
Vector-Valued Functions 
... who by vigor of mind almost divine, the motions and figures of the 
planets, the paths of comets, and the tides of the seas first demonstrated. 

J\fewton's Epitaph 

Chapters 2 and 3 focused on real-valued functions. This chapter is largely con-
cerned with vectorsalued functions. We begin in the first section with a con-

tinuation of our study of paths, adding applications of Newton's second law. Then 
we study arc length of paths. Following this, we introduce the divergence and curl 
of a vector field which, in addition to the gradient, are basic operations in vector 
differential calculus. The basic geometry and calculus of the divergence and curl are 
studied. The associated integral calculus will be given in Chapter 8. 

4.1 Acceleration and Newton's Second Law 
In Section 2.4, we studied the basic geometry of paths, learning how to sketch curves 
(the images of paths) and compute tangent lines. We also learned to think of, as the 
name suggests, a path as the trajectory of a particle and to regard the derivative of the 
path as its velocity vector. In this section, we continue our study of paths, including 
additional topics, especially acceleration and Newton's second law. 

Differentiation of Paths 
Recall that a path in W1 is a map c of M or an interval in M to Rn . If the path is differen-
tiate, its derivative at each time t is an n x 1 matrix. Specifically, if . . . , xn(t) 
are the component functions of c, the derivative matrix is 

c\t) = 

'dx\/dt~ 
dx2/dt 

dxn/dt_ 

2 6 1 
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which can also be written in vector form as 

(idxi/dt, ..., dxn/dt) or as (x[(t),..., x'n(t)). 

Recall from Section 2.4 that c'(0 is the tangent vector to the path at the point 
c(i). Also recall that if c represents the path of a moving particle, then its velocity 
vector is 

V = C'(/), 

and its speed iss = ||v||. 
The differentiation of paths is facilitated by the following rules. 

Differentiation Rules Let b(t) and c( t ) be differentiate paths in R3 and p(t) 
and q(t) be differentiate scalar functions: 

Sum Rule: ^ [ b ( 0 + c(0] = b ' (0 + c'(i) 

Scalar Multiplication Rule: ̂-[p{t)c{t)] = p'{W) + p{ty(t) 
at 

Dot Product Rule: ^ [ b ( 0 • c(0] - b '(0 • c(0 + b(0 • c'(0 

Cross Product Rule: ^ [ b ( 0 X c ( 0 ] = b ' ( Í ) X c ( 0 + b ( 0 X c'(t) 

Chain Rule: ~lc(q(t))] = q'(t)c\q(t)). 

These rules follow by applying the usual differentiation rules to the components. 

[ ^ J j Ñ j j E j j Show that if c(¿) is a vector function such that \\c(t)\\ is constant, 
then c'(0 is perpendicular to c(i) for all t. 

S O L U T I O N Because ||c(OII is constant, so is its square ||c(OII2 = c(f) • c(t). The 
derivative of this constant is zero, so by the dot product rule, 

o = • c(0] = c'(0 • c(0 + c(0 • c'(0 = 2c(0 • c'(0; dt 

thus, c(i) • c'(0 = 0; that is, c'(0 is perpendicular to c(t). A 

For a path describing uniform rectilinear motion, the velocity vector is constant. In 
general, the velocity vector is a vector function v = c'(0 that depends on t. The 
derivative a = d\/dt = c"(0 is called the acceleration of the curve. If the curve is 
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(x(0, y(t), z(0)» then the acceleration at time t is given by 

a(0 = * , ,(0i + / , ( 0 j + A 0 k -

A particle moves in such a way that its acceleration is constantly 
equal to — k. If the position when t = 0 is (0, 0, 1) and the velocity at t = 0 is i + j, 
when and where does the particle fall below the plane z = 0? Describe the path 
traveled by the particle (assume t > 0). 

SOLUTION Let (x(t), y(t), z(t)) be the path traced out by the particle, so that 
the velocity vector is c'(0 = x'(t)i + y\t)j -I- z\t)Vi. The acceleration c"(0 is —k, 
so x"(t) = 0, y"{t) = 0, and z"(t) = - 1 . It follows that x'(t) and / (* ) are constant 
functions, and z'{t) is a linear function with slope —1. Because c'(0) = i + j, we 
get c'(0 = i + j — tk. Integrating again and using the initial position (0, 0, 1), we 
find that (x(i), y(t), z(t)) = (i, i, 1 — \t2). The particle drops below the plane z = 0 
when 1 — \t2 — 0; that is, t = A/2 (because t > 0). At that instant, the position is 
(>/2, A/2, 0). The path traveled by the particle is a parabola in the plane y = x (see 
Figure 4.1.1), because in this plane the equation is described by z = 1 — ¡¡x2. A 

The image of a C1 path is not necessarily "very smooth"; indeed, it may have sharp 
bends or changes of direction. For instance, the cycloid c( t ) = (t — sini, 1 — cos t) 
shown in Figure 2.4.6 has cusps at all points where c touches the x axis (that is, when 
1 — cos t = 0, which happens when t = Inn, n = 0, ±1 , . . . ) . Another example is the 
hypocycloid of four cusps, c: [0, 2n] M2, t ( cos31, sin31), which has cusps at 
four points (Figure 4.1.2). At all such points, however, c'(0 = 0, and the tangent line 
is not well defined. Evidently, the direction of c'(0 may change abruptly at points 
where it slows to rest. 

A differentiable path c is said to be regular at t = to if c^io) ^ 0. If cr(0 ^ 0 for 
all t, we say that c is a regular path. In this case, the image curve looks smooth. 

z 

Figure 4.1.1 The path of the particle with initial position 
(0, 0, 1), initial velocity i + j, and constant acceleration —k 

y is a parabola in the plane y = x. 

A particle moves along a hypocycloid according to the equations 

x = cos3 t, y = sin3 t, a < t < b. 

What are the velocity and speed of the particle? 
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J Image of c 

c ' w N ^ c(o 

\ 
Figure 4.1.2 The image of the smooth path 
c ( t ) = (cos31, sin31), a hypocycloid, does not 
"look smooth." 

S O L U T I O N The velocity vector of the particle is 

dx. dy. ^ . 7 . ? 
v = — i + — j = —(3 sint cos t)\ + (3 cosi sin i)j, 

dt dt 

and its speed is 

s = ||v|| = (9 sin21 cos41 + 9 cos21 sin4 t)l/2 = 3 | sini| |cosi|. A 

Newton's Second Law 
If a particle of mass m moves in R3, the force F acting on it at the point c ( t ) is related 
to the acceleration a(/) by Newton's second law.1 

F(c(0) = /wa(f). 

In particular, if no forces act on a particle, then a ( t ) = 0, so c'(0 is constant and the 
particle follows a straight line. 

Acceleration and Newton's Second Law The acceleration of a path c ( t ) is 

a (i) = c"(t). 

If F is the force acting and m is the mass of the particle, then 

F = ma. 

^ o s t scientists acknowledge that F = »¡a is the single most important equation in all of science and engineering. 
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In the problem of determining the path c(t) of a particle under the influence of a 
given force field, F, Newton's law becomes a differential equation (i.e., an equation 
involving derivatives) for c(t). 

