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Learning Objectives

After mastering the material in this chapter, you will be able to:

LO7-1 Explain the concept of random sampling
and select a random sample.

LO7-2 Describe and use the sampling distribution
of the sample mean.

LO7-3 Explain and use the Central Limit Theorem.

LO7-4 Describe and use the sampling distribution
of the sample proportion.
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Describe the basic ideas of stratified
random, cluster, and systematic sampling
(Optional).

Describe basic types of survey questions,
survey procedures, and sources of error
(Optional).

Stratified Random, Cluster, and Systematic
Sampling (Optional)
More about Surveys and Errors in Survey
Sampling (Optional)

Derivation of the Mean and the Variance
of the Sample Mean (Optional)



n Chapter 1 we introduced random
sampling. In this chapter we continue our
discussion of random sampling by explaining
what a random sample is and how to select a
random sample. In addition, we discuss two
probability distributions that are related to random
sampling. To understand these distributions, note
that if we select a random sample, then we use

the sample mean as the point estimate of the
population mean and the sample proportion as the
point estimate of the population proportion. Two
probability distributions that help us assess how
accurate the sample mean and sample proportion
are likely to be as point estimates are the sampling
distribution of the sample mean and the sampling
distribution of the sample proportion. After discussing
random sampling in the first section of this chapter,

two sections. Moreover, using the car mileage case,
the e-billing case, and the cheese spread case, we
demonstrate how sampling distributions can be used
to make statistical inferences.

The discussions of random sampling and of
sampling distributions given in the first three
sections of this chapter are necessary for
understanding the rest of this book. The last three
sections of this chapter consider advanced aspects of
sampling and are optional. In the first optional
section, we discuss three alternatives to random
sampling—stratified random sampling, cluster
sampling, and systematic sampling. In the second
optional section, we discuss issues related to
designing surveys and the errors that can occur
in survey sampling. In the last optional section,
we derive the mean and variance of the sample

we consider these sampling distributions in the next  mean.

7.1 Random Sampling e e @ Explain the

Selecting a random sample from a population is one of the best ways to ensure that the informa- concept of

tion contained in the sample reflects what is true about the population. To illustrate the idea ofa "2 r:jdorln s:\mpllng
and select a

random sample, consider the cell phone case, and recall that a bank has 2,136 employees on var-
ious 500-minute-per-month calling plans. In order to assess its cellular costs for these 500-minute
plans, the bank will analyze in detail the cell phone bills for a random sample of 100 employees
on these plans. One intuitive procedure for selecting a random sample of 100 employees from a
population of 2,136 employees would begin by numbering the 2,136 employees from 1 to 2,136
and placing 2,136 identical slips of paper numbered from 1 to 2,136 in a suitable container. We
would then thoroughly mix the slips of paper in the container and, blindfolded, choose one. The
number on the chosen slip of paper would identify the first randomly selected employee. Next,
still blindfolded, we would choose another slip of paper from the container. The number on the
second slip would identify the second randomly selected employee. Continuing this process, we
would select a total of 100 slips of paper from the container. The numbers on the 100 selected
slips of paper would identify the 100 employees that make up the random sample.

In practice, numbering 2,136 (or any large number of) slips of paper would be very time con-
suming, and actual experience has shown that thoroughly mixing slips of paper (or the like) can
be difficult. For these reasons, statisticians have developed more efficient and accurate methods
for selecting a random sample. To discuss these methods, we let n, which we call the sample size,
denote the number of elements in a sample. We then define a random sample of n elements—and
explain how to select such a sample—as follows:"

random sample.

If we select n elements from a population in such a way that every set of n elements in the
population has the same chance of being selected, then the n elements we select are said to
be a random sample.

In order to select a random sample of n elements from a population, we make n random
selections—one at a time—from the population. On each random selection, we give every
element remaining in the population for that selection the same chance of being chosen.

In making random selections from a population, we can sample with or without replacement.
If we sample with replacement, we place the element chosen on any particular selection back
into the population. Thus, we give this element a chance to be chosen on any succeeding selec-
tion. If we sample without replacement, we do not place the element chosen on a particular se-
lection back into the population. Thus, we do not give this element a chance to be chosen on any
succeeding selection. It is best to sample without replacement. Intuitively, this is because

"Actually, there are several different kinds of random samples. The type we will define is sometimes called a simple random
sample. For brevity's sake, however, we will use the term random sample.
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choosing the sample without replacement guarantees that all of the elements in the sample will
be different, and thus we will have the fullest possible look at the population.

The first step in selecting a random sample is to obtain or make a numbered list of the popu-
lation elements. Then, as illustrated in the following example, we can use a random number table
or computer-generated random numbers to make random selections from the numbered list.

The Cell Phone Case: Reducing Cellular Phone Costs

In order to select a random sample of 100 employees from the population of 2,136 employees on
500-minute-per-month cell phone plans, the bank will make a numbered list of the 2,136 employ-
ees on 500-minute plans. The bank can then use a random number table, such as Table 7.1(a), to
select the random sample. To see how this is done, note that any single-digit number in the table has
been chosen in such a way that any of the single-digit numbers between O and 9 had the same
chance of being chosen. For this reason, we say that any single-digit number in the table is a
random number between 0 and 9. Similarly, any two-digit number in the table is a random number
between 00 and 99, any three digit number in the table is a random number between 000 and 999,
and so forth. Note that the table entries are segmented into groups of five to make the table easier to
read. Because the total number of cell phone users on the 500-minute plans (2,136) is a four-digit
number, we arbitrarily select any set of four digits in the table (we have circled these digits). This
number, which is 0511, identifies the first randomly selected user. Then, moving in any direction
from the 0511 (up, down, right, or left—it does not matter which), we select additional sets of
four digits. These succeeding sets of digits identify additional randomly selected users. Here we
arbitrarily move down from 0511 in the table. The first seven sets of four digits we obtain are

0511 7156 0285 4461 3990 4919 1915

(See Table 7.1(a)—these numbers are enclosed in a rectangle.) Because there are no users num-
bered 7156, 4461, 3990, or 4919 (remember only 2,136 users are on 500-minute plans), we ignore
these numbers. This implies that the first three randomly selected users are those numbered 0511,
0285, and 1915. Continuing this procedure, we can obtain the entire random sample of 100 users.
Notice that, because we are sampling without replacement, we should ignore any set of four digits
previously selected from the random number table.

While using a random number table is one way to select a random sample, this approach has a
disadvantage that is illustrated by the current situation. Specifically, since most four-digit random
numbers are not between 0001 and 2136, obtaining 100 different, four-digit random numbers
between 0001 and 2136 will require ignoring a large number of random numbers in the random
number table, and we will in fact need to use a random number table that is larger than

Random Numbers

(a) A portion of a random number table (b) MINITAB output of 100 different, four-digit
random numbers between 1 and 2136

33276 79936 56865 05859 90106 78188
03427 69445 18663 72695 52180 90322 705 1131 169 1703 1709 609
92737 33488 36320 17617 30015 74952 1990 766 1286 1977 222 43
85689 52267 67689 93394 01511 89868 1007 1902 1209 2091 1742 1152
08178 13916 47564 81056 97735 90707 111 69 2049 1448 659 338
51259 16308 60756 92144 49442 40719 1732 1650 7 388 613 1477
60268 19885 55322 44819 01188 55157 838 272 1227 154 18 320
94904 04146 18594 29852 71585 64951 1053 1466 2087 265 2107 1992
58586 14513 83149 98736 23495 35749 582 1787 2098 1581 397 1099
09998 06691 76988 13602 51851 58104 757 1699 567 1255 1959 407
14346 30168 90229 04734 59193 32812 334 1367 1333 1097 1299 277
74103 25306 76468 26384 58151 44592 663 40 385 1486 1021 >32
24200 38005 94342 28728 35806 22851 1629 182 372 1144 1569 1981
87308 00256 45834 15398 46557 18510 1332 1500 743 1262 1739 933
07351 92420 60952 61280 50001 94953 1832 378 728 1102 667 1885
514 1128 1046 116 1160 1333
831 2036 918 1535 660

928 1257 1468 503 468



7.1 Random Sampling

Table 7.1(a). Although larger random number tables are readily available in books of mathemati-
cal and statistical tables, a good alternative is to use a computer software package, which can gen-
erate random numbers that are between whatever values we specify. For example, Table 7.1(b)
gives the MINITAB output of 100 different, four-digit random numbers that are between 0001 and
2136 (note that the “leading 0°s” are not included in these four-digit numbers). If used, the random
numbers in Table 7.1(b) would identify the 100 employees that form the random sample. For ex-
ample, the first three randomly selected employees would be employees 705, 1990, and 1007.
When the number of cellular minutes used by each randomly selected employee is found and
recorded, we obtain the sample of cellular usages that has been given in Table 1.4 (see page 9).

To conclude this example, note that computer software packages sometimes generate the same
random number twice and thus are sampling with replacement. Because we wished to randomly
select 100 employees without replacement, we had MINITAB generate more than 100 (actually,
110) random numbers. We then ignored the repeated random numbers to obtain the 100 different
random numbers in Table 7.1(b).

Next, consider the marketing research case, and recall that we wish to select a sample of 60
shoppers at a large metropolitan shopping mall on a particular Saturday. Because it is not possi-
ble to list and number all of the shoppers who will be at the mall on this Saturday, we cannot se-
lect a random sample of these shoppers. However, we can select an approximately random sam-
ple of these shoppers. To see one way to do this, note that there are 6 ten-minute intervals during
each hour, and thus there are 60 ten-minute intervals during the 10-hour period from 10 A.M. to
8 p.M.—the time when the shopping mall is open. Therefore, one way to select an approximately
random sample is to choose a particular location at the mall that most shoppers will walk by and
then randomly select—at the beginning of each ten-minute period—one of the first shoppers who
walks by the location. Here, although we could randomly select one person from any reasonable
number of shoppers who walk by, we will (arbitrarily) randomly select one of the first five shop-
pers who walk by. For example, starting in the upper left-hand corner of Table 7.1(a) and pro-
ceeding down the first column, note that the first three random numbers between 1 and 5 are 3, 5,
and 1. This implies that (1) at 10 A.M. we would select the 3rd customer who walks by; (2) at
10:10 A.M. we would select the 5th shopper who walks by; (3) at 10:20 A.M. we would select the
Ist customer who walks by, and so forth. Furthermore, assume that the composite score ratings
of the new bottle design that would be given by all shoppers at the mall on the Saturday are rep-
resentative of the composite score ratings that would be given by all possible consumers. It then
follows that the composite score ratings given by the 60 sampled shoppers can be regarded as an
approximately random sample that can be used to make statistical inferences about the popula-
tion of all possible consumer composite score ratings.

As another example, consider the car mileage case, and recall that the automaker has decided
to select a sample of 50 cars by randomly selecting one car from the 100 cars produced on each of
50 consecutive production shifts. If we number the 100 cars produced on a particular production
shift from 00 to 99, we can randomly select a car from the shift by using a random number table
or a computer software package to obtain a random number between 00 and 99. For example, start-
ing in the upper left-hand corner of Table 7.1(a) and proceeding down the first column, we see that
the first three random numbers between 00 and 99 are 33, 3, and 92. This implies that we would
select car 33 from the first production shift, car 3 from the second production shift, car 92 from the
third production shift, and so forth. Moreover, because a new group of 100 cars is produced on
each production shift, repeated random numbers would not be discarded. For example, if the 15th
and 29th random numbers are both 7, we would select the 7th car from the 15th production shift
and the 7th car from the 29th production shift. When the 50 cars are selected and tested as pre-
scribed by the EPA, the sample of 50 mileages that has been given in Table 1.6 (see page 11) is ob-
tained. Furthermore, recall that we waited to randomly select the 50 cars from the 50 production
shifts until the midsize car manufacturing process was operating consistently over time and recall
that the time series plot in Figure 1.3 (page 11) intuitively verifies that the manufacturing process
is producing consistent car mileages over time. It follows that we can regard the 50 mileages in
Table 1.6 as an approximately random sample that can be used to make statistical inferences about
the population of all possible midsize car mileages. (In Chapter 17 we will discuss more precisely
how to assess whether a process is operating consistently over time.)
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Altria Group
PepsiCo
Coca-Cola
Archer Daniels
Anheuser-Bush
General Mills
Sara Lee

Coca-Cola
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Reynolds American
Kellogg

ConAgra Foods

HJ Heinz
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Pepsi Bottling
Group

Tyson Foods

Chapter 7 Sampling and Sampling Distributions

Random (or approximately random) sampling—as well as the more advanced kinds of
sampling discussed in optional Section 7.4—are types of probability sampling. In general,
probability sampling is sampling where we know the chance (or probability) that each element
in the population will be included in the sample. If we employ probability sampling, the sample
obtained can be used to make valid statistical inferences about the sampled population. However,
if we do not employ probability sampling, we cannot make valid statistical inferences.

One type of sampling that is not probability sampling is convenience sampling, where we se-
lect elements because they are easy or convenient to sample. For example, if we select people to
interview because they look “nice” or “pleasant,” we are using convenience sampling. Another
example of convenience sampling is the use of voluntary response samples, which are fre-
quently employed by television and radio stations and newspaper columnists. In such samples,
participants self-select—that is, whoever wishes to participate does so (usually expressing some
opinion). These samples overrepresent people with strong (usually negative) opinions. For ex-
ample, the advice columnist Ann Landers once asked her readers, “If you had it to do over again,
would you have children?” Of the nearly 10,000 parents who voluntarily responded, 70 percent
said that they would not. A probability sample taken a few months later found that 91 percent of
parents would have children again.

