
Answers to Odd-Numbered 
Exercises 

Some solutions requiring proofs may be incomplete or be omitted. 

Chapter 1 

Section 1.1 

1. 4; 17 3. (-104+16Ö, - 2 4 - 4 £ , - 2 2 +26c) 

5. 
y 

7. 

v + w 

X 

y 

V + w 

v - w 

9. x 0, z 0, y G R;x 0 ,y 0, z g = 0,x,z G R;x = 0, y,z g R 

11. {(2 ,̂ 7^ + 2*, 70 | 5 € R, t g M} 13. 1(0 i + (i l)j k 

15. 1(0 (It 1)1 - j + (3/ l)k 17. {5i + 35k - 2t\ I 0 < 5 < 1, 0 < t < 1} 

19. If (x, y, z) lies on the line, then x = 2+ t, y 2 + t, and z 1 4-1. Therefore, 
2x 3 v + z - 2 4 + 2f + 6 31 1 2 7, which is not zero. Hence, no (x, y, z) 
satisfies both conditions. 

21. Yes. 

609 
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23. The set of vectors of the form 

v z?a + qb + r c 

where 0 < p 1,0 q 1, and 0 < r < 1. 

25. All points of the form 

Oo + - x0) + s(x2 - Xo), yo + t ( y i - yo) + s ( y 2 - yo), z0 + t ( z \ - z0) + s{z2 - z0)) 

for real numbers t and 

27. If one vertex is placed at the origin and the two adjacent sides are u and v, the new 
triangle has sides bu, b\, and 6(u — v). 

29. (1, 0, 1) + (0, 2, 1) = (0, 2, 0) + (1, 0, 2) 

31. Two such lines (there are many others) are x hy t , Z t and* 1 ,y t , Z t . 

Section 1.2 

1. 6 

3. 99 o 

5. No, it is 75.7; it would be zero only if the vectors were parallel. 

7. II u V5, II v \/2, u • v 3 9. u vTT, v Vo2, u • v 14 

11. Ilu VÏ4, II v V26, u • v 17 

13. In Exercise 9, cos" -1 (-14/VTÜ/62); in Exercise 10,7r/2; and in 11, 
cos-^-n/vTÏV^ô). 

15. 4(—i + j + k)/3 17. Any ( x , y , z ) with x + y + z 0; 
for example, (1, —1,0) and (0, 1 , -1) 

19. i + 4j, 6 ^ 0.24 radian east of north 21. (a) 12:03 P.M. (b) 4.95 km 

23. 
y 

F = 50 lb 

50 sin (50°) lb 

X 
/ 

f Fx= 50 cos (50°) lb 

25. (4.9, 4.9, 4.9) and (-4.9, -4.9,4.9) N 

27. (a) F = (3-v/2i + 3V2j) (b) i V 0.322 radian or 18.4 o (c) 18V2 
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Section 1.3 

1 2 1 3 0 1 
1. 3 0 1 = —8, 1 2 1 

2 0 2 2 0 2 
8 

3. 3i + j + 5k 5. V35 

7. 10 9. ±k 

11. ±(113i + 17j - 103k)/V23, 667 

13. u + v = 3 i - 3 j + 3 k ; u v = 6; ||u|| = V6; ||v|| = 3;u x v = - 3 i + 3k 

15. (a) x + v + z 1 0 
(b) jc + 2y + 3z - 6 0 

(c) 5x + 2z 
(d) x + 2y-

25 
3z 13 

17. (a) The parallel planes Ax + By + Cz + D = 0 and oAx + oBy + oCz + D' 
identical when D' = oD and otherwise never intersect. 

0 are 

(b) In a line. 

19. The line x uy 2t, z 51. 

21. (a) Do the first by working out each side in coordinates, and then use that and 
a x (b x c) (b x c) x a to get the second. 

(b) Use the identities in part (a) to write the quantity in terms of inner products. 
(c) Use the identities in part (a) and collect terms. 

23. Compute the results of Cramer's rule and check that they satisfy the equation 

25. x — 2v + 3z + 12 0 27. 4x 6y 10 z 14 

29. IOjc - 17v+ Z + 25 0 

31. For Exercise 19, note that (2 , -3 , 1) • (1, 1, 1) = 0, and so the line and plane are parallel 
and (2, —2, — 1) does not lie in the plane. For Exercise 20, the line and plane are parallel and 
(1, —1,2) does lie in the plane. 

33. \/2/13 

35. (a) Show that M satisfies the geometric properties of R x F (b) 2x/3 

37. Show that n \ (N x a) and n2(N x b) have the same magnitude and direction. 

39. One method is to write out all terms in the left-hand side and see that the terms involving 
X all cancel. Another method is to first observe that the determinant is linear in each row or 
column and that if any row or column is repeated, the answer is zero. Then 

Ü1 b 1 C\ d\ b, C1 a\ b 1 C\ a\ b 1 C\ 
Ü2 + Aöi b2 + c2 + Aci a2 b2 C2 a 1 b\ C\ a 2 b2 C2 

a 3 b 3 C3 «3 h C3 ö 3 h Cz a 3 h Cl 
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Section 1.4 

1. (a) 

Cylindrical Rectangular Spherical 
r 0 z x y z p 0 
1 45° 1 
2 n/2 - 4 
0 45° 10 
3 n/6 4 
1 tt/6 0 

2 3n/4 - 2 

A/2/2 A/2/2 1 

0 2 - 4 
0 0 10 

3a/3/2 3/2 4 
A/3/2 i 

2 0 

- a / 2 a/2 - 2 

a/2 45° 45° 
2a/5 n/2 jt — arccos (2\/5/5) 

10 45° 0 
5 n/6 arccos | 
1 n/6 n/2 

2y/2 3TT/4 3n/4 

(b) 

Rectangular Spherical Cylindrical 
x y z p 0 é r 0 z 

2 1 - 2 
0 3 4 

a/2 1 1 
- 2 V 3 - 2 3 

3 arctan | n — arccos (2/3) 
5 n/2 arccos(4/5) 

2 arctan (\/2/2) n/3 

5 In/6 arccos | 

A/5 arctan \ - 2 

3 n/2 4 

AA arctan (V2/2) 1 
4 In/6 3 

3. (a) Rotation by n around the z axis (c) Rotation by n/2 about the z axis together 
(b) Reflection across the xy plane with a radial expansion by a factor of 2 

5. No; (p, 0, $) and (—p, 6 + n, n — <p) represent the same point. 

7. (a) ep = (xi + .yj + zk)/y*2 + J2 + z2 = (xi + yj + zk)/p 
ee = ( yi + *j)AA2 Ty2 = (-yi + xj)/r 
e<P = (xzi + yzj - (x2 + >>2)k)/rp 

(b) ee x] = —yk/y/x2 -by2, x j = (xz/rp) k + (r/p)i 

9. (a) The length ofxi + xj + zk is (x2 + y2 + z2)l/2 = p 
(b) cos ( f ) = z/(x2 + y2 + z2)1/2 (c) cos 0 = x/(x2 + y2)l/2 

11. 0<r<a,0<0<2n means that (r, 6, z) is inside the cylinder with radius a centered 
on the z axis, and \z\ < b means that it is no more than a distance b from the xy plane. 

13. -d/(6 cos0) < p < d/2, 0 < 6 < 2n, and n - cos - 1( |) < (p < n 

15. This is a surface whose cross section with each surface z = c is four-petaled rose. The 
petals shrink to zero as | c | changes from 0 to 1. 
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Section 1.5 

1. 7 

3. |x.y| 
x + yll 

10 
3V5 

V5V2Ô IMIIIyll, so |x • y| < ||x||||y|| is true 
11*11 + llyll, so ||x + yll < ||X|| + ||y|| is true. 

5. |x • y| = 5 < V65 = ||x|| ||y||, so |x • y| < ||x|| ||y|| is true. 
x H- yll V28 < V5 + x/l3 x|| +llyll, so Mx + y|| < ||x|| +| |y| | is true 

7. AB 
1 
1 
6 

-1 3 
11 3 
5 8 

, det A 5, det B 24, 

det AB = 120(= det A det B), det (A + B) 61(^det A + det B) 

9. HINT: For k = 2 use the triangle inequality to show that ||xi + x2|| < ||xi || + ||x21|; then 
for k i + 1 note that ||xi + x2 h x /+j || < ||xi + x2 H h xf || + ||x/+i ||. 

11. (a) Check n = 1 and n = 2 directly. Then reduce an n x n determinant to a sum of 
(n 1 ) x (n — 1 ) determinants and use induction. 

(b) The argument is similar to that for part (a). Suppose the first row is multiplied by À. 
The first term of the sum will be Xa\\ times an (n l)x(w 1 ) determinant with no factors 
of X. The other terms obtained (by expanding across the first row) are similar. 

13. Not necessarily. Try A 0 1 
0 0 and B 1 0 

0 0 

15. (a) The sum of two continuous functions and a scalar multiple of a continuous function 
are continuous. 

(b) (i) (af + /3g)-h = / 0 W + Pg)(x)h(x)dx 

Jo f(x)h(x)dx + P JQ g(x)h(x)dx 
af 'h + Pg 'h. 

00 f'g = /o /(*)#(*)dx = fo g(x)f(x)dx g ' f . 
In conditions (iii) and (iv), the integrand is a perfect square. Therefore, the integral in 
nonnegative and can be 0 only if the integrand is 0 everywhere. If f(x) ^ 0 for some x, then 
it would be positive in a neighborhood of x by continuity, and the integral would be positive. 

17. Compute the matrix product in both orders and check that you get the identity 

19. (det AX det A~l) = det (AA~l) det(I) 1 

Review Exercises for Chapter 1 

1. v + w = 4i + 3j + 6k; 3v = 9i + 12j + 15k; 6v + 8w = 26i + 16j + 38k; -2v = 
—6i — 8j — 10k; v • w = 4; v x w = 9i + 2j — 7k. Your sketch should display v, w, 3v, 6v, 
8w, 6v+ 8w, v • w as the projection of v along w and v x w as a vector perpendicular to both 
v and w. 
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3. (a) 1(0 
(b) 1(0 

i + (2 + 0J k (c) —2x 4 y 4 2z 9 
(31 3)i 4 if 4 1)1 t k 

5. (a) 0 (b) 5 (c) 10 

7. (a) tiß (b) 5/(2vT5) (c) 10/(V6x/l7) 

9. {sfa 4 s(l - Ob I 0 < t < 1 and 0 s < 1} 

11. Let v = (ai, ci2, a?,), w = , 3̂)? and apply the CBS inequality. 

13. The area is the absolute value of 

a 1 a 2 a 1 a 2 
bx b2 b\ 4 b2 4 

(A multiple of one row of a determinant can be added to another row without changing its 
value.) Your sketch should show two parallelograms with the same base and height. 

15. The cosines of the two parts of the angle are equal, because 
a • v/1| a || ||v|| = (a • b 4 ||a|| ||b||)/||v|| = b - v/||b|| ||v||. 

17. i x j 
i j k 
1 0 0 
0 1 0 

k; etc 

19. (a) HINT: The length of the projection of the vector connecting any pair of points, one 
on each line, onto (ai x a2)/||ai x sl2\\ is d. 

(b) V2 

21. (a) Note that 

1 
2 

1 1 1 1 
~ 2 

1 0 0 1 
~ 2 X\ xz 

1 
~ 2 

X\ *2 — Xj X3 — 

1 
~ 2 y\ y2 73 

1 
~ 2 yi y2 -y\ yi -y\ 

1 
~ 2 

X2 — X\ 
n y 1 3̂ 

X\ 
y\ 

(b) \ 

23. Rectangular Spherical 
(a) (A/2/2, A/2/2, 1) (a) (V2, n/4, n/4) 
(b) (3V3/2, 3/2, - 4 ) (b) (5, JT/6, arceos (--4/5)) 
(c) (0 ,0, 1) (c) (1, jr/4, 0) 
(d) (0, -2 ,1) (d) (V5, 3^/2, arceos (V5/5)) 
(e) (0, 2, 1) (e) (\/5, jr/2, arceos (A/5/5)) 

(plot omitted) 

25. z = r1 cos 20; cos 0 = p sin2 </>cos2# 
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27. |x - y| = 6 < V98 = ||x|| ||y||; ||x + y|| = ^33 < V ï i + V7 x|| + llyll 

29. (a) The associative law for matrix multiplication may be checked as follows 

n 
\(AB)C] 

n n 

» • 

ij Y(AB)ikCkJ = AuBlkCkj 
k= l k= 1 1=1 
n 

TMBC),j = [A(BC)]ij. 
1=1 

Use this with C taken to be a column vector. 
(b) The matrix for the composition is the product matrix 

31. 1R" is spanned by the vectors ei, e 2 , . . . , e„. If v e IR", then 

T\ T 
n n 

i=l 

Let aij = ( Tey • e, ), so that 

Then 

That is, if 

n 
Te j 

T\ • 

atj ef 
7=1 

n 

£ ( v • €i )aki 

i=1 

v 
V\ 

Vn 
then T\ 

a\\ • • • a\n 

an i • a nn 

Vi 

Vn 

as desired. 

