication with main memory. In these cases, each controller is designed
to respond to references to a unique set of addresses while main memory is
designed to ignore references to these locations. Thus when the CPU sends a
message on the bus to store a bit pattern at a memory location that is assigned to
a controller, the bit pattern is actually “stored” in the controller rather than main
memory. Likewise, if the CPU tries to read data from such a memory location, as
in a LOAD instruction, it will receive a bit pattern from the controller rather than
from memory. Such a communication system is called memory-mapped I/O
because the computer’s input/output devices appear to be in various memory
locations (Figure 2.14).

An alternative to memory-mapped I/O is to provide special op-codes in the
machine language to direct transfers to and from controllers. Instructions with
these op-codes are called I/O instructions. As an example, if the language
described in Appendix C followed this approach, it might include an instruction
such as F5A3 to mean “STORE the contents of register 5 in the controller identi-
fied by the bit pattern A3.”

Direct Memory Access
Since a controller is attached to a computer’s bus, it can carry on its own com-
munication with main memory during those nanoseconds in which the CPU is
not using the bus. This ability of a controller to access main memory is known as
direct memory access (DMA), and it is a significant asset to a computer’s per-
formance. For instance, to retrieve data from a sector of a disk, the CPU can send
requests encoded as bit patterns to the controller attached to the disk asking the
controller to read the sector and place the data in a specified area of main mem-
ory. The CPU can then continue with other tasks while the controller performs
the read operation and deposits the data in main memory via DMA. Thus two
activities will be performed at the same time. The CPU will be executing a pro-
gram and the controller will be overseeing the transfer of data between the disk
and main memory. In this manner, the computing resources of the CPU are not
wasted during the relatively slow data transfer.

The use of DMA also has the detrimental effect of complicating the commu-
nication taking place over a computer’s bus. Bit patterns must move between the
CPU and main memory, between the CPU and each controller, and between
each controller and main memory. Coordination of all this activity on the bus is
a major design issue. Even with excellent designs, the central bus can become an

CPU
Bus Main

memory

Controller Peripheral device

Figure 2.14 A conceptual representation of memory-mapped I/O
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impediment as the CPU and the controllers compete for bus access. This imped-
iment is known as the von Neumann bottleneck because it is a consequence of
the underlying von Neumann architecture in which a CPU fetches its instruc-
tions from memory over a central bus.

Handshaking
The transfer of data between two computer components is rarely a one-way
affair. Even though we may think of a printer as a device that receives data, the
truth is that a printer also sends data back to the computer. After all, a computer
can produce and send characters to a printer much faster than the printer can
print them. If a computer blindly sent data to a printer, the printer would quickly
fall behind, resulting in lost data. Thus a process such as printing a document
involves a constant two-way dialogue, known as handshaking, in which the
computer and the peripheral device exchange information about the device’s sta-
tus and coordinate their activities.

Handshaking often involves a status word, which is a bit pattern that is gen-
erated by the peripheral device and sent to the controller. The status word is a bit
map in which the bits reflect the conditions of the device. For example, in the
case of a printer, the value of the least significant bit of the status word may indi-
cate whether the printer is out of paper, while the next bit may indicate whether
the printer is ready for additional data. Still another bit may be used to indicate
the presence of a paper jam. Depending on the system, the controller may
respond to this status information itself or make it available to the CPU. In either
case, the status word provides the mechanism by which communication with a
peripheral device can be coordinated.

USB and FireWire
The universal serial bus (USB) and FireWire are standardized serial communication
systems that simplify the process of adding new peripheral devices to a personal
computer. USB was developed under the lead of Intel. The development of FireWire
was led by Apple. In both cases the underlying theme is for a single controller to pro-
vide external ports at which a variety of peripheral devices can be attached. In this
setting, the controller translates the internal signal characteristics of the computer to
the appropriate USB or FireWire standard signals. In turn, each device connected to
the controller converts its internal idiosyncrasies to the same USB or FireWire stan-
dard, allowing communication with the controller. The result is that attaching a new
device to a PC does not require the insertion of a new controller. Instead, one merely
plugs any USB compatible device into a USB port or a FireWire compatible device
into a FireWire port.

