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Aims and Objectives

Definite integral as the area under a curve
and the limit of a sum.
The conenction between definite integral
and antideifferentiation: the funcamental theorem of calculus
The area between two curves
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Area Under a Curve
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y

a b

y = f (x)

Figure: The area under the curve y = f (x) above the interval a ≤ x ≤ b.
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Area Under a Curve. (Continued)
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a = x1 x2 xj xj+1 b = xn+1

Figure: n subintervals
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y = f (x)

Figure: 6 subintervals
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Area Under a Curve. (Continued)
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Figure: 12 subintervals
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Figure: 24 subintervals
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Area Under a Curve. (Continued)

The area of the j-th rectangle:

f (xj)∆x

The sum of the areas of all n rectangles:

Sn = f (x1) ∆x + f (x2) ∆x + · · ·+ f (xn) ∆x
= [f (x1) + f (x2) + · · ·+ f (xn)] ∆x

Definite Integration 7



Area under a Curve as the Limit of a Sum
The Definite Integral

The Fundamental Theorem of Calculus
The Area Between Two Curves

Summary

Area Under a Curve. (Continued)

Area Under a Curve
Let f (x) be continuous and f (x) ≥ 0 on the interval a ≤ x ≤ b.
Then the region under the curve y = f (x)
above the interval a ≤ x ≤ b has area

A = lim
n→∞[f (x1) + f (x2) + · · ·+ f (xn)] ∆x ,

where xj is the left endpoint of the j-th subinterval
if the interval a ≤ x ≤ b is divided into n equal parts,
each of length ∆x = b−a

n .
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The Definite Integral
Let f (x) be continuous on the interval a ≤ x ≤ b.
Subdivide the interval a ≤ x ≤ b into n equal parts,
each of length ∆x = b−a

n , and
let xj be a number chosen from the j-th subinterval (j = 1, ..., n).
Then, the definite integral of f (x) over a ≤ x ≤ b is given by∫ b

a
f (x) dx = lim

n→∞[f (x1) + f (x2) + · · ·+ f (xn)] ∆x .
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The Definite Integral. (Continued)

The Definite Integral and the Area Under the Curve
If f (x) is continuous and f (x) ≥ 0 on the interval a ≤ x ≤ b,
then the region under the curve y = f (x) above the interval
has area

A =

∫ b

a
f (x) dx .
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The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus
If f (x) is continuous on the interval a ≤ x ≤ b,
then ∫ b

a
f (x) dx = F (b)− F (a),

where F (x) is any antiderivative of f (x) on a ≤ x ≤ b.

We shall use the notation

F (x)

∣∣∣∣b
a

= F (b)− F (a).

Thus ∫ b

a
f (x) dx = F (x)

∣∣∣∣b
a
.
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The Fundamental Theorem of Calculus. (Continued)

Example
Find ∫ 1

0
(x2 −

√
x) dx .

Solution. . .
Since ∫

(x2 −
√
x) dx =

1
3x

3 − 2
3x

3/2 + C ,

we conclude that each antiderivative of f (x) = x2 −
√
x

has the form F (x) = 1
3x

3 − 2
3x

3/2 + C for constant C .
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The Fundamental Theorem of Calculus. (Continued)

. . . Solution.
Hence,

∫ 1

0
(x2 −

√
x) dx =

(1
3x

3 − 2
3x

3/2 + C
)∣∣∣∣1

0

=

(1
3x

3 − 2
3x

3/2
)∣∣∣∣1

0

=

(1
3 · 1

3 − 2
3 · 1

3/2
)
−
(1
3 · 0

3 − 2
3 · 0

3/2
)

= −1
3 .
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The Fundamental Theorem of Calculus. (Continued)

Example
Find ∫ 3

1
4x(x2 − 1)3 dx .

Solution. . .
Substitute u = x2 − 1, i.e. du = 2x dx , find the indefinite integral∫

4x(x2 − 1)3 dx =

∫
2u3 du =

1
2u

4.