33. (a) 70cos0 + 20sin0 (b) (21^3 + 6)ft-lb 

35. Each side equals 2xy — lyz + 5z2 — 48x + 54y 
columns and then subtract the first row from the second.) 

5z 96. (Or switch the first two 

37. Add the last row to the first and subtract it from the second. 

39. (a) 
1 
6 

a\ 02 a3 
b\ bi bz 
c\ c2 c3 

(b) 1/3 
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41. Use the fact that 11 a 2 a • a, expand both sides, and use the definition of c 

43. (l/>/38)i-(6/V38)j + (l/>/38)k 45. (2/\/5)i (1/V5)j 

Chapter 2 

47. (V3/2)i + (l/2V2)j + (l/2V5)k 

Section 2.1 

1. The level curves and graphs are sketched below. The graph in part (c) is a hyperbolic 
paraboloid like that of Example 4, but rotated 45° and vertically compressed by a factor of 
1 /4. To see this, use the variables u = x + y and v = x — y. Then z (V 2 u2)/4. 

y Intersection 
with xy plane 

Intersection 
with xz plane 

Intersection 
with zy plane 

x 

(a) 

y 

X 

Section 
z = 4y2, 
x = 0 

Section 
A 2

 2 

= 0 

• y 

(b) 
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y 

A section x = -y 

section * = v 

(c) z = -xy 

3. For Example 2, z = r(cos 6 + sin 6) + 2, shape depends on 6; for Example 3 ,z = r 
shape is independent of 6; for Example 4, z = r2(cos2 6 — sin2 0), shape depends on 6. 

2 

5. The level curves are circles x2 + y2 = 100 — c2 when c < 10. The graph is the upper 
hemisphere of x2 + y2 + z2 = 100. 

y o 
2 
4 
6 
8 
10 

7 

7. The level curves are circles, and the graph is a paraboloid of revolution. See Example 3 
of this section. 

9. If c — 0, the level curve is the straight line y = — x together with the line x = 0. If 
then y = —x + (c/x). The level curve is a hyperbola with the y axis and the line 

y — —x as asymptotes. The graph is a hyperbolic paraboloid. Sections along the line y = ax 
are the parabolas z = (1 + a)x2. 
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y y 

X X 

11. If c > 0, the level surface f(x,y,z) = c is empty. If c = 0, the level surface is the point 
(0, 0, 0). If c < 0, the level surface is the sphere of radius centered at (0, 0, 0). A section 
of the graph determined by z = a is given by t = — x2 — y2 — a2, which is a paraboloid of 
revolution opening down in xyt space. 

13. If c < 0, the level surface is empty. If c = 0, the level surface is the z axis. If c > 0, it is 
the right-circular cylinder x2 + y2 = c of radius «Jc whose axis is the z axis. A section of the 
graph determined by z = a is the paraboloid of revolution t = x2 + y2. A section determined 
by x = b is a "trough" with parabolic cross section t(y, z) = y2 + b2. 

15. Setting u = (x — z)/\fl and v = (x + z)/V2 gives the u and v axes rotated 45° around 
the y axis from the x and z axes. Because / = vyj2, the level surfaces / = c are 
"cylinders" perpendicular to the vy plane (z = —x) whose cross sections are the hyperbolas 
vy = c/V2, so the section Sx=a fl graph / is the hyperbolic paraboloid t = (z + a)y in yzt 
space [see Exercise 1(c)]. The section Sy=b fl graph / is the plane t = bx + bz in xzt space. 
The section Sz=b H graph / is the hyperbolic paraboloid t = y(x + b) in xyt space. 

17. If c < 0, the level curve is empty. If c = 0, the level curve is the x axis. If c > 0, it is the 
pair of parallel lines \y\ = c. The sections of graph with x constant are V-shaped curves 
z = \y\'m yz space. The graph is shown in the accompanying figure. 

z 

(Exercise 17) 



Section 2.1 619 

19. The value of z does not matter, so we get a "cylinder" of elliptic cross section parallel 
to the z axis and intersecting the xy plane in the ellipse 4x2 + y 2 16. 

j -

21. The value of x does not matter, so we get a "cylinder" parallel to the x axis of hyberbolic 
cross section intersecting the yz plane in the hyperbola z2 — y2 = 4. 

23. An elliptic paraboloid with axis along the x axis. 

x 

25. The value of y does not matter, so we get a "cylinder" of parabolic cross section 
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27. This is a saddle surface similar to that of Example 4, but the hyperbolas, which are level 
curves, no longer have perpendicular asymptotes. 

y 

x 

Level curves 

29. A double cone with axis along the y axis and elliptical cross sections 

3 = 4x2 + 2z2 

6 = 2x2 + z2 

y 

31. Complete the square to get (JC + 2)2 + (y - b/2)2 + (z + \)2 = (b2 +4b + 97)/4. This 
is an ellipsoid with center at (—2, b/2, — | ) and axes parallel to the coordinate axes. 
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33. Level curves are described by cos 26 = cr2. If c > 0, then —7r/4 <6 < Tt/4 or 
3tt/4 e 5n/4. If C < 0, then TT/4 0 3tt/4 or 57r/4 < 6 < In¡4. In either case 
you get a figure-eight shape, called a lemniscate, through the origin. (Such shapes were first 
studied by Jacques Bernoulli and are sometimes called Bernoulli's lemniscates.) 

y 

Section 2.2 

x 

1. If (jc0, jvo) e A, then |x0| < 1 and < 1. Let r min(l l*o I, 1 \yo\). Prove that 
Dr (XQ , yo) C A either analytically or by drawing a figure. 

3. Letr min(2 X0 +^0 \/2). 

5. (a) 0 (b) 1/2 (c) 1 

7. (a) 5 (b) 0 (c) 2x 

9. (a) 0 (b) 1/2 (c) 0 

11. (a) Compose f(x,y) = xy with g(t) = (sin t)/t for t ^ 0 and g(0) 1 
(b) 0 (c) 0 

13. (a) 1 (b) llxoll (c) (he) 
(d) Limit doesn't exist (look at the limits for x = 0 and y = 0 separately) 

15. Use parts (ii) and (iii) of Theorem 4. 

17. (a) Let the value of the function be 1 at (0, 0). (b) No. 

19. For \x 2\ <8 y/e + 4 — 2, we have \x 2 41 \x 2\\x + 2\ < 8(8 + 4) s.By 
Theorem 3(iii), limit x 

x—*2 

2 (limit x) 
x—>2 

2 2 2 4. 

21. Letr x-yll /2 yll M Z — yll / r yll /( l 
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23. (a) limit f (x) 
X 

imply \f(x) — L 
(b) limit (1/x) 

JC—>0_ 

limit 1/(1 +e x , x ) 

(c) 

L if for every e > 0 there is a 8 > 0 such that x > b and 0 x b 8 

oo, limit ê 
i—oo 

0, and so limit el/x 
jt—>0~ 

0. Hence 

1. The other limit is 0. 

y 

X 

25. If e > 0 and x0 are given, let 8 = (,e/K)l/a. Then ||/(x) - /(x0)|| < K8a = e whenever 
x — XQ || <8 . Notice that the choice of 8 does not depend on x0. This means that / is 

uniformly continuous. 

27. (a) Choose 8 1/500. (b) Choose 8 < 0.002. 

Section 2.3 

1. (a 
(b 
(c 
(d 

3. (a 
(b 
(c 

(d 
(e 

df/dx 
df/dx 
df/dx 
df/dx 

dw/dx 
dw/dx 
dw/dy 

y; df/dy 
yexy; df/dy 

x 
xe xy 

cosx cosjy — x sinx cosjy; df/dy 
2x[ l+ log (x 2 +y* ) ] ; df/dy 2 2v[l 

-x cosx smj; 
+ \og(x2+y2)];(x,y)^(0, 0) 

(1 4 2x2) exp (xz 4 yz); dw/dy = 2xy exp (xz 4 yz) 2 2 

4xy2/(xz - yz)z; dw/dy = 4yxz/(x 2 2\2. 2 
dw/dx 
dw/dx 
dw/dx = yexy log (x2+y2) 4 2xexy/(xz + yz)\ 
dw/dy = xe"? log (.x2 4 y2) 4 2yexy/(x2 4 v2) 

2 2 

2 2\2 
yl) 

1 /y; dw/dy x/y 2 

—y2exy sinyexy sin* 4 cosyexy cosx; 
(xyexy 4 exy)(— sin yexy sinx) 

5. z 6x 4 3^ 11 

7. (a) 
1 0 
0 1 (c) 

1 1 
2 xy x 2 0 

(b) 
e y xe y 

1 
1 

sin y 
0 
e y 

(d) 
(y 4 xy2)?* 
sin y 
5y2 

(x 4 x2y)exy 

x cos^ 
I Ox y 
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9. At z 1. 11. Both are xyexy. 

13. (a) V/ (e 
(b) V/ = (x2 + yz + zz)-z(yz(yz + zz - xz), xz(xz + zz - yz), xy(xz + y 

2 2 2 •jt —j —ẑ  
2 

(—2x2 + 1), —2 xye 
2 \ - 2 2 2 

2 2 2 —x —y —z 
2 2 

2 xze 
2 

2 2 2 •x —y 

2 
) 

2 2 

(c) V/ = (.z2ex cos v, — s i n ^ , cos^) 2 
Z2)) 

15. 2x + 6v — z 5 17. 2k 

19. They are constant. Show that the derivative is the zero matrix 

Section 2.4 

1. This curve is the ellipse (y2/16) + x 2 1 

y 

X 

3. This curve is the straight line through (—1,2,0) with direction (2, 1, 1): 

(-1, 2, 0) 

y 

!: 

5. 6i + 6t\ + 3t2k 7. (—2cosi sini, 3 312, 1) 

9. c'(t) = (et,-sint) 11. c'(0 = (t cos t + sin t, 4) 

13. Horizontal when t = (R/v)nn, n an integer; speed is zero if n is even; speed is 2v if n 
is odd. 

15. (sin 3, cos 3, 2) + (3 cos 3, —3 sin 3, 5)(t 1) 

17. (8,8,0) 19. (8, 0, 1) 
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Section 2.5 

1. Use parts (i), (ii), and (iii) of Theorem 10. The derivative at x is 2(/(x) + l)D/(x) 

3. (a) h(x, y) = f ( x , u(x, >>)) = f(p(x), u(x, v)). We use p here solely as notation 
p(x) 

Written out: 
dh 
dx 

df dp df du 
+ dp dx du dx 

df df du + 
dp du dx 

because 
dp 
dx 

dx 
dx 

1 

JUSTIFICATION: Call (p, u) the variables of / . To use the chain rule we must express h as a 
composition of functions; that is, first find g such that h(x,y) = f(g(x, >>)). Let g(x, y) 
(p(x), u(x, v)). Therefore, Dh = (D/)(Dg). Then 

'dh dh' [3/ 3/1 
_dx dy _ dp du _ 

df df du 
"h j p du dx 

dgi dg i 
dx dy [3/ df 
dg2 dgi [dp du 
dx ^y J 

df du 
du dy 5 

' 1 
du 

_dx 

0 
du 

and so 
dh 
dx 

df df du dh 
+ — — • You may see 

dp du dx dx 
df dfdu 

+ — — as an answer. This requires dx du dx 
careful interpretation because of possible ambiguity about the meaning of d f / d x , which is 
why the name p was used. 

(b) 
dh 
dx 

df ^df du df d V 
dx du dx dv dx (C) 

dh 
dx 

df du df dv df dw 
~h -— h du dx dv dx dw dx 

5. Compute each in two ways; the answers are 
(a) ( / oc)'(0 = é{cost sinf) 
(b) ( / o c ) ' ( 0 = 15r4exp(3^) 5 

(c) ( / O c)' (0 (e It e~2t)[l +log(e2t -it 

(d) (/oc) '(0 = (l + 4;2)exp(2/z) 2 

7. Use Theorem 10(iii) and replace matrices by vectors. 

9. ( / o g ) ( x j ) 

D(/og)(l , l ) 

(tan (e 
0 
2 

x-y 

0 
2 

1) (x — v)2) and 

11. \ cos ( 1 ) cos (log \/2) 

13. 2 cos t sin teslnt + sin41 + cos3 tesmi - 3 cos2 t sinz t for both (a) and (b). 3 2 2 

15. (2,0) 
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17. (a) G(x,y(x)) 0 and so 
3 G 3 G dy 
dx 3 v ¿/jt 

0 

(b) 

~dy\ "3Gj 3Gi" -1 ~ 9 G1 ~ 
dx dy\ dy2 dx 

dy2 dG2 dG2 3G2 

_ dx _ _ dy\ 3̂ 2 _ _ 3x _ 

where 1 means the inverse matrix 

The first component of this equation reads 

dy\ 
dx 

dG\ 3G2 dG2 3Gi 
T 

dx dy2 dx 3v2 

3Gi 3G2 dG2 3Gj 
3̂ 1 3V2 3̂ 2 

(c) dx 
2x 
+ ey 

19. Apply the chain rule to 3G/3T where G(t(T, P), p(7\ P), F(7\ P)) 
P(F - - is identically 0; t(T, P) = T; and p(7\ P) = P. 