Of the two, FireWire provides a faster transfer rate, but the lower cost of USB
technology has made it the leader in the lower-cost mass market arena. USB com-
patible devices on the market today include mice, keyboards, printers, scanners, dig-
ital cameras, smartphones, and mass storage systems designed for backup
applications. FireWire applications tend to focus on devices that require higher trans-
fer rates such as video recorders and online mass storage systems.
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Popular Communication Media
Communication between computing devices is handled over two types of paths:
parallel and serial. These terms refer to the manner in which signals are trans-
ferred with respect to each other. In the case of parallel communication, sev-
eral signals are transferred at the same time, each on a separate “line.” Such a
technique is capable of transferring data rapidly but requires a relatively com-
plex communication path. Examples include a computer’s internal bus where
multiple wires are used to allow large blocks of data and other signals to be trans-
ferred simultaneously.

In contrast, serial communication is based on transferring signals one
after the other over a single line. Thus serial communication requires a simpler
data path than parallel communication, which is the reason for its popularity.
USB and FireWire, which offer relatively high-speed data transfer over short dis-
tances of only a few meters, are examples of serial communication systems. For
slightly longer distances (within a home or office building), serial communica-
tion over Ethernet connections (Section 4.1), either by wire or radio broadcast,
are popular.

For communication over greater distances, traditional voice telephone lines
dominated the personal computer arena for many years. These communication
paths, consisting of a single wire over which tones are transferred one after the
other, are inherently serial systems. The transfer of digital data over these lines
is accomplished by first converting bit patterns into audible tones by means of a
modem (short for modulator-demodulator), transferring these tones serially over
the telephone system, and then converting the tones back into bits by another
modem at the destination.

For faster long-distance communication over traditional telephone lines,
telephone companies offer a service known as DSL (Digital Subscriber Line),
which takes advantage of the fact that existing telephone lines are capable of
handling a wider frequency range than that used by traditional voice communi-
cation. More precisely, DSL uses frequencies above the audible range to transfer
digital data while leaving the lower frequency spectrum for voice communica-
tion. Although DSL has been highly successful, telephone companies are rapidly
upgrading their systems to fiber-optic lines, which support digital communica-
tion more readily than traditional telephone lines.

Other technologies that compete with DSL and fiber optics include cable,
as used in cable television systems, and satellite links via high-frequency
radio broadcast.

Communication Rates
The rate at which bits are transferred from one computing component to
another is measured in bits per second (bps). Common units include Kbps
(kilo-bps, equal to one thousand bps), Mbps (mega-bps, equal to one million
bps), and Gbps (giga-bps, equal to one billion bps). (Note the distinction between
bits and bytes—that is, 8 Kbps is equal to 1 KB per second. In abbreviations, a
lowercase b usually means bit whereas an uppercase B means byte.)

For short distance communication, USB and FireWire provide transfer rates
of several hundred Mbps, which is sufficient for most multimedia applications.
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This, combined with their convenience and relatively low cost, is why they are
popular for communication between home computers and local peripherals
such as printers, external disk drives, and cameras.

By combining multiplexing (the encoding or interweaving of data so that a
single communication path serves the purpose of multiple paths) and data com-
pression techniques, traditional voice telephone systems were able to support
transfer rates of 57.6 Kbps, which falls short of the needs of today’s multimedia
and Internet applications, such as YouTube and Facebook. To play MP3 music
recordings requires a transfer rate of about 64 Kbps, and to play even low quality
video clips requires transfer rates measured in units of Mbps. This is why alter-
natives such as DSL, cable, and satellite links, which provide transfer rates well
into the Mbps range, have replaced traditional audio telephone systems. (For
example, DSL offers transfer rates on the order of 54 Mbps.)