Another type of sampling that is not probability sampling is judgment sampling, where a
person who is extremely knowledgeable about the population under consideration selects popu-
lation elements that he or she feels are most representative of the population. Because the quality
of the sample depends upon the judgment of the person selecting the sample, it is dangerous to
use the sample to make statistical inferences about the population.

To conclude this section, we consider a classic example where two types of sampling errors
doomed a sample’s ability to make valid statistical inferences. This example occurred prior to the
presidential election of 1936, when the Literary Digest predicted that Alf Landon would defeat
Franklin D. Roosevelt by amargin of 57 percent to 43 percent. Instead, Roosevelt won the election in
alandslide. Literary Digest’s first error was to send out sample ballots (actually, 10 million ballots)
to people who were mainly selected from the Digest’s subscription list and from telephone direc-
tories. In 1936 the country had not yet recovered from the Great Depression, and many unemployed
and low-income people did not have phones or subscribe to the Digest. The Digest’s sampling pro-
cedure excluded these people, who overwhelmingly voted for Roosevelt. Second, only 2.3 million
ballots were returned, resulting in the sample being a voluntary response survey. At the same time,
George Gallup, founder of the Gallup Poll, was beginning to establish his survey business. He used
a probability sample to correctly predict Roosevelt’s victory. In optional Section 7.5 we discuss
various issues related to designing surveys and more about the errors that can occur in survey sam-
ples. Optional Sections 7.4 and 7.5 can now be read at any time and in any order.

CONCEPTS
7.1 Discuss how we select a random sample.

7.2 Explain why sampling without replacement is preferred to sampling with replacement.

METHODS AND APPLICATIONS

7.3 On the page margin, we list 15 companies that have historically performed well in the food, drink,
and tobacco industries. Consider the random numbers given in the random number table of
Table 7.1(a) on page 268. Starting in the upper left corner of Table 7.1(a) and moving down the
two leftmost columns, we see that the first three two-digit numbers obtained are: 33, 03, and 92.
Starting with these three random numbers, and moving down the two leftmost columns of Table 7.1(a)
to find more two-digit random numbers, use Table 7.1(a) to randomly select five of these compa-
nies to be interviewed in detail about their business strategies. Hint: Note that we have numbered
the companies from 1 to 15.

7.4 THE VIDEO GAME SATISFACTION RATING CASE @B VideoGame

A company that produces and markets video game systems wishes to assess its customers’ level of
satisfaction with a relatively new model, the XYZ-Box. In the six months since the introduction of
the model, the company has received 73,219 warranty registrations from purchasers. The company
will randomly select 65 of these registrations and will conduct telephone interviews with the pur-
chasers. Assume that the warranty registrations are numbered from 1 to 73,219 in a computer.



7.2 The Sampling Distribution of the Sample Mean

Starting in the upper left corner of Table 7.1(a) and moving down the five leftmost columns, we
see that the first three five-digit numbers obtained are: 33276, 03427, and 92737. Starting with
these three random numbers and moving down the five leftmost columns of Table 7.1(a) to find
more five-digit random numbers, use Table 7.1(a) to randomly select the numbers of the first 10
warranty registrations to be included in the sample of 65 registrations.

7.5 THE BANK CUSTOMER WAITING TIME CASE & WaitTime

Recall that when the bank manager’s new teller system is operating consistently over time, the
manager decides to record the waiting times of a sample of 100 customers that need teller service
during peak business hours. For each of 100 peak business hours, the first customer that starts
waiting for service at or after a randomly selected time during the hour will be chosen. Consider the
peak business hours from 2:00 p.M. to 2:59 p.M., from 3:00 p.M. to 3:59 p.m., from 4:00 p.M. to

4:59 pM., and from 5:00 P.M. to 5:59 P.M. on a particular day. Also, assume that a computer soft-
ware system generates the following four random numbers between 00 and 59: 32, 00, 18, and 47.
This implies that the randomly selected times during the first three peak business hours are

2:32 P.M., 3:00 P.M., and 4:18 P.M. What is the randomly selected time during the fourth peak
business hour?

7.6 In an article entitled “Turned Off” in the June 24, 1995, issue of USA Weekend, Don Olmsted and
Gigi Anders reported results of a survey where readers were invited to write in and express their
opinions about sex and violence on television. The results showed that 96 percent of respondents
were very or somewhat concerned about sex on TV, and 97 percent of respondents were very or
somewhat concerned about violence on TV. Do you think that these results could be generalized to
all television viewers in 1995? Why or why not?

7.2 The Sampling Distribution of the Sample Mean o @ @

Introductory ideas and basic properties Suppose that we are about to randomly select a
sample of n elements (for example, cars) from a population of elements. Also, suppose that for
each sampled element we will measure the value of a characteristic of interest. (For example, we
might measure the mileage of each sampled car.) Before we actually select the sample, there are
many different samples of n elements and corresponding measurements that we might potentially
obtain. Because different samples of measurements generally have different sample means, there
are many different sample means that we might potentially obtain. It follows that, before we draw
the sample, the sample mean x is a random variable.

The sampling distribution of the sample mean X is the probability distribution of the popula-
tion of all possible sample means that could be obtained from all possible samples of the
same size.

In order to illustrate the sampling distribution of the sample mean, we begin with an example
that is based on the authors’ conversations with University Chrysler/Jeep of Oxford, Ohio. In order
to keep the example simple, we have used simplified car mileages to help explain the concepts.

The Car Mileage Case: Estimating Mean Mileage

This is the first year that the automaker has offered its new midsize model for sale to the public.
However, last year the automaker made six preproduction cars of this new model. Two of these
six cars were randomly selected for testing, and the other four were sent to auto shows at which
the new model was introduced to the news media and the public. As is standard industry practice,
the automaker did not test the four auto show cars before or during the five months these auto
shows were held because testing can potentially harm the appearance of the cars.

In order to obtain a preliminary estimate—to be reported at the auto shows—of the midsize
model’s combined city and highway driving mileage, the automaker subjected the two cars
selected for testing to the EPA mileage test. When this was done, the cars obtained mileages of
30 mpg and 32 mpg. The mean of this sample of mileages is

30 + 32
E=T=3lmpg

This sample mean is the point estimate of the mean mileage u for the population of six prepro-
duction cars and is the preliminary mileage estimate for the new midsize model that was reported
at the auto shows.

LO7-2 Describe
and use
the sampling
distribution of the
sample mean.
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TaeLE 7.2 A Probability Distribution Describing the Population of Six Individual Car Mileages

Individual Car Mileage 29 30 31 32 33 34
Probability 1/6 1/6 1/6 1/6 1/6 1/6
. _________________________________________________________________________| . ______________________________________________________________________|
Ficure 7.1 A Comparison of Individual Car TasLE 7.3 The Population of Sample Means

Mileages and Sample Means .
(a) The population of the 15 samples of n = 2 car

(@) A graph of the probability distribution describing the mileages and corresponding sample means
population of six individual car mileages Car Sample
Sample Mileages Mean
1 29, 30 29.5
020 2 29, 31 30
1/6 1/6 1/6 1/6 1/6 1/6 3 23, 32 30.5
4 29, 33 31
2 ] 5 29, 34 315
2 6 30, 31 305
§ 0401 7 30, 32 31
5 8 30, 33 31.5
9 30, 34 32
10 31, 32 31.5
11 31,33 32
’ 29 30 31 32 33 34 12 31, 34 32.5
Individual Car Mileage 13 32,33 32,5
14 32,34 33
(b) A graph of the probability distribution describing the 15 33,34 335
population of 15 sample means (b) A probability distribution describing the
population of 15 sample means: the sampling
3/15 distribution of the sample mean
020 Sample
Mean Frequency Probability
, 015 2/15 2/15 2/15 2/15 29.5 1 1/15
% 30 1 1/15
2 o010 30.5 = 2/15
& 115 1/15 31 2 2/15
31.5 3 3/15
0.08 32 2 2/15
32.5 2 2/15
0.00- 33 1 1/15
29 295 30 305 31 315 32 325 33 335 34
Sample Mean 33.5 1 1/15

When the auto shows were over, the automaker decided to further study the new midsize
model by subjecting the four auto show cars to various tests. When the EPA mileage test was
performed, the four cars obtained mileages of 29 mpg, 31 mpg, 33 mpg, and 34 mpg. Thus, the
mileages obtained by the six preproduction cars were 29 mpg, 30 mpg, 31 mpg, 32 mpg, 33 mpg,
and 34 mpg. The probability distribution of this population of six individual car mileages is given
in Table 7.2 and graphed in Figure 7.1(a). The mean of the population of car mileages is

29+ 30+ 31+ 32+ 33 + 34

I.‘ £ m= 6

! Note that the point estimate x = 31 mpg that was reported at the auto shows is .5 mpg less
than the true population mean w of 31.5 mpg. Of course, different samples of two cars and cor-
responding mileages would have given different sample means. There are, in total, 15 samples of
two mileages that could have been obtained by randomly selecting two cars from the population
of six cars and subjecting the cars to the EPA mileage test. These samples correspond to the 15
combinations of two mileages that can be selected from the six mileages: 29, 30, 31, 32, 33, and
34. The samples are given, along with their means, in Table 7.3(a).

= 31.5mpg




7.2 The Sampling Distribution of the Sample Mean

In order to find the probability distribution of the population of sample means, note that dif-
ferent sample means correspond to different numbers of samples. For example, because the sam-
ple mean of 31 mpg corresponds to 2 out of 15 samples—the sample (29, 33) and the sample
(30, 32)—the probability of obtaining a sample mean of 31 mpg is 2/15. If we analyze all of the
sample means in a similar fashion, we find that the probability distribution of the population
of sample means is as given in Table 7.3(b). This distribution is the sampling distribution of the
sample mean. A graph of this distribution is shown in Figure 7.1(b) and illustrates the accuracies
of the different possible sample means as point estimates of the population mean. For example,
whereas 3 out of 15 sample means exactly equal the population mean of 31.5 mpg, other sample
means differ from the population mean by amounts varying from .5 mpg to 2 mpg.

As illustrated in Example 7.2, one of the purposes of the sampling distribution of the sample
mean is to tell us how accurate the sample mean is likely to be as a point estimate of the popula-
tion mean. Because the population of six individual car mileages in Example 7.2 is small, we
were able (after the auto shows were over) to test all six cars, determine the values of the six car
mileages, and calculate the population mean mileage. Often, however, the population of individ-
ual measurements under consideration is very large—either a large finite population or an infinite
population. In this case, it would be impractical or impossible to determine the values of all of the
population measurements and calculate the population mean. Instead, we randomly select a sam-
ple of individual measurements from the population and use the mean of this sample as the point
estimate of the population mean. Moreover, although it would be impractical or impossible to list
all of the many (perhaps trillions of) different possible sample means that could be obtained if the
sampled population is very large, statisticians know various theoretical properties about the sam-
pling distribution of these sample means. Some of these theoretical properties are intuitively
illustrated by the sampling distribution of the 15 sample means in Example 7.2. Specifically, sup-
pose that we will randomly select a sample of n individual measurements from a population of
individual measurements having mean w and standard deviation o. Then, it can be shown that:

* In many situations, the distribution of the population of all possible sample means
looks, at least roughly, like a normal curve. For example, consider Figure 7.1. This figure
shows that, while the distribution of the population of six individual car mileages is a uni-
form distribution, the distribution of the population of 15 sample means has a somewhat
bell-shaped appearance. Noting, however, that this rough bell-shaped appearance is not ex-
tremely close to the appearance of a normal curve, we wish to know when the distribution
of all possible sample means is exactly or approximately normally distributed. Answers to
this question will begin on the next page.

* The mean, u;, of the population of all possible sample means is equal to u, the mean of
the population from which we will select the sample. For example, the mean, u;, of the
population of 15 sample means in Table 7.3(a) can be calculated by adding up the 15 sample
means, which gives 472.5, and dividing by 15. That is, uy = 472.5/15 = 31.5, which is
the same as u, the mean of the population of six individual car mileages in Table 7.2.
Furthermore, because w; equals u, we call the sample mean an unbiased point estimate of
the population mean. This unbiasedness property says that, although most of the possible
sample means that we might obtain are either above or below the population mean, there is
no systematic tendency for the sample mean to overestimate or underestimate the population
mean. That is, although we will randomly select only one sample, the unbiased sample mean
is “correct on the average” in all possible samples.