21. De f ine i (h) = / ( x 0 + h) [D/(x0)]h. 

23. Let gi and g2 be C1 functions from E3 to R such that gi(x) = 1 for ||x|| 
gi(x) 0 for 2V2/3 1 for | | x - ( l , 1,0)|| < V2/3 

x/2/3; 
0 for 

x- (1 ,1 ,0 ) | | > 2\/2/3 

"1 0 0 Xj 1 "0 0 -1~ X] 
^i(x) — 0 - 1 0 x2 + 1 and h2(x) = 0 0 0 x2 

0 0 0 x3 0 0 0 1 _x1_ 

and put /(x) = gi(x)/z!(x) + g2(\)h2(\) 

25. Proof of rule (iii) follows: 

Ih(x) - h(x0) - [/(xo)Dg(xo) + g(x0)D/(x0)](x 
X Xq || 

L/(XO)L 

XO)L 

|g(x) - g(x0) - Dg(x0)(x - x0)| 

+ lg(x0)l 

X-X0 

l / ( x ) - / (XQ) ~ D/(XQ)(X - XP)| 

llx-Xoll 
|/(x) - / (XP) | |g(x) - g(x0)| + — llx - X0)|| X Xq || X Xo 

As x x0, the first two terms go to 0 by the differentiability of / and g. The third does so 
because |/(x) — /(x0)|/ | |x — x0|| and |g(x) — g(x0)|/||x — x0|| are bounded by a constant, 
say M, on some ball Z)r(x0). To see this, choose r small enough that [/(x) — /(x0)]/ 
x — XQ|| is within 1 of D/(x0)(x — x0)/||x — xoll if ||x — xoll < r. Then we have 
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I /O) - /(xo)l/l|x - xoll < 1 + |D/(x0)(x - x0)|/||x - x0|| = 1 + |V/(x0) • (x - x0)|/ 
x — Xq || < 1 + || V/(x0)|| by the Cauchy-Schwarz inequality. 

The proof of rule (iv) follows from rule (iii) and the special case of the quotient rule, 
with / identically 1; that is, D(l/g)(x0) = [—l/g(x0)2]Dg(x0). To obtain this answer, note 
that on some small ball A-(x0), g(x) > m > 0. Use the triangle inequality and the Schwarz 
inequality to show that 

1 1 1 
+ ; 7T DgOo)(x - x0) g(x) g(x) g(x0)2 

llx — Xoll 

1 1 lg(x) - g(x0) - Dg(xo)(x - x0)| 
|g(x)| |g(x0)| | | x - X o l l 

|g(x) - g(x0)| |Dg(x0)(x - XQ)| 
|g(x)|g(x0)2 | | x - X o l l 

1 lg(x) - g(xo) - Dg(xo)(x - x0)| ^ ||Vg(xo)|| 
+ 5 lg(x) - g(x0)| m2 llx — Xoll m 

These last two terms both go to 0, because g is differentiate and continuous. 

27. First find formula for ( d / d x ) ( F ( x , *)), using the chain rule. Let F(x, z) = f* f ( z , y) dy 
and use the fundamental theorem of calculus. 

29. By Exercise 26 and Theorem 10(iii) (Exercise 25), each component of k is differentiate 
and D&/(xo) = /(x0)Dg; (x0) 4- g;(xo)D/(x0). Because [Dgt(x0)]y is the /th component of 
[Dg(x0)]^ and [D/(x0)]y is the number V/(x0) • y, we get [D£(x0)]y = /(x0)[Dg(x0)]y + 
[D/(xo)]y[g(x0)] = /(*0)[Dg (x0)]y + [V/(x0) - y]g(x0). 

Section 2.6 

1. V/( 1, 1, 2) • v = (4, 3,4) • (l / \ /5, 2/\/5, 0) = 2\/5 

3. (a) 17^/13 (b) e/o/3 (c) 0 

5. (a) z + 9x = 6y - 6 (b) z + y = jzß (c) z = 1 

7. (a) - - L ( i + j + k) (b)2i + 2j + 2k (c) - | ( i + j + k) 
3V3 

9. k 

11. The graph of / is the level surface 0 = F(x, y,z) = f(x, y) — z. Therefore, the tangent 
plane is given by 

0 = VF(XQ, >>o, zo) -(x -x0, y - yo, z - z0) 

3/ a / 
—Oo, .yo), — (xo, ^o), -1 I • (X - X0, y - y0, z - z0) ax ay 
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Because z0 = /(x0 , ^o), this is z = /(x0 , y0) + (9//9x)(x0, y0)(x 
(df/dy)(*o, yo)(y - yo)-

x0) + 

13. (a) V/ = (z + y, z + x, x 4- v), g'(0 = (e', — sini, cosi)> 
( / ° gy(l) = 2e cos 1 + cos2 1 sin2 1 

(b) V/ = (yzexyz, xzexyz, xyexyz), g'(t) = (6, 6t, 3 t 2) , ( / o g)'(l) 108<?18 

(c) V/ = [ 1 + log (x2 + y* + zz)](xi + yj + zk), g' 2 2 t 1), 
( / o g)'(D = [1 + log (e2 + e~* + l)](e - 2 2 e - 2 + 1) 

15. Let / (x , v, z) 1/r (x2 + v2 + z2) 1/2; r = (x, v, z). Then we calculate 
V/ (x2+y2+z2)-V2(x,y,z) (l/r3)r. 

17. V/ = (g'(x), 0). 

19. D/(0, 0 , . . . , 0) = [0 , . . . , 0] 

21. d! = [-(0.03 + 2by0/2a]i + yx j, d2 = [-(0.03 + 2 ^ ) / 2 a ] i + y2j, where yx and y2 

2 . u2\,.2 , nmu,. . /0.032
 „2 are the solutions of (a2 + b2)y2 + 0.036y + 4 a 0. 

•1 

i 

x 

I \ \[cfb 

23. VF À 
2tts 0 _ 

X + XQ X Xo 
r 2 

2 r 2 1 
i + 2 y 

1 
r 2 

2 

1 
r 2 1 

W 

J 

25. Crosses at (2, 2, 0), \/5/10 seconds later. 

Review Exercises for Chapter 2 
1. (a) Elliptic paraboloid. 

(b) Let y' = y + 3 and write z = xy'. This is a (shifted) hyperbolic paraboloid 

3. (a) Df(x,y) 
2 xy 
ye 

x 2 

xy xe -xy (c) D/(x, v,z)] e y ez] 

(b) D/(x) 1 
1 (d) Df(x, y, z) 

1 0 0 
0 1 0 
0 0 1 

5. The plane tangent to a sphere at (xo, yo, zo) is normal to the line from the center to 
(xo, yo> Zo). 
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7. (a) z = x — y + 2 (d) lOx + 6y - 4z = 6 - n 
(b) z = 4x - Sy - 8 (e) 2z = V2x + V2y 
(c) x + y + z = - 1 (f) x + 2y - z = 2 

9. (a) The level curves are hyperbolas x>> = 1/c: 

y 

2 

(b) c = x2 - x y - y 2 x 
1 + 75 

2 y X 
1 V5 

2 y 

y 

X 

11. (a) 0 (b) Limit does not exist 

13. ( 1 + 2 x 2 ) e x p ( l + x 2 + / ) 
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15. (a) The line L (t) = (xo, yo, fix o, >>o)) + t(a, b, c) lies in the plane z = /(x0 , >>o) if 
c 0 and is perpendicular to V/(x0, .yo) if Ö(9//9X)(XO, .yo) + b(db/dy)(x0, >>o) = 0. On L, 
we have 

fix o, y0) + 
df 
dx 

yo) ix *o) + 'dl 
Jy 

(*o. yo) (y-yo) 

f(xo,yo) + at dl 
9x (*o, Vo) + bt 

Jy 
(*0 

fix 0, yo) z 

Therefore, L lies in the tangent plane. An upward unit normal to the tangent plane is 
P (1 + l|V/||-1/2(-(9//9x)(xo,^o), -(df/dy)(x0,yo), 1). Therefore, cos0 p • k 
(1 + IIV/II2)"1/2, and tan0 = smO/cosO = {||V/||2/(1 + ||V/H2)}1/2^ + ||V/H2)"1/2 

|| V/|| as claimed. 
(b) The tangent plane contains the horizontal line through (1, 0, 2) perpendicular to 

V/(l, 0) = (5, 0), that is, parallel to the y axis. It makes an angle of arctan (|| V/(l , 0)||) 
arctan 5 ~ 78.7° with respect to the xy plane. 

17. (1/V2, l / v / 2 ) o r ( - l / V 5 , - l / x / 2 ) 

19. A unit normal is (\/2/10)(3, 5, 4). The tangent plane is 3x + 5y + 4z 18. 

21. 4 i+16j 

23. (a) Because g is the composition X Xx f(Xx), the chain rule gives 

g W D/(Àx) 
X\ 

X n_ 

Thus, 

g'O) D / W 

X\ 

V/(x) • x 

But also g(k) = Xpf(x), so g'{X) = pXp~x/(x) and g'( 1) pm 
(b) p 1. 

25. Differentiate directly using the chain rule, or use Exercise 23(a) with p 0. 

27. (a) If (x, y) ^ (0, 0), then one calculates for (i) that d f / d x (y 3 yx2)/(xz + y') 2 2\2 
and d f / d y (x 3 xy2)/(xz+yz)z. I f x 2 2\2 y 0, use the definition directly to find that both 
partial derivatives are 0. For (ii), if (x, y) ^ (0, 0), then d f / d x = 2xy6/(x2 + y*)z and 2 4\2 

9//9v (2x4_y — 2x z y : > ) / (x z + y^)z. The partials at the origin are zero. 2,.5 2 4\2 
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(b) The function (i) is not continuous at (0, 0); the function (ii) is differentiate, but the 
derivative is not continuous. 

29. (a) y/2n/S (b) - s i n ^ (c) -lojle'2 

31. (~4e~\ 0) 

33. (a) See Theorem 11. 
(b) g(u) = (sin3w)2 4- cos8w V/ = (2x, 1) 

g'(u) = 6 sin 3u cos 3u - 8 sin 8u V/(h(0)) = V/(0, 1) = (0, 1) 
g'( 0) = 0 h'(w) = (3 cos 3u, — 8 sin 8 u) 

g\0) = V/(h(0)) - h'(0) = (0, 1) - (3, 0) = 0 

35. t = vT4(-3 + V359)/70 = ( - 3 + V359)/5VT4 

37. dz/dx = 4(e~2x-2y+2xy)(l +y)/(e~2x~2y - e2xy) 
dz/dy = 4(e~2y-2x+2xy)(l +x)/(e-2x~2y - e2xy) 

2 

2 

39. Notice that y = x2, so that if v is constant, x cannot be a variable 

41. [fV)g(t) + f(t)g\t)} exp [/(0g(01 

43. d[f(c(t))]/dt = 2t/[(\ + t2 + 2 cos2 0(2 - 2f2 + i4)] 
4t(t2 - 1) ln(l + t2 + 2 cos2 0/(2 - 2t2 + i4)2 

4cosi sini/[(l + t2 + 2cos2 0(2 - 2i2 + i4)] 

45. Let x = f(t), y = t, and use the chain rule to differentiate u(x, v) with respect to t. 

47. (a) n = PV /RT\ P — nRT / V;T = PV/nR; V = nRT/P. 
(b) dV/dT = nR/P; dT/dP = V/nR;3P/3V = —nRT/ V2. Multiply, 

that PV ^ nRT. 

49. (a) One can solve for any of the variables in terms of the other two 
(b) dT/dP = (V-P)/R; 

dP/dV = —RT/(V - P)2 + 2a/ F3; 
dV/dT = R/[(V - P)(RT/(F - p)2 - 2a/ F3)] 

(c) Multiply and cancel factors. 

51. (a) (1/V2, 1/V2) 
(b) The directional derivative is 0 in the direction 

(x0i + yo\)/yJx2 +y2. 

(c) The level curve through (xo, >'o) must be tangent to the line through (0, 0) and 
(XQ, y0). The level curves are lines or half-lines emanating from the origin. 