The maximum rate available in a particular setting depends on the type of
the communication path and the technology used in its implementation. This
maximum rate is often loosely equated to the communication path’s
bandwidth, although the term bandwidth also has connotations of capacity
rather than transfer rate. That is, to say that a communication path has a high
bandwidth (or provides broadband service) means that the communication
path has the ability to transfer bits at a high rate as well as the capacity to carry
large amounts of information simultaneously.

Questions & Exercises

1. Assume that the machine described in Appendix C uses memory-
mapped I/O and that the address B5 is the location within the printer
port to which data to be printed should be sent.

a. If register 7 contains the ASCII code for the letter A, what machine
language instruction should be used to cause that letter to be printed
at the printer?

b. If the machine executes a million instructions per second, how many
times can this character be sent to the printer in one second?

c. If the printer is capable of printing five traditional pages of text per
minute, will it be able to keep up with the characters being sent to
it in (b)?

2. Suppose that the hard disk on your personal computer rotates at 3000
revolutions a minute, that each track contains 16 sectors, and that each
sector contains 1024 bytes. Approximately what communication rate is
required between the disk drive and the disk controller if the controller
is going to receive bits from the disk drive as they are read from the spin-
ning disk?

3. Estimate how long it would take to transfer a 300-page novel encoded in
Unicode at a transfer rate of 54 Mbps.
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2.6 Other Architectures
To broaden our perspective, let us consider some alternatives to the traditional
machine architecture we have discussed so far.

Pipelining
Electric pulses travel through a wire no faster than the speed of light. Since light
travels approximately 1 foot in a nanosecond (one billionth of a second), it
requires at least 2 nanoseconds for the CPU to fetch an instruction from a mem-
ory cell that is 1 foot away. (The read request must be sent to memory, requiring
at least 1 nanosecond, and the instruction must be sent back to the CPU, requiring
at least another nanosecond.) Consequently, to fetch and execute an instruction in
such a machine requires several nanoseconds—which means that increasing the
execution speed of a machine ultimately becomes a miniaturization problem.

However, increasing execution speed is not the only way to improve a com-
puter’s performance. The real goal is to improve the machine’s throughput,
which refers to the total amount of work the machine can accomplish in a given
amount of time.

An example of how a computer’s throughput can be increased without
requiring an increase in execution speed involves pipelining, which is the
technique of allowing the steps in the machine cycle to overlap. In particular,
while one instruction is being executed, the next instruction can be fetched,
which means that more than one instruction can be in “the pipe” at any one
time, each at a different stage of being processed. In turn, the total throughput
of the machine is increased even though the time required to fetch and execute
each individual instruction remains the same. (Of course, when a JUMP
instruction is reached, any gain that would have been obtained by prefetching
is not realized because the instructions in “the pipe” are not the ones needed
after all.)

Modern machine designs push the pipelining concept beyond our simple
example. They are often capable of fetching several instructions at the same
time and actually executing more than one instruction at a time when those
instructions do not rely on each other.

The Multi-Core CPU
As technology provides ways of placing more and more circuitry on a silicon chip, the
physical distinction between a computer’s components diminishes. For instance, a
single chip might contain a CPU and main memory. This is an example of the “system-
on-a-chip” approach in which the goal is to provide a complete apparatus in a single
device that can be used as an abstract tool in higher level designs. In other cases
multiple copies of the same circuit are provided within a single device. This latter tac-
tic originally appeared in the form of chips containing several independent gates or
perhaps multiple flip-flops. Today’s state of the art allows for more than one entire
CPU to be placed on a single chip. This is the underlying architecture of devices
known as multi-core CPUs, which consist of two or more CPUs residing on the same
chip along with shared cache memory. (Multi-core CPUs containing two processing
units are typically called dual-core CPUs.) Such devices simplify the construction of
MIMD systems and are readily available for use in home computers.
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Multiprocessor Machines
Pipelining can be viewed as a first step toward parallel processing, which is the
performance of several activities at the same time. However, true parallel pro-
cessing requires more than one processing unit, resulting in computers known
as multiprocessor machines.