For example, the motion of a planet moving along a path r(t) around the sun 
(considered to be located at the origin in M3) obeys the law 

„ GmM 
m r = r—r, 

r5 

where M is the mass of the sun, m that of the planet, r = ||r||, and G is the grav-
itational constant. The relation used in determining the force, F = —GmMr/r3, is 
called Newton's law of gravitation (see Figure 4.1.3). We shall not make a general 
study of such equations in this book, but content ourselves with the special case of cir-
cular orbits. (More general orbits—the conic sections—are discussed in the Internet 
supplement.) 

Figure 4.1.3 A mass M attracts a mass m with a 
force F given by Newton's law of gravitation: 
F = - G m M r / r 3 . 

Circular Orbits 
Consider a particle of mass m moving at constant speed s in a circular path of radius 
ro. Supposing that it moves in the xy plane, we can suppress the third component and 
write its location as 

s t s t \ 
r(t) = I ro cos —, ro sin — ). 

V ro r0 J 
Note that this is a circle of radius ro and that its speed is given by ||r'(OII = s • The 
quantity s/ro is called the frequency and is denoted co. Thus, 

r(t) = (ro cos cot, ro sin cot). 

The acceleration is given by 

/ ¿-2 ^ s2 st\ S2 

a(/) = r "(t) = ( cos —, sin — ) = —^r(t) = -co2r(t). 
V ô r0 r0 r0 J r£ 
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Thus, the acceleration is in a direction opposite to r(7); that is, it is directed toward the 
center of the circle (see Figure 4.1.4). This acceleration multiplied by the mass of the 
particle is called the centripetal force. Even though the speed is constant, the direction 
of the velocity is continuously changing and therefore the acceleration, which is a 
rate of change in either speed or direction or both, is nonzero. 

Figure 4.1.4 The position, velocity, and acceleration of a 
particle in circular motion. 

Newton's law helps us discover a relationship between the radius of the orbit of a 
revolving body and the period, that is, the time it takes for one complete revolution. 
Consider a satellite of mass m moving with a speed s around a central body with mass 
M in a circular orbit of radius ro (distance from the center of the spherical central 
body). By Newton's second law F — ma, we get 

s2m „ GmM , x 
r r ( 0 = 3—r(0-ro rl 

The lengths of the vectors on both sides of this equation must be equal. Hence, 

2 _ GM 
ro 

If T denotes the period, thens = 2nro/T; substituting this value for s in the preceding 
equation and solving for T, we obtain the following: 

Kepler's Law 

5(2tt)2 

Tz = r0 . 
0 GM 

Thus, the square of the period is proportional to the cube of the radius. 

We have defined two basic concepts associated with a path; its velocity and its accel-
eration. Both involve differential calculus. The basic concept of the length of a path, 
which involves integral calculus, will be taken up in the next section. 

E X A M P L E 4 K K Q ^ I W i a y Suppose that a satellite is to be in a circular orbit about the earth 
such that it stays fixed in the sky over one point on the equator. What is the radius of 
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such a geosynchronous orbit? (The mass of the earth is 5.98 x 1024 kilograms and 
G = 6.67 x 10 -11 in the meter-kilogram-second system of units.) 

S O L U T I O N The period of the satellite should be 1 day, so T = 60 x 60 x 24 = 
86,400 seconds. From the formula T2 = r3(2n)2/GM, we get r3 = T2GM/(2n)2, 
and so 

3 _ T2GM _ (86,400)2 X (6.67 x 1Q-") x (5.98 x 1024) 
( 2 ^ 7 . 5 4 x 1 0 m . 

Thus, r0 = 4.23 x 107 m = 42,300 km ^ 26,200 mi. • 

Supplement to Section 4.1: Planetary Orbits, Hamilton's Principle, 
and Spacecraft Trajectories 
In this section, we have been studying paths in space and Newton's second law. 
Hopefully, the student realizes that these ideas apply to the real world—the motion of 
our earth around the sun, for example, is governed by these laws. But there is more 
to the story, and we will try to convey some of it here. 

Kepler, Newton, and Hamilton 
As we discussed in the historical introduction, the law of planetary motion 
stating that the square of the period is proportional to the cube of the radius 
of an orbit is one of the three that Kepler observed before Newton formulated 
his laws of motion, known more generally as Newton's mechanics. These 
mechanics enable one to compute the period of a satellite about the earth or a 
planet about the sun (when the radius of its orbit is given), and, as we will 
indicate shortly, trajectories of space missions. 

Kepler discovered and used results like this not only for circular orbits 
but more generally for elliptical orbits. Newton was able to derive Kepler's 
three celestial laws from his own law of gravitation. The neat mathematical 
order of the universe that these laws provided had a great impact on 
eighteenth-century thought. 

Newton never wrote down his laws of mechanics as differential 
equations. This was first done by Euler around 1730. Newton made most of 
his deductions (at least those in published form) by geometric methods. 
Euler also showed how Newton's equations followed from Maupertuis's 
action principle. The clearest version of the action principle in mechanics, 
now known as Hamilton's principle, is due to William Rowan Hamilton 
around 1830, who, as we all should now know, happens to also be the father 
of vector calculus. Hamilton's version of Maupertuis's principle was 
elegantly presented by Richard Feynman, as we discuss next. 



2 6 8 Vector-Valued Functions 

Feynman and Hamilton's Principle 

In his legendary Caltech Lectures on Physics, Nobel Prize-winning physicist Richard 
Phillips Feynman (see Figure 4.1.5) included what he called a "Special Lecture" on a 
topic clearly very close to his heart—one that he first heard about from his New York 
high school teacher, Mr. Bader. Mr. Bader told his (apparently bored) student Feynman 
how principles of maxima and minima apply to the trajectories of moving objects and 
in particular how the action principle of Maupertuis, Leibniz, and Hamilton (discussed 
in Section 3.3) applies to Newton's mechanics, governed by F = ma. 

Figure 4.1.5 Richard P. Feynman (1918-1988). 

Professor Feynman, at the end of his lecture, notes that "a physicist, a student 
of Mr. Bader, in 1942 showed how this action principle applied to quantum me-
chanics." That student was Feynman himself, who received the Nobel Prize for his 
insights, which also included the discovery of Feynman integrals. The moral here is 
pay attention to your teachers—especially the best ones! 

We include the first part of Feynman's lecture here and more of it in the Internet 
supplement; see Volume II, Lecture 19, of the Feynman Lectures on Physics for the 
entire lecture. 

The Principle of Least Action, by Richard Feynman 
When I was in high school, my physics teacher—whose name was Mr. 
Bader—called me down one day after physics class and said, "You look 
bored; I want to tell you something interesting." Then he told me 
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Figure 4.1.6 Feynman lecturing at Caltech. 

something which I found absolutely fascinating, and have, since then, 
always found fascinating. Every time the subject comes up, I work on it. In 
fact, when I began to prepare this lecture I found myself making more 
analyses on the thing. Instead of worrying about the lecture, I got involved 
in a new problem. The subject is this—the principle of least action. 

Mr. Bader told me the following: Suppose you have a particle (in a 
gravitational field, for instance) which starts somewhere and moves to 
some other point by free motion—you throw it, and it goes up and comes 
down [see Figure 4.1.7]. 

It goes from the original place to the final place in a certain amount of 
time. Now, you try a different motion. Suppose that to get from here to 
there, it went like this [see Figure 4.1.8], but got there in just the same 
amount of time. 