53. G(x, y) = x — y 
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Chapter 3 

Section 3.1 

1. a2/ 
3x2 24 

x3y — xy3 32/ 3 

32/ 
3x3>> 

(x2 + y2)4 ' dy 2\4' 2 
24 + XV 3 

(x2 + y2) 2\4 

d2f 
dydx 

6x4 + 36x2>> 2 6v 4 

(x2 + y2) 2\4 

f l 
dx2 3. y4 cos(xyz), 2\ 92/ 2x sin (x>>2) — 4xzyz cos (xyz), 2 _.2 2 

dy 2 

a2 / 
3x dy 

32/ 
dydx 

2y sin (xy2) — 2xvJ cos (x vz) 3 2 

5. 
dx2 

2(cos2 x + e cos 2x + 2 sinz 2x 
(cos2 x + e~y)3 

2 

a2 / 
9v2 

e cos2 X 
e? (cos2 x + e~yf 

3 2f 32/ 2 sin 2x 
3x dy dy dx ey(cos2 x + e~y)3 

7. (a) d2z/dx 2 6, d2z/dy 2 4, (b) d2z/dxjL = 0, diz/dyi = 4 x / 3 y \ 
2/3 v 

2 2 2 3 

d2z/dx dy = d2z/dy dx 0 d2z/dx dy = dzz/dy 3x 2 2 

9. I xy 2x + 2y, / , 2z, ŷ jc 0 , / xyz o 

11. Because / and d f / d z are both of class C2, we have 

a3/ d 2 V d 2 3/ 9 a2 / 
3x dy dz dx dy dz dy dx dz dy \ dx dz 

d d2f 
dy \ dz dx 

3 V 
9>> dx 

13. 1] XZU) f , exyz [2xy cos (xw) + x 2 y 2 z cos (xw) — xzyw sin (xiu)] 2 
zwx 

15. (a) df 
dx 

v 
3/ 

arctan 
x 
y 

+ xy 
x2+y 2 

X 2 

x2+y 2 

dx2 

3 2f 
dx dy 

2v 3 a2/ 2x2>> 
(x2 + .y2)2' dy 2 (x2 + y2) 2\2 

32/ 
ax 

2 -2x>> 
(x2 + V2)2 
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(b) 
df 
dx 

x sin y/x2 + y2 df —y sin -yjx2 + y 2 

x2 y 2 '3v x2 + y 2 

3V 
9x2 

x2 sin ̂ /x2 + y 
(x2+y2fl2 

2 2 X£ cos J X 2 + V 2 sin V*2 + J7 

x2 -f y 2 (x2 + v2)1/2 

2 

a y 
3v 2 

j;2 sin ̂ /x2 + y2 y2 cos ^x 2 + y2 sin ^/x2 + j; 
(x2 + y2y/2 

2 

xz + y (x2 + v2)1/2 

a2/ a2/ 
9x 9 v 9 y 9x 

XV 
sin ̂ /x2 + ^ 
(x2 + v2)3/ 

2 cos^/x2 + y 2 

2 x2 + y 2 

(C) 
df 
9x 

2x exp (—x 2 A 
df 
dy 

2 y exp(—x 2 2 

a y 
9x2 (4x 2 9 9 d2f 

2 ) e x p ( - x 2 - / ) , - 4 
2 (4V 2 2)exp (—x 2 

32/ 32/ 
9x 9 v 9jy 9x 

4x^ exp (—x 2 2 r ) 

A 

a y 
9x2 17. 

2 92/ Jx dy 92/ 
9x 9>> dt dt dy 2 

2 df d2x df d2y 
dx dt2 dy dt2 ' 

where c(Y) = (x(Y), v(0) 

19. Evaluate the derivatives d2u/dxjL and dzu/dyz and add. 2 2 2 

21. (a) Evaluate the derivatives and compare. 
(b) <P 

A 

t 

X 

X = t 

23. V GmM/r GmM(x2 + v 2 2)"1/2. Check that 
9 2F 9 2F 92F 

+ —r + 9x2 dy 2 dz2 GmM(x2 + y2 + z2)~3/2[3 - 3(x2 + v2 + z2)(x2 + / + z2)"1] 0 
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Section 3.2 

1. f(huh2) = h2
x+2hìh2 + h2

2 h) = 0 in this case] 

h2 h2 

3. f(hì,h2) =l+hl+h2 + Y+ hì1ì2 + ~2 + h) 

5. f(hl,h2)=l+hlh2 + R2(0,h) 

7. (a) Show that |R k ( x , a)\ < ABk+l/(k + 1)! for constants A, B, and x in a fixed interval 
[a, b]. Prove that Rk -> 0 as k -» oo. (Use convergence of the series c>/ k\ = ec and use 
Taylor's theorem.) 

(b) The only possible trouble is at x = 0. Use L'Hopital's rule to show that 

limit p(t)e* = oo 
t—* oo 

for every polynomial p(t). Using this, establish that limitp(x)e l/x = ,0 for every rational 
jc-*0+ 

function p (x), and conclude that /(A)(0) = 0 for every k. 
(c) / : W -> E is analytic at x0 if the series 

/ = 1 1 —1 1 J 

1 ^ dkf 

converges to /(x0 + h) for all h = (hi,..., /z„) in some sufficiently small disk ||h|| < e. The 
function / is analytic if for every R > 0 there is a constant M such that | ( 3 k f / d x i l • - • dxik) 
(x)| < for each Mi-order derivative at every x satisfying ||x|| < R. 

(d) f ( x , y ) = l + x + y + i ( x 2 + 2xy + y2) + --- + ± J 2 ( k
j } x J y k ~ i + 

Section 3.3 

1. (0, 0); saddle point. 

3. The critical points are on the line y — — x; they are local minima, because f(x,y) = 
(x + y)2 > 0, equaling zero only when x = — y. 

5. (0, 0); saddle point. 

7. local minimum. 

9. (0, 0); local maximum. (The tests fail, but use the fact that cosz < 1.) 
(•s/nj2, y/njl), local minimum 
(0, VSr), local minimum. 
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11. No critical points. 13. (1, 1) is a local minimum 

15. (0, nn); critical points, no local maxima or minima. 

17. Minimum at (0, 0) and maxima at (0, ±1) [and saddles at (±1, 0)]. 

19. (a) 3 f /3x and 3 f /dy vanish at (0, 0). 
(b) Show that f(g(t)) = 0 at t = 0 and that f(g(t)) > 0 if |f | < \b\ßa2. 
(c) / is negative on the parabola y = 2x2. 

21. The critical points are on the line y = x and they are local minima (see Exercise 3) 

23. Minimize S = 2xy 4 2yz 4 2xz with z = V/xy, V the constant volume. 

25. 40,40,40 

27. The only critical point is (0, 0, 0). It is a minimum, because 

/(*, y, z) > — + z 2 + x y = ^(x +y)2 +z2 >0 

29. (1, I ) is a saddle point; (5, y ) is a local minimum. 

31. | is the absolute maximum and 0 is the absolute minimum 

33. —2 is the absolute minimum; 2 is the absolute maximum. 

35. ( \ , 4) is a local minimum. 

37. If un(x, y) = u(x, y) 4 (1 /n)e*, then V2un = ( \ /n )e* > 0. Thus, un is strictly 
subharmonic and can have its maximum only on 3D, say, at p„ = , yn). If (XQ, yo) e D 
check that this implies u(x„,yn) > u(x0, yo) — e/n. Thus, there must be a point q = (Xoo, ôo) 
on 3D such that arbitrarily close to q we can find an (x„, yn) for n as large as we like. 
Conclude from the continuity of u that u(xOQ, y^) > w(x0, >>o). 

39. Follow the methods of Exercise 37. 

41. (a) If there were an x\ with f(x\) < f(x o) , then the maximum of / on the interval 
between xo and x would be another critical point. 

(b) Verify (i) by the second derivative test; for (ii), / goes to — oo as y oo and 
x = -y. 

Section 3.4 

1. Maximum at Vf (1, — 1, 1), minimum at |(— 1, 1, — 1) 

3. Maximum at (V3, 0), minimum at (— 73,0) 
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5. Maximum at , minimum at ( - -fe, -

7. The minimum value 4 is attained at (0, 2). Use a geometric picture rather than Lagrange 
multipliers. 

9. (0, 0, 2) is a minimum of / . 

11. | is the absolute maximum and 0 is the absolute minimum. 

13. The diameter should equal the height, 20/y/2n cm. 

15. Maximum value >/3 at(-^, -4=, — ) and minimum value — \/3 at ( — , V3 V3 
L _L\ 

V3' \/3 

17. Horizontal length is «JqA/p, vertical length is «JpA/q. 

19. For Exercise 1, the bordered Hessians required are 

\ H i \ 

0 2x 2^ 
2x -2X 0 

0 —2X 

0 2x 
2x —2X 0 
2 y 0 —2X 
2 z 0 0 

8X(x2 + yz), 2 

2z 
0 
0 
2X 

16 À(x2+j>z + zz) 2 2 

At, /1 (1, — 1, 1) the Lagrange multiplier is X = V6/4 > 0, indicating a maximum at 

f (1, — 1, 1), and X = —V6/4 < 0 indicates a minimum at J \(— 1, 1, — 1). In Exercise 5, 

\ H \ 

and X 
24X(4x2 + 6yz), and so X 2 V7Ö/12 0 indicates a maximum at (9/V70,4/A/70) 

V7Ö/12 < 0 indicates a minimum at (-9/V7Ö, -4/V7Ö). 

21. 11,664 in 

23. (a) V/(x) Ax. 
(b) S is defined by the constraint function g(x) = .Xj | X7 ~~X 2 3 1. Because 

Vg(x) 
V/(x) 

2x is not 0, Theorem 9 applies. At an x where / is extreme, there is a X/2 such that 
(À/2)/Vg(x). That is, Ax Xx. 

25. Minimum is (— 1 /\/2, 0) maximum is , ±\/7/8), local minimum at (1 /\ /2, 0). 

27. No critical points; no maximum or minimum 

29. ( -1 ,0 ,1) 

31. The point (K, L) = (ctB/q, (1 — a)B/p) optimizes the profit 
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Section 3.5 

1. Use the special implicit function theorem with n = 1. (See Example 1.) Line (i) is given 
by 0 = (x - x0, y - yo) • VF(x0, yo) = (x - x0)(3F/3x)(xo, yo) + (y ~ yo)(dF/dy)(x0, y0). 
For line (ii), Theorem 11 gives dy/dx = —(3F/3x)/(3F/3jy), and so the lines agree and are 
given by 

(dF/dx)(x0yy0). . 
y = yo -(x — jc0). 

(3F/3y)(x0, y0) 

3. (a) If x < — \, we can solve for y in terms of x using the quadratic formula. 
(b) dF/dy = 2y + 1 is nonzero for [y | y < and {y | > These regions 

correspond to the upper and lower halves of a horizontal parabola with vertex at (—£, — 
and to the choice of sign in the quadratic formula. The derivative dy/dx = —3/(2y + 1) is 
negative on the top half of the parabola, positive on the bottom. 

5. Let F(x, y, z) = x3z2 — z3yx; dF/dz = 2x3z — 3z 2 yx ^ 0 at (1, 1, 1). Near the origin, 
with x = y ^ 0, we get solutions z = 0 and z = x, and so there is no unique solution. At 
(1, 1), dz/dx = 2 and dz/dy = — 1. 

7. With F\ = y + x + uv and F2 = uxy + v, the determinant in the general implicit 
function theorem is 

dFi/du 3Fi/3i; 
dFj/du dFi/dv 

v — uxy, 

which is 0 at (0, 0, 0, 0). Thus, the implicit function theorem does not apply. If we try directly, 
we find that v = —uxy, so x + y = u xy. For a particular choice of (x, y) near (0, 0), either 
there are no solutions for (u, v) or else there are two. 

9. No. f(x,y) = (—1,0) has infinitely many solutions, namely, (x, y) = (0, y) for any y 

11. (a) x0
2+^0

2#0. 
(b) f ( z ) = -z(x + 2v)/(x2 + v2); g'(z) = z(y - 2x)/(x2 + v2). 

13. Multiply and equate coefficients to get do, a\, and a2 as functions of rx, r2, and r^. Then 
compute the Jacobian determinant 3(¿z0, u2)/d(r\,r2, r^) = (r3 — r2)(r\ — r2)(r\ — r3). 
This is not zero if the roots are distinct. Thus, the inverse function theorem shows that the 
roots may be found as functions of the coefficients in some neighborhood of any point at 
which the roots are distinct. That is, if the roots r\, r2, r3 of x3 + a2x2 + a\x + ao are all 
different, then there are neighborhoods V of (n ,r2,r^) and W of (ao, ci\, a2) such that the 

V 

roots in V are smooth functions of the coefficients in W. 

Review Exercises for Chapter 3 

1. (a) Saddle point. 
(b) Saddle point for any C. 

3. (a) 1 (b) V83/6 
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5. Use the second derivative test; (0, 0) is a local maximum; 
(— 1, 0) is a saddle point; (2, 0) is a local minumum. 

7. Saddle points at (n, 0), n = integer. 

9. Maximum ^2.618, minimum ^ 0.382. 

11. Maximum 1, minimum cos 1 

13. z = 1/4 

15. (0,0, ±1) 

17. If b > 2, the minimum distance is 2y/b — 1; if b < 2, the minimum distance is \b\ 

19. Not stable. 

21. / ( - | , - V 3 / 2 ) = 3V3/4 

23. * = (20/3)^/3; j = 10^3;z = 5^3 

25. The determinant required in the general implicit function theorem is not zero, and so we 
can solve for u and v; (du/dx)(2, — 1) = 13/32. 

27. A new orthonormal basis may be found with respect to which the quadratic form given 
by the matrix 

A 
a b 

b c 

takes diagonal form. This change of basis defines new variables $ and rj, which are linear 
functions of x and y. Manipulations of linear algebra and the chain rule show that 
Lv = X(d2v/di;2) + /i(d2v/dr]2). The numbers X and /x are the eigenvalues of A and are 
positive, because the quadratic form is positive-definite. At a maximum, dv/d% = dv/dr) 
0. Moreover, d2v/dt-2 < 0 and d2v/drj2 < 0, because if either were greater than 0, the cross 
section of the graph in that direction would have a minimum. Then Lv < 0, thus 
contradicting strict subharmonicity. 