The limits of integration refer to the variable x and not to u.
Therefore either rewrite the antiderivative in terms of x ,
or find the values of u that correspond to x = 1 and x = 3.
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The Fundamental Theorem of Calculus. (Continued)

. . . Solution. . .
The first alternative:∫

4x(x2 − 1)3 dx =
1
2u

4 =
1
2(x2 − 1)4,

hence∫ 3

1
4x(x2 − 1)3 dx =

[1
2(x2 − 1)4

]∣∣∣∣3
1

= 2048− 0 = 2048.
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The Fundamental Theorem of Calculus. (Continued)

. . . Solution. . .
The second alternative:
use the fact that u = x2 − 1 to conclude that u = 0 when x = 1
and u = 8 when x = 3.
Hence,∫ 3

1
4x(x2 − 1)3 dx =

∫ 8

0
u3 du =

(1
2u

4
)∣∣∣∣8

0
= 2048− 0 = 2048.
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The Fundamental Theorem of Calculus. (Continued)

Example
Find the area of the region bounded by the curve y = −x2 + x + 2
and the x axis.
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The Fundamental Theorem of Calculus. (Continued)

x

y

−1 2

y = −x2 + x + 2

Figure: The region bounded by y = −x2 + x + 2 and the x axis.
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The Fundamental Theorem of Calculus. (Continued)

Solution
From the factored form of the polynomial

y = −x2 + x + 2 = −(x + 1)(x − 2)

note that x-intercepts of the curve are (−1, 0) and (2, 0). Hence,

A =

∫ 2

−1
(−x2 + x + 2) dx =

(
−1
3x

3 +
1
2x

2 + 2x
)∣∣∣∣2
−1

=

(
−1
3 · 2

3 +
1
2 · 2

2 + 2 · 2
)
−
(
−1
3 · (−1)3 +

1
2 · (−1)2 + 2 · (−1)

)
=

9
2 .
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The Area Between Two Curves

x

y

R

y = f (x)

y = g(x)

a b

Figure: The region R between y = f (x) and y = g(x)
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The Area Between Two Curves: R = R1 − R2

x

y

R1

y = f (x)

y = g(x)

a b

Figure: The region R1 under the
curve y = f (x)

x

y

R2

y = f (x)

y = g(x)

a b

Figure: The region R2 under the
curve y = g(x)
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The Area Between Two Curves. (Continued)

The Area Between Two Curves
If f (x) and g(x) are continuous on the interval a ≤ x ≤ b
and f (x) ≥ g(x), and A is the area of the region
bounded by the curves y = f (x) and y = g(x)
and the vertical lines x = a and x = b, then

A =

∫ b

a
[f (x)− g(x)] dx .
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The Area Between Two Curves. (Continued)

Example
Find the area of the region bounded by the curves y = x2
and y = 2x .
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The Area Between Two Curves. (Continued)

x

y

0 2

y = x2 y = 2x

Figure: The region bounded by y = x2 and y = 2x .
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The Area Between Two Curves. (Continued)

Solution. . .
Find the point of intersection:

x2 = 2x
x2 − 2x = 0
x(x − 2) = 0,

Intersection points: (0, 0) and (2, 4).
Notice that for 0 ≤ x ≤ 2 the graph of y = 2x lies above that of
y = x2. Hence

A =

∫ 2

0
(2x − x2) dx =

(
x2 − 1

3x
3
)∣∣∣∣2

0
=

4
3 .
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For Further Reading

http://fberisha.netfirms.com

Homework: Exercises from teaching materials
L. D. Hofmann, G. L. Bradley, Calculus – for business,
economics and life sciences, pp. 428–441.
F. M. Berisha, M. Q. Berisha, Matematikë – për biznes
dhe ekonomiks, pp. 219–230.
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Definite integral:∫ b

a
f (x) dx = lim

n→∞[f (x1) + f (x2) + · · ·+ f (xn)] ∆x .

Fundamental theorem of calculus:∫ b

a
f (x) dx = F (b)− F (a), where F ′(x) = f (x)

Area under a curve:

A =

∫ b

a
f (x) dx

Area between two curves:

A =

∫ b

a
[f (x)− g(x)] dx
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