Here 

There 

Figure 4.1.7 
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Here 

Figure 4.1.8 

Then he said this: "If you calculate the kinetic energy at every moment 
on the path, take away the potential energy, and integrate it over the time 
during the whole path, you'll find that the number you'll get is bigger than 
that for the actual motion." 

In other words, the laws of Newton could be stated not in the form 
F = ma but in the form: The average kinetic energy less the average 
potential energy is as little as possible for the path of an object going from 
one point to another. 

Let me illustrate a little better what this means. If you take the case of 
the gravitational field, then if the particle has the path x{t) (let's just take 
one dimension for a moment; we take a trajectory that goes up and down 
and not sideways), where x is the height above the ground, the kinetic 
energy is ^m{dx/dt)2, and the potential energy at any time is mgx. Now I 
take the kinetic energy minus the potential energy at every moment along 
the path and integrate that with respect to time from the initial time to the 
final time. Let's suppose that at the original time t\ we started at some 
height and at the end of the time t2 we are definitely ending at some other 
place [see Figure 4.1.9]. 

X 

Figure 4.1.9 

h h 
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Then the integral is 

The actual motion is some kind of curve—it's a parabola if we plot against 
the time—and gives a certain value for the integral. But we could imagine 
some other motion that went very high and came up and down in some 
peculiar way [see Figure 4.1.10]. 

We can calculate the kinetic energy minus the potential energy and 
integrate for such a path . . . or for any other path we want. The miracle is 
that the true path is the one for which that integral is least. 

Real-Life Trajectories 

Interesting paths in M3 that obey Newton's second law occur in our own solar system 
and are used by NASA to plan space missions. One such mission, the Genesis Dis-
covery Mission, launched from earth August 8, 2001 (and is due to return to earth in 
September 2004), has a particularly interesting trajectory, as shown in Figure 4.1.11. 
More information about this trajectory and the mission objectives can be found at 
http://genesismission.jpl.nasa.gov/. 

The points denoted L \ and Li in this figure denote places of balance (discovered 
by Euler) between the earth and the sun. A motionless spacecraft positioned there 
will remain there. There are periodic orbits about these points that we have (loosely) 

Figure 4.1.10 

h 

http://genesismission.jpl.nasa.gov/
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Moon's Return 
orbit trajectory 

\ / v ^ f * to earth 

Halo 
orbit 

Sun 

Figure 4.1.11 Trajectory of the Genesis spacecraft from the earth to a periodic 
orbit about a million and a half kilometers from earth and the interesting return 
trajectory to earth. 

called halo orbits. The main dynamics of the spacecraft is governed by the pull of both 
the earth and the sun (and to a very small extent the moon) on the spacecraft. This 
is thus part of the famous three-body problem studied and made famous by Poincaré 
around 1890.2 

Emmy Noether and Hamilton's Principle 

Emmy Noether (1882-1935) (see Figure 4.1.12) is perhaps best known for her 
work in algebra, but she made a significant contribution to Hamilton's principle as 
well.3 For planetary motion, the angular momentum vector J = r(i) x mr(/) is time-
independent (so is a conserved quantity), as one can readily see by computing the time 
derivative of J and using F = ma (see Exercise 20). What Noether discovered was 
a deep connection between such conserved quantities and symmetries in Hamilton's 
principle—in the case of angular momentum, this is rotational symmetry. Noether's 
discoveries have had a profound influence on the study of mechanical systems, from 
classical to quantum, ever since. 

2For more information about Poincaré, see F. Diacu and P. Holmes, Celestial Encounters. The Origins of Chaos and 
Stability, Princeton University Press: Princeton, NJ, 1996. 
3"Invariante Variationsprobleme," Gôttingen Math. Phys. 2 (1918): 235-257. 
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F i g u r e 4.1.12 Emmy Noether (1882-1935). 

E X E R C I S E S 

In Exercises 1 to 4, find the velocity and acceleration vectors and the equation of the tangent 
line for each of the following curves, at the given value of t. 

1. r (0 = (cos t)i + (sin2t)\, at t = 0 3. r( ,) = + ¿ j + e-tk a t t = 0 

2. c(0 = (t sin i, t cos i, V30, at i = 0 4. c(f) = ii + i j + §/3/2k, at i = 9 

In Exercises 5 to 8, let Ci(t) = e'i + (sin ¿)j + t3k and c2(t) — e~'i + ( cos ¿)j — 2/3k. Find 
each of the stated derivatives in two different ways to verify the rules in the box preceding 
Example 1. 

5. ^ [ c , ( / ) + c2(0] 

6. ^ [ c , ( 0 - c 2 ( 0 ] 

7. x c 2 ( 0 ] 

8. ¿{c,(0-[2C2(0 + C,(0]} 
dt 

9. If r(/) = 6ti + 3t2} -I- ¿3k, what force acts on a particle of mass m moving along r at t = 07 
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10. Let a particle of mass 1 gram (g) follow the path in Exercise 1, with units in seconds and 
centimeters. What force acts on it at t = 0? (Give the units in your answer.) 

11. A body of mass 2 kilograms moves on a circle of radius 3 meters, making one 
revolution every 5 seconds. Find the centripetal force acting on the body. 

12. Find the centripetal force acting on a body of mass 4 kilograms, moving on a circle of radius 
10 meters with a frequency of 2 revolutions per second. 

13. Show that if the acceleration of an object is always perpendicular to the velocity, then the 
speed of the object is constant. (HINT: See Example 1.) 

14. Show that, at a local maximum or minimum of ||r(f)||, the vector r ' ( 0 is perpendicular 
to r(0-

15. A satellite is in a circular orbit 500 miles above the surface of the earth. What is the period 
of the orbit? (You may take the radius of the earth to be 4000 miles, or 6.436 x 106 meters). 

16. What is the acceleration of the satellite in Exercise 15? The centripetal force? 

17. Find the path c such that c(0) = (0, - 5 , 1) and c '(0 = 0 , e', t2). 

18. Let c be a path in M3 with zero acceleration. Prove that c is a straight line or a point. 

19. Find paths c(/) that represent the following curves or trajectories. 

(a) {(x, y) | y = ex] (c) A straight line in IR3 passing through 
(b) {(x, y) | 4x2 + y2 = 1} the origin and the point (a, b,c) 

(d) {(x, y) | 9x2 + \6y2 = 4} 

20. Let c(/) be a path, v(/) its velocity, and a(/) the acceleration. Suppose F is a C1 mapping 
of R3 to M3, m > 0, and F(c(0) = mn(t) (Newton's second law). Prove that 

[nt c(t) x v(0] = c(0 x F(c(0) 

(i.e., "rate of change of angular momentum = torque"). What can you conclude if F(c(/)) is 
parallel to c(/)? Is this the case in planetary motion? 

21. Continue the investigations in Exercise 20 to prove Kepler's law that a planet moving 
under the influence of gravity about the sun does so in a fixed plane. 

4.2 Arc Length 

Definition of Arc Length 
What is the length of a path c(t)? Because the speed ||c'(0ll is the rate of change of 
distance traveled with respect to time, the distance traveled by a point moving along 
the curve should be the integral of speed with respect to the time over the interval 
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[io, t\ ] of travel time; that is, the length of the path, also called its arc length, is 

L{c) - f 
J tn 

\W(t)\\dt. 