29. Reverse the inequalities in Exercises 27 and 28. 

31. The equations for a critical point, 3 s / d m = ds/db = 0, when solved for m and b give 
m = (y\ — >>2)/(xi — X2) and b = (^2^1 — y\x2)/(x\ — x2). The line y = mx + b then goes 
through (xi, V] ) and (x2, >'2)-

33. At a minimum of s, we have 0 = ds/db — —2 — mxi — b) 

35. y — x 5 



638 Answers to Odd-Numbered Exercises 

Chapter 4 

Section 4.1 

1. r '(0 = -(sini)i + 2(cos2f)j» r'(0) = 2j, a(t) = -(cosf)i - 4(sin20j, a(0) = - i 
1(0 = i + 2t\ 

3. r'(0 = V2ï + é\ - e~'k, r'(0) = V2i + j - k, a(f) = + e 'k , a(0) = j + k, 1(0 
V2M + (1 + 0j + (1 - Ok 

5. (et — e cost — sinf, — 3/2) 

7. [—3f2(2 sin t + cos 0 - ¿3(2 cos f - sin 0]i + [3f2(2<?' + e~f) + t\2é - e~')]j 
+ [V (cos t — sin 0 — sin f + cos 0]k 

9. w(0,6, 0) 

11. -247r2(cos(27Tf/5), sin(27rf/5))/25 

d 9 d d\ 13. — (||v|| ) = —(y • v) = 2v • — = 2v - a = 0 
at at at 

15. 6129 seconds 

t2 , . r3 

17. c(0 = ( + 1 

19. (a) c(0 = (^ e'), — 0 0 < t < oo. The image of this path is the graph j; = e*. 
(b) c(0 = (i cos t, sinO. 0 < t < 27T, an ellipse. 
(c) c(0 = (at, bt, c0 
(d) c(0 = (I cos i, j sinO» 0 < t < 27r, an ellipse. 

21. c(0 x c'(0 is normal to the plane of the orbit at time t. As in Exercise 20, its derivative is 
0, and so the orbital plane is constant. 

Section 4.2 

1. 2\ßn 3. 2C2V2 1) 

s 6 - V ^ 1 
5 ' ~~JT~ 2 g 

2->/2 + 3 
x/2 +V3 

7. 27r(V5 + V2) 

9. 3 + log 2 

11. (a) Because a is strictly increasing, it maps [a, b] one-to-one onto [<a(a), a(b)]. By 
definition, v is the image of c if and only if there is a t in [a, b] with c(0 = v. There is one 
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point s in [a(a), with s = ait), so d(s) c(0 v. Therefore, the image of c is 
contained in that of d. Use a 1 similarly for the opposite inclusion. 

(b) 
/ d 

a(b) 
d'C*)ll ds 

a(a) 
t=b 

s=a(b) 
(a(t))\\a'(t) dt 

s=a(a) 

||d '(a(t))a'(t)\\dt 
b 

cYOII dt If* • 

a 

(c) Differentiate d using the chain rule. 

b 13. (a) /c = £ || c' (s) II ds b f ds 
J a 

b a 
(b) T(s) = c/(^)/||c,(^)|| = c'(s), so T(s) = c"(s). Then k IIT'll \\c"(s)\l 
(c) Show that if v and w are in E3, ||v x w|| = ||w — (v - w/||v||2)v||-||v||. Use this to 

show that if p(t) — (x(t), >>(0, z(t)) is never (0, 0, 0) and f(i) = p(0/llp(0ll> then 

d f 
dt 

1 
IIp(0II 

p'(t) Pit) • PV) and 
di 
dt 

II Pit) x p\t) || 
MOW 2 

With (At) = c'(/), this gives 

T'(0 c"(0 
c'COII c'(/) 3 1 and T'(0ll 

||c'(0 x c"(i)|| 
II c'(0ll 2 

If 5 is the arc length of c, ds/dt = ||c'(0ll> and therefore 

d T dT ds 
dt ds dt *l|c'(rt|| 

Thus, 

k 
1 dT 

c'(0ll dt 
c'it) x c"(0ll 

C(0ll 3 

(This result is useful in Exercise 15.) 
(d) 1/V2 

15. (a) Because c is parametrized by arc length, T(s) = c'(s), and N(s) = c"(£)/||c"(s)|| 
Use Exercise 13 to show that 

dB 
ds 

c" x 
c n 

lie // 
+ c' X 

c /// c" • c'" 
c n c II 3 C n 
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and 

r 
dB 
ds N 

(c' X c'"). c" (c' X c"). c'" 
c //II2 // II2 lie" II 

(b) Obtain T'(0 and ||T'(0ll a s in Exercise 13. B is a unit vector in the direction of 
c' x T' = (c' x c")/He'll, so B = (c' x c")/||c' x c"||. Use the solution of Exercise 13 with 
P c' x c" to obtain 

dB/dt (V x c'")/||c' x c"|| - {[(c' x c")-(c' x c'")]/||c' x c"||3}(c' x c"), 

and the values of T' and ||T'|| to get 

N (lie' c' X c"||)(c" - (c' X c")/||c'||2) 

Finally, use the chain rule and the inner product of these to obtain 

r 
d B 
ds m ) N (s(t)) 1 

\ds/dt\ dt 
dB (c' x c") • c 

. N = - 7 
/// 

II0' X C // II2 

(c) V2/2 

17. (a) N is defined as T7 H r II, so T' IIT'IIN &N. Because T • T' = 0, T, N, and B are 
an orthonormal basis for R3. Differentiating B(s) • B(s) = 1 and B(5) • T(s) = 0 shows that 
B' - B = 0 and B' - T + B. T' = 0. But T • B = ||T'||N - B = 0, so B' - T = 0 also. Thus, 
B' = (B' - T)T + (B' - N)N + (B' • B)B = (B' • N)N rN. Also, N' • N = 0, because 
N • N = 1. Thus, N' = (N' • T)T + (N' • B)B. But differentiating N • T = 0 and N • B 0 
gives N' • T 

(b) u, 
- N - r 
rT + kB 

k and N' • B N • B' = r, and so the middle equation follows. 

19. Follow the hint in the text. 

Section 4.3 

1. 
y 1 

y / . 
y 

y y 

X 

3. y À 

S 
X 
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5. F (2y, x): 7. 

i 

\ 
x 

V 
V 

9. The flow lines are concentric circles: 

y 

x 

11. The flow lines for t > 0: 

y 

13. c'(0 = (2e2t, 1/f, - 1 / i 2 ) = F(c(i)) 

15. c '(0 = (cos t, - sin i, *?') = F(c(0) 
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17. Compare \mv2 for the escape velocity ve = s/2gRo and the velocity in an orbit of radius 
Ro given in Section 4.1. (Ignore the rotation of the earth.) 

19. Use the fact that — VT is perpendicular to the surface T = constant. 

Section 4.4 

1. ye*y - xe*y + yeyz 3. 3 

5. div V > 0 in the first and third quadrants, 
div V < 0 in the second and fourth quadrants. 

7. V • F = 0; if F represents a fluid, there is neither expansion nor compression; the area of 
a small rectangle remains the same. 

y 

9. 3x2 — x2 cos (jty) 11. y cos (xy) + x2 sin (x2y) 

13. 0 

15. (10y - 8z)i + (6z - 10x)j + (8x - 6^)k 

17. — sinx 19. x 

21. V x V/ = 0 23. V x V/ = 0 

25. V x F ^ O 

27. Let F = F\ i + F2 j + F3k and compute both sides of the identity. 

29. (a) 2xji + x2j (c) (—y3zx3,2x2yAz, 2x3z2 — 2x^) 
(b) (3y2xz, 4xz - y3z, 0) (d) 4x2>>z2 + x2 

31. No. 

33. Separate each expression into its real and imaginary parts and then treat the 
resulting quantity as a vector field on M2. Directly calculate its curl and divergence. 
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In (a), F = (x2 — y2)i — 2xyy, in (b), F = (x3 — 3x^2)i + (y3 — 3x2jy)j; and in (c), 
F = (ex cos>>)i — (ex sin - Show that V • F = 0 and V x F = 0 in each case. 

Review Exercises for Chapter 4 

1. v(l) = (3, -e~\ - t t /2); a(l) = (6, e~\ 0); 

s(l) = y f i + + ? ; 1(0 = (2, e'1, 0) + (t - 1X3, -e~\ -n/2) 

3. v(0) = (1,1,0); a(0) = (1, 0, -l);s = V2;/(*) = (1, 0, 1) + t( 1, 1,0) 

5. Tangent vector: v = -(1/V2)i + (1 / V2)j + k 
Acceleration vector: a = — (l/\/2)(i + j) 

7. m(2, 0 , -1 ) 
4 

9. I y/ 1 + 1,-2/3+4,-6/5^ 

11. (a) v = (—2/ sin(f2), 2i cos(f2), 0);s = 2f 
1 <\/3 (b, 

(c) V5TT/3 
(d) v = 2V5tt/3(V3/2, 1/2, 0);s = 2^5^73 
, . . 3 5tt 
( e ) 1 2 7 1 

^ 1 t 2 1 13. x = 1 +t,y = — - + - , z = —- + -
2 2 3 3 

15. Compute c'(0 and check that it equals F(c(i)). 

17. 9; 0 19. 3; —i — j — k 

21. 0; —i — j — k 

23. V/ = (ye*y — y sinxj;, xexy — x sinxj;, 0); verify that V x V/ = 0 in this case 
• j 

25. V/ = (2xex + y sinxjy2, 2x^ sinx^2, 0); check that V x Vf = 0 from this. 

27. (a) (yz2, xz2, 2xyz); (b) (z - y, 0, - x ) 
(c) (2xjyz3 — 3x_y2z2, 2x2^2z — y2z3, y2z3 — 2x2yz2) 

29. div F = 0; curl F = (0, 0, 2(x2 + y2)f(x2 + y2) + 2/(x2 + y2)) 

31. (a) A cone about i' making an angle of 7r/3 with i' 
(b) Vg = (3x2, 5z, 5>> + 2z) 

33. (a) [dP/dxf + (dP/dy)2]lf2 

(b) A small packet of air would obey F = wa. 
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(c) (d) 

N 
À Wind direction 

E 

S 
i 

Wind direction 

W 

J R 2 + p 2 

35. (a) (ZQ-ZX) 
P 

(b) 
2 (R2 + pz)z0 

2 

gP 2 

Chapter 5 

37. 680 miles per hour 

Section 5.1 

1. (a) If (b) TT + i (e) 1 (d) log 2 - \ 

3. To show that the volumes of the two cylinders are equal, show that their area functions 
are equal. 

5. 2r3(tan6>)/3 7 26 
9 

9. (2/jt)(e2 + 1) 11 196 
15 

Section 5.2 

1. (a) è (b) e — 2 (c) I sin 1 (d) 2 In 4 — 2 

3. 1/4 

5. Use Fubini's theorem to write 

[/M&OO] dx dy 
R 

d 

g(y) 
b 

f(x)dx 
_ o a 

dy, 

b and notice that f f(x) dx is a constant and so may be pulled out. 
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7. 11/6 

fo dy = fr fo if o /(*> y) dy] dx = 1 - In any partition of 
(1) i J „(2) = [0, 1] x [0, 1], each rectangle Rjk contains points c¡1 with x rational and c/A. with x 

irrational. If in the regular partition of order n we choose cjk = c^ in those rectangles with 
0 <y<\ and c jk = c Jl when y > ^, the approximating sums are the same as those for 

2 y \ < y < 1. 

Because g is integrable, the approximating sums must converge to JRgdA = 7/8. However, 
if we had picked all cy = c^ , all approximating sums would have the value 1. 

11. Fubini's theorem does not apply because the integrand is not continuous nor bounded at 
(0, 0). 

Section 5.3 

1. (a) 1/3, both (b) 5/2, both (c) (e2 - l)/4, both (d) 1/35, both 

3. A = r f ,—— dydx — 2 Jr \Jr2 — x2 dx — r2[arcsin 1 — arcsin(—1)] = nr2. 
—•yj r2—jc2 

5. 28,000 ft3 7. 0 

9. v-simple; tt/2 11. 50 TT 

13. 71 !24 

15. Compute the integral with respect to y first. Split that into integrals over [—(p(x), 0] and 
[0, 0(JC)] and change variables in the first integral, or use symmetry. 

17. Let } be a partition of a rectangle R containing D and let / be 1 on D. Thus, f* is 1 
on D and 0 on R\D. Let c G R\D if Rij is not wholly contained in D. The approximating 
Riemann sum is the sum of the areas of those rectangles of the partition that are contained 
in D. 