* The standard deviation, o, of the population of all posssible sample means is less than
o, the standard deviation of the population from which we will select the sample. This
is illustrated in Figure 7.1, which shows that the distribution of all possible sample means is
less spread out than the distribution of all individual car mileages. Intuitively, we see that o7 is
smaller than o because each possible sample mean is an average of n measurements
(n equals 2 in Table 7.3). Thus, each sample mean averages out high and low sample
measurements and can be expected to be closer to the population mean g than many of
the individual population measurements would be. It follows that the different possible
sample means are more closely clustered around u than are the individual population
measurements.
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Ficure 7.2 The Normally Distributed Population of All Individual Car Mileages and the Normally Distributed
Population of All Possible Sample Means

The normally distributed
population of all individual
car mileages

30.0 30.8 31.6 324 33.2
T T T T T — Scale of car
29.2 1 34.0 mileages
x; = 30.8
Sample x; = 31'9J X1 =33.8
mean X3 = 30.3 X, = 31.7 Sample
Xx=313 Xz=32.1 X3 = 33.4 mean
x5 =31.4 Xa=324 %=328
X5 = 32.7

X, =323
Sample x; = 30.7<—/

mean i = The normally distributed
X=318 §4 = g;g population of all possible
< = 32.

sample means

Scale of sample means, x

T T T T T T
304 308 31.2 316 320 324 328

e If the population from which we will select the sample is normally distributed, then
for any sample size n the population of all possible sample means is normally
distributed. For example, consider the population of the mileages of all of the new midsize
cars that could potentially be produced by this year’s manufacturing process. As discussed
in Chapter 1, we consider this population to be an infinite population because the automaker
could always make “one more car.” Moreover, assume that (as will be verified in a later
example) this infinite population of all individual car mileages is normally distributed (see
the top curve in Figure 7.2), and assume that the automaker will randomly select a sample
of n = 5 cars, test them as prescribed by the EPA, and calculate the mean of the resulting
sample mileages. It then follows that the population of all possible sample means that the
automaker might obtain is normally distributed. This is illustrated in Figure 7.2 (see the
bottom curve), which also depicts the unbiasedness of the sample mean X as a point estimate
of the population mean u. Specifically, note that the normally distributed population of all
possible sample means is centered over u, the mean of the normally distributed population
of all individual car mileages. This says that, although most of the possible sample means
that the automaker might obtain are either above or below the true population mean w, the
mean of all of the possible sample means that the automaker might obtain, u, is equal to u.
To make Figure 7.2 easier to understand, we have assumed that the true value of the popula-
tion mean mileage w is 31.6 mpg. Of course, the true value of w is really unknown. Our
objective is to estimate w, and to do this effectively, it is important to know more about o7,
the standard deviation of the population of all possible sample means. We will see that hav-
ing a formula for o; will help us to choose a sample size # that is likely to make the sample
mean X an accurate point estimate of the population mean w. That is, although Figure 7.2 is
based on selecting a sample of n = 5 car mileages, perhaps we should select a larger sample
of, say, 50 or more car mileages. The following summary box gives a formula for o and
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also summarizes other previously discussed facts about the probability distribution of the
population of all possible sample means.

The Sampling Distribution of x

ssume that the population from which we will randomly select a sample of n measurements has
mean u and standard deviation o. Then, the population of all possible sample means

1 Has a normal distribution, if the sampled population has a normal distribution.
2 Hasmean u; = u.

3 Has standard deviation oy = 2.
,\/7

n
The formula for o5 in (3) holds exactly if the sampled population is infinite. If the sampled population is
finite, this formula holds approximately under conditions to be discussed at the end of this section.

Stated equivalently, the sampling distribution of x has mean u; = u, has standard deviation o; = o/ Vn
(if the sampled population is infinite), and is a normal distribution (if the sampled population has a normal
distribution).?

The third result in the summary box says that, if the sampled population is infinite, then
o3 = o/ Vn.Inwords, o3, the standard deviation of the population of all possible sample means,
equals o, the standard deviation of the sampled population, divided by the square root of the sam-
ple size n. It follows that, if the sample size n is greater than 1, then oz = ¢/ \V/n is smaller than
o. This is illustrated in Figure 7.2, where the sample size n is 5. Specifically, note that the nor-
mally distributed population of all possible sample means is less spread out than the normally
distributed population of all individual car mileages. Furthermore, the formula oz = o/ Vn says
that o; decreases as n increases. That is, intuitively, when the sample size is larger, each possible
sample averages more observations. Therefore, the resulting different possible sample means
will differ from each other by less and thus will become more closely clustered around the pop-
ulation mean. It follows that, if we take a larger sample, we are more likely to obtain a sample
mean that is near the population mean.

In order to better see how o3 = o/ \/n decreases as the sample size n increases, we will com-
pute some values of o in the context of the car mileage case. To do this, we will assume that, al-
though we do not know the true value of the population mean w, we do know the true value of
the population standard deviation o. Here, knowledge of o might be based on theory or history
related to the population under consideration. For example, because the automaker has been
working to improve gas mileages, we cannot assume that we know the true value of the popula-
tion mean mileage w for the new midsize model. However, engineering data might indicate that
the spread of individual car mileages for the automaker’s midsize cars is the same from model to
model and year to year. Therefore, if the mileages for previous models had a standard deviation
equal to .8 mpg, it might be reasonable to assume that the standard deviation of the mileages for
the new model will also equal .8 mpg. Such an assumption would, of course, be questionable, and
in most real-world situations there would probably not be an actual basis for knowing o. How-
ever, assuming that o is known will help us to illustrate sampling distributions, and in later chap-
ters we will see what to do when o is unknown.

The Car Mileage Case: Estimating Mean Mileage G

Part 1: Basic concepts Consider the infinite population of the mileages of all of the new mid-
size cars that could potentially be produced by this year’s manufacturing process. If we assume
that this population is normally distributed with mean u and standard deviation o = .8 (see Fig-
ure 7.3(a)), and if the automaker will randomly select a sample of n cars and test them as
prescribed by the EPA, it follows that the population of all possible sample means is normally
distributed with mean u~ = w and standard deviation o= = o/ Vn = .8/V/n. In order to show

2In optional Section 7.6 we derive the formulas uz = pand o3 = o/ Vn.
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__________________________________________________________________________________________________________________________________________|
Ficure 7.3 A Comparison of (1) the Population of All Individual Car Mileages, (2) the Sampling Distribution
of the Sample Mean X When n = 5, and (3) the Sampling Distribution of the Sample Mean x
When n = 50

(a) The population of individual mileages

The normal distribution describing the
population of all individual car mileages, which
has mean u and standard deviation o = .8

, Scale of gas mileages
I

(b) The sampling distribution of the sample mean X when n =5

The normal distribution describing the population
of all possible sample means when the sample

size is 5, where uz = pand oz = T% = J—g =.358

T Scale of sample means, X

(c) The sampling distribution of the sample mean X when n = 50

The normal distribution describing the population
of all possible sample means when the sample size

isSO,whereM,—(=;Lando,7=ﬂ/—%=ﬁ=.113

Scale of sample means, X

that a larger sample is more likely to give a more accurate point estimate x of w, compare taking
a sample of size n = 5 with taking a sample of size n = 50.If n = 5, then

_ o _ 8
TV V3

and it follows (by the Empirical Rule) that 95.44 percent of all possible sample means are within
plus or minus 20 = 2(.358) = .716 mpg of the population mean w. If n = 50, then

Ox

= 358

o .8
Oy = —F==——= =113

Vn o V50
and it follows that 95.44 percent of all possible sample means are within plus or minus
20; = 2(.113) = .226 mpg of the population mean w. Therefore, if n = 50, the different possi-
ble sample means that the automaker might obtain will be more closely clustered around w than
they will be if n = 5 (see Figures 7.3(b) and (c)). This implies that the larger sample of size
n = 50 is more likely to give a sample mean x that is near u.
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FiIGUurRE 7.4 The Probability That X = 31.56 When p = 31 in the Car Mileage Case

Population of all possible sample means
when n = 50

- s X (scale of sample means)
31 31.56

Standard normal curve

.00003
z

0 3.99 4.96
\ 31.56 — 31

z= A =4.96

Part 2: Statistical inference Recall from Chapter 3 that the automaker has randomly selected
a sample of n = 50 mileages, which has mean x = 31.56. We now ask the following question: If
the population mean mileage n exactly equals 31 mpg (the minimum standard for the tax credit),
what is the probability of observing a sample mean mileage that is greater than or equal to
31.56 mpg? To find this probability, recall from Chapter 2 that a histogram of the 50 mileages
indicates that the population of all individual mileages is normally distributed. Assuming that the
population standard deviation o is known to equal .8 mpg, it follows that the sampling distribu-
tion of the sample mean X is a normal distribution, with mean u; = w and standard deviation
o:=o/Vn=.8/V50 = .113. Therefore,

31.56 — 31.56 — 31
plz= "B = plz= T

P(x = 3156 if u = 31) 113

P(z = 4.96)

To find P(z = 4.96), notice that the largest z value given in Table A.3 (page 791) is 3.99, which
gives a right-hand tail area of .00003. Therefore, because P(z = 3.99) = .00003, it follows that
P(z = 4.96) is less than .00003 (see Figure 7.4). The fact that this probability is less than .00003
says that, if u equals 31, then fewer than 3 in 100,000 of all possible sample means are at least
as large as the sample mean x = 31.56 that we have actually observed. Therefore, if we are to
believe that u equals 31, then we must believe that we have observed a sample mean that can be
described as a smaller than 3 in 100,000 chance. Because it is extremely difficult to believe that
such a small chance would occur, we have extremely strong evidence that u does not equal 31
and that u is, in fact, larger than 31. This evidence would probably convince the federal govern-
ment that the midsize model’s mean mileage w exceeds 31 mpg and thus that the midsize model
deserves the tax credit.

Q

To conclude this subsection, it is important to make two comments. First, the formula
o; = o/ Vn follows, in theory, from the formula for o2, the variance of the population of all
possible sample means. The formula for o= is = = o*/n. Second, in addition to holding exactly
if the sampled population is infinite, the formula oz = o/ V/n holds approximately if the sam-
pled population is finite and much larger than (say, at least 20 times) the size of the sample.
For example, if we define the population of the mileages of all new midsize cars to be the popu-
lation of the mileages of all cars that will actually be produced this year, then the population is
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finite. However, the population would be very large—certainly at least as large as 20 times any
reasonable sample size. For example, if the automaker produces 100,000 new midsize cars this
year, and if we randomly select a sample of n = 50 of these cars, then the population size of
100,000 is more than 20 times the sample size of 50 (which is 1,000). It follows that, even though
the population is finite and thus the formula o; = o/ V/n would not hold exactly, this formula
would hold approximately. The exact formula for o; when the sampled population is finite is
given in a technical note at the end of this section. It is important to use this exact formula if the
sampled population is finite and less than 20 times the size of the sample. However, with the
exception of the populations considered in the technical note and in Section 8.5, we will
assume that all of the remaining populations to be discussed in this book are either infinite
or finite and at least 20 times the size of the sample. Therefore, it will be appropriate to use
the formula oz = o/ Vn.

Sampling a nonnormally distributed population: The Central Limit Theorem We

LO7-3 Explainand oy consider what can be said about the sampling distribution of ¥ when the sampled population

Centralulfiiwﬁ?e is not normally distributed. First, as previously stated, the fact that u; = w is still true. Second,
Theorem as also previously stated, the formula o; = o/ Vn is exactly correct if the sampled population

is infinite and is approximately correct if the sampled population is finite and much larger than
(say, at least 20 times as large as) the sample size. Third, an extremely important result called the
Central Limit Theorem tells us that, if the sample size n is large, then the sampling
distribution of x is approximately normal, even if the sampled population is not normally
distributed.

The Central Limit Theorem

f the sample size n is sufficiently large, then the population of all possible sample means is approxi-

mately normally distributed (with mean u; = u and standard deviation o; = ¢/Vn), no matter what
probability distribution describes the sampled population. Furthermore, the larger the sample size n is,
the more nearly normally distributed is the population of all possible sample means.

The Central Limit Theorem is illustrated in Figure 7.5 for several population shapes. Notice
that as the sample size increases (from 2 to 6 to 30), the populations of all possible sample means
become more nearly normally distributed. This figure also illustrates that, as the sample size
increases, the spread of the distribution of all possible sample means decreases (remember that
this spread is measured by o, which decreases as the sample size increases).

How large must the sample size be for the sampling distribution of x to be approximately
normal? In general, the more skewed the probability distribution of the sampled population, the
larger the sample size must be for the population of all possible sample means to be approximately
normally distributed. For some sampled populations, particularly those described by symmetric
distributions, the population of all possible sample means is approximately normally distributed
for a fairly small sample size. In addition, studies indicate that, if the sample size is at least 30,
then for most sampled populations the population of all possible sample means is approxi-
mately normally distributed. In this book, whenever the sample size 7 is at least 30, we will
assume that the sampling distribution of x is approximately a normal distribution. Of course,
if the sampled population is exactly normally distributed, the sampling distribution of x is
exactly normal for any sample size.

We can see the shapes of sampling distributions such as those illustrated in Figure 7.5 by using
computer simulation. Specifically, for a population having a particular probability distribution,
we can have the computer draw a given number of samples of n observations, compute the mean
of each sample, and arrange the sample means into a histogram. To illustrate this, consider the
upper portion of Figure 7.6, which shows the exponential distribution describing the hospital
emergency room interarrival times discussed in Example 6.11 (page 253). Figure 7.6(a) gives the
results of a simulation in which MINITAB randomly selected 1,000 samples of n = 5 interarrival
times from this exponential distribution, calculated the mean of each sample, and arranged the
1,000 sample means into a histogram. Figure 7.6(b) gives the results of a simulation in which
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Ficure 7.5 The Central Limit Theorem Says That the Larger the Sample Size Is, the More

Nearly Normally Distributed Is the Population of All Possible Sample Means
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Ficure 7.6 Simulating the Sampling Distribution of the Sample Mean When Sampling from
an Exponential Distribution
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MINITAB randomly selected 1,000 samples of n = 30 interarrival times from the exponential dis-
tribution, calculated the mean of each sample, and arranged the 1,000 sample means into a his-
togram. Note that, whereas the histogram in Figure 7.6(a) is somewhat skewed to the right, the
histogram in Figure 7.6(b) appears approximately bell-shaped. Therefore, we might conclude that
when we randomly select a sample of n observations from an exponential distribution, the sam-
pling distribution of the sample mean is somewhat skewed to the right when n = 5 and is
approximately normal when n = 30.