A variety of computers today are designed with this idea in mind. One strat-
egy is to attach several processing units, each resembling the CPU in a single-
processor machine, to the same main memory. In this configuration, the
processors can proceed independently yet coordinate their efforts by leaving mes-
sages to one another in the common memory cells. For instance, when one
processor is faced with a large task, it can store a program for part of that task in
the common memory and then request another processor to execute it. The result
is a machine in which different instruction sequences are performed on different
sets of data, which is called a MIMD (multiple-instruction stream, multiple-data
stream) architecture, as opposed to the more traditional SISD (single-instruction
stream, single-data stream) architecture.

A variation of multiple-processor architecture is to link the processors
together so that they execute the same sequence of instructions in unison, each
with its own set of data. This leads to a SIMD (single-instruction stream, multiple-
data stream) architecture. Such machines are useful in applications in which the
same task must be applied to each set of similar items within a large block of data.

Another approach to parallel processing is to construct large computers as
conglomerates of smaller machines, each with its own memory and CPU. Within
such an architecture, each of the small machines is coupled to its neighbors so
that tasks assigned to the whole system can be divided among the individual
machines. Thus if a task assigned to one of the internal machines can be broken
into independent subtasks, that machine can ask its neighbors to perform these
subtasks concurrently. The original task can then be completed in much less
time than would be required by a single-processor machine.

Questions & Exercises

1. Referring back to Question 3 of Section 2.3, if the machine used the
pipeline technique discussed in the text, what will be in “the pipe” when
the instruction at address AA is executed? Under what conditions would
pipelining not prove beneficial at this point in the program?

2. What conflicts must be resolved in running the program in Question 4 of
Section 2.3 on a pipeline machine?

3. Suppose there were two “central” processing units attached to the same
memory and executing different programs. Furthermore, suppose that
one of these processors needs to add one to the contents of a memory
cell at roughly the same time that the other needs to subtract one from
the same cell. (The net effect should be that the cell ends up with the
same value with which it started.)

a. Describe a sequence in which these activities would result in the cell
ending up with a value one less than its starting value.

b. Describe a sequence in which these activities would result in the cell
ending up with a value one greater than its starting value.
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(Asterisked problems are associated with optional sections.)

Chapter Review Problems

1. a. In what way are general-purpose registers
and main memory cells similar?

b. In what way do general-purpose registers
and main memory cells differ?

2. Answer the following questions in terms of
the machine language described in Appendix C.
a. Write the instruction 2304 (hexadecimal) as

a string of 16 bits.
b. Write the op-code of the instruction B2A5

(hexadecimal) as a string of 4 bits.
c. Write the operand field of the instruction

B2A5 (hexadecimal) as a string of 12 bits.

3. Suppose a block of data is stored in the mem-
ory cells of the machine described in
Appendix C from address 98 to A2, inclusive.
How many memory cells are in this block?
List their addresses.

4. What is the value of the program counter in
the machine described in Appendix C immedi-
ately after executing the instruction B0CD?

5. Suppose the memory cells at addresses 00
through 05 in the machine described in
Appendix C contain the following bit patterns:

Assuming that the program counter initially
contained 00, record the contents of the pro-
gram counter, instruction register, and memory
cell at address 02 at the end of each fetch phase
of the machine cycle until the machine halts.

6. Suppose three values x, y, and z are stored in a
machine’s memory. Describe the sequence of
events (loading registers from memory, saving
values in memory, and so on) that leads to the
computation of x � y � z. How about (2x) � y?

7. The following are instructions written in the
machine language described in Appendix C.
Translate them into English.

a. 7123 b. 40E1 c. A304
d. B100 e. 2BCD

8. Suppose a machine language is designed with
an op-code field of 4 bits. How many different
instruction types can the language contain?
What if the op-code field is increased to 6 bits?

9. Translate the following instructions from
English into the machine language described
in Appendix C.
a. LOAD register 6 with the hexadecimal

value 77.
b. LOAD register 7 with the contents of mem-

ory cell 77.
c. JUMP to the instruction at memory loca-

tion 24 if the contents of register 0 equals
the value in register A.

d. ROTATE register 4 three bits to the right.
e. AND the contents of registers E and 2 leav-

ing the result in register 1.