Section 5.4 

1. (a) 1/8 (b) tt/4 (C) 17/12 
(d) G(b) - G(a),wheredG/dy = F(y, y) - F(a, y)mddF/dx = f ( x , v) 

3. Note that the maximum value of / on D is e and the minimum value of / on D is 1 je 
Use the ideas in the proof of Theorem 4 to show that 

- < { I f(x,y)dA<e. 
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5. The smallest value of f(x,y) = 1 /(x2 + y2 + 1) on D is at (1, 2), and so 

f(x,y)dxdy > - • area D = 1. 
D 6 

The largest value is 1, at (0, 0), and so 

f(x,y)dxdy< 1 • area D = 6. 
D 

7. -nabc 
3 

9. tt(2(K/Ï() - 52)/3 

11. A/3/4 

13. D looks like a slice of pie. 

o 
f(x,y)dy dx + 

J2 A ^ 
f{x, y) dy dx 

15. Use the chain rule and the fundamental theorem of calculus. 

Section 5.5 

1. 1/3 3. 10 

5. x2+y2 <z < V*2 + y2, - \ / i - y2 < x i-y2,-\ <y< 

7. 0 < Z < Y/l -x2- y V 1 ~ y2 - x - x/ l --y2,-i<y<l 

9. 50TT/a/6 l i . 1/2 

13. 0 15. a5/20 

17. 0 19. 3/10 

21. 1/6 

1 

23- / - I / . f n ^ y 2 / ( * . ^ ^ ^ 

/

I /»A/ 1+*2 ry/4-x2-yz 

_! J_ Jo d y dX 

27. J ^ / 0 dzdxdy = f f f(x, j ) dx dy 

29. Let M€ and m e be the maximum and minimum of / on . Then we have the inequality 
m€ vol (B€) < fdV<Me vol (B€). Divide by vol (i?e), let 6 —• 0 and use continuity of / 
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Review Exercises for Chapter 5 

1. 81/2 3. -e 
4 

2 e + 9 
4 

5. 81/2 1 
7. - e 

4 
2 e + 9 

4 

9. 7/60 11. 1/2 

13. In the notation of Figure 5.3.1, 

dx dy [foM ~ <Pi(x)] dx 

15. (a) 0 (b) 7t !24 (c)0 

17. V-simple; 2n + JT 2 

19. x-simple; 73/3 

7 
À 

21. ^-simple; 33/140 

y 

x 

1 
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23. ^-simple; 71/420. 

y 

x 

25. 1/3 27. 19/3 

29. 7/12 

y 

x 

31. The function fix, y) = x2 + y2 + 1 lies between 1 and 22 + 1 = 5 on D, and so the 
integral lies between these values times 47T, the area of D. 

33. Interchange the order of integration (the reader should draw a sketch in the (u, t) plane); 

F(u)du dt F(u)dt du 

35. tt/12 

37. The region is the shaded region W in the figure 

(x ü)F(ü)du 

(1,0, 1) 

(1,0, 0) 

(0, 1, 1) 

^ ^ j 

Jul 

- J 

1 
-

f: - ^ N k . " 
1 - ^̂ ^̂ ^ 

•VojM 

^ 

(1,1,0) 

w 
(1,1,1) 

(0,1,0) y 

x 
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Chapter 6 

The integral in the order dy dx dz, for example, is 

ni f ( x , y, z)dydx dz 

Section 6.1 

1. S = the unit disk minus its center. 

3. D = [0, 3] x [0, 1]; yes 

5. The image is the triangle with vertices (0, 0), (0, 1), and (1, 1). 7" is not one-to-one, but 
becomes so if we eliminate the portion x* = 0. 

7. D is the set of (x, y, z) with x2 + y2 + z2 < 1 (the unit ball). T is not one-to-one, but 
is one-to-one on (0, 1] x (0, n) x (0, 2n]. 

9. Showing that T is onto is equivalent in the 2 x 2 case to showing that the system 
ax + by = e, cx + dy = f can always be solved for x and v, where 

A 
a b 

c d 

When you do this by elimination or by Cramer's rule, the quantity by which you must divide 
is det A. Thus, if det A ^ 0, the equations can always be solved. 

11. Because det A ^ 0, T maps R2 one-to-one onto R2. Let T~x be the inverse 
transformation. Show that T~x has matrix A"1 and det (A~l) = 1/det A, where det A ^ 0. 
By Exercise 10, P* = T~l(P) is a parallelogram. 

Section 6.2 

1. 7t(e — 1) 

3. D is the region 0 < x < 4, \x + 3 < y < \x + 6. (a) 140 (b) - 4 2 

5. D* is the region 0 < u < 1, 0 < v < 2; \ (9 - 2V5 - 3a/3). 

7. 71 64tt 
9. 

5 

11. 3tt/2 13. f ( * 4 - l ) 

15. 2a2 21 / 1 
17. — [ e - -

2 V e 
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19. IOOTT/3 21. 2tz [\/3 — 2 log (1 + V3) + log \ /2 ] 

23. 47rlog(«/è) 25. 2TT[(Z>2 + - (a2 + \)e~°2] 

27. 24 (use the change of variables x = 3u — v + y = 3u + v) 

4 4 
29. (a) -nabc (b) -izabc 3 5 

31. (a) Check that if T(u\, Vi) = T(u2, v2), then u\ = u2 and V\ = v2 
(b) 160/3 

33. ~a2/3ftf^[f((au2y/3, (av2)l/3)u-^3v~^3]dudv 

Section 6.3 

1. [IT2 - sin(7T2)]/7T3 

3. 
11 65 
18' 126 

5. $503.64 

7. (a) 8, where 8 is the (constant) mass density. (b) 37/12 

1 1 1 
9. . , , 

2 2 2 

11. 1/4 

nk s>2ix nasec<p . -i 
13. Letting 8 be density, the moment of inertia is 8 J J J (p4 sin <p) dp d6 d(p 0 JO JO 

15. (1.00 x 108)m 

17. (a) The only plane of symmetry for the body of an automobile is the one dividing the 
left and right sides of the car. 

(b) z • f f f w 8(x, y, z) dx dy dz is the z coordinate of the center of mass times the mass 
of W. Rearrangement of the formula for z gives the first line of the equation. The next step is 
justified by the additivity property of integrals. By symmetry, we can replace z by —z and 
integrate in the region above the xy plane. Finally, we can factor the minus sign outside the 
second integral, and because 8(x,y,z) = 8{u, v, —w), we are subtracting the second integral 
from itself. Thus, the answer is 0. 

(c) In part (b), we showed that z times the mass of W is 0. Because the mass must be 
positive, z must be 0. 

(d) By part (c), the center of mass must lie in both planes. 

19. V = -(4.71 x 10l9)Gm/R ̂  -(3.04 x 109)m/^, where m is the mass of a test 
particle at distance R from the planet's center. 
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Section 6.4 

1. 4 3. 3/16 

5. (a) 3 7i (b) \ < 1 

7. Integration of f f e xy dx dy with respect to x first and then y gives log 2. Reversing the 
order gives the integral on the left side of the equality stated in the exercise. 

9. Integrate over [e, 1] x [s, 1] and let e —• 0 to show the improper integral exists and 
equals 2 log 2. 

11. ^[(1+^3/2 _a9/2_{] 
9 

13. Use the fact that 
2 sin (x — y) 1 

y] 1 — x2 — y2 y/l — x2 — y2 

2 2 
15. Use the fact that ex +y /(x — y) > 1 /(x — y) on the given region 

17. Each integral equals 1/4, and Theorem 3 (Fubini's theorem) does apply. 

Review Exercises for Chapter 6 

i - W r o = (o i ) ( : ) = ( 2 r ) y 

(b) f f p f(x,y)dxdy = 4 ffs/(2u + v, 2v)dudv 

3. 3 (Use the change of variables u = x2 — y2, v = xy.) 

5. - T T ( 4 A / 2 - | ) 7. (571/2)715 

9. abc/6 

11. Cut with the planes x + y + z = $k/n, 1 < k <n — 1, £ an integer. 

13. (25+ 10V5)tt/3 

15. (e — e ])/4 (Use the change of variables u = y — x,v = y + x.) 

17. (9.92 x 106)TT grams 

19. (a) 32 
(b) This occurs at the point of the unit sphere x2 + y2 + z2 = 1 inscribed in the cube 

21. (0, 0, 3a4/8) 

23. 4n\n(a/b) 
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25. 7t!2 

27. (a) 9/2 (b) 64n 

29. Work the integral with respect to y first on the region Df L = {(x, < x < L, 
0 < y < x} to obtain Ie L = f f D f dx dy = f x — e X)dx. The integrand is 
positive, and so ICjL increases as e —» 0 and L —• oo. Bound 1 — e~x above by x for 
0 < x < 1 and by 1 for 1 < x < oo to see that IStL remains bounded and so must converge. 
The improper integral does exist. 

31. (a) 1/6 (b) 16TT/3 

33. 27i 

Chapter 7 

Section 7.1 

1. ff(x,y,z)ds = f /(x(0, y(t), z(0)l|c'(OII dt = f('0-idt = 0 

3. (a) 2 (b) 527Î4 

5. - I ( l + l/e2)V2 + I(23/2) 

7. (a) The path follows the straight line from (0, 0) to (1, 1) and back to (0, 0) in the xy 
plane. Over the path, the graph of / is a straight line from (0, 0, 0) to (1, 1, 1). The integral is 
the area of the resulting triangle covered twice and equals \[2. 

(b) sit) s/2i\-t4) when - 1 < t < 0 
a/2(1 + t4) when 0 < t < 1 

The path is 

c is) 
I (l - s / V 2 ) ( l , 1) when 0 < 5 < y/2 
[Cy/Gv/2 - 1))(1, 1) when ^ < s < 2^2 

and f f ds = V2. 

9. 2Ö/jt 

11. (a) [2^5 + log(2 + V5)]/4 (b) (5^5 - 1)/[6V5 + 3 log(2 + V5)] 

13. The path is a unit circle centered at (0,0, 0) in the plane x + y + z = 0 and so may be 
parametrized by c(0) = (cos0)v + (sin0)w, where v and w are orthogonal unit vectors laying 
in that plane. For example, v = (l/>/2)(—1, 0, 1) and w = (l/\/6)(l, —2, 1) will do. The 
total mass is 2tt/3 grams. 

15. Choosing either c(0 = (i2, 1, 0) or c(0 = (1, t2, 0), 0 < t < 1 will do. 
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Section 7.2 

1. (a) 3/2 (b) 0 (c) 0 (d) 147 

3. 9 

5. By the Cauchy-Schwarz inequality, |F(c(0) • c'(OI < ||F(c(f))l| l|c'(OII for every t. Thus, 

F • ds 
b I fib 

F(c(0) • c'(0 dt < / |F(c(0) • c'(OI dt 
a t/ a 

b fib 

< / l|F(c(0)|| ||c'(OII dt < M / ||c'(OII dt = Ml 
a 

7. ^ - ( « - ! ) / ( « +1) 

9. 0 

11. The length of c. 

13. If c'(i) is never 0, then the unit vector T(/) = c'(0/llc/(0ll is a continuous function of t 
and so is a smoothly turning tangent to the curve. The answer is no. 

15. 7 

17. Use the fact that F is a gradient to show that the work done is , independent of 
Ri R\ 

the path. 

19. (a) ||c'(*)|| 
(b) / has a positive derivative; it is one-to-one and onto [0, L] by the mean-value and 

intermediate-value theorems. It has a differentiable inverse by the inverse function theorem. 
(c) g'(s) = l/\\c'(x)\\ where 5 = /(*). 
(d) By the chain rule, b'^) = c'(x) • g (s), which has unit length by part (c). 

Section 7.3 

1. z = 2( v — 1) + 1 

3. 18(z — 1) — 4(y + 2) — (x — 13) = 0 or 18z - 4y - x - 13 = 0 

5. The vector n = (cos v sin w, sin v sin u, cos u) = (x, y, z). The surface is the unit sphere 
centered at the origin. 

7. n = —(sin i')i — (cos v)k; the surface is a cylinder. 

9. (a) x = xo + (y — yo)(dh/dy)(yo, z0) + (z — zo)(dh/dz)(yo, zo) describes the plane 
tangent to x = h(y, z) at (XQ, yo, zo), XQ = h(yo, zo). 

(b) y = yo + (* - Xo)(dk/dx)(xo, z0) + (z - zo)(dk/dz)(xo, z0). 
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11. z - 6x - 8v + 3 = 0 

13. (a) The surfaces is a helicoid. It looks like a spiral ramp winding around the z axis. (See 
Figure 7.4.2.) It winds twice around, since 0 goes up to 4jt. 

(b) n = ±(1/V1 + r2)(sin<9, - cos<9, r). 
(c) y0x - x0y + (xl + y])z = (x$ + y])z0. 
(d) If (x0, yo, z0) = (r0, cos 6q, r0 sin 0G, 0O), then representing the line segment in the 

form {(r cos 60, r sin#o>690)|0 < r < 1} shows that the line lies in the surface. Representing 
the line as {(x0, ty0, z0)|0 < t < 1 /(XQ + >Q )} and substituting into the results of part (c) 
shows that it lies in the tangent plane at (xo, yo, z0). 

15. (a) Using cylindrical coordinates leads to the parametrization 

o) ~ (y/25 + z2 cos 0, y/25 + z2 sin 0,z), - o o < z < o o , O < 0 < 2 7 r 

as one possible solution. 
(b) n = (y/25 + z2 cos 0, V25 + z2 sin 0, -z) /V25 + 2z2. 
(c) x0x + y0y = 25. 
(d) Substitute the coordinates along these lines into the defining equation of the surface 

and the result of part (c). 