There is the question as to whether or not this formula actually corresponds to 
the true arc length. For example, suppose we take a curve in space and glue a string 
tightly to it, cutting the string so it exactly fits the curve. If we then remove the string, 
straighten it out and measure it with a straight edge, we surely should obtain the length 
of the curve. That our formula for arc length agrees with such a process is justified 
in the supplement at the end of this section. 

E X A M P L E 1 The arc length of the path c ( t ) = (r cos t, r sini), for t lying in 
the interval [0, 2n\\ that is, for 0 < t < 2n, is 

P2tt 
L(c) = / y/(-r sin t)2 + (r cos t)2 dt = 2nr, 

Jo 
which is the circumference of a circle of radius r. If we had allowed 0 < t < 4n, we 
would have obtained 4tt r, because the path traverses the same circle twice (Figure 
4.2.1). • 

Figure 4.2.1 The arc length of a circle traversed twice 
is 47rr. 

Arc Length The length of the path c(t) = (x(t), y(t), z(t)) for to < t < t\, is 

L(c)= I* AxV)]2 + [?(*)]2 + [zV)]2dt. 
J to 

For planar curves, one omits the z'{t) term, as in Example 1. Here is an example 
in M3. 

I 9KQSIUH9M Find the arc length of (cos t, sini, t2), 0 < t <TT. 

S O L U T I O N The path c ( t ) = (cost, sini, t2) has the velocity vector given by 
v = (—sini, cos t, 21). Because 

||v|| = y/ sin21 + cos21 + 4t2 = Vl+412 = 2yj t2 + , 



2 7 6 Vector-Valued Functions 

the arc length is 

dt. i(c) = i*T+G) 
This integral may be evaluated using the following formula from the table of integrals: 

j V*2 +a2dx = ^[xy/x2 -ha2 + a2 log(x + y/x2 + a2)] + C. 

Thus, 

L( c) = 2- -

7T 

GHMW-G)) 
¿=0 

^ V l + 4TT2 + ^ log (2TT + Vl + 4TT2) % 10.63. 

As a check on our answer, we may note that the path c connects the points (1, 0, 0) 
and (—1,0,7r2). The distance between these points is V4 + n 2 & 3.72, which is less 
than 10.63, as it should be. • 

If a curve is made up of a finite number of pieces each of which is C1 (with 
bounded derivative), we compute the arc length by adding the lengths of the compo-
nent pieces. Such curves are calledpiecewise C l . Sometimes we just say "piecewise 
smooth." 

E X A M P L E 3 
defined by c(i) = 
ball. 

A billiard ball on a pool table follows the path c: [—1, 1] -> M3 

(jc(i), y(t), z ( 0 ) = \t ~ 0). Find the distance traveled by the 

S O L U T I O N This path is not smooth, because x{t) = | is not differentiate at 
0, nor is y(t) = \t — \ | differentiable at | . However, if we divide the interval [— 1, 1] 
into the pieces [—1, 0], [0, j], and 1], we see that x(i) and y(t) have continuous 
derivatives on each of the intervals [—1, 0], [0, and [ j , 1]. (See Figure 4.2.2.) 

On [ - 1 , 0], x(t) = -t, y(t) = -t + and z(t) — 0, so ||c'(0ll = a/2. Hence, 
the arc length of c between —1 andOis y/ldt = \ f l . Similarly, on [0, j], x(t) = t, 
y(t) = — t + j, z(t) = 0, and again ||c'(i)|| = \/2, so that the arc length of c between 0 
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Figure 4.2.2 A piecewise smooth path. 

and \ is \ \ f l . Finally, on 1] we have x(t) = t, y(t) = í — z(i) = 0, and the arc 
length of c between \ and 1 is \\Í2. Thus, the total arc length of c is 2^/2. Of course, 
one can also compute the answer as the sum of the distances from c(— 1) to c(0) toc(^) 
toc(l). • 

Q J 2 2 E 2 3 S H Consider the point with position function 

c(í) = (t — siní, 1 — cos i), 

which traces out the cycloid discussed in Section 2.4 (see Figure 2.4.6). Find the 
velocity, the speed, and the length of one arch. 

SOLUTION The velocity vector is c \ t ) = (1 — cos t, sini), so the speed of the 
point c(i) is 

||c'(0l! = \ / ( l - cos t)2 + sin21 = V2 - 2 cos t. 

Hence, c(i) moves at variable speed although the circle rolls at constant speed. Fur-
thermore, the speed of c( t ) is zero when t is an integral multiple of 2n. At these values 
of t, the y coordinate of the point c(t) is zero and so the point lies on the JC axis. The 
arc length of one cycle is 

f2n > f2n 11 - cos t 
L(c) = J V2-2 costdt = 2 J y dt 

olii f t ( 2t t \ 
= 2 J sin - dt I because 1 — cos t = 2 sin - and sin - > 0 on [0, 2n] J 

= 4 ( - c „ s 0 [ = S . . 
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The Differential of Arc Length 
The arc-length formula suggests that one introduce the following notation, which will 
be useful in Chapter 7 in our discussion of line integrals. 

Arc-Length Differential An infinitesimal displacement of a particle follow-
ing a path c(i) = + y(t)j + z(i)k is 

{dx . dy. Jzi \ ; 
ds = dx 1 + dyj + dzk = I — l + — j + — k ) dt, 

dt dt J 

and its length 

is the differential of arc length. See Figure 4.2.3. 

These formulas help us remember the arc-length formula as 

ft i 
arc length = / ds. 

Jto 

As we have done before with such geometric concepts as length and angle, we can 
extend the notion of arc length to paths in «-dimensional space. 
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Arc Length in Mn Let c: [¿o, t\] Rn be a piecewise C1 path. Its length is 
defined to be 

L(c)= fl\\c\t)\\dt. 
J to 

The integrand is the square root of the sum of the squares of the coordinate 
functions of cf(t): If 

C ( 0 = ( J C I ( 0 , * 2 ( 0 

then 

>= /"'Vw 
J to 

L(c) = / V(x[(t))2 + (x'2(ty? + • • • + {x'n(t)Ydt. 

Find the length of the path c(i) = (cosi, sini, cos2i, sin2i) 
in M4, defined on the interval from 0 to TT. 

S O L U T I O N We have c'(t) = ( - s in t, cos t, - 2 sin 21, 2 cos 21), and so 

He'(Oll = Vsin21 + cos21 + 4 sin22t + 4 cos221 = y/l+4 = Vs, 
a constant, so the length of the path is 

yßdt = yßlT. A f 
JO 

It is common to introduce the arc-length function s(t) associated to a path c(t) 
given by 

s(t)= f \\c'(u)\\du, 
so that (by the fundamental theorem of calculus) 

s'(t) = \W(t)\\ 
and 

rb s\t)dt = s(b) - s(a) = s(b). f Ja 

E X A M P L E 61 Consider the graph of a function of one variable y = f ( x ) for x 
in the interval [a, b]. We can consider it to be a curve parametrized by t = x, namely, 
c(x) — (x, f(x)) for x ranging from a to b. The arc-length formula gives 

£(c)= [b Vl + [f(x)]2dx, 
J a 

which agrees with the formula for the length of a graph from one-variable calculus. A 
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Justification for the Arc-Length Formula 
The following discussion assumes an acquaintance with the definite integral defined 
in terms of Riemann sums. If your background in this topic needs reinforcement, the 
material may be postponed until after Chapter 5. 