10. Rewrite the program in Figure 2.7 assuming
that the values to be added are encoded using
floating-point notation rather than two’s com-
plement notation.

11. Classify each of the following instructions (in
the machine language of Appendix C) in
terms of whether its execution changes the
contents of the memory cell at location 3B,
retrieves the contents of the memory cell at
location 3C, or is independent of the contents
of the memory cell at location 3C.
a. 353C b. 253C c. 153C
d. 3C3C e. 403C

12. Suppose the memory cells at addresses 00
through 03 in the machine described in
Appendix C contain the following bit patterns:

a. Translate the first instruction into English.
b. If the machine is started with its program

counter containing 00, what bit pattern is
in register 6 when the machine halts?

Address Contents
00 26
01 55
02 C0
03 00

Address Contents
00 22
01 11
02 32
03 02
04 C0
05 00
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13. Suppose the memory cells at addresses 00
through 02 in the machine described in
Appendix C contain the following bit patterns:

a. What would be the first instruction exe-
cuted if we started the machine with its
program counter containing 00?

b. What would be the first instruction exe-
cuted if we started the machine with its
program counter containing 01?

14. Suppose the memory cells at addresses 00
through 05 in the machine described in
Appendix C contain the following bit patterns:

When answering the following questions,
assume that the machine starts with its pro-
gram counter equal to 00.
a. Translate the instructions that are executed

into English.
b. What bit pattern is in the memory cell at

address 42 when the machine halts?
c. What bit pattern is in the program counter

when the machine halts?

15. Suppose the memory cells at addresses 00
through 09 in the machine described in
Appendix C contain the following bit patterns:

Assume that the machine starts with its pro-
gram counter containing 00.

a. What will be in the memory cell at address
00 when the machine halts?

b. What bit pattern will be in the program
counter when the machine halts?

16. Suppose the memory cells at addresses 00
through 07 in the machine described in
Appendix C contain the following bit patterns:

a. List the addresses of the memory cells that
contain the program that will be executed if
we start the machine with its program
counter containing 00.

b. List the addresses of the memory cells that
are used to hold data.

17. Suppose the memory cells at addresses 00
through 0D in the machine described in
Appendix C contain the following bit patterns:

Assume that the machine starts with its pro-
gram counter containing 00.
a. What bit pattern will be in register 0 when

the machine halts?
b. What bit pattern will be in register 1 when

the machine halts?
c. What bit pattern is in the program counter

when the machine halts?

Address Contents
00 20
01 04
02 21
03 01
04 40
05 12
06 51
07 12
08 B1
09 0C
0A B0
0B 06
0C C0
0D 00

Address Contents
00 2B
01 07
02 3B
03 06
04 C0
05 00
06 00
07 23

Address Contents
00 1C
01 03
02 2B
03 03
04 5A
05 BC
06 3A
07 00
08 C0
09 00

Address Contents
00 12
01 02
02 32
03 42
04 C0
05 00

Address Contents
00 12
01 21
02 34
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18. Suppose the memory cells at addresses F0
through FD in the machine described in
Appendix C contain the following (hexadeci-
mal) bit patterns:

If we start the machine with its program
counter containing F0, what is the value in
register 0 when the machine finally executes
the halt instruction at location FC?

19. If the machine in Appendix C executes an
instruction every microsecond (a millionth of
a second), how long does it take to complete
the program in Problem 18?

20. Suppose the memory cells at addresses 20
through 28 in the machine described in
Appendix C contain the following bit patterns:

Assume that the machine starts with its pro-
gram counter containing 20.
a. What bit patterns will be in registers 0, 1,

and 2 when the machine halts?
b. What bit pattern will be in the memory cell

at address 30 when the machine halts?
c. What bit pattern will be in the memory cell

at address B0 when the machine halts?

21. Suppose the memory cells at addresses AF
through B1 in the machine described in
Appendix C contain the following bit patterns:

What would happen if we started the machine
with its program counter containing AF?