17. (a) u3, and v V3 all map R onto R. 
(b) Tu x T„ = (0, 0, 1) for and this is never 0. For the surface <S>2, T„ x T„ 

9U2V2(0, 0, 1), and this is 0 along the u and v axes. 
(c) We want to show that any two parametrizations of a surface that are smooth near a 

point will give the same tangent plane there. Thus, suppose <I>: D c R2 —• R3 and 
& : B c R2 -» R3 are parametrized surfaces such that 

VQ) = (x0, YO, ZO) = ¿o) (i) 
and 

( ("0,wo) 
t x T j and (T* x T* I # 0, (ii) 

(̂ 01 to ) 
so that and ^ are smooth and one-to-one in neighborhoods of (UQ, VO) and (so, to), which 
we may as well assume are D and B. Suppose further that they "describe the same surface," 
that is, <i>(Z)) = To see that they give the same tangent plane at (x0, yo, z0), show 
that they have parallel normal vectors. To do this, show that there is an open set C with 
(;u0, vo) e C C D and a differentiate map / : C —• 2? such that <&(u, v) = v)) for 
(u, v) G C. Once you have done this, computation shows that the normal vectors are related 
by T* x T® = [9(s, t)/d(u, t;)]T* x T*. 

To see that there is such an / , notice that since T^ x T^ ^ 0, at least one of the 2 x 2 
determinants in the cross product is not zero. Assume, for example, that 

dx dy 
8s ds 
dx dy 
dt dt 

# 0 

Now use the inverse function theorem to write (s, t) as a differentiate function of (x, y) in 
some neighborhood of (xo, yo). 

(d) No. 
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Section 7.4 

1. 4 n 3. ^7r[V2 + log(l + V2)] 

5. ^ t t ( 6V6-8 ) 

7. The integral for the volume converges, whereas that for the area diverges. 

9. A(E) = J*" fi y/a2b2 sin2 0 cos2 0 + Z>2c2 sin4 0 cos2 6 + a2c2 sin4 0 sin2 6> dip dO 

11. (TT/6)(5V5 1) 

13. (TT/2)V6 

15. 4V5; for fixed (x, >>, z) moves along the horizontal line segment j; 2x, z 6 from 
the z axis out to a radius of \/51 cos 01 into quadrant 1 if cos 0 > 0 and into quadrant 3 if 
COS0 0. 

17. (7T+2 ) / ( 7T 2) 

19. n(a + b)Vl + m2^ - a) 

21. 
4 
15 (9>/3 - 8 V 2 + 1) 

23. With /(*, y) 2 2 .y2, (4) becomes 

A(S') x2 + y2 

D , R 2 - x 2 - y 2 + X d x d y 

R 
D y/R 2 X 2 y 2 

dx dy 

where D is the disk of radius R. Evaluate using polar coordinates, noting it is improper at the 
boundary, to get 2JTR2. 
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Section 7.5 

3a/2 + 5 
M . m 

24 
3. na3 

r- ~ ~ 71 ( 5v5 1 
5. (a) sfïii R2 (b) 2nR2 7. - — - + 4 V 3 15 

9. 16ttR3/3 

11. (a) The sphere looks the same from all three axes, so these three integrals should be the 
same quantity with different labels on the axes. 

(b) 4nR4 ¡3 
(c) 4nR4/3 

13. (R/2, R/2, R/2) 

15. (a) Directly compute the vector cross product Tu x T„ and then calculate its length and 
compare your answer to the left-hand side. 

(b) In this case, F = 0, so y4(s) = f f D VEG du dv. 
(c) 4na2. 

17. Let a = dx/du, b = dy/du, c = dx/dv, and d = dy/dv. The conditions (a) and (b) in 
Exercise 16 are then a2 + b2 = c2 4- d2 and ac + bd = 0. Show that a ^ 0 and, by a 
normalization argument, show that you can assume a = 1. Now calculate further. 

19. 2a2 

Section 7.6 

1. ±48TI (the sign depends on orientation) 

3. 47T 

5. 27t (or —2n, if you choose a different orientation) 

7. 2it 

9. 12tt/5 

11. With the usual spherical coordinate parametrization, T^ x T^ = — sin 0 r (see 
Example 1). Thus, 

s 
F-dS= / / F.(LxTe)d<t>de= I f (F • r) sin0 d(f) d6 

2tc Ml 
Fr sin (p d<p dO 
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and 

s 

2n 
fdS = / / fsm<pd<pdO 

13. For a cylinder of radius R — 1 and normal component Fr, 

b pin 

S f Ja JO 

F-dS= / / /v d6 dz 

15. 2jt/3 

17. \azbcTt 

Section 7.7 

1. Apply formula (3) of this section and simplify; H = 0 and K = —b2/(u2 + b2) 2 

3. Apply formula (3) of this section and simplify. 

- 4a6b6 

5. K (a4b4 + 4b4u2 + 4aV)2 

7. Apply formula (3) of this section and simplify. 

9. Apply formula (2) of this section and simplify; K = — /j"/[0 + (^')2)2^] 

Review Exercises for Chapter 7 

1. (a) 3\/2(l - e6n)/\3 (c) (236, 158A/26 - 8)/35 • (25)3 

(b) -TT-S/2/2 (d) 8V2/189 

3. (a) 2/jr + 1 (b) - 1 / 2 

5. 2Û3 

7. (a) A sphere of radius 5 centered at (2, 3, 0); < I > ( 0 , = (2 4- 5 cos 0 sin 0, 
3 + 5sin0 sin0, 5 cos0); 0 < 0 < 27t; 0 < 0 < 7r 

(b) An ellipsoid with center at (2, 0, 0); #(0, <p) = (2 + (1/A/2)3 cos 0 sin0, 
3sin0sin0, 3cos0); 0 < 0 < 27T, 0 < 0 < 7r 

(c) An elliptic hyperboloid of one sheet; z) = + 2z2 cos 0, 

1 
3 \/8 + 2z2 sin6>,zj;0 < 0 < 2tt, 

2 

oo < z < oo 

1 27T / 
9. = ~ L v 3 cos2 0 + 5 i/0; 4> describes the upper nappe of a cone with elliptical 2"° 

horizontal cross sections. 

11. 11V3/6 
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13. V2/3 

15. 5A/5/6 

17. (a) (ey cos7rz, xey COSTTZ, — jzxe y sinjrz) (b) 0 

19. X-{e2 + \) 

21. n = (1 /\/5)(— 1,0,2), 2z — x = 1 

23. 0 

25. If F = V0, then V x F = 0 (at least if 0 is of class C2; see Theorem 1, Section 3.4). 
Theorem 3 of Section 7.2 shows that fc V0 • ¿/s = 0 because c is a closed curve. 

27. (a) 24n (b) 24n (c) 60n 

29. (a) [ / R 2 + p2(z0 - zOJ/p (b) y2z0(i?2 + p2)/p2g 

Chapter 8 

Section 8.1 

1. - 8 

3. (a) 0 (b) -7t R2 (c) 0 (d) -nR2 

5. 3na2 7. 3n/2 

9. 3n(b2 - a2)/2 11. (a) Both sides are 271. (b) 0 

13. 0 15. jraib 

17. A horizontal line segment divides the region into three regions of which Green's theorem 
applies; now use Exercise 8 or the technique in Figure 8.1.5. 

19. 9tt/8 

21. If £ > 0 , there is a 8 > 0 such that |«(q) — w(p)| < £ whenever ||p — q|| = p < 8. 
Parametrize 3Z?p(p) by q(0) = p + p(cos0, sin0). Then 

/»2TT 
11 ( f t ) - 2TT U (p) | < / |w(q(6>)) - u(p)\ dO < 2ire. 

Jo 
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2n 23. Parametrize 35p(p) as in Exercise 21. If p = (p\ , p2), then /(p) = fQ u(p\ + p cos 0, 
pi + p sin 0) dO. Differentiation under the integral sign gives 

dl 
dp 

2n r2n 
Vw(cos0, smO)dO = f VwndO = - f — ds = - f f V2udA 

Jo P JDBN d n P J Jßn 

(the last equality uses Exercise 22) 

25. Using Exercise 24, 

/» /» rR r2n 
I I udA = I I u[p + p(cos0, sinO)]pdOdp 

J JBr JO JO 

ds \dp — I 2jzpu(p)dp = TTR2U(P) 

27. Suppose u is subharmonic. We establish the assertions corresponding to Exercises 26(a) 
and (b). The argument for superharmonic functions is similar, with inequalities reversed. 

Suppose V2u > 0 and w(p) > u(q) for all q in BR(p). By Exercise 23, /'(p) > 0 for 
0 < p < R, and so Exercise 24 shows that 2nu(p) < /(p) < l(R) for 0 < p < R. If 
u(q) < u(p) for some q = p + p(cos0o, sin00) g Z?/?(p), then, by continuity, there is an arc 
[Oo — 8, Oo + 8] on 8 Bp (p) where u < u(p) — d for some d > 0. This would mean that 

1 f2n 

2nu(p) < /(p) = — I w[p + p(cos0, sin0)]pd0 
P Jo 
(2TT — 28)u(p) + 28[u(p) — d] < 2nu(p) — 28d 

This contradiction shows that we must have w(q) = w(p) for every q in Bb(p). 
If the maximum at p is absolute for D, the last paragraph shows that w(x) = i/(p) for all 

x in some disk around p. If c: [0, 1) D is a path from p to q, then w(c(/)) = w(p) for all t in 
some interval [0, b). Let bo be the largest b e [0, 1] such that w(c(i)) = w(p) for all t e [0, b). 
(Strictly speaking, this requires the notion of the least upper bound from a good calculus text.) 
Because u is continuous, w(c(&0)) = ^(p). If bo ^ 1, then the last paragraph would apply at 
c(bo) and u is constantly equal to u(p) on a disk around c(/;0). In particular, there is a 8 > 0 
such that t/(c(0) = w(c(&0)) = w(p) on [0, bo + 5). This contradicts the maximality of bo, so 
we must have bo = 1. That is, c(q) = c(p). Because q was an arbitrary point in D, u is 
constant on D. 

29. Assume V2ux = 0 and V2w2 
<p(x) 

two solutions. Let <p = u\ — Then V2$ = 0 and 
egral / f D (pS/2<p dA = - f f D V<p • V0 dA. Thus, 
V0 = 0, and so 0 is a constant function and hence D V0-V0 dA 

must be identically zero. 
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Section 8.2 

1. — 2n 

3. Each integral in Stokes' theorem is zero. 

5. 0 7. -4 j t /V3 

9. 0 1 1 . ± 2 j t 

13. Using Faraday's law, f f s [ V x E + 3H/dt] • dS = 0 for any surface S. If the integrand 
were a nonzero vector at some point, then by continuity the integral over some small disk 
centered at that point and lying perpendicular to that vector would be nonzero. 

15. The orientations of dS\ = 352 must agree. 

17. Suppose C is a closed loop on the surface drawn so that it divides the surface into two 
pieces Si and S2. For the surface of a doughnut (torus) you must use two closed loops; can 
you see why? Then C bounds both S\ and S2, but with positive orientation with respect to one 
and negative with respect to the other. Therefore, 

S J J SI J JS2 JC JC 
V x F - d S = / / V x F - J S + / / V x F-dS = F-ds- F-ds = 0. 

19. (a) lfC = dS1fc\'ds = ffs(Vx\)'dS = ffs0'ds = 0. 
(b) fc\-ds = c\t)dt = \- I* c'(t)dt = v • (c(ò) - c(a)), where c: [a, b] R3 

is a parametrization of C. (The vector integral is the vector whose components are the 
integrals of the component functions.) If C is closed, the last expression is 0. 

21. Both integrals give jt/4. 23. (a) 0 (b) n (c) it 

25. —20jt (or 2071 if the opposite orientation is used) 

27. One possible answer: The Möbius curve C is also the boundary of an oriented surface S; 
the equation in Faraday's law is valid for this new surface. 

Section 8.3 

1. If F = V/ = Vg and C is a curve from v to w, then ( / — g)(w) — ( / — g)(v) 
fc V ( / — g) • ds = 0 and so / — g is constant. 

3. x2yz — cosx + C 

5. Yes, it is the gradient of g(x, v) = F(x) + F( v), where F'(x) = / (x) 

1 3 1 
7. No; V x F = (0, 0, - x ) # 0. 9. esm 1 + -e - -

11. 3.5 x 1029 ergs 
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13. (a) / = , V 2 + + C ( c ) / = I , 3 + V + c 

(b) F is not a gradient field. 

15. Use Theorem 7 in each case. 

(a) - 3 / 2 (b) - 1 (c) cos(e2)-cos(l/£?)/<? 

17. (a) No. (b) ( ^z2, xy — z, x2>> J or i ]-z2 — 2xyz — y2, —x2z — z, 0 

19. I(z
3i + x 3 j + / k ) 

21. (—z sin v + y sinx, xz cos^, 0) (Other answers are possible.) 

23. (a) V x F = (0, 0,2) # 0 
(b) Let c(i) be the path of an object in the fluid. Then F(c(i)) = c'(0- Let 

c(i) = (x(i), y(t), z(t)). Then x' = —y, y' = x, and z' — 0, and so z is constant and the 
motion is parallel to the xy plane. Also, x" + x = 0, y" + y = 0. Thus, x = A cos t + B sin t 
and y = C cos t + D sin t. Substituting these values in x' = —y, y' = x, we get 
C = —B, D = A, so that x2 + y2 = A2 + B2 and we have a circle. 

