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Simple Linear Regression

12.1 The Simple Linear Regression Model
12.2 The Least Squares Estimates, and 

Point Estimation and Prediction
12.3 Model Assumptions and the Standard 
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12.3 Model Assumptions and the Standard 
Error

12.4 Testing Significance of Slope and y-
Intercept

12.5 Confidence Intervals and Prediction 
Intervals



Simple Linear Regression Continued

12.6 The Coefficient of Determination and 
Correlation

12.7 Testing the Significance of 
the Population Correlation 
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the Population Correlation 
Coefficient (Optional)

12.8 An F Test for the Model
12.9 Residual Analysis (Optional)
12.10 Some Shortcut Formulas (Optional)



The Simple Linear Regression Model

�The dependent (or response) variable is the 
variable we wish to understand or predict

�The independent (or predictor) variable is the 
variable we will use to understand or predict 
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variable we will use to understand or predict 
the dependent variable

�Regression analysis is a statistical technique 
that uses observed data to relate the 
dependent variable to one or more 
independent variables



Objective of Regression Analysis

The objective of regression analysis is to build 
a regression model (or predictive equation) that 
can be used to describe, predict and control the 
dependent variable on the basis of the 
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dependent variable on the basis of the 
independent variable



Form of The Simple Linear
Regression Model

µy|x = β0 + β1x + ε is the mean value of the 
dependent variable y when the value of the 
independent variable is x

εxββ=εμy= y|x +++ 10
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independent variable is x
β0 is the y-intercept; the mean of y when x is 0
β1 is the slope; the change in the mean of y per 
unit change in x
ε is an error term that describes the effect on y of 
all factors other than x



Regression Terms

�β0 and β1 are called regression parameters
�β0 is the y-intercept and β1 is the slope
�We do not know the true values of these 

parameters
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parameters
�So, we must use sample data to estimate 

them
�b0 is the estimate of β0 and b1 is the estimate 

of β1



The Simple Linear Regression Model
Illustrated
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The Least Squares Point Estimates

Estimation/prediction equation

Least squares point estimate of the slope β1

xbby 10 +=ˆ
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The Least Squares Point Estimates
Continued

n
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Least squares point estimate of the y-intercept β0
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Example 12.3: Fuel Consumption
Case #1

Visually fitting a line to the fuel consumption data
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Example 12.3: Fuel Consumption
Case #2

Using the visually fitted line to predict when x=28
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Example 12.4: Fuel Consumption
Case #1

y x x2 xy
12.4 28.0 784.00 347.20
11.7 28.0 784.00 327.60
12.4 32.5 1056.25 403.00
10.8 39.0 1521.00 421.20
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10.8 39.0 1521.00 421.20
9.4 45.9 2106.81 431.46
9.5 57.8 3340.84 549.10
8.0 58.1 3375.61 464.80
7.5 62.5 3906.25 468.75

81.7 351.8 16874.76 3413.11



Example 12.4: Fuel Consumption
Case #2

�From last slide,
�Σyi = 81.7
�Σxi = 351.8
�Σx2

i = 16,874.76
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�Σx2
i = 16,874.76

�Σxiyi = 3,413.11

�Once we have these values, we no longer 
need the raw data

�Calculation of b0 and b1 uses these totals



Example 12.4: Fuel Consumption
Case #3
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Example 12.4: Fuel Consumption
Case #4

98.43
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Example 12.4: Fuel Consumption
Case #5

Gas of MMcf10.72

0.1279(40)-15.84 xbby 10

=
=+=ˆ

Prediction (x = 40)
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Example 12.4: Fuel Consumption
Case #6
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1. Mean of Zero
At any given value of x, the population of potential 
error term values has a mean equal to zero

2. Constant Variance Assumption
At any given value of x, the population of potential 

Model Assumptions
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At any given value of x, the population of potential 
error term values has a variance that does not depend 
on the value of x

3. Normality Assumption
At any given value of x, the population of potential 
error term values has a normal distribution