22. Suppose the memory cells at addresses 00
through 05 in the machine described in
Appendix C contain the following (hexadeci-
mal) bit patterns:

If we start the machine with its program counter
containing 00, when does the machine halt?

23. In each of the following cases, write a short
program in the machine language described in
Appendix C to perform the requested activi-
ties. Assume that each of your programs is
placed in memory starting at address 00.
a. Move the value at memory location D8 to

memory location B3.
b. Interchange the values stored at memory

locations D8 and B3.
c. If the value stored in memory location 44 is

00, then place the value 01 in memory loca-
tion 46; otherwise, put the value FF in
memory location 46.

24. A game that used to be popular among com-
puter hobbyists is core wars—a variation of
battleship. (The term core originates from an
early memory technology in which 0s and 1s
were represented as magnetic fields in little
rings of magnetic material. The rings were
called cores.) The game is played between two
opposing programs, each stored in different
locations of the same computer’s memory.
The computer is assumed to alternate
between the two programs, executing an
instruction from one followed by an instruc-
tion from the other. The goal of each program

Address Contents
00 25
01 B0
02 35
03 04
04 C0
05 00

Address Contents
AF B0
B0 B0
B1 AF

Address Contents
20 12
21 20
22 32
23 30
24 B0
25 21
26 24
27 C0
28 00

Address Contents
F0 20
F1 00
F2 22
F3 02
F4 23
F5 04
F6 B3
F7 FC
F8 50
F9 02
FA B0
FB F6
FC C0
FD 00
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is to cause the other to malfunction by writing
extraneous data on top of it; however, neither
program knows the location of the other.
a. Write a program in the machine language

of Appendix C that approaches the game
in a defensive manner by being as small
as possible.

b. Write a program in the language of
Appendix C that tries to avoid any attacks
from the opposing program by moving to
different locations. More precisely, begin-
ning at location 00, write a program that
will copy itself to location 70 and then
jump to location 70.

c. Extend the program in (b) to continue relo-
cating to new memory locations. In particu-
lar, make your program move to location 70,
then to E0 (� 70 � 70), then to 60 (� 70 �
70 � 70), etc.

25. Write a program in the machine language of
Appendix C to compute the sum of floating-
point values stored at memory locations A0,
A1, A2, and A3. Your program should store the
total at memory location A4.

26. Suppose the memory cells at addresses 00
through 05 in the machine described in
Appendix C contain the following (hexadeci-
mal) bit patterns:

What happens if we start the machine with its
program counter containing 00?

27. What happens if the memory cells at
addresses 08 and 09 of the machine described
in Appendix C contain the bit patterns B0 and
08, respectively, and the machine is started with
its program counter containing the value 08?

28. Suppose the following program, written in the
machine language of Appendix C, is stored in
main memory beginning at address 30 (hexa-
decimal). What task will the program perform
when executed?
2003
2101

2200
2310
1400
3410
5221
5331
3239
333B
B248
B038
C000

29. Summarize the steps involved when the
machine described in Appendix C performs
an instruction with op-code B. Express your
answer as a set of directions as though you
were telling the CPU what to do.

*30. Summarize the steps involved when the
machine described in Appendix C performs
an instruction with op-code 5. Express your
answer as a set of directions as though you
were telling the CPU what to do.

*31. Summarize the steps involved when the
machine described in Appendix C performs
an instruction with op-code 6. Express your
answer as a set of directions as though you
were telling the CPU what to do.

*32. Suppose the registers 4 and 5 in the machine
described in Appendix C contain the bit pat-
terns 3A and C8, respectively. What bit pat-
tern is left in register 0 after executing each
of the following instructions:
a. 5045 b. 6045 c. 7045
d. 8045 e. 9045

*33. Using the machine language described in
Appendix C, write programs to perform each
of the following tasks:
a. Copy the bit pattern stored in memory

location 44 into memory location AA.
b. Change the least significant 4 bits in the

memory cell at location 34 to 0s while
leaving the other bits unchanged.

c. Copy the least significant 4 bits from
memory location A5 into the least signifi-
cant 4 bits of location A6 while leaving the
other bits at location A6 unchanged.

d. Copy the least significant 4 bits from
memory location A5 into the most signifi-
cant 4 bits of A5. (Thus, the first 4 bits in
A5 will be the same as the last 4 bits.)