In M3 there is another way to justify the arc-length formula based on polygonal 
approximations. We partition the interval [a, b] into N subintervals of equal length: 

a = to < t\ < • • • < tM = b\ 

ti+l - ti = for 0 < i < N — 

We then consider the polygonal line obtained by joining the successive pairs of 
points c ( t f ) , c(7/+i) for 0 < / < /V — 1. This yields a polygonal approximation to c as 
in Figure 4.2.4. By the formula for distance in M3, it follows that the line segment 
from c(ti) to c(7/+i) has length 

| |c(f / + i ) - c(ti)\\ = y/[x(ti+i) - x(ti)]2 + [y(ti+0 - y(ti)f + [z(ti+l) - z ( t t ) f , 

where c ( t ) = (x(i), y(t), z(t)). Applying the mean-value theorem to y(t), and 
z(t) on [ti, ti+1], we obtain three points t f , t**, and if** such that 

x(ti+1) - x(U) = x'(t*)(ti+l - ti), 

y(ti+x) - y(U) = y'(t**)(ti+l - tt), 

z 

Figure 4.2.4 A path c may be approximated by a polygonal path obtained by 
joining each c(U) to c(f/+i) by a straight line. 
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and 

z(ti+1) - z(tj) = z'(t***)(ti+i - ti). 

Thus, the line segment from c(f,) to c(i i+i) has length 

V[x'(i*)i2 + [ / ( r ) ] 2 + [ z ' ( t r )]2(t,+< - ti). 

Therefore, the length of our approximating polygonal line is 

Sn = J2 \ V c * ) ] 2 + [yvnf+[z'(tr*)¥(ti+1 - U)' 
i=0 

As TV oo, this polygonal line approximates the image of c more closely. There-
fore, we define the arc length of c as the limit, if it exists, of the sequence S^ as 
N oo. Because the derivatives xf, y', and z' are all assumed to be continuous on 
[a, b], we can conclude that, in fact, the limit does exist and is given by 

rb 

limit SN = / J[xf{t)? + \y>(t)]2 + [z\t)f dt. 

(The theory of integration relates the integral to sums by the formula 

rb TV—1 

E 
/=0 

nb N—\ 
/ f(t)dt = limit ^ /(^Dft'+i ~ 

Ja 

where to,..., tN is a partition of [a, b], t* e [ti, ti+\] is arbitrary, and / is a continuous 
function. Here we have possibly different points t*, t**, and t***, and so this formula 
must be extended slightly.) 

EXERCISES 

Find the arc length of the given curve on the specified interval in Exercises 1 to 6.4 

1. (2 cos 2 sin t, t), for 0 < t < 2n 

2. (1, 3t2, t3), for 0 < t < 1 

3. (sin 3/, cos 3/, 2t3/2), for 0 < t < 1 

4 Several of these problems make use of the formula 

j Vx2 + a2dx = I [W*2 + a2 + a2
 log(x + y/x2

 + a 2 ) ] + C 

from the table of integrals in the back of the book. 
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(
2 V 2 1 \ 

t + 1, — ; i 3 / 2 + 7, - ¿ 2 I, for 1 < i < 2 5. (i, t, t2), for 1 < t < 2 
6. (i, i sin/, t cost), for 0 < t < 7T 

7. Find the length of the path c(0, defined by c(0 = (2 cos t, 2 sin i, i), if'0 < t < 27r and 
c ( 0 = (2, t - 2iz, t), if 27T < t < 4TT. 

8. Let c be the path c( t ) = (t, t sin t cos t). Find the arc length of c between the two 
points (0, 0, 0) and (n, 0, -TT). 

9. Let c be the path c(Y) = (21, t2, log t), defined for t > 0. Find the arc length of c between 
the points (2,1,0) and (4,4, log 2). 

10. The arc-length function s(t) for a given path c(i), defined by s(t) = ja ||c'(r)|| dr, 
represents the distance a particle traversing the trajectory of c will have traveled by time t 
if it starts out at time a; that is, it gives the length of c between c(a) and c(/). Find the 
arc-length functions for the curves &(t) = (cosh t, sinh/, t) and (3(t) = (cos t, sin 1.1), 
with a = 0. 

11. Let c(/) be a given path, a <t < b. Let 5 = a(t) be a new variable, where a is a strictly 
increasing C1 function given on [a, b]. For each 5 in [a(a) , a(6)] there is a unique t with 
a(t) = s. Define the function d: [ct(a), a(b)] K3 by d(s) = c(f). 

(a) Argue that the image curves of c and d are the same. 
(b) Show that c and d have the same arc length. 
(c) Let 5 = a(t) = /J ||c'(r)|| dr. Define d as above by d(s) = c(f). Show that 

1 ^ ) 1 = 1. 
II II 

The path 5 d(.y) is said to be an arc length reparametrization of c (see also Exercise 13). 

Exercises 12 to 17 develop some of the classic differential geometry of curves. 

12. Let c: [a, b] M3 be an infinitely differentiate path (derivatives of all orders exist). 
Assume c'(¿) / 0 for any t. The vector c'(0/llc '(0ll = T(0 is tangent to c at c(/), and, 
because ||T(í)|| = 1, T is called the unit tangent to c. 

(a) Show that T'(0 • T(f) - 0. [HINT: Differentiate T(0 • T(0 = 1.] 
(b) Write down a formula for T ' (0 in terms of c. 

13. (a) A path c(s) is said to be parametrized by arc length or, what is the same thing, to 
have unit speed if ||c'(s)|| = 1. For a path parametrized by arc length on [a, b], show that 
/(c) — b — a. 

(b) The curvature at a point c(s) on a path is defined by k = ||T'(s)|| when the path is 
parametrized by arc length. Show that k = ||c"(s)||. 

(c) If c is given in terms of some other parameter t and c'(0 is never 0, show that 
k = ||c'(0 x c"(0ll/||c'(0ll3-
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(d) Calculate the curvature of the helix c(7) = (l/ \ /2)(cos sin t, t). (This c is a scalar 
multiple of the right-circular helix.) 

14. If T'(0 / 0, it follows from Exercise 12 that N(f) = T'(0/l|T'(0ll is normal (i.e., 
perpendicular) to T(f); N is called the principal normal vector. Let a third unit vector that is 
perpendicular to both T and N be defined by B = T x N; B is called the binormal vector. 
Together, T, N, and B form a right-handed system of mutually orthogonal vectors that may 
be thought of as moving along the path (Figure 4.2.5). Show that 

dB 
(a) — • B == 0. (c) dB/dt is a scalar multiple of N. 

dt 
dB 

( b ) - . T = 0. 

C (t) 

Figure 4.2.5 The tangent T, principal normal N, and 
binormal B. 

15. If c(s) is parametrized by arc length, we use the result of Exercise 14(c) to define a 
scalar-valued function r, called the torsion, by 

— = - r N 
ds 

(a) Show that r = [c'(s) x c"(s)] • c"f(s)/\\c"(s)\\2. 
(b) Show that if c is given in terms of some other parameter t, 

[c'(Qxc"(0]-c'"(0 
||c'(0 x C"(0ll2 ' 

Compare with Exercise 13(c). 
(c) Compute the torsion of the helix c ( t ) = ( l / \ /2) ( cos sin t, t). 