4. Independence Assumption
Any one value of the error term ε is statistically 
independent of any other value of ε



Model Assumptions Illustrated
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Sum of Squared Errors
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� This is the point estimate of the residual 
variance σ2

� SSE is from last slide

SSE

Mean Square Error
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� This is the point estimate of the residual 
standard deviation σ

� MSE is from last slide

Standard Error
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Significance Test and Estimation for
Slope

• A regression model is not likely to be useful 
unless there is a significant relationship 
between x and y

• To test significance, we use the null 
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hypothesis:

H0: β1 = 0

• Versus the alternative hypothesis:

Ha: β1 ≠ 0



Significance Test and Estimation for
Slope #2

Alternative Reject H0 If p-Value

Ha: β1 > 0 t > tα Area under t distribution 
right of t
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Ha: β1 < 0 t < –tα Area under t distribution 
left of t

Ha: β1 ≠ 0 |t| > tα/2
* Twice area under t 

distribution right of |t|

* That is t > tα/2 or t < –tα/2



Test Statistics
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Significance Test and Estimation for
Slope #3
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100(1-α)% Confidence Interval for β1

tα, tα/2 and p-values are based on n–2 degrees of 
freedom

][
12/1 bstb α±



�The point on the regression line corresponding to a 
particular value of x0 of the independent variable x is

� It is unlikely that this value will equal the mean value 

010ˆ xbby +=

Confidence and Prediction Intervals
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� It is unlikely that this value will equal the mean value 
of y when x equals x0

�Therefore, we need to place bounds on how far the 
predicted value might be from the actual value

�We can do this by calculating a confidence interval 
mean for the value of y and a prediction interval for 
an individual value of y



Distance Value

�Both the confidence interval for the mean value of y 
and the prediction interval for an individual value of 
y employ a quantity called the distance value

�The distance value for a particular value x0 of x is

xx 2)(1 −
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�The distance value is a measure of the distance 
between the value x0 of x and x

�Notice that the further x0 is from x, the larger the 
distance value
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A Confidence Interval for a Mean
Value of y

�Assume that the regression assumption holds
�The formula for a 100(1-α) confidence 

interval for the mean value of y is as follows:
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�This is based on n-2 degrees of freedom

] valueDistancetŷ[ /2sα±



A Prediction Interval for an Individual
Value of y

�Assume that the regression assumption holds
�The formula for a 100(1-α) prediction interval 

for an individual value of y is as follows:
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�This is based on n-2 degrees of freedom

] valueDistance1tŷ[ /2 +± sα



Which to Use?

�The prediction interval is useful if it is 
important to predict an individual value of the 
dependent variable

�A confidence interval is useful if it is important 
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�A confidence interval is useful if it is important 
to estimate the mean value

�The prediction interval will always be wider 
than the confidence interval



�How useful is a particular regression model?
�One measure of usefulness is the simple 

coefficient of determination
�It is represented by the symbol r2

The Simple Coefficient of
Determination and Correlation
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�It is represented by the symbol r2



1. Total variation is given by the formula

2. Explained variation is given by the formula

2)y(yi −∑

∑ − 2ˆ )yy( i

Calculating The Simple Coefficient of
Determination
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3. Unexplained variation is given by the formula

4. Total variation is the sum of explained and 
unexplained variation

5. r2 is the ratio of explained variation to total 
variation

∑ −ˆ )yy( i

∑ − 2ˆ )y(y ii



The simple correlation coefficient measures the 
strength of the linear relationship between y and x 
and is denoted by r

and positive, is  if  2 brr= +

The Simple Correlation Coefficient
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negative is  if  

and positive, is  if  

1
2

1
2

brr=

brr=

−

+

Where b1 is the slope of the least squares line



Different Values of the Correlation
Coefficient
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Testing the Significance of the
Population Correlation Coefficient

�The simple correlation coefficient (r) 
measures the linear relationship between the 
observed values of x and the observed 
values of y from the sample
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values of y from the sample
�The population correlation coefficient (ρ) 

measures the linear relationship between all 
possible combinations of observed values of 
x and y