The e-billing Case: Reducing Mean Bill Payment Time G

Recall that a management consulting firm has installed a new computer-based electronic billing
system in a Hamilton, Ohio, trucking company. Because of the previously discussed advantages
of the new billing system, and because the trucking company’s clients are receptive to using this
system, the management consulting firm believes that the new system will reduce the mean bill
payment time by more than 50 percent. The mean payment time using the old billing system was
approximately equal to, but no less than, 39 days. Therefore, if u denotes the new mean payment
time, the consulting firm believes that u will be less than 19.5 days. To assess whether u is less
than 19.5 days, the consulting firm has randomly selected a sample of n = 65 invoices processed
using the new billing system and has determined the payment times for these invoices. The mean
of the 65 payment times is x = 18.1077 days, which is less than 19.5 days. Therefore, we ask the
following question: If the population mean payment time is 19.5 days, what is the probability of
observing a sample mean payment time that is less than or equal to 18.1077 days? To find this
probability, recall from Chapter 2 that a histogram of the 65 payment times indicates that the
population of all payment times is skewed with a tail to the right. However, the Central Limit
Theorem tells us that, because the sample size n = 65 is large, the sampling distribution of X is
approximately a normal distribution with mean u; = u and standard deviation o; = o/ V.
Moreover, whereas this is the first time that the consulting firm has implemented an electronic
billing system for a trucking company, the firm has installed electronic billing systems for
clients in other industries. Analysis of results from these installations shows that, although the
population mean payment time w varies from company to company, the population standard de-
viation o of payment times is the same for different applications and equals 4.2 days. Assuming

:: that o also equals 4.2 days for the trucking company, it follows that o; equals 4.2/V 65 = .5209

and that
18.1077 19.5

18.1077 — 19.5
s

038 : P(X = 18.1077 if u = 19.5) = P(z = 5209) — Pz = —2.67)

—2.67 0

which is the area under the standard normal curve to the left of —2.67. The normal table tells us
that this area equals .0038. This probability says that, if w equals 19.5, then only .0038 of all
possible sample means are at least as small as the sample meanx = 18.1077 that we have actually
observed. Therefore, if we are to believe that w equals 19.5, we must believe that we have observed

: asample mean that can be described as a 38 in 10,000 chance. Itis very difficult to believe that such

a small chance would occur, so we have very strong evidence that u does not equal 19.5 and is, in
fact, less than 19.5. We conclude that the new billing system has reduced the mean bill payment
time by more than 50 percent.

Unbiasedness and minimum-variance estimates Recall that a sample statistic is any
descriptive measure of the sample measurements. For instance, the sample mean X is a statistic,
and so are the sample median, the sample variance s> and the sample standard deviation s. Not
only do different samples give different values of x, different samples also give different values
of the median, s, s, or any other statistic. It follows that, before we draw the sample, any sample
statistic is a random variable, and

The sampling distribution of a sample statistic is the probability distribution of the population
of all possible values of the sample statistic.
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In general, we wish to estimate a population parameter by using a sample statistic that is what
we call an unbiased point estimate of the parameter.

A sample statistic is an unbiased point estimate of a population parameter if the mean of the
population of all possible values of the sample statistic equals the population parameter.

For example, we use the sample mean x as the point estimate of the population mean u
because X is an unbiased point estimate of w. That is, u; = u. In words, the average of all the
different possible sample means (that we could obtain from all the different possible samples)
equals u.

Although we want a sample statistic to be an unbiased point estimate of the population
parameter of interest, we also want the statistic to have a small standard deviation (and variance).
That is, we wish the different possible values of the sample statistic to be closely clustered
around the population parameter. If this is the case, when we actually randomly select one sam-
ple and compute the sample statistic, its value is likely to be close to the value of the population
parameter. Furthermore, some general results apply to estimating the mean w of a normally dis-
tributed population. In this situation, it can be shown that both the sample mean and the sample
median are unbiased point estimates of u. In fact, there are many unbiased point estimates of w.
However, it can be shown that the variance of the population of all possible sample means is
smaller than the variance of the population of all possible values of any other unbiased point
estimate of w. For this reason, we call the sample mean a minimum-variance unbiased point
estimate of . When we use the sample mean as the point estimate of w, we are more likely to
obtain a point estimate close to w than if we used any other unbiased sample statistic as the point
estimate of w. This is one reason why we use the sample mean as the point estimate of the
population mean.

We next consider estimating the population variance ¢>. It can be shown that if the sampled
population is infinite, then s* is an unbiased point estimate of o, That is, the average of all
the different possible sample variances that we could obtain (from all the different possible
samples) is equal to o>. This is why we use a divisor equal to n — 1 rather than n when we esti-
mate . It can be shown that, if we used n as the divisor when estimating o, we would not
obtain an unbiased point estimate of o>. When the population is finite, s> may be regarded as an
approximately unbiased estimate of o> as long as the population is fairly large (which is usually
the case).

It would seem logical to think that, because s%is an unbiased point estimate of o2, s should be
an unbiased point estimate of o . This seems plausible, but it is not the case. There is no easy way
to calculate an unbiased point estimate of o. Because of this, the usual practice is to use s as the
point estimate of o (even though it is not an unbiased estimate).

This ends our discussion of the theory of point estimation. It suffices to say that in this book
we estimate population parameters by using sample statistics that statisticians generally agree are
best. Whenever possible, these sample statistics are unbiased point estimates and have small
variances.

Technical Note: If we randomly select a sample of size n without replacement from a finite
population of size N, then it can be shown that o = (¢/Vn) V(N — n)/(N — 1), where the
quantity V(N — n)/(N — 1)is called the finite population multiplier. If the size of the sampled
population is at least 20 times the size of the sample (that is, if N = 20n), then the finite
population multiplier is approximately equal to one, and oz approximately equals o/ \V/ n.
However, if the population size N is smaller than 20 times the size of the sample, then the finite
population multiplier is substantially less than one, and we must include this multiplier in the cal-
culation of o5. For instance, in Example 7.2, where the standard deviation o of the population of
N = 6 car mileages can be calculated to be 1.7078, and where N = 6 is only three times the sam-
ple size n = 2, it follows that

N 17078\ [6 = 2
__ o n_ ( ) = 1.2076(.8944) = 1.08

TVANN-—1 U v2 Ne-1

We will see how this formula can be used to make statistical inferences in Section 8.5.
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CONCEPTS

7.7  Suppose that we will randomly select a sample of four measurements from a larger population of
measurements. The sampling distribution of the sample mean x is the probability distribution of a
population. In your own words, describe the elements in this population.

7.8  What does the Central Limit Theorem tell us about the sampling distribution of the sample mean?

METHODS AND APPLICATIONS

7.9  Suppose that we will take a random sample of size n from a population having mean p and standard
deviation o. For each of the following situations, find the mean, variance, and standard deviation of
the sampling distribution of the sample mean x:
a u=10, o0=2, n=25 c w=3 o=.1, n=4
b u=500, o=.5 n=100 d £u=100, =1, n=1,600

7.10 For each situation in Exercise 7.9, find an interval that contains (approximately or exactly)
99.73 percent of all the possible sample means. In which cases must we assume that the population
is normally distributed? Why?

7.11  Suppose that we will randomly select a sample of 64 measurements from a population having a

mean equal to 20 and a standard deviation equal to 4.

a Describe the shape of the sampling distribution of the sample mean x. Do we need to make any
assumptions about the shape of the population? Why or why not?
Find the mean and the standard deviation of the sampling distribution of the sample mean Xx.

¢ Calculate the probability that we will obtain a sample mean greater than 21; that is, calculate
P(x > 21). Hint: Find the z value corresponding to 21 by using u; and o because we wish to
calculate a probability about x. Then sketch the sampling distribution and the probability.

d Calculate the probability that we will obtain a sample mean less than 19.385; that is, calculate
P(x < 19.385).

THE GAME SHOW CASE

Exercises 7.12 through 7.16 are based on the following situation.

Congratulations! You have just won the question-and-answer portion of a popular game show and will
now be given an opportunity to select a grand prize. The game show host shows you a large revolving drum
containing four identical white envelopes that have been thoroughly mixed in the drum. Each of the en-
velopes contains one of four checks made out for grand prizes of 20, 40, 60, and 80 thousand dollars. Usu-
ally, a contestant reaches into the drum, selects an envelope, and receives the grand prize in the envelope.
Tonight, however, is a special night. You will be given the choice of either selecting one envelope or select-
ing two envelopes and receiving the average of the grand prizes in the two envelopes. If you select one
envelope, the probability is 1/4 that you will receive any one of the individual grand prizes 20, 40, 60, and
80 thousand dollars. To see what could happen if you select two envelopes, do Exercises 7.12 through 7.16.

7.12 There are six combinations, or samples, of two grand prizes that can be randomly selected from
the four grand prizes 20, 40, 60, and 80 thousand dollars. Four of these samples are (20, 40),
(20, 60), (20, 80), and (40, 60). Find the other two samples.

7.13 Find the mean of each sample in Exercise 7.12.
7.14 Find the probability distribution of the population of six sample mean grand prizes.

7.15 If you select two envelopes, what is the probability that you will receive a sample mean grand
prize of at least 50 thousand dollars?

7.16 Compare the probability distribution of the four individual grand prizes with the probability
distribution of the six sample mean grand prizes. Would you select one or two envelopes? Why?
Note: There is no one correct answer. It is a matter of opinion.

7.17 THE BANK CUSTOMER WAITING TIME CASE @& WaitTime

Recall that the bank manager wants to show that the new system reduces typical customer waiting
times to less than six minutes. One way to do this is to demonstrate that the mean of the population of
all customer waiting times is less than 6. Letting this mean be w, in this exercise we wish to investigate
whether the sample of 100 waiting times provides evidence to support the claim that w is less than 6.

For the sake of argument, we will begin by assuming that u equals 6, and we will then attempt
to use the sample to contradict this assumption in favor of the conclusion that u is less than 6.
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Recall that the mean of the sample of 100 waiting times is x = 5.46 and assume that o, the

standard deviation of the population of all customer waiting times, is known to be 2.47.

a Consider the population of all possible sample means obtained from random samples of
100 waiting times. What is the shape of this population of sample means? That is, what is the
shape of the sampling distribution of x? Why is this true?

b Find the mean and standard deviation of the population of all possible sample means when we
assume that u equals 6.

¢ The sample mean that we have actually observed is x = 5.46. Assuming that u equals 6, find
the probability of observing a sample mean that is less than or equal to x = 5.46.

d If u equals 6, what percentage of all possible sample means are less than or equal to 5.46?
Because we have actually observed a sample mean of x = 5.46, is it more reasonable to
believe that (1) u equals 6 and we have observed one of the sample means that is less than or
equal to 5.46 when u equals 6, or (2) that we have observed a sample mean less than or equal
to 5.46 because u is less than 6? Explain. What do you conclude about whether the new system
has reduced the typical customer waiting time to less than six minutes?

THE VIDEO GAME SATISFACTION RATING CASE @& VideoGame

Recall that a customer is considered to be very satisfied with his or her XYZ Box video game

system if the customer’s composite score on the survey instrument is at least 42. One way to show

that customers are typically very satisfied is to show that the mean of the population of all satisfac-
tion ratings is at least 42. Letting this mean be u, in this exercise we wish to investigate whether

the sample of 65 satisfaction ratings provides evidence to support the claim that u exceeds 42

(and, therefore, is at least 42).

For the sake of argument, we begin by assuming that u equals 42, and we then attempt to use
the sample to contradict this assumption in favor of the conclusion that u exceeds 42. Recall that
the mean of the sample of 65 satisfaction ratings is x = 42.95, and assume that ¢, the standard
deviation of the population of all satisfaction ratings, is known to be 2.64.

a Consider the sampling distribution of x for random samples of 65 customer satisfaction ratings.
Use the properties of this sampling distribution to find the probability of observing a sample
mean greater than or equal to 42.95 when we assume that u equals 42.

b If u equals 42, what percentage of all possible sample means are greater than or equal to
42.95? Because we have actually observed a sample mean of x = 42.95, is it more reasonable
to believe that (1) w equals 42 and we have observed a sample mean that is greater than or
equal to 42.95 when u equals 42, or (2) that we have observed a sample mean that is greater
than or equal to 42.95 because w is greater than 42? Explain. What do you conclude about
whether customers are typically very satisfied with the XYZ Box video game system?

In an article in the Journal of Management, Joseph Martocchio studied and estimated the costs

of employee absences. Based on a sample of 176 blue-collar workers, Martocchio estimated that

the mean amount of paid time lost during a three-month period was 1.4 days per employee with a

standard deviation of 1.3 days. Martocchio also estimated that the mean amount of unpaid time

lost during a three-month period was 1.0 day per employee with a standard deviation of 1.8 days.
Suppose we randomly select a sample of 100 blue-collar workers. Based on Martocchio’s estimates:

a What is the probability that the average amount of paid time lost during a three-month period
for the 100 blue-collar workers will exceed 1.5 days? Assume o equals 1.3 days.

b What is the probability that the average amount of unpaid time lost during a three-month
period for the 100 blue-collar workers will exceed 1.5 days? Assume o equals 1.8 days.