Address Contents
00 20
01 C0
02 30
03 04
04 00
05 00
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*34. Perform the indicated operations:
a. 111001 b. 000101

AND 101001 AND 101010

c. 001110 d. 111011
AND 010101 AND 110111

e. 111001 f. 010100
OR  101001 OR  101010

g. 000100 h. 101010
OR  010101 OR  110101

i. 111001 j. 000111
XOR 101001 XOR 101010

k. 010000 l. 111111
XOR 010101 XOR 110101

*35. Identify both the mask and the logical opera-
tion needed to accomplish each of the follow-
ing objectives:
a. Put 1s in the upper4 bits of an 8-bit pat-

tern without disturbing the other bits.
b. Complement the most significant bit of an

8-bit pattern without changing the other bits.
c. Complement a pattern of 8 bits.
d. Put a 0 in the least significant bit of an 8-bit

pattern without disturbing the other bits.
e. Put 1s in all but the most significant bit of

an 8-bit pattern without disturbing the
most significant bit.

*36. Identify a logical operation (along with a corre-
sponding mask) that, when applied to an input
string of 8 bits, produces an output string of all
0s if and only if the input string is 10000001.

*37. Describe a sequence of logical operations
(along with their corresponding masks) that,
when applied to an input string of 8 bits, pro-
duces an output byte of all 0s if the input string
both begins and ends with 1s. Otherwise, the
output should contain at least one 1.

*38. What would be the result of performing a 4-bit
left circular shift on the following bit patterns?
a. 10101 b. 11110000 c. 001
d. 101000 e. 00001

*39. What would be the result of performing a 
2-bit right circular shift on the following
bytes represented in hexadecimal notation
(give your answers in hexadecimal notation)?
a. 3F b. 0D
c. FF d. 77

*40. a. What single instruction in the machine
language of Appendix C could be used to

accomplish a 5-bit right circular shift of
register B?

b. What single instruction in the machine lan-
guage of Appendix C could be used to accom-
plish a 2-bit left circular shift of register B?

*41. Write a program in the machine language of
Appendix C that reverses the contents of the
memory cell at address 8C. (That is, the final
bit pattern at address 8C when read from left
to right should agree with the original pat-
tern when read from right to left.)

*42. Write a program in the machine language of
Appendix C that subtracts the value stored at
A1 from the value stored at address A2 and
places the result at address A0. Assume that
the values are encoded in two’s complement
notation.

*43. High definition video can be delivered at a
rate of 30 frames per second (fps) where each
frame has a resolution of 1920 � 1080 pixels
using 24 bits per pixel. Can an uncompressed
video stream of this format be sent over a
USB 1.1 serial port? USB 2.0 serial port? 
USB 3.0 serial port? (Note: The maximum
speeds of USB 1.1, USB 2.0, and USB 3.0 serial
ports are 12Mbps, 480Mbps, and 5Gbps
respectively.)

*44. Suppose a person is typing forty words per
minute at a keyboard. (A word is considered
to be five characters.) If a machine executes
500 instructions every microsecond (millionth
of a second), how many instructions does the
machine execute during the time between the
typing of two consecutive characters?

*45. How many bits per second must a keyboard
transmit to keep up with a typist typing forty
words per minute? (Assume each character is
encoded in ASCII and each word consists of
six characters.)

*46. Suppose the machine described in Appendix
C communicates with a printer using the
technique of memory-mapped I/O. Suppose
also that address FF is used to send characters
to the printer, and address FE is used to
receive information about the printer’s status.
In particular, suppose the least significant bit
at the address FE indicates whether the
printer is ready to receive another character
(with a 0 indicating “not ready” and a 1 indi-
cating “ready”). Starting at address 00, write a
machine language routine that waits until the
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printer is ready for another character and
then sends the character represented by the
bit pattern in register 5 to the printer.