(c) Counterclockwise 

GmM 
2 5 . ( a ) F = - ( X 2 + + z 2 ) 3 / 2 ( W ) ; 

V • F = -GmM 
x2 + y2 + z2 - 3JC2 x2+y2+z2 - 3y2 x2 + y2 + z2 - 3z2 

(x2 + f + z2)5/2 + (x2+>>2+z2)5/2 + (JC2 + y2 + z2)5/2 

0 

(b) Let S be the unit sphere, S\ the upper hemisphere, S2 the lower hemisphere, and C 
the unit circle. If F = V x G, then 

F-dS = / / F-dS + / / F-dS = If G ds- / G-Js^O. 
5 J J Si J JS2 JC JC 

But f f s F - d S = -GmM ffs(r/\\r\\3)' ndS = —AnGmM, because ||r|| = 1 and r = n on 
S. Thus, F = V x G is impossible. This does not contradict Theorem 8 because F is not 
smooth at the origin. 

Section 8.4 

1. 4tr 

3. 3 

5. (a) 0 (b) 4/15 (c) -4 /15 
* 

7. 6 
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9. 1 

11. Apply the divergence theorem to / F using V • ( /F) = V/ • F + / V • F. 

13. If F = r/r2, then V . F = 1 /r2. If (0, 0, 0) £ Q, the result follows from Gauss' 
theorem. If (0, 0, 0) e we compute the integral by deleting a small ball 
Be = {(x, v, z)\(x2 + y2 + z2)1/2 < e} around the origin and then letting e —• 0: 

i f f \dV = limit i f f ~dV = limit f [ ^ dS J J Jar1 e->o J J JQXBe rL J Jd(Q\Be) rl 

limiti i f ^ d S - [ f = limiti i f ^ d S - Axe 
\ J J di2 r2 J JdBe r1 / *->o \ J JdQ r2 

r2 
r • n 

- dS. 

The integral over dBe is obtained from Theorem 10 (Gauss' law), because r = e everywhere 
on Bc. 

15. Use the vector identity for div(/F) and the divergence theorem for part (a). Use the 
vector identity V • ( /Vg - g V / ) = / V 2 g - g V 2 / for part (b). 

17. (a) If0(p) = / / /^p(q)/(47r | |p-q | | )JF(q) , then 

J f f M V0(p)= / / / [p(q)/47r]V0(l/||p-q | |) i/F(q) P w 

JfL [p(q)/47r][(p - q)/||p - q||3]rfF(q), 

where Vp means the gradient with respect to the coordinates of p and the integral is the vector 
whose components are the three component integrals. If p varies in V U 3 V and n is the 
outward unit normal to 3 V, we can take the inner product using these components and collect 
the pieces as 

V0( p) - n i f f ^^(p-q)-n^(q) 
J J Jw 4n ||p — q|| 

Thus, 

¡¡irVm • » « K(p) = - J f ( / / £ (p _ q). n J dV(p). 

There are essentially five variables of integration here, three placing q in W and two placing p 
on 3 V. Use Fubini's theorem to obtain 

V0 -n-dS = — f f f ™ 
V J J Jw 47T 

(p - q) • " dS( p) 
dv llp-qll3 d F(q). 
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If V is a symmetric elementary region, Theorem 10 says that the inner integral is 4TT if q e V 
and 0 if q & V. Thus, 

dv J J JWC\V HI 
J J Ju 

V<p-ndS = - / / / p(q)dV(q) 

Because p = 0 outside W9 

dv J J JV m V<p-ndS=- / / / p(q)dV(q). 

If V is not a symmetric elementary region, subdivide it into a sum of such regions. The 
equation holds on each piece, and, upon adding them together, the boundary integrals along 
appropriately oriented interior boundaries cancel, leaving the desired result. 

(b) By Theorem 9, f f d V V0 • dS = f f f v V2<j)dV, and so fffvV2<pdV 
— f f f v pdV. Because both p and V20 are continuous and this holds for arbitrarily small 
regions, we must have V2$ = —p. 

19. If the charge Q is spread evenly over the sphere S of radius R centered at the origin, the 
density of charge per unit area must be Q/4nR2. If p is a point not on S and q e S, then the 
contribution to the electric field at p due to charge near q is directed along the vector p — q. 
Because the charge is evenly distributed, the tangential component of this contribution will be 
canceled by that from a symmetric point on the other side of the sphere at the same distance 
from p. (Draw the picture.) The total resulting field must be radial. Because S looks the same 
from any point at a distance ||p|| from the origin, the field must depend only on radius and be 
of the form E = f(r) r. 

If we look at the sphere E of radius ||p||, we have 

(charge inside E) = / / E-dS= I ' f d l p l D r - n d S 
E J JT 

/ ( l lpl l) l lpl l a r e a £ = 4JT IIPII3/(IIPII)-

If Hp|| < R, there is no charge inside E; if ||p|| > R, the charge inside E is Q, and so 

1 Q 
— ^ P IF IIPII > R E(p) = { 4JT ||p|| 

0 if llpll < R. 

21. By Theorem 10, / f d M F • dS = 4n for any surface enclosing the origin. But if F were the 
curl of some field, then the integral over such a closed surface would have to be 0. 

23. If £ = dfV, then f f s r -ndS = fffwV-rdV = f f f w 3d V = 3 volume ( W). For the 
geometric explanation, assume (0, 0, 0) e W and consider the skew cone with its vertex at 

(0, 0, 0) with base AS and altitude ||r||. Its volume is ~(AS)(r • n). 

S e c t i o n 8.5 

1. Write the components of (p as £(x, t), rj(x, t), and f (x, t). First, observe that by definition 
of^, 

—<p(x, t) = F(ç>(x, 0, 0-
ot 
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The determinant J can be differentiated by recalling that the determinant of a matrix is 
multilinear in the columns (or rows). Thus, holding x fixed, 

3 
dt 

J 

3 3Ç drj 31 3 3 r] H H dr] 3 dç 
dt dx dx dx dx dt dx dx dx dx dt dx 
3 d$ drj H + 3 dr] dÇ + 3Ç dr] 3 dÇ 

dtdy dy dy 
+ 

3>> dt dy dy 
+ 

dy dy dt dy 
3 d$ drj 3 dr] dç 3Ç dr] 3 dÇ 

_ dt dz dz dz J L3z dt dz dz J L3z dz dt dz 

Now write 

3 d$ 3 3Ç 3 
dt dx dx dt 3x 

3 d$ 3 3f 3 
dt dy ~ " dy dt ~ " dy 

3 dç 3 3f 3 
dt dz ~ ~ dz dt ~ " 3z 

Fdw(x, t\ t\ 

F2(rp(x, t), t), 

F3(w(x, 0, t). 

The components F{, F2, and F3 of F in this expression are functions of x,y, and z through 
rp(x, t); therefore, 

a 
dx 

Fx(rp(x, t\ t) 
dFi 3f dFi dt] dFx dÇ 

_ l _ _ _ - - ( -

3£ dx dr] dx dt dx ' 

d 
dz 

F3(<p(x, o, 0 
9F3 3f dF3 3?; 3F3 3£ 
dÈ dz dn dz dt dz 

When these are substituted into the previous expression for dJ /dt, one gets for the respective 
terms 

3Fi dF2 3F3 
J -J A -J 

dx 3v 3z 
(div F )J 

3. HINTS: By the transport equation from Theorem 12, with V in place of F, 

d 
dt 

p dx dy dz 
wt 

Dp 
Dt 

+ p div V ) dx dy dz 

Now use the fact that 

Dp dp h p div V = div J , 
Dt H dt 

where J = pV, as in the text. 
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5. If Vi is the ith component of a vector v, then by the transport equation (Exercise 2), 

d 
dt ffL fF dx dy dz 

i 

d_ 
dt ffL (/F)/ dx dy dz d_ 

dt I I Iwt 
fFi dx dy dz 

t 

t 

III 
III 
II)0 
ffL, 
ffL 

Dm) 
Dt 

+ (fFi ) div F dx dy dz 

8 
dt 

(fFi ) + Dx (fFi ) • F + (fFi ) div F dx dy dz 

a 
t dt ( f^ i ) + V(/F}) • F + (fFj) div F dx dy dz 

d 
dt (/F,-) + [D(/F)F]f + [(/F) div F]i dx dy dz 

d 
dt 

( /F) + D(/F)F + ( /F) div F dx dy dz 
i 

d 

w; / 

( /F) + D(/F)F + ( /F) div F Jjc ̂  i/z 
I 

ffL d 
dt 

( /F) + (F. V)(/F) + ( /F) div F h/x dy dz 
I 

7. (a) Because V = V0, V x V = 0, and therefore (V • V)V 
equation becomes 

1 
2 

V(||V||2), Euler's 

V p 
P 

dY 1 ~ 
~dt 2 V 

(d<p 1 
V ^ + 2 I | V 1 1 

If c is a path from Pi to then 

1 -dp 
J c P 

1 
p 

Wp-o!(t)dt dé 1 r, c'(0 dt 

dé 1 9 
Pi 

P\ 

(b) If dV/dt = 0 and p is constant, then | V(||V||2) (Vp)/p V(p/p), and 
1 2 therefore VI - | |V | r + P/P 0. 

9. By Ampère 's law, V - J = V - (V x H) - V - (dE/dt) v . (dE/dt) 
(d/dt)(V. E). By Gauss' law this is -dp/dt. Thus, V • J + dp/dt 0. 
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Section 8.6 

1. (a) (2xy2 — yxs) dx dy 3 

(b) (x2 + yz) dx dy 2 

(c) (x2 + yz 4- zz) dx dy dz 2 2 

(d) (xy 4- x2) dx dy dz 
(e) dxdydz 

3. (a) 2xy dx 4- (x2 4- 3yz) dy 2 

(b) (x 4- y2 sin x) dx dy 

(c) — (2x 4- .y) dx dy 
(d) dxdydz 

(e) 2x dx dy dz 
(f) 2 v dy dz — 2x dz dx 

(g) 
4xy 

(x2 4- v2) 2\2 dx dy 
(h) 2xy dx dy dz 

5. (a) Form2 (aVi + V2) = Form2 (aAx 4- A2, aBx + B2, aC\ + C2) 
(a A i 4- A2)dydz + (aBx + B2)dzdx 
+ (aCi 4- C2) dx dy 

a(A idydz-j- B\ dz dx 4- C\ dx dy) 
4- (A2 dy dz 4- B2 dz dx 4- C2 dx dy) 

a Form2 (V j ) -h Form2 (V2 ) 

(b) dco 8A f dA , dA f , f 
AX + —— dy + —— dz ) A dx + A(dx) 2 

dx dy dz 

+ 

+ 

35 , 3B 1 
dx + dy + 3x 

dc 3 c 
¿/x + — ¿/y + 3x 3^ 

35 
~dz 
dC 
~dz 

dz j A dy + B(dy)2 

dz) Adz + C(dz)2. 

But (dx) 2 (dv) 2 (dz) 2 dx A dx = dy A dy = dz A dz = 0, ¿/Y A dx 
dx A dy, dz A dy dy A dz, and dx A dz dz A dx. Hence, 

dco 3 C 
¥ 

3B\ 1 1 /dA 
dy dz 4-3 z 3z 

3C\ 
~dy ) 

dzdx + dB 
dx 

3 A\ 
~dy) 

dx dy 

Form2 (curl V). 

7. An oriented 1 -manifold is a curve. Its boundary is a pair of points that may be considered 
a 0-manifold. Therefore, co is a 0-form or function, and fdM dco = co(b) — co(a) if the curve 
M runs from a to b. Furthermore, dco is the 1-form (dco/dx)dx + (dco/dy)dy. Therefore, 

M dco is the line integral fM(dco/dx) dco + (dco/ dy) dy 
co(b) — co(a). 

M Vco • ds. Thus, we obtain 
Theorem 3 of Section 7.2, fM Vco • ds 

9. Put co = F\dx dy 4- F2 dy dz + F3 dz dx. The integral becomes 

co 
dT ffi dco HL (S 3F2 3 F3 + — 1- —— I dx dy dz 3x ^y 

(a) 0 (b) 40 

11. Consider co = x dy dz + y dz dx + zdx dy. Compute that dco — 3dx dy dz, so that 
1 
3 dR CO 

1 
3 IJIR DCD f f f R dx dy dz v(R). 
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Review Exercises for Chapter 8 

1. (a) Ina2 (b) 0 

3. 0 

5. (a) / = x4/4 - x2y3 (b) - 1 / 4 

7. (a) Check that V x F = 0 (b) / = 3x 2 y cosz + C (c) 0 

9. 23/6 

11. No: V x (a x r) = 2a 

13. (a) V / = 3yez'i + 3xez2j + 6xyzez2k (b) 0 (c) Both sides are 0 

15. 8jt/3 

17. 7ta2/4 

19. 21 

21. (a) G is conservative; F is not. 
3 1 

(b) G = V0 if 0 = (x4/4) + (y4/4) - -x2y2 + - z 2 + C, where C is any constant 

(c) I F.ds = 0 ; / a G . d% = - l f f i F - ds = l ¡G-ds ^ 

23 . Use (V • F)(jco, yo, zo) = l imi t^oT(k^) f fdn ^ ' n ^ fr°m Section 8 .4. 