16. Show that if a path lies in a plane, then the torsion is zero. Do this by demonstrating that 
B is constant and is a normal vector to the plane in which c lies. (If the torsion is not zero, it 
gives a measure of how fast the curve is twisting out of the plane of T and N.) 

17. (a) Use the results of Exercises 13, 14, and 15 to prove the following Frenet formulas 
for a unit-speed curve: 

dT JN dB 
=k N; — = —kT + rB; = - r N . 

ds ds ds 
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(b) Reexpress the results of part (a) as 

j / T \ 

ds 
NI = u; x IN 

for a suitable vector u;. 

18. In special relativity, the proper time of a path c: [a, b] IR4 with components given by 
c(A) = (x(k), z(k), t(k)) is defined to be the quantity 

[ T 3 ^ 
Ja 

(À)]2 - [y'(X)f - [z'(À)]2 + c2[;'(À)]2 dl. 

where c is the velocity of light, a constant. In Figure 4.2.6, show that, using self-explanatory 
notation, the "twin paradox inequality" holds: 

proper time (AB) + proper time (BC) < proper time (AC). 

F i g u r e 4.2.6 The relativistic triangle inequality. 

19. The early Greeks knew that a straight line was the shortest possible path between two 
points. Euclid, in his book Optics, stated the "principle of the reflection of light"—that is, 
light traveling in a plane travels in a straight line, and when it is reflected across a mirror, the 
angle of incidence equals the angle of reflection. 

The Greeks could not have had a proof that straight lines provided the shortest path 
between two points because they, in the first place, had no definition of the length of a path. 
They saw this property of straight lines as more or less "obvious." 

Using the justification of arc length in this section and the triangle inequality of Section 
1.5, argue that if c0 is the straight-line path c0(t) = tJ> + (1 — t)Q between P and Q in M3, then 

¿(Co) < ¿(c) 

for any other path c joining P and Q. 
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4.3 Vector Fields 

T h e C o n c e p t of a Vector Field 
In Chapter 2, we introduced a particular kind of vector field, the gradient. In this section 
we study general vector fields, discussing their geometric and physical significance. 

Vector Fields A vector field in W1 is a map F : A C W1 -> Rn that assigns to 
each point x in its domain A a vector F(x). If n = 2, F is called a vector field in 
the plane, and if n = 3, F is a vector field in space. 

Picture F as attaching an arrow to each point (Figure 4.3.1). By contrast, a map 
f : A c M that assigns a number to each point is a scalar field. A vector field 
F(x, y, z) on M3 has three component scalar fields F\, F2, and F3, so that 

F(x,y,z) = (Fi(x,y,z), F2(x,y,z), F3(x,y,z)). 

Similarly, a vector field on W1 has n components F\,..., Fn. If each component is a 
Ck function, we say the vector field F is of class Ck. Vector fields will be assumed to 
be at least of class C1 unless otherwise noted. 

t s 

t/ 
« • F(x) 

J \ 
Figure 4.3.1 A vector field F assigns a vector F(x) to 
each point x of its domain. 

In many applications, F(x) represents a physical vector quantity (force, velocity, etc.) 
associated with the position x, as in the following examples. 

[ S ^ ^ Q S y The flow of water through a pipe is said to be steady if, at each 
point inside the pipe, the velocity of the fluid passing through that point does not 
change with time. (Note that this is quite different from saying that the water in the 
pipe is not moving.) Attaching to each point the fluid velocity at that point, we obtain 
the velocity field V of the fluid (see Figure 4.3.2). Notice that the length of the arrows 
(the speed), as well as the direction of flow, may change from point to point, A 
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Figure 4.3.2 A vector field describing the 
velocity of flow in a pipe. 

I ^ ^ ^ Q ^ Q Q Q Some forms of rotary motion (such as the motion of particles on 
a turntable) can be described by the vector field 

V(x,y) = -yi + xy 

See Figure 4.3.3, in which we have shown instead of V the shorter vector field 
so that the arrows do not overlap. This is a common convention in drawing pictures 
of vector fields, A 

/ / / " 
- U L I I 
\ \ \ * * 
\ \ \ \ 
\ \ \ N -

^ N \ \ \ 
v \ \ \ \ 

> ^ M 
' > / / / 'J, / / / t S 

Figure 4.3.3 A rotary vector field. 

I | In the plane, M2, let the vector field x be defined by 

xrr \ yl x\ ( y 
x2 + yz xl + yz \xz+y2' x2 + y2 J 

(except at the origin, where V is not defined). This vector field is a good approximation 
to the planar part of the velocity of water flowing toward a hole in the bottom of a tub 
(Figure 4.3.4). Notice that the velocity becomes larger as you approach the hole. • 

Gradient Vector Fields 
In Section 2.6 we introduced the gradient of a function by 

a / a / a / Vf(x, y, z) = —(x, y, z)i + — (JC, y, z)j + —(x, y, z)k. ax ay oz 
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Figure 4.3.4 The vector field describing circular flow in a tub. 

Now we want to think of this as an example of a vector field—it assigns a vector to 
each point (x, y, z). As such, we refer to V / as & gradient vector field. Gradient fields 
come up in a variety of situations, as the next two examples show. 

A piece of material is heated on one side and cooled on another. 
The temperature at each point within the body is described at a given moment by a 
scalar field T(x,y,z). The flow of heat may be marked by a field of arrows indicating 
the direction and magnitude of the flow (Figure 4.3.5). This energy or heat flux vector 
field is given by J = —kVT, where k > 0 is a constant called the conductivity and 
VT is the gradient of the real-valued function T. Level sets of T are called isotherms. 
Note that the heat flows from hot regions toward cold ones, since — VT points in the 
direction of decreasing T. • 

E X A M P L E 5 The force of attraction of the earth on a mass m can be described 
by a vector field called the gravitational force field. Place the origin of a coordinate 
system at the center of the earth (assumed spherical). According to Newton's law of 
gravity, this field is given by 

mMG 
F = r 
1 i 
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where r(x,y,z) = (x,y,z), and r = ||r|| (see Figure 4.3.6). The domain of this 
vector field consists of those r for which ||r|| is greater than the radius of the earth. 
As we saw in Example 6, Section 2.6, F is a gradient field, F = — V F, where 

V = 
mMG 

is the gravitational potential. Note again that F points in the direction of decreasing 
V. Writing F in terms of components, we see that 

F (x,y,z) 
-mMG -mMG -x, -mMG 

Figure 4.3.6 The vector field F given by Newton's 
law of gravitation. 

According to Coulomb's law, the force acting on a charge e at 
position r due to a charge Q at the origin is 

eQe 
F = — r = -VF, 

where V = sQe/r and E is a constant that depends on the units used. For Qe > 0 
(like charges) the force is repulsive [Figure 4.3.7(a)], and for Qe < 0 (unlike charges) 
the force is attractive [Figure 4.3.7(b)]. Because the potential V is constant on the 
level surfaces of V, they are called equipotential surfaces. Note that the force field is 
orthogonal to the equipotential surfaces (the force field is radial and the equipotential 
surfaces are concentric spheres). A 

The next example shows that not every vector field is a gradient. 
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Is ^ / ^ 

(a) (b) 

Figure 4.3.7 The vector fields 
associated with (a) like charges 
(Qe > 0), and (b) unlike charges 
(Qe < 0). 