¢ Suppose we randomly select a sample of 100 blue-collar workers, and suppose the sample
mean amount of unpaid time lost during a three-month period actually exceeds 1.5 days. Would
it be reasonable to conclude that the mean amount of unpaid time lost has increased above the
previously estimated 1.0 day? Explain. Assume o still equals 1.8 days.

When a pizza restaurant’s delivery process is operating effectively, pizzas are delivered in an

average of 45 minutes with a standard deviation of 6 minutes. To monitor its delivery process,

the restaurant randomly selects five pizzas each night and records their delivery times.

a For the sake of argument, assume that the population of all delivery times on a given
evening is normally distributed with a mean of u = 45 minutes and a standard deviation of
o = 6 minutes. (That is, we assume that the delivery process is operating effectively.) Find the
mean and the standard deviation of the population of all possible sample means, and calculate
an interval containing 99.73 percent of all possible sample means.

b Suppose that the mean of the five sampled delivery times on a particular evening is x = 55 minutes.
Using the interval that you calculated in a, what would you conclude about whether the restaurant’s
delivery process is operating effectively? Why?
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. A food processing company markets a soft cheese spread that is sold in a plastic container with
sample proportion.

an “easy pour” spout. Although this spout works extremely well and is popular with consumers,
it is expensive to produce. Because of the spout’s high cost, the company has developed a new,
less expensive spout. While the new, cheaper spout may alienate some purchasers, a company
study shows that its introduction will increase profits if fewer than 10 percent of the cheese
spread’s current purchasers are lost. That is, if we let p be the true proportion of all current pur-
chasers who would stop buying the cheese spread if the new spout were used, profits will increase
as long as p is less than .10.

Suppose that (after trying the new spout) 63 of 1,000 randomly selected purchasers say that
they would stop buying the cheese spread if the new spout were used. The point estimate of the
population proportion p is the sample proportion p = 63/1,000 = .063. This sample proportion
says that we estimate that 6.3 percent of all current purchasers would stop buying the cheese
spread if the new spout were used. Because p equals .063, we have some evidence that the popu-
lation proportion p is less than .10. In order to determine the strength of this evidence, we need
to consider the sampling distribution of p. In general, assume that we will randomly select a sam-
ple of n elements from a population, and assume that a proportion p of all the elements in the pop-
ulation fall into a particular category (for instance, the category of consumers who would stop
buying the cheese spread). Before we actually select the sample, there are many different samples
of n elements that we might potentially obtain. The number of elements that fall into the category
in question will vary from sample to sample, so the sample proportion of elements falling into the
category will also vary from sample to sample. For example, if three possible random samples of
1,000 soft cheese spread purchasers had, respectively, 63, 58, and 65 purchasers say that they
would stop buying the cheese spread if the new spout were used, then the sample proportions
given by the three samples would be p = 63/1000 = .063, p = 58/1000 = .058, and
p = 65/1000 = .065. In general, before we randomly select the sample, there are many differ-
ent possible sample proportions that we might obtain, and thus the sample proportion p is a
random variable. In the following box we give the properties of the probability distribution of
this random variable, which is called the sampling distribution of the sample proportion p.

The Sampling Distribution of the Sample Proportion p

The population of all possible sample proportions /\

1 Approximately has a normal distribution, if the sample size n is large. LI B B R O

2 Has mean L5 = Pp. | (1-p)
P p(1 — p) % ="
3 Has standard deviation o = —_—

Stated equivalently, the sampling distribution of p has mean u; = p, has standard deviation o5 = Vp(1 — p)/n,
and is approximately a normal distribution (if the sample size n is large).

Property 1 in the box says that, if n is large, then the population of all possible sample pro-
portions approximately has a normal distribution. Here, it can be shown that n should be con-
sidered large if both np and n(1 — p) are at least 5.° Property 2, which says that M = p, is
valid for any sample size and tells us that p is an unbiased estimate of p. That is, although the
sample proportion p that we calculate probably does not equal p, the average of all the different
sample proportions that we could have calculated (from all the different possible samples) is

equal to p. Property 3, which says that
[p(1 — p)
05 =

3Some statisticians suggest using the more conservative rule that both np and n(1 — p) must be at least 10.
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is exactly correct if the sampled population is infinite and is approximately correct if the sampled
population is finite and much larger than (say, at least 20 times as large as) the sample size.
Property 3 tells us that the standard deviation of the population of all possible sample proportions
decreases as the sample size increases. That is, the larger n is, the more closely clustered are all the
different sample proportions around the true population proportion. Finally, note that the formula
for o; follows, in theory, from the formula for of,, the variance of the population of all possible

sample proportions. The formula for 0',2, is o-,g, = p(l — p)/n.

The Cheese Spread Case: Improving Profitability

In the cheese spread situation, the food processing company must decide whether p, the propor-
tion of all current purchasers who would stop buying the cheese spread if the new spout were
used, is less than .10. In order to do this, remember that when 1,000 purchasers of the cheese
spread are randomly selected, 63 of these purchasers say they would stop buying the cheese
spread if the new spout were used. Noting that the sample proportion p = .063 is less than .10,
we ask the following question. If the true population proportion is .10, what is the probability of
observing a sample proportion that is less than or equal to .063?

If p equals .10, we can assume that the sampling distribution of p is approximately a normal
distribution because both np = 1,000(.10) = 100 and n(1 — p) = 1,000(1 —.10) = 900 are at
least 5. Furthermore, the mean and standard deviation of the sampling distribution of p are
m; =p = .10 and

_ [p(=p) _ [C10)90) _
aﬁ_\/ . _\/ Logo |~ 0094868

Therefore,

P(p = 063 if p = 10)=P< <M)=P< <M)
T e 0 = 70094868

P(z = —3.90)

which is the area under the standard normal curve to the left of —3.90. The normal table tells us
that this area equals .00005. This probability says that, if p equals .10, then only 5 in 100,000 of
all possible sample proportions are at least as small as the sample proportion p = .063 that we
have actually observed. That is, if we are to believe that p equals .10, we must believe that we
have observed a sample proportion that can be described as a 5 in 100,000 chance. It follows that
we have extremely strong evidence that p does not equal .10 and is, in fact, less than .10. In other
words, we have extremely strong evidence that fewer than 10 percent of current purchasers
would stop buying the cheese spread if the new spout were used. It seems that introducing the
new spout will be profitable.

CONCEPTS
7.21 What population is described by the sampling distribution of p?

7.22 Suppose that we will randomly select a sample of n elements from a population and that we will
compute the sample proportion p of these elements that fall into a category of interest. If we con-

sider the sampling distribution of p:

a If the sample size n is large, the sampling distribution of p is approximately a normal
distribution. What condition must be satisfied to guarantee that n is large enough to say that
pis normally distributed?

b Write formulas that express the central tendency and variability of the population of all
possible sample proportions. Explain what each of these formulas means in your own
words.

7.23 Describe the effect of increasing the sample size on the population of all possible sample proportions.

.063

.00005

|
w
X<
o

P Y

0




Chapter 7 Sampling and Sampling Distributions

METHODS AND APPLICATIONS

7.24 TIn each of the following cases, determine whether the sample size n is large enough to say that the
sampling distribution of p is a normal distribution.
a p=.4, n=100 d p=.38, n=400
b p=.1, n=10 e p=.98, n=1,000
c p=.1, n=50 f p=.99, n=400

7.25 In each of the following cases, find the mean, variance, and standard deviation of the sampling
distribution of the sample proportion p.
a p=.5 n=250 c p=.38, n=400
b p=.1, n=100 d p=.98, n=1,000

7.26 For each situation in Exercise 7.25, find an interval that contains approximately 95.44 percent of
all the possible sample proportions.

7.27 Suppose that we will randomly select a sample of n = 100 elements from a population and that we

7.28

7.29

7.30

7.31

will compute the sample proportion p of these elements that fall into a category of interest. If the
true population proportion p equals .9:

a Describe the shape of the sampling distribution of p. Why can we validly describe the shape?
b Find the mean and the standard deviation of the sampling distribution of p.

For the situation in Exercise 7.27, calculate the following probabilities. In each case sketch the
sampling distribution and the probability.

a P(p= .96)

b P(.855 = p = .945)

¢ P(p= 915

A past issue of The Journal News (Hamilton, Ohio) reported on a study conducted by the Kaiser
Family Foundation regarding parents’ use of television set V-chips for controlling their childrens’
TV viewing. The study asked parents who own TVs equipped with V-chips whether they use the
devices to block programs with objectionable content.
a Suppose that we wish to use the study results to justify the claim that fewer than 20 percent
of parents who own TV sets with V-chips use the devices. The study actually found that
17 percent of the parents polled used their V-chips. If the poll surveyed 1,000 parents, and if for
the sake of argument we assume that 20 percent of parents who own V-chips actually use the
devices (that is, p = .2), calculate the probability of observing a sample proportion of .17
or less. That is, calculate P(p < .17).
b Based on the probability you computed in part a, would you conclude that fewer than 20 per-
cent of parents who own TV sets equipped with V-chips actually use the devices? Explain.

On February 8, 2002, the Gallup Organization released the results of a poll concerning American
attitudes toward the 19th Winter Olympic Games in Salt Lake City, Utah. The poll results were
based on telephone interviews with a randomly selected national sample of 1,011 adults, 18 years
and older, conducted February 4-6, 2002.

a Suppose we wish to use the poll’s results to justify the claim that more than 30 percent of
Americans (18 years or older) say that figure skating is their favorite Winter Olympic event.
The poll actually found that 32 percent of respondents reported that figure skating was their
favorite event.* If, for the sake of argument, we assume that 30 percent of Americans (18 years
or older) say figure skating is their favorite event (that is, p = .3), calculate the probability of
observing a sample proportion of .32 or more; that is, calculate P(p = .32).

b Based on the probability you computed in part a, would you conclude that more than 30 percent
of Americans (18 years or older) say that figure skating is their favorite Winter Olympic event?

Quality Progress, February 2005, reports on improvements in customer satisfaction and loyalty made
by Bank of America. A key measure of customer satisfaction is the response (on a scale from 1 to 10)
to the question: “Considering all the business you do with Bank of America, what is your overall sat-
isfaction with Bank of America?” Here, a response of 9 or 10 represents “customer delight.”

a Historically, the percentage of Bank of America customers expressing customer delight has
been 48%. Suppose that we wish to use the results of a survey of 350 Bank of America cus-
tomers to justify the claim that more than 48% of all current Bank of America customers would
express customer delight. The survey finds that 189 of 350 randomly selected Bank of America
customers express customer delight. If, for the sake of argument, we assume that the proportion
of customer delight is p = .48, calculate the probability of observing a sample proportion
greater than or equal to 189/350 = .54. That is, calculate P(p = .54).

“Source: The Gallup Organization, www.gallup.com/poll/releases/, February 13, 2002.
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b Based on the probability you computed in part a, would you conclude that more than
48 percent of current Bank of America customers express customer delight? Explain.

7.32 Again consider the survey of 350 Bank of America customers discussed in Exercise 7.31, and
assume that 48% of Bank of America customers would currently express customer delight. That
is, assume p = .48. Find:

a The probability that the sample proportion obtained from the sample of 350 Bank of America
customers would be within three percentage points of the population proportion. That is, find
P(45 = p = 51).

b The probability that the sample proportion obtained from the sample of 350 Bank of America
customers would be within six percentage points of the population proportion. That is, find
P(42 = p = 54).

7.33 Based on your results in Exercise 7.32, would it be reasonable to state that the survey’s “margin of
error” is *£3 percentage points? *6 percentage points? Explain.

7.34 An article in Fortune magazine discussed “outsourcing.” According to the article, outsourcing is
“the assignment of critical, but noncore, business functions to outside specialists.” This allows a
company to immediately bring operations up to best-in-world standards while avoiding huge
capital investments. The article included the results of a poll of business executives addressing
the benefits of outsourcing.

a Suppose we wish to use the poll’s results to justify the claim that fewer than 20 percent of
business executives feel that the benefits of outsourcing are either “less or much less than
expected.” The poll actually found that 15 percent of the respondents felt that the benefits of
outsourcing were either “less or much less than expected.” If 1,000 randomly selected
business executives were polled, and if for the sake of argument, we assume that 20 percent of
all business executives feel that the benefits of outsourcing are either less or much less than
expected (that is, p = .20), calculate the probability of observing a sample proportion of .15 or
less. That is, calculate P(p = .15).

b Based on the probability you computed in part a, would you conclude that fewer than
20 percent of business executives feel that the benefits of outsourcing are either “less or much
less than expected”? Explain.

7.35 Fortune magazine reported the results of a survey on executive training that was conducted by the
Association of Executive Search Consultants. The survey showed that 75 percent of 300 polled
CEOs believe that companies should have “fast-track training programs” for developing
managerial talent.

a Suppose we wish to use the results of this survey to justify the claim that more than 70 percent
of CEOs believe that companies should have fast-track training programs. Assuming that the
300 surveyed CEOs were randomly selected, and assuming, for the sake of argument, that
70 percent of CEOs believe that companies should have fast-track training programs (that is,

p = .70), calculate the probability of observing a sample proportion of .75 or more. That is,
calculate P(p = .75).

b Based on the probability you computed in part @, would you conclude that more than
70 percent of CEOs believe that companies should have fast-track training programs?

Explain.