*47. Write a program in the machine language
described in Appendix C that places 0s in all
the memory cells from address A0 through C0
but is small enough to fit in the memory cells
from address 00 through 13 (hexadecimal).

*48. Suppose a machine has 200 GB of storage
space available on a hard disk and receives
data over a broadband connection at the rate
of 15 Mbps. At this rate, how long will it take
to fill the available storage space?

*49. Suppose a satellite system is being used to
receive a serial data stream at 250 Kbps. If a
burst of atmospheric interference lasts 6.96 sec-
onds, how many data bits will be affected?

*50. Suppose you are given 32 processors, each
capable of finding the sum of two multidigit
numbers in a millionth of a second. Describe
how parallel processing techniques can be
applied to find the sum of 64 numbers in
only six-millionths of a second. How much
time does a single processor require to find
this same sum?

*51. Summarize the difference between a CISC
architecture and a RISC architecture.

*52. Identify two approaches to increasing
throughput.

*53. Describe how the average of a collection of
numbers can be computed more rapidly with
a multiprocessor machine than a single-
processor machine.

Social Issues

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. Suppose a computer manufacturer develops a new machine architecture. To
what extent should the company be allowed to own that architecture? What
policy would be best for society?

2. In a sense, the year 1923 marked the birth of what many now call planned
obsolescence. This was the year that General Motors, led by Alfred Sloan,
introduced the automobile industry to the concept of model years. The idea
was to increase sales by changing styling rather than necessarily introducing
a better automobile. Sloan is quoted as saying, “We want to make you dissat-
isfied with your current car so you will buy a new one.” To what extent is this
marketing ploy used today in the computer industry?

3. We often think in terms of how computer technology has changed our society.
Many argue, however, that this technology has often kept changes from occur-
ring by allowing old systems to survive and, in some cases, become more
entrenched. For example, would a central government’s role in society have
survived without computer technology? To what extent would centralized
authority be present today had computer technology not been available? To
what extent would we be better or worse off without computer technology?

4. Is it ethical for an individual to take the attitude that he or she does not need
to know anything about the internal details of a machine because someone
else will build it, maintain it, and fix any problems that arise? Does your
answer depend on whether the machine is a computer, automobile, nuclear
power plant, or toaster?

5. Suppose a manufacturer produces a computer chip and later discovers a flaw
in its design. Suppose further that the manufacturer corrects the flaw in
future production but decides to keep the original flaw a secret and does not
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recall the chips already shipped, reasoning that none of the chips already in
use are being used in an application in which the flaw will have conse-
quences. Is anyone hurt by the manufacturer’s decision? Is the manufac-
turer’s decision justified if no one is hurt and the decision keeps the
manufacturer from loosing money and possibly having to layoff employees?

6. Does advancing technology provide cures for heart disease or is it a source of
a sedentary life style that contributes to heart disease?

7. It is easy to imagine financial or navigational disasters that may occur as the
result of arithmetic errors due to overflow and truncation problems. What con-
sequences could result from errors in image storage systems due to loss of
image details (perhaps in fields such as reconnaissance or medical diagnosis)?

8. ARM Holdings is a small company that designs the processors for a wide vari-
ety of consumer electronic devices. It does not manufacture any of the proces-
sors; instead the designs are licensed to semiconductor vendors (such as
Qualcomm, Samsung, and Texas Instruments) who pay a royalty for each unit
produced. This business model spreads the high cost of research and develop-
ment of computer processors across the entire consumer electronic market.
Today, over 95 percent of all cellular phones (not just smartphones), over
40 percent of all digital cameras, and 25 percent of Digital TVs use an ARM
processor. Furthermore, ARM processors are found in mini-notebooks, MP3
players, game controllers, electronic book readers, navigation systems, and the
list goes on. Given this, do you consider this company to be a monopoly? Why or
why not? As consumer devices play an ever increasing role in today’s society, is
the dependency on this little known company good, or does it raise concerns?
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