E X A M P L E 7 Show that the vector field V on M2 defined by V(x, y) = y\ — x j 
is not a gradient vector field; that is, there is no C1 function / such that 

df df 
v(x,y) = m*,y) = -r i + ^ - J -

ox oy 
SOLUTION Suppose that such an / exists. Then df/dx = y and df/dy = —x. 
Because these are C1 functions, / itself must have continuous first- and second-order 
partial derivatives. But, 3 2 /¡dx 3y = —I, and d2f/dydx = 1, which violates the 
equality of mixed partials. Thus, V cannot be a gradient vector field. A 

C o n s e r v a t i o n of E n e r g y a n d E s c a p i n g t h e E a r t h ' s G r a v i t a t i o n a l Fie ld 

Consider a particle of mass m moving in a force field F that is a potential field. That is, 
assume F = — V F for a real-valued function V, and that the particle moves according 
to F = ma. Thus, if the path is r(i), then 

™f(0 = - V F ( r ( 0 ) . (1) 

A basic fact about such motion is the conservation of energy. The energy E of the 
particle is defined to be the sum of the kinetic and potential energies, defined as 

E = l-M\\m\\2 + nm). (2) 

The principle of conservation of energy states that if Newton's second law holds, 
then E is independent of time; that is, dE/dt = 0. The proof of this fact is a simple 
calculation; we use equation (2), the chain rule, and equation (1): 

dE 
dt 

= r - ( - V F + VF) = 0. 
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E s c a p e Velocity 

As an application of conservation of energy, we compute the velocity required for a 
rocket to escape the earth's gravitational influence. Assume the rocket has mass m 
and is at a distance Ro from the center of the earth (or another planet) when its escape 
velocity ve has been reached, and that it will coast thereafter. The energy at this time is 

1 2 mMG E0 = -mv'e — . (3) 

By conservation of energy, Eq will equal the energy at a later time, which we write as 

1 9 mMG E0 = E = -mv2-—^, (4) 

where v is the velocity and R is the distance from the center of the earth (or the other 
planet). What we mean by the term escape velocity is that ve is chosen such that the 
rocket gets to great distances, at which time it is barely moving. That is, v is close 
to zero and R is very large. Thus, from equation (4), we see that E = 0 and hence 
Eq = 0; solving Eq = 0 for ve using equation (3) gives: 

Ve = . 
¡2 MG 

Flow Lines 

Now GM/Rq is exactly g, the acceleration due to gravity at the distance Rq from the 
center of the planet. Thus, we can write: 

Ve = y/2gR0• 

For the earth, if the escape velocity were to be achieved at the surface of the earth 
(of course, this is a bit unrealistic), this would give 

ve = y/2 • 9.8 m/s2.6,371,000 m = 11,127 m/s. 

However, this is a good approximation to the velocity that a satellite in low earth 
orbit needs in order to escape the earth's gravitational field. 

An important concept related to general (not necessarily gradient) vector fields is that 
of a flow line, defined as follows. 

Flow Lines If F is a vector field, a flow line for F is a path c(i) such that 

c'(0 = F(c(0). 

That is, F yields the velocity field of the path c(i). 
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In the context of Example 1, a flow line is the path followed by a small particle 
suspended in the fluid (Figure 4.3.8). Flow lines are also appropriately called 
streamlines or integral curves. 

Velocity vector Flow line 

Figure 4.3.8 The velocity vector of a fluid is 
tangent to a flow line. 

Geometrically, a flow line for a given vector filed F is a curve that threads its 
way through the domain of the vector field in such a way that the tangent vector of 
the curve coincides with the vector field, as in Figure 4.3.9. 

Figure 4.3.9 A flow line threading its way through 
a vector field in the plane. 

A flow line may be viewed as a solution of a system of differential equations. 
Indeed, we can write the definition c \ t ) — F(c(i)) as 

x'(t) = P(x(t\y(t\z{t)\ 

yf(t)=Q(x(t),y(t),z(t)), 

z\t) = R(x(t),y(t),z(t)l 

where c(i) = x(i)i + y(t)j -I- z(t)k, and where 

F = Pi + Q\ + Rk. 

One learns about such systems in courses on differential equations, but we are not 
presuming such a course has been taken. 
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Show that the path c(t) = (cos t, sin t) is a flow line of the vector 
field F(x, y) = —yi + xj. Can you find others? 

S O L U T I O N We must verify that c \ t ) = F(c(0). The left side is ( -s in i ) i + 
(cost)}, while the right side is F(cos/, sini) = (—sini)i + (cosi)j, so we have a 
flow line. As suggested by Figure 4.3.3, the other flow lines are also circles. They 
have the form 

c ( t ) = (r cos (t — to), r sin (t — to)) 

for constants r and to. A 

In many cases, explicit formulas for flow lines are not available, so one must 
resort to numerical methods. Figure 4.3.10 shows some output from a program that 
computes flow lines numerically and plots them on the screen. 

Figure 4.3.10 Computer-generated integral curves of 
the vector field ¥(x, y) = (sin j>)i + (x2 — j>)j. This 
figure was created using 3D-XplorMath, available from 
Richard Palais' Web site at rsp.math.brandeis.edu/ 
3D-XplorMath. 

The Field Concept 
The concept of a "field,"such as a vector field, has had an enormous impact 
on the development of conceptual frameworks for physics and engineering. It 
is truly one of the great breakthrough ideas in the history of human thought. 
It is the notion that allows one to describe, in a systematic way, influences on 
objects and between objects that are spatially separated. 

The idea of a field began with Newton's concept of the gravitational 
field. In this case, the gravitational field describes the attractive influence 
of one body or group of bodies on one another. Similarly, the electric field 
produced by a charged object or group of objects creates, according to 
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Coulomb's law, a force on another charged object. Using vector fields to 
describe these sorts of forces has led to a deeper understanding of attractive 
and repulsive forces in nature. 

However, it was the monumental discovery of the Maxwell field 
equations, which describe the propagation of electromagnetic energy, that 
cemented the concept of "field"in scientific thought. This example is 
particularly interesting because these fields can propagate. The contrast 
between the electromagnetic field that can propagate and the gravitational 
field that involves instantaneous action at a distance has caused great interest 
among philosophers of science. 

Einstein's idea is that gravitation can be described in terms of the metric 
properties of space-time and that in this theory the associated field can also 
propagate, just like the electromagnetic field, thus providing profound 
philosophical evidence that Einstein's version of gravity may be correct. 
These ideas have also led to modern efforts to detect gravitational waves. For 
a further discussion of Einstein's work, see Section 7.7. 

The idea of a field is also used in engineering to describe elastic systems 
and interesting microstructural properties of materials. In modern theoretical 
physics, the field concept is used to describe elementary particles and is 
central to attempts by modern theoretical physicists to unify gravity with the 
quantum mechanical physics of elementary particles. It is impossible to 
imagine a modern theoretical framework that does not incorporate some sort 
of field concept as a central ingredient. 

E X E R C I S E S 

In Exercises 1 to 8, sketch the given vector field or a small multiple of it. 