7.4 Stratified Random, Cluster, and Systematic
Sampling (Optional) s @ @

Random sampling is not the only kind of sampling. Methods for obtaining a sample are called
sampling designs, and the sample we take is sometimes called a sample survey. In this section
we explain three sampling designs that are alternatives to random sampling—stratified random
sampling, cluster sampling, and systematic sampling.

One common sampling design involves separately sampling important groups within a popu-
lation. Then, the samples are combined to form the entire sample. This approach is the idea
behind stratified random sampling.

In order to select a stratified random sample, we divide the population into nonoverlapping
groups of similar elements (people, objects, etc.). These groups are called strata. Then a random
sample is selected from each stratum, and these samples are combined to form the full sample.

LO7-5 Describe
the basic
ideas of stratified
random, cluster,
and systematic
sampling
(Optional).
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It is wise to stratify when the population consists of two or more groups that differ with respect
to the variable of interest. For instance, consumers could be divided into strata based on gender,
age, ethnic group, or income.

As an example, suppose that a department store chain proposes to open a new store in a location
that would serve customers who live in a geographical region that consists of (1) an industrial city,
(2) a suburban community, and (3) a rural area. In order to assess the potential profitability of the
proposed store, the chain wishes to study the incomes of all households in the region. In addition,
the chain wishes to estimate the proportion and the total number of households whose members
would be likely to shop at the store. The department store chain feels that the industrial city, the sub-
urban community, and the rural area differ with respect to income and the store’s potential desir-
ability. Therefore, it uses these subpopulations as strata and takes a stratified random sample.

Taking a stratified sample can be advantageous because such a sample takes advantage of the
fact that elements in the same stratum are similar to each other. It follows that a stratified sample
can provide more accurate information than a random sample of the same size. As a simple ex-
ample, if all of the elements in each stratum were exactly the same, then examining only one
element in each stratum would allow us to describe the entire population. Furthermore, stratifi-
cation can make a sample easier (or possible) to select. Recall that, in order to take a random
sample, we must have a list, or frame of all of the population elements. Although a frame might
not exist for the overall population, a frame might exist for each stratum. For example, suppose
nearly all the households in the department store’s geographical region have telephones. Although
there might not be a telephone directory for the overall geographical region, there might be sepa-
rate telephone directories for the industrial city, the suburb, and the rural area. For more discus-
sion of stratified random sampling, see Section 8.5 and Mendenhall, Schaeffer, and Ott (1986).

Sometimes it is advantageous to select a sample in stages. This is a common practice when
selecting a sample from a very large geographical region. In such a case, a frame often does not
exist. For instance, there is no single list of all registered voters in the United States. There is also
no single list of all households in the United States. In this kind of situation, we can use multi-
stage cluster sampling. To illustrate this procedure, suppose we wish to take a sample of regis-
tered voters from all registered voters in the United States. We might proceed as follows:

Stage 1: Randomly select a sample of counties from all of the counties in the United States.
Stage 2: Randomly select a sample of townships from each county selected in Stage 1.
Stage 3: Randomly select a sample of voting precincts from each township selected in Stage 2.

Stage 4: Randomly select a sample of registered voters from each voting precinct selected
in Stage 3.

We use the term cluster sampling to describe this type of sampling because at each stage we
“cluster” the voters into subpopulations. For instance, in Stage 1 we cluster the voters into coun-
ties, and in Stage 2 we cluster the voters in each selected county into townships. Also, notice that
the random sampling at each stage can be carried out because there are lists of (1) all counties in
the United States, (2) all townships in each county, (3) all voting precincts in each township, and
(4) all registered voters in each voting precinct.

As another example, consider sampling the households in the United States. We might use
Stages 1 and 2 above to select counties and townships within the selected counties. Then, if there
is a telephone directory of the households in each township, we can randomly sample households
from each selected township by using its telephone directory. Because most households today
have telephones, and telephone directories are readily available, most national polls are now
conducted by telephone. Further, polling organizations have recognized that many households
are giving up landline phones, and have developed ways to sample households that only have
cell phones.

It is sometimes a good idea to combine stratification with multistage cluster sampling. For
example, suppose a national polling organization wants to estimate the proportion of all registered
voters who favor a particular presidential candidate. Because the presidential preferences of vot-
ers might tend to vary by geographical region, the polling organization might divide the United
States into regions (say, Eastern, Midwestern, Southern, and Western regions). The polling orga-
nization might then use these regions as strata, and might take a multistage cluster sample from
each stratum (region).
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The analysis of data produced by multistage cluster sampling can be quite complicated. For a
more detailed discussion of cluster sampling, see Mendenhall, Schaeffer, and Ott (1986).

In order to select a random sample, we must number the elements in a frame of all the popu-
lation elements. Then we use a random number table (or a random number generator on a
computer) to make the selections. However, numbering all the population elements can be quite
time-consuming. Moreover, random sampling is used in the various stages of many complex
sampling designs (requiring the numbering of numerous populations). Therefore, it is useful to
have an alternative to random sampling. One such alternative is called systematic sampling.
In order to systematically select a sample of n elements without replacement from a frame of
N elements, we divide N by n and round the result down to the nearest whole number. Calling the
rounded result €, we then randomly select one element from the first € elements in the frame—
this is the first element in the systematic sample. The remaining elements in the sample are
obtained by selecting every €th element following the first (randomly selected) element. For ex-
ample, suppose we wish to sample a population of N = 14,327 allergists to investigate how often
they have prescribed a particular drug during the last year. A medical society has a directory list-
ing the 14,327 allergists, and we wish to draw a systematic sample of 500 allergists from this
frame. Here we compute 14,327/500 = 28.654, which is 28 when rounded down. Therefore, we
number the first 28 allergists in the directory from 1 to 28, and we use a random number table to
randomly select one of the first 28 allergists. Suppose we select allergist number 19. We inter-
view allergist 19 and every 28th allergist in the frame thereafter, so we choose allergists 19, 47,
75, and so forth until we obtain our sample of 500 allergists. In this scheme, we must number the
first 28 allergists, but we do not have to number the rest because we can “count off” every 28th
allergist in the directory. Alternatively, we can measure the approximate amount of space in
the directory that it takes to list 28 allergists. This measurement can then be used to select every
28th allergist.

CONCEPTS

7.36 When is it appropriate to use stratified random sampling? What are strata, and how should strata Comect
be selected?

7.37 When is cluster sampling used? Why do we describe this type of sampling by using the term cluster?

7.38 Explain how to take a systematic sample of 100 companies from the 1,853 companies that are
members of an industry trade association.

7.39 Explain how a stratified random sample is selected. Discuss how you might define the strata to
survey student opinion on a proposal to charge all students a $100 fee for a new university-run bus
system that will provide transportation between off-campus apartments and campus locations.

7.40 Marketing researchers often use city blocks as clusters in cluster sampling. Using this fact,
explain how a market researcher might use multistage cluster sampling to select a sample of
consumers from all cities having a population of more than 10,000 in a large state having many
such cities.

7.5 More about Surveys and Errors in Survey
Sampling (Optional) s e @
We have seen in Section 1.2 that people in surveys are asked questions about their behaviors,

opinions, beliefs, and other characteristics. In this section we discuss various issues related to de-
signing surveys and the errors that can occur in survey sampling.

LO7-6 Describe
basic types
of survey questions,

f . . ) . N . survey procedures,
Types of survey questions Survey instruments can use dichotomous (“yes or no”), multiple- 4 sources of error

choice, or open-ended questions. Each type of question has its benefits and drawbacks. (Optional).
Dichotomous questions are usually clearly stated, can be answered quickly, and yield data that are
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easily analyzed. However, the information gathered may be limited by this two-option format. If
we limit voters to expressing support or disapproval for stem-cell research, we may not learn the
nuanced reasoning that voters use in weighing the merits and moral issues involved. Similarly, in
today’s heterogeneous world, it would be unusual to use a dichotomous question to categorize a
person’s religious preferences. Asking whether respondents are Christian or non-Christian (or to
use any other two categories like Jewish or non-Jewish; Muslim or non-Muslim) is certain to
make some people feel their religion is being slighted. In addition, this is a crude way and unen-
lightening way to learn about religious preferences.

Multiple-choice questions can assume several different forms. Sometimes respondents are
asked to choose a response from a list (for example, possible answers to the religion question
could be Jewish; Christian; Muslim; Hindu; Agnostic; or Other). Other times, respondents are
asked to choose an answer from a numerical range. We could ask the question:

“In your opinion, how important are SAT scores to a college student’s success?”

Not importantatall 1 2 3 4 5  Extremely important

These numerical responses are usually summarized and reported in terms of the average response,
whose size tells us something about the perceived importance. The Zagat restaurant survey
(www.zagat.com) asks diners to rate restaurants’ food, décor, and service, each on a scale of 1 to
30 points, with a 30 representing an incredible level of satisfaction. Although the Zagat scale
has an unusually wide range of possible ratings, the concept is the same as in the more common
5-point scale.

Open-ended questions typically provide the most honest and complete information because
there are no suggested answers to divert or bias a person’s response. This kind of question is often
found on instructor evaluation forms distributed at the end of a college course. College students
at Georgetown University are asked the open-ended question, “What comments would you give
to the instructor?”” The responses provide the instructor feedback that may be missing from the
initial part of the teaching evaluation survey, which consists of numerical multiple-choice ratings
of various aspects of the course. While these numerical ratings can be used to compare instruc-
tors and courses, there are no easy comparisons of the diverse responses instructors receive to the
open-ended question. In fact, these responses are often seen only by the instructor and are useful,
constructive tools for the teacher despite the fact they cannot be readily summarized.

Survey questionnaires must be carefully constructed so they do not inadvertently bias the re-
sults. Because survey design is such a difficult and sensitive process, it is not uncommon for a
pilot survey to be taken before a lot of time, effort, and financing go into collecting a large
amount of data. Pilot surveys are similar to the beta version of a new electronic product; they are
tested out with a smaller group of people to work out the “kinks” before being used on a larger
scale. Determination of the sample size for the final survey is an important process for many rea-
sons. If the sample size is too large, resources may be wasted during the data collection. On the
other hand, not collecting enough data for a meaningful analysis will obviously be detrimental to
the study. Fortunately, there are several formulas that will help decide how large a sample should
be, depending on the goal of the study and various other factors.

Types of surveys There are several different survey types, and we will explore just a few
of them. The phone survey is particularly well-known (and often despised). A phone survey is
inexpensive and usually conducted by callers who have very little training. Because of this and the
impersonal nature of the medium, the respondent may misunderstand some of the questions. A
further drawback is that some people cannot be reached and that others may refuse to answer some
or all of the questions. Phone surveys are thus particularly prone to have a low response rate.

The response rate is the proportion of all people whom we attempt to contact that actually
respond to a survey. A low response rate can destroy the validity of a survey’s results.

The popular television sitcom Seinfeld parodied the difficulties of collecting data through a

phone survey. After receiving several calls from telemarketers, Jerry replied in exasperation:
“I’m sorry; I’'m a little tied up now. Give me your home number and I'll call you back later. Oh! You
don’t like being called at home? Well, now you know how I feel.”

Numerous complaints have been filed with the Federal Trade Commission (FTC) about the glut

of marketing and survey telephone calls to private residences. The National Do Not Call Registry
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was created as the culmination of a comprehensive, three-year review of the Telemarketing Sales
Rule (TSR) (www.ftc.gov/donotcall/). This legislation allows people to enroll their phone num-
bers on a website so as to prevent most marketers from calling them.

Self-administered surveys, or mail surveys, are also very inexpensive to conduct. However,
these also have their drawbacks. Often, recipients will choose not to reply unless they receive
some kind of financial incentive or other reward. Generally, after an initial mailing, the response
rate will fall between 20 and 30 percent (www.pra.ca/resources/rates.pdf). Response rates can be
raised with successive follow-up reminders, and after three contacts, they might reach between
65 and 75 percent. Unfortunately, the entire process can take significantly longer than a phone
survey would.

Web-based surveys have become increasingly popular, but they suffer from the same prob-
lems as mail surveys. In addition, as with phone surveys, respondents may record their true reac-
tions incorrectly because they have misunderstood some of the questions posed.

A personal interview provides more control over the survey process. People selected for in-
terviews are more likely to respond because the questions are being asked by someone face-to-
face. Questions are less likely to be misunderstood because the people conducting the interviews
are typically trained employees who can clear up any confusion arising during the process. On
the other hand, interviewers can potentially “lead” a respondent by body language which signals
approval or disapproval of certain sorts of answers. They can also prompt certain replies by pro-
viding too much information. Mall surveys are examples of personal interviews. Interviewers
approach shoppers as they pass by and ask them to answer the survey questions. Response rates
around 50 percent are typical (http://en.wikipedia.org/wiki/Statistical_survey#Survey_methods).
Personal interviews are more costly than mail or phone surveys. Obviously, the objective of the
study will be important in deciding upon the survey type employed.

Errors occurring in surveys In general, the goal of a survey is to obtain accurate informa-
tion from a group, or sample, that is representative of the entire population of interest. We are try-
ing to estimate some aspect (numerical descriptor) of the entire population from a subset of the
population. This is not an easy task, and there are many pitfalls. First and foremost, the farget
population must be well defined and a sample frame must be chosen.

I The target population is the entire population of interest to us in a particular study.

Are we intending to estimate the average starting salary of students graduating from any college?
Or from four year colleges? Or from business schools? Or from a particular business school?

The sample frame is a list of sampling elements (people or things) from which the sample will
be selected. It should closely agree with the target population.