�r is an estimate of ρ



Testing ρ

�We can test to see if the correlation is significant 
using the hypotheses

H0: ρ = 0
H : ρ ≠ 0
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Ha: ρ ≠ 0

�The statistic is

�This test will give the same results as the test for 
significance on the slope coefficient β1
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An F Test for Model

�For simple regression, this is another way to 
test the null hypothesis

H0: β1 = 0

12-39

H0: β1 = 0

�That will not be the case for multiple 
regression

�The F test tests the significance of the overall 
regression relationship between x and y



Mechanics of the F Test

To test H0: β1= 0 versus
Ha: β1≠ 0 at the α level of 
significance

Test statistics based on F

 variationExplained
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Reject H0 if 
F(model) > Fα or 

p-value < α

Fα is based on 1 numerator and n-2 
denominator degrees of freedom

2)-)/(n variationed(Unexplain

 variationExplained=F



Residual Analysis #1

� Checks of regression assumptions are performed by 
analyzing the regression residuals

� Residuals (e) are defined as the difference between the 
observed value of y and the predicted value of y

yye ˆ−=
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� Note that e is the point estimate of ε
� If the regression assumptions are valid, the population of 

potential error terms will be normally distributed with a 
mean of zero and a variance σ2

� Furthermore, the different error terms will be statistically 
independent

yye ˆ−=



Residual Analysis #2

�The residuals should look like they have been 
randomly and independently selected from normally 
distributed populations having mean zero and 
variance σ2

�With any real data, assumptions will not hold exactly
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�With any real data, assumptions will not hold exactly
�Mild departures do not affect our ability to make 

statistical inferences
� In checking assumptions, we are looking for 

pronounced departures from the assumptions
�So, only require residuals to approximately fit the 

description above



1. Residuals versus independent variable
2. Residuals versus predicted y’s
3. Residuals in time order (if the response is a 

time series)

Residual Plots
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time series)
4. Histogram of residuals
5. Normal plot of the residuals



Constant Variance Assumptions

� To check the validity of the constant variance 
assumption, we examine plots of the residuals against
�The x values
�The predicted y values
�Time (when data is time series)
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�Time (when data is time series)

� A pattern that fans out says the variance is increasing 
rather than staying constant

� A pattern that funnels in says the variance is decreasing 
rather than staying constant

� A pattern that is evenly spread within a band says the 
assumption has been met



Constant Variance Visually
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Assumption of Correct Functional
Form

�If the relationship between x and y is 
something other than a linear one, the 
residual plot will often suggest a form more 
appropriate for the model
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appropriate for the model
�For example, if there is a curved relationship 

between x and y, a plot of residuals will often 
show a curved relationship



Normality Assumption

� If the normality assumption holds, a histogram or 
stem-and-leaf display of residuals should look bell-
shaped and symmetric

� Another way to check is a normal plot of residuals
1. Order residuals from smallest to largest
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1. Order residuals from smallest to largest
2. Plot e(i) on vertical axis against z(i)

� Z(i) is the point on the horizontal axis under 
the z curve so that the area under this curve 
to the left is (3i-1)/(3n+1)

� If the normality assumption holds, the plot should 
have a straight-line appearance



Independence Assumption

� Independence assumption is most likely to be violated 
when the data are time-series data
� If the data is not time series, then it can be reordered without 

affecting the data
� Changing the order would change the interdependence of the 

data
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data

� For time-series data, the time-ordered error terms can be 
autocorrelated
� Positive autocorrelation is when a positive error term in time 

period i tends to be followed by another positive value in i+k
� Negative autocorrelation is when a positive error term in time 

period i tends to be followed by a negative value in i+k

� Either one will cause a cyclical error term over time



Independence Assumption Visually
Positive Autocorrelation
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Independence Assumption Visually
Negative Autocorrelation
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Durbin-Watson Test

�One type of autocorrelation is called first-
order autocorrelation

�This is when the error term in time period t 
(εt) is related to the error term in time period 
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(εt) is related to the error term in time period 
t-1 (εt-1)

�The Durbin-Watson statistic checks for first-
order autocorrelation
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