1. F(x, y) = (2, 2) 

2. F(x, y) = (4, 0) 

3. F ( x , y ) = (x,y) 

4. F ( x , y ) = (-x,y) 

5. F(x,y) = (2y,x) 

6. ¥(x,y) = (y,-2x) 
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In Exercises 9 to 12, sketch a few flow lines of the given vector field. 

9. F(x,y) = (y,-x) 

10. F ( x , y ) = (x,-y) 

11. F(x,>0 = (*,*2) 

12. F(x, y, z) = (y, —x, 0) 

In Exercises 13 to 16, show that the given curve c (t) is a flow line of the given velocity vector 
field F(x, y, z). 

13. c(0 = (e2t, log |i|, 1 /0 , t + 0; F(x, y, z) = (2x, z, - z 2 ) 

14. c(i) = (t2, 2t - 1, Vt),t > 0; F(JC, z) = O + 1,2, 1 /2z) 

15. c(i) = (sini, cost, e'); F(x, y, z) = (y, — x, z) 

16. c(t)=^,e',j);F(x,y,z) = (-3Z
4,y,-z2) 

17. Show that it takes half as much energy to launch a satellite into an orbit just above the 
earth as it does to escape the earth. (Ignore the rotation of the earth.) 

18. Let c(t) be a flow line of a gradient field F = —VF. Prove that V(c(t)) is a decreasing 
function of t. 

19. Suppose that the isotherms in a region are all concentric spheres centered at the origin. 
Prove that the energy flux vector field points either toward or away from the origin. 

20. Sketch the gradient field — V F for V(x, y) = (x + y)/(x2 + y1) and the equipotential 
surface F = 1. 

4.4 Divergence and Curl 
For each of the divergence and curl operations, we will make use of the del operator, 
defined by 

V - i d ' 9 k d 

dx * 3y 3 z 

For functions of one variable, taking a derivative can be thought of as an operation or 
process; that is, given a function y = / ( x ) , its derivative is the result of operating on 
y by the derivative operator d/dx. Similarly, we can write the gradient as 

„ ( 3 . 3 \ . 3 / 3 / 
Vf={%+iVy)f = lVX

+>Vy 
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for functions of two variables, and 

, / . a a a \ „ a / a / a / 
V / = i — + j — + k— ) / = i——- + + k — 

\ dz) dx dy dz 

for three variables. In operational terms, the gradient of / is obtained by taking the 
V operator and applying it to / . 

Def in i t i on of D ive rgence 

We define the divergence of a vector field F by taking the dot product of V with F. 

Divergence If F = Fii + F2] + F3k, the divergence of F is the scalar field 

dFx dF2 dF3 div F = V • F = — - + — - + — . 
dx dy dz 

Similarly, if F = (F\,..., Fn) is a vector field on its divergence is 

A' v J r d F i dFx . d F l , , dF" 
div F = > = 1 1 1 . 

dXi dxi dx2 dxn 

E X A M P L E 1 Compute the divergence of 

F = x2yi + zj + xyzk. 

S O L U T I O N 

a a a 
div F = — (x2y) + —(z) + —(xyz) = 2xy + 0 + xy = 3xy. 

dx dy dz 

In t e rp re t a t i on 

The divergence has an important physical interpretation. If we imagine F to be the 
velocity field of a gas (or a fluid), then div F represents the rate of expansion per 
unit volume under the flow of the gas (or fluid). If div F < 0, the gas (or fluid) is 
compressing. For a vector field F(x, y) = F\ i + F2\ on the plane, the divergence 

„ ^ dFx dF2 V • F = — - + — -dx dy 

measures the rate of expansion of area. 
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Figure 4.4.1 Flowing a region W along 
the flow lines of a vector field. 

This interpretation is explained graphically, as follows. Choose a small region W 
about a point xo. For each point x in W, let x(t) be the flow line emanating from x. 
The set of points x(i) describe how the set W flows after time t (see Figure 4.4.1). 

Call the region that results after time t has elapsed W(t), and let V(t) be its 
volume (or area in two dimensions). Then the relative rate of change of volume is the 
divergence; more precisely, 

1 d 
V(5)dt 

div F(x0), 

with the approximation being more exact as W shrinks to x0. A direct proof of this is 
given in the Internet supplement, but a more natural argument is given in Chapter 8, 
in the context of the integral theorems of vector calculus. 

Consider the vector field in the plane given by \(x,y) = xi. 
Relate the sign of the divergence of V with the rate of change of areas under the 
flow. 

S O L U T I O N We think of V as the velocity field of a fluid in the plane. The vector 
field V points to the right for x > 0 and to the left if x < 0, as we see in Figure 4.4.2. 
The length of V gets shorter toward the origin. As the fluid moves, it expands (the area 
of the shaded rectangle increases), so we expect div V > 0. Indeed, div V = 1. A 

CQiSIURaM The flow lines of the vector field F = xi + are straight lines 
directed away from the origin (Figure 4.4.3). 
E X A M P L E 3 
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• - H 1 , Figure 4.4.2 This fluid is expanding. 

X \ \ 

/ / / 

/ / S 

/ s ^ 
Figure 4.4.3 The vector 
Held F(A'. V) = Xi + vj. 

\ V V 

\ \ X 

If these flow lines are those of a fluid, the fluid is expanding as it moves out from the 
origin, so div F should be positive. In fact, 

a a 
V • F = — x + — y = 2 > 0. 

dx dy 

E X A M P L E 4 Consider the vector field F = — xi — y\. Here the flow lines point 
toward the origin instead of away from it (see Figure 4.4.4). Therefore, the fluid is 
compressing, so we expect (div F) < 0. Calculating, we see that 

V • F = -^-(—x) -I- -^-(—y) = — 1 — 1 = —2 < 0. A 
ax ay 
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-4 i •'" As we saw in the last section, the flow lines of F = — yi + xj 
are concentric circles about the origin, moving counterclockwise (see Figure 4.4.5). 
From this figure, it appears that the fluid is neither compressing nor expanding. This 
is confirmed by calculating 

= 0 + 0 = 0. A 
dx dy 

y 

/ / / / - J 
1 1 / / ^ 

1 1 I / / I 
- ^ N \ \ \ 

- v \ \ \ \ 

- v H \ \ \ , 
\ \ \ H I • 

\ \ \ \ 
\ \ \ 

/ t t W / / / 

Figure 4.4.5 The vector field 
F(x, y) = — yi + xj has zero 
divergence. 

Some flow lines of F = xi — y\ are shown in Figure 4.4.6. Here 
our intuition about expansion or compression is less clear. However, it is true that the 
shaded regions shown have the same area, and we calculate that 

dx dy 
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Curl 

/ / / 1 / / / 
/ / / 

/ / 
X 

X X 

y A Fluid particles move from 
shaded region to shaded 
region after a fixed time 
interval. The two areas 
are the same. 

x X \ 

Figure 4.4.6 The vector field ¥(x, y) = xi — y\. 

To calculate the curl, the second basic operation performed on vector fields, we take 
the cross product of V with F. 

Curl of a Vector Field If F = Fji + F2] + F3 k, the curl of F is the vector 
field 

i j k 
curl F = V x F = 

a a a 
dx dy dz 
F\ F2 Ft, 

\ dy dz J \ dz dx J \ dx dy J 

If we write F = P i + Q\ + which is alternative notation, the same formula 
for the curl reads 

j k 
curl F = 

a a a 
dx dy dz 
P Q R 
dR dQ 
dy dz 