Consider a study to estimate the average starting salary of students who have graduated from the
business school at Miami University of Ohio over the last five years; the target population is ob-
viously that particular group of graduates. A sample frame could be the Miami University Alumni
Association’s roster of business school graduates for the past five years. Although it will not be a
perfect replication of the target population, it is a reasonable frame.

We now discuss two general classes of survey errors: errors of non-observation and errors of
observation. From the sample frame, units are randomly chosen to be part of the sample. Simply by
virtue of the fact that we are taking a sample instead of a census, we are susceptible to sampling error.

Sampling error is the difference between a numerical descriptor of the population and the
corresponding descriptor of the sample.

Sampling error occurs because our information is incomplete. We observe only the portion of the
population included in the sample while the remainder is obscured. Suppose, for example, we
wanted to know about the heights of 13-year-old boys. There is extreme variation in boys’ heights at
this age. Even if we could overcome the logistical problems of choosing a random sample of 20 boys,
there is nothing to guarantee the sample will accurately reflect heights at this age. By sheer luck of
the draw, our sample could include a higher proportion of tall boys than appears in the population.
We would then overestimate average height at this age (to the chagrin of the shorter boys). Although
samples tend to look more similar to their parent populations as the sample sizes increase, we should
always keep in mind that sample characteristics and population characteristics are not the same.
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If a sample frame is not identical to the target population, we will suffer from an error of
coverage.

Undercoverage occurs when some population elements are excluded from the process of selecting
the sample.

Undercoverage was part of the problem dooming the Literary Digest Poll of 1936. Although mil-
lions of Americans were included in the poll, the large sample size could not rescue the poll
results. The sample represented those who could afford phone service and magazine subscrip-
tions in the lean Depression years, but in excluding everyone else, it failed to yield an honest
picture of the entire American populace. Undercoverage often occurs when we do not have a
complete, accurate list of all the population units. If we select our sample from an incomplete list,
like a telephone directory or a list of all Internet subscribers in a region, we automatically elimi-
nate those who cannot afford phone or Internet service. Even today, 7 to 8 percent of the people
in the United States do not own telephones. Low-income people are often underrepresented in
surveys. If underrepresented groups differ from the rest of the population with respect to the char-
acteristic under study, the survey results will be biased.

Often, pollsters cannot find all the people they intend to survey, and sometimes people who are
found will refuse to answer the questions posed. Both of these are examples of the nonresponse
problem. Unfortunately, there may be an association between how difficult it is to find and elicit
responses from people and the type of answers they give.

Nonresponse occurs whenever some of the individuals who were supposed to be included in the
sample are not.

For example, universities often conduct surveys to learn how graduates have fared in the work-
place. The alumnus who has risen through the corporate ranks is more likely to have a current ad-
dress on file with his alumni office and to be willing to share career information than a classmate
who has foundered professionally. We should be politely skeptical about reports touting the av-
erage salaries of graduates of various university programs. In some surveys, 35 percent or more
of the selected individuals cannot be contacted—even when several callbacks are made. In such
cases, other participants are often substituted for those who cannot be contacted. If the substitutes
and the originally selected participants differ with respect to the characteristic under study, the
survey will be biased. Furthermore, people who will answer highly sensitive, personal, or em-
barrassing questions might be very different from those who will not.

As discussed in Section 1.2, the opinions of those who bother to complete a voluntary re-
sponse survey may be dramatically different from those who do not. (Recall the Ann Landers
question about having children.) The viewer voting on the popular television show American Idol
is another illustration of selection bias, because only those who are interested in the outcome of
the show will bother to phone in or text message their votes. The results of the voting are not rep-
resentative of the performance ratings the country would give as a whole.

Errors of observation occur when data values are recorded incorrectly. Such errors can be
caused by the data collector (the interviewer), the survey instrument, the respondent, or the data
collection process. For instance, the manner in which a question is asked can influence the
response. Or, the order in which questions appear on a questionnaire can influence the survey
results. Or, the data collection method (telephone interview, questionnaire, personal interview, or
direct observation) can influence the results. A recording error occurs when either the respon-
dent or interviewer incorrectly marks an answer. Once data are collected from a survey, the
results are often entered into a computer for statistical analysis. When transferring data from a
survey form to a spreadsheet program like Excel, MINITAB, or MegaStat, there is potential for
entering them incorrectly. Before the survey is administered, the questions need to be very care-
fully worded so that there is little chance of misinterpretation. A poorly framed question might
yield results that lead to unwarranted decisions. Scaled questions are particularly susceptible to
this type of error. Consider the question “How would you rate this course?”” Without a proper ex-
planation, the respondent may not know whether “1” or “5” is the best.

If the survey instrument contains highly sensitive questions and respondents feel compelled to
answer, they may not tell the truth. This is especially true in personal interviews. We then have
what is called response bias. A surprising number of people are reluctant to be candid about what
they like to read or watch on television. People tend to over-report “good” activities like reading
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respected newspapers and underreport their “bad” activities like delighting in the National
Enquirer’s stories of alien abductions and celebrity meltdowns. Imagine, then, the difficulty in
getting honest answers about people’s gambling habits, drug use, or sexual histories. Response
bias can also occur when respondents are asked slanted questions whose wording influences the
answer received. For example, consider the following question:

Which of the following best describes your views on gun control?

The government should take away our guns, leaving us defenseless against heavily armed
criminals.
We have the right to keep and bear arms.

This question is biased toward eliciting a response against gun control.

CONCEPTS

7.41 Explain:
a Three types of surveys and discuss their advantages and disadvantages.
b Three types of survey questions and discuss their advantages and disadvantages.

7.42 Explain each of the following terms:
a Undercoverage b Nonresponse ¢ Response bias

7.43 A market research firm sends out a Web-based survey to assess the impact of advertisements
placed on a search engine’s results page. About 65% of the surveys were answered and sent back.
What types of errors are possible in this scenario?

7.6 Derivation of the Mean and the Variance of the
Sample Mean (Optional) s @ ®

Before we randomly select the sample values x;, x,, . . ., x, from a population having mean w and
variance o, we note that, fori = 1,2, ..., n, the ith sample value x; is a random variable that
can potentially be any of the values in the population. Moreover, it can be proven (and is intu-
itive) that

The mean (or expected value) of x;, denoted u,, is u, the mean of the population from

which x; will be randomly selected. That is, u, = p,, =+ = = p, = p.
The variance of x;, denoted a’i, is o, the variance of the population from which x; will be
randomly selected. That is, a’fl = (7)2Cz = ... = o-i = o’

n
If we consider the sample mean x = 2 x;/n, then we can prove that u; = w by using the

i=1
following two properties of the mean discussed in Section 5.6:

Property 1: If a is a fixed number, w,, = aw,
Proper’[y 2 M(x,+x2+~-+x,,) = :u’xl + :u’)cz + oo+ Mx,,
The proof that u; = w is as follows:

Ki = M<E/>
_1 M(Ex) (see Property 1)
n i=1
1
= ;I—L(x1+xz+~-+x,,)
1
= (Mg, + o, T+ ) (see Property 2)

1 nwu
“ptpt ot W= =
n n
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We can prove that 02 = o/n by using the following two properties of the variance discussed

in Section 5.6:

Property 3: If a is a fixed number, o2, = a’o
Property 4: If x, x,, - - -, x,, are statistically independent, a’?xlﬂ%+ dx) T
2 2 2
o, to,t -+ oy
The proof that 02 = ¢*/n is as follows:
1 2
2 _ 2. R R
o; =0 <2x,-/n> - <n> o (Ex;) (see Property 3)
i=1 i=1
= L 0-2
n2 (X, +x,+ -+ +x,)
— i 240+ -0 + o2 P 4
=7 (o, + 0%, ) (see Property 4)
1 no’ o’
=7(0'2+0'2+ +0_2):72:7
n n n

Note that we can use Property 4 if x, x,, * - -, x,, are independent random variables. In general,
X1, Xp, * * °, X, are independent if we are drawing these sample values from an infinite population.
When we select a sample from an infinite population, a population value obtained on one selec-
tion can also be obtained on any other selection. This is because, since the population is infinite,
there are an infinite number of repetitions of each population value. Therefore, because a value
obtained on one selection is not precluded from being obtained on any other selection, the selec-
tions and thus x,, x,, - - -, x,, are statistically independent. Furthermore, this statistical indepen-
dence approximately holds if the population size is much larger than (say, at least 20 times as

large as) the sample size. Therefore, in this case o2

Chapter Summary

We began this chapter by defining a random sample and by ex-
plaining how to use a random number table or computer-
generated random numbers to select a random sample. We
then discussed sampling distributions. A sampling distribution
is the probability distribution that describes the population of all
possible values of a sample statistic. In this chapter we studied the
properties of two important sampling distributions—the sampling
distribution of the sample mean, X, and the sampling distribution
of the sample proportion, p.

Because different samples that can be randomly selected from
a population give different sample means, there is a population
of sample means corresponding to a particular sample size. The
probability distribution describing the population of all possible
sample means is called the sampling distribution of the sample
mean, x. We studied the properties of this sampling distribution
when the sampled population is and is not normally distributed.
We found that, when the sampled population has a normal
distribution, then the sampling distribution of the sample mean is
a normal distribution. Furthermore, the Central Limit Theorem
tells us that, if the sampled population is not normally distributed,
then the sampling distribution of the sample mean is approxi-
mately a normal distribution when the sample size is large (at
least 30). We also saw that the mean of the sampling distribution
of x always equals the mean of the sampled population, and we
presented formulas for the variance and the standard deviation of
this sampling distribution. Finally, we explained that the sample
mean is a minimum-variance unbiased point estimate of the
mean of a normally distributed population.

o?/n is approximately correct.

We also studied the properties of the sampling distribution of
the sample proportion p. We found that, if the sample size is large,
then this sampling distribution is approximately a normal distribu-
tion, and we gave a rule for determining whether the sample size is
large. We found that the mean of the sampling distribution of pis the
population proportion p, and we gave formulas for the variance and
the standard deviation of this sampling distribution.

Throughout our discussions of sampling distributions, we
demonstrated that knowing the properties of sampling distribu-
tions can help us make statistical inferences about population
parameters. In fact, we will see that the properties of various sam-
pling distributions provide the foundation for most of the tech-
niques to be discussed in future chapters.

We concluded this chapter with three optional sections. In the
first optional section, we discussed some advanced sampling
designs. Specifically, we introduced stratified random sam-
pling, in which we divide a population into groups (strata) and
then select a random sample from each group. We also introduced
multistage cluster sampling, which involves selecting a sample
in stages, and we explained how to select a systematic sample. In
the second optional section, we discussed more about surveys, as
well as some potential problems that can occur when conducting
a sample survey—undercoverage, nonresponse, response bias,
and slanted questions. In the last optional section, we derived the
mean and the variance of the sampling distribution of the sample
mean Xx.



Glossary of Terms

Central Limit Theorem: A theorem telling us that when the
sample size n is sufficiently large, then the population of all
possible sample means is approximately normally distributed no
matter what probability distribution describes the sampled popu-
lation. (page 278)

cluster sampling (multistage cluster sampling): A sampling design
in which we sequentially cluster population elements into subpop-
ulations. (page 288)

convenience sampling: Sampling where we select elements be-
cause they are easy or convenient to sample. (page 270)

errors of non-observation: Sampling error related to population
elements that are not observed. (page 291)

errors of observation: Sampling error that occurs when the data
collected in a survey differs from the truth. (page 292)

judgment sampling: Sampling where an expert selects popula-
tion elements that he/she feels are representative of the population.
(page 270)

minimum-variance unbiased point estimate: An unbiased point
estimate of a population parameter having a variance that is
smaller than the variance of any other unbiased point estimate of
the parameter. (page 281)

nonresponse: A situation in which population elements selected
to participate in a survey do not respond to the survey instrument.
(page 292)

probability sampling: Sampling where we know the chance
(probability) that each population element will be included in the
sample. (page 270)

random number table: A table containing random digits that is
often used to select a random sample. (page 268)

random sample: A sample selected in such a way that every set
of n elements in the population has the same chance of being
selected. (page 267)

response bias: Bias in the results obtained when carrying out a
statistical study that is related to how survey participants answer
the survey questions. (page 292)

response rate: The proportion of all people whom we attempt to
contact that actually respond to a survey. (page 290)

sample frame: A list of sampling elements from which a sample
will be selected. It should closely agree with the target popula-
tion. (page 291)

sampling distribution of a sample statistic: The probability dis-
tribution of the population of all possible values of the sample sta-
tistic. (page 280)

Important Results and Formulas

The sampling distribution of the sample mean: pages 271 and 275
when a population is normally distributed (page 275)
Central Limit Theorem (page 278)

Supplementary Exercises

7.44 A company that sells and installs custom designed home theatre systems claims to have sold 977

Supplementary Exercises

sampling distribution of the sample mean x: The probability
distribution of the population of all possible sample means
obtained from samples of a particular size n. (page 271)
sampling distribution of the sample proportion p: The proba-
bility distribution of the population of all possible sample propor-
tions obtained from samples of a particular size n. (page 284)
sampling error: The difference between the value of a sample
statistic and the population parameter; it occurs because not all of
the elements in the population have been measured. (page 291)
sampling with replacement: A sampling procedure in which we
place any element that has been chosen back into the population
to give the element a chance to be chosen on succeeding selec-
tions. (page 267)

sampling without replacement: A sampling procedure in which
we do not place previously selected elements back into the popu-
lation and, therefore, do not give these elements a chance to be
chosen on succeeding selections. (page 267)

selection bias: Bias in the results obtained when carrying out a
statistical study that is related to how survey participants are
selected. (page 292)

strata: The subpopulations in a stratified sampling design.
(page 287)

stratified random sampling: A sampling design in which we
divide a population into nonoverlapping subpopulations and then
select a random sample from each subpopulation (stratum).
(page 287)

systematic sample: A sample taken by moving systematically
through the population. For instance, we might randomly select
one of the first 200 population elements and then systematically
sample every 200th population element thereafter. (page 289)
target population: The entire population of interest in a statisti-
cal study. (page 291)

unbiased point estimate: A sample statistic is an unbiased point
estimate of a population parameter if the mean of the population
of all possible values of the sample statistic equals the population
parameter. (page 281)

undercoverage: A situation in sampling in which some groups of
population elements are underrepresented. (page 292)

voluntary response sample: Sampling in which the sample par-
ticipants self-select. (page 270)

The sampling distribution of the sample proportion: page 284

such systems last year. In order to assess whether these claimed sales are valid, an accountant num-
bers the company’s sales invoices from 1 to 977 and plans to select a random sample of 50 sales in-
voices. The accountant will then contact the purchasers listed on the 50 sampled sales invoices and

determine whether the sales amounts on the invoices are correct. Starting in the upper left-hand cor-
ner of Table 7.1(a) (see page 268), determine which 50 of the 977 sales invoices should be included
in the random sample. Note: There are many possible answers to this exercise.
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7.45 THE TRASH BAG CASE @B TrashBag

Recall that the trash bag manufacturer has concluded that its new 30-gallon bag will be the

strongest such bag on the market if its mean breaking strength is at least 50 pounds. In order to

provide statistical evidence that the mean breaking strength of the new bag is at least 50 pounds,

the manufacturer randomly selects a sample of n bags and calculates the mean X of the breaking

strengths of these bags. If the sample mean so obtained is at least 50 pounds, this provides some

evidence that the mean breaking strength of all new bags is at least 50 pounds.
Suppose that (unknown to the manufacturer) the breaking strengths of the new 30-gallon

bag are normally distributed with a mean of w = 50.6 pounds and a standard deviation of

o = 1.62 pounds.

a Find an interval containing 95.44 percent of all possible sample means if the sample size
employedisn = 5.

b Find an interval containing 95.44 percent of all possible sample means if the sample size
employed is n = 40.

¢ If the trash bag manufacturer hopes to obtain a sample mean that is at least 50 pounds (so that it
can provide evidence that the population mean breaking strength of the new bags is at least 50),
which sample size (n = 5 or n = 40) would be best? Explain why.

7.46 THE STOCK RETURN CASE

The year 1987 featured extreme volatility on the stock market, including a loss of over 20 percent
of the market’s value on a single day. Figure 7.7(a) shows the percent frequency histogram of the
percentage returns for the entire year 1987 for the population of all 1,815 stocks listed on the New
York Stock Exchange. The mean and the standard deviation of the population of percentage returns
are —3.5 percent and 26 percent, respectively. Consider drawing a random sample of n = 5 stocks
from the population of 1,815 stocks and calculating the mean return, x, of the sampled stocks. If
we use a computer, we can generate all the different samples of five stocks that can be obtained
(there are trillions of such samples) and calculate the corresponding sample mean returns. A per-
cent frequency histogram describing the population of all possible sample mean returns is given in
Figure 7.7(b). Comparing Figures 7.7(a) and (b), we see that, although the histogram of individual
stock returns and the histogram of sample mean returns are both bell-shaped and centered over the
same mean of —3.5 percent, the histogram of sample mean returns looks less spread out than the
histogram of individual returns. A sample of 5 stocks is a portfolio of stocks, where the average
return of the 5 stocks is the portfolio’s return if we invest equal amounts of money in each of the

5 stocks. Because the sample mean returns are less spread out than the individual stock returns, we
have illustrated that diversification reduces risk. Find the standard deviation of the population of
all sample mean returns, and assuming that this population is normally distributed, find an interval
that contains 95.44 percent of all sample mean returns.

. ________________________________________________________________________________________________________________________________________________|]
Ficure 7.7 The New York Stock Exchange in 1987: A Comparison of Individual Stock Returns
and Sample Mean Returns

(a) The percent frequency histogram describing (b) The percent frequency histogram describing the
the population of individual stock returns population of all possible sample mean returns
whenn =5
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Source: Figure 7.7 is adapted with permission from John K. Ford, “A Method for Grading 1987 Stock Recommendations,” The American Association
of Individual Investors Journal, March 1988, pp. 16-17.
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7.47 Suppose that we wish to assess whether more than 60 percent of all U.S. households in a particular
income class bought life insurance last year. That is, we wish to assess whether p, the proportion of
all U.S. households in the income class that bought life insurance last year, exceeds .60. Assume
that an insurance survey is based on 1,000 randomly selected U.S. households in the income class
and that 640 of these households bought life insurance last year.

a Assuming that p equals .60 and the sample size is 1,000, what is the probability of observing a
sample proportion that is at least .64?

b Based on your answer in part a, do you think more than 60 percent of all U.S. households in the
income class bought life insurance last year? Explain.

7.48 A computer supply house receives a large shipment of flash drives each week. Past experience has
shown that the number of flaws (bad sectors) per flash drive is either 0, 1, 2, or 3 with probabilities
.65, .2, .1, and .05, respectively.

a Calculate the mean and standard deviation of the number of flaws per flash drive.

b Suppose that we randomly select a sample of 100 flash drives. Describe the shape of the
sampling distribution of the sample mean x. Then compute the mean and the standard deviation
of the sampling distribution of x.

¢ Sketch the sampling distribution of the sample mean x and compare it to the distribution
describing the number of flaws on a single flash drive.

d The supply house’s managers are worried that the flash drives being received have an excessive
number of flaws. Because of this, a random sample of 100 flash drives is drawn from each ship-
ment and the shipment is rejected (sent back to the supplier) if the average number of flaws per
flash drive for the 100 sample drives is greater than .75. Suppose that the mean number of flaws
per flash drive for this week’s entire shipment is actually .55. What is the probability that this
shipment will be rejected and sent back to the supplier?

7.49 Each day a manufacturing plant receives a large shipment of drums of Chemical ZX-900. These
drums are supposed to have a mean fill of 50 gallons, while the fills have a standard deviation
known to be .6 gallon.

a Suppose that the mean fill for the shipment is actually 50 gallons. If we draw a random sample
of 100 drums from the shipment, what is the probability that the average fill for the 100 drums
is between 49.88 gallons and 50.12 gallons?

b The plant manager is worried that the drums of Chemical ZX-900 are underfilled. Because
of this, she decides to draw a sample of 100 drums from each daily shipment and will
reject the shipment (send it back to the supplier) if the average fill for the 100 drums is less
than 49.85 gallons. Suppose that a shipment that actually has a mean fill of 50 gallons is
received. What is the probability that this shipment will be rejected and sent back to the
supplier?

Appendix 7.1 B Generating Random Numbers Using Excel

To create 100 random numbers between 1 and 2136
similar to those in Table 7.1(b) on page 268.

S—
- X e =RANDBETWEEN{1 2138)
8 c [i E F [

e Type the cell formula
=RANDBETWEEN(1,2136)

~° f« =RANDBETWEEN{1.2136) ) i
B c D E F G

— 31

into cell A1 of the Excel worksheet and press ] Fe] =RANDBETWEEN1.2136) ~

the enter key. This will generate a random N 5 B __C 0 E E B
integer between 1 and 2136, which will be
placed in cell A1. 5 291
® Using the mouse, copy the cell formula for cell d 4
A1 down through cell A100. This will generate : :;:;
100 random numbers between 1 and 2136 in 7 286
cells A1 through A100 (note that the random 8 1477
number in cell A1 will change when this is o 2050
done—this is not a problem). 10 ::::
® The random numbers are generated with :; 897
replacement. Repeated numbers would be w1582
skipped if the random numbers were being 1 537

used to sample without replacement. .;"...1,_1.“";.., w0 1% - il

eady EE[0 @ 100% (= 0 {#)
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Appendix 7.2 B Generating Random Numbers Using MegaStat

To create 100 random numbers between 1 and 2136 Random Number Generation ﬁ\
similar to those in Table 7.1(b) on page 268: Lt
e Select Add-Ins : MegaStat : Generate Random 100 Number of vaiLis t be generated
Numbers... DecimalFlaces: 0 @] Clear
® In the Random Number Generation dialog box, i " Sl |
enter 100 into the “Number of values to be e funeten: e vaes =
generated” window. bep | @-0°x
. . . Uriform :
® Click the right arrow button to select 0 Decimal " imam [1 = =
Places. heorma
i i Maxmum | 2136
® Select the Uniform tab, and enter 1 into the | Sttt |
Minimum box and enter 2136 into the
Maximum box. 8
10 Uniformly Distributed Random Numbers (Press F9 to recalculate values.)
® Click OK in the Random Number Generation 2 Minimum ,
dialog box. i Crsieden
15
The 100 random numbers will be placed in the Output ‘ﬁ\;"ﬁé
Sheet. These numbers are generated with replace- i o
ment. Repeated numbers would be skipped for ran- il 108
dom sampling without replacement. 2 i
25 1572
Rra] Output /Sl /Shestd/Shests 0 N
Ready

Appendix 7.3 B Generating Random Numbers and Simulating Sampling
Distributions Using MINITAB

To create 100 random numbers between 1 and 2136
similar to those in Table 7.1(b) on page 268:

= Minitab - Untitled Sample From Colurnns...
File Edit Data Calc Stat Graph Editor Tools ) chisquare..

cd & e BCaleulator... Normal...
H Column Statistics... Multivariate N e
Select Calc : Random Data : Integer 3 Raw Statistics. P i
) ) ) ) 1 Standardize... [
In the Integer Distribution dialog box, enter Make Patisrned Data SN iy
100 into the “Number of rows of data to Wit Bemoull...
. ) i1t Make Indicator Variables... Binomial....
generate” window. Set Base... Geometric...
Negative Binomial...

e Enter C1 into the “Store in column(s)” window. Probability Distributions ~ »|  Hypergeometric...
N Discrete...

® Enter 1 into the Minimum value box and enter
2136 into the Maximum value box. Integer Distribution

. . . . . . % Worksheet 1 ***
e Click OK in the Integer Distribution dialog box. Ko Nurmber of rows of cata to generate: [100
The 100 random numbers will be placed in the Data — . o1 Srore n colmngs):
Window in column C1. These numbers are gener- T “
ated with replacement. Repeated numbers would e
be skipped if the random numbers are being used = ]
to sample without replacement. 8 o7
9 1778
10 702 Mini lue:
= e Minimum value 1
i A80 Madmum vakie:  [2136
13 735
14 1490 Se
15 1377
16
L Help [ o | cane
18 1245
aE 0 |
S |
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Histogram of sample means from an exponential dis-
tribution similar to Figure 7.6(a) on page 279:

In this example we construct a histogram of 1000
sample means from exponential samples of size 5.
® Select Calc: Random Data : Exponential.

® |n the Exponential Distribution dialog box, enter
1000 into the “Number of rows of data to
generate:” window.

® Enter C1-C5 in the “Store in column(s):” window
to request 1000 values per column in columns C1
to C5.

® Be sure that 0.0 is the entry in the Threshold
window.

® Enter 7 in the Scale window. This specifies the
mean of the exponential distribution when the
Threshold equals 0.

® Click OK in the Exponential Distribution dialog
box. The 1000 exponential samples of size 5 will
be generated in rows 1 through 1000.

® Select Calc: Row Statistics.

® |n the Row Statistics dialog box, under “Statistic”
select the Mean option.

® Enter C1-C5 in the “Input variables” window.
® Enter XBar5 in the “Store result in” window.

® C(Click OK in the Row Statistics dialog box to
compute the means for the 1000 samples of size 5.

® Select Stat : Basic Statistics : Display Descriptive
Statistics.

® In the Display Descriptive Statistics dialog box,
enter XBar5 into the Variables window.

® C(Click on the Graphs... button.

® |nthe “Display Descriptive Statistics—Graphs”
dialog box, check the “Histogram of data, with
normal curve” checkbox.

® Click OK in the “Display Descriptive Statistics—
Graphs” dialog box.

® Click OK in the Display Descriptive Statistics
dialog box.

® The histogram will appear in a graphics window.

Exponential Distribution
I Number of rows of data to gererate; W

Store n colurmnds):
C1-C5

Scale:

7 (= Mean when Threshold = 1)
Thireshold; IEID_

Cancel |

/

299

04114 11.7330
1.3729  0.7471
7.8558 17.9946
3.7623 93708

8.3681
4.7385
30.8954
16.9883

Display Descriptive Statistics

Wariahles!

s | e €3 ca | c5 cé cr | cs
1 24213 27109 09321 120587 1.0548
2 | 56042 17.5964 6.0883  2.8659
3, 04114
1.3729
5 7.8558 i
6 3.7623 Statistic
focs] " Sum  Median
& @ Mean (" Sum of sguares
c4 L
s (" Standard deviation (7 N total
(" Minimurm ™ M nanmissing
" Magimum " N missing
@Session (" Range:
Input yarisbles:
C1-C5
Selact | Store resultwn:i)(BarS
Help oK Cancel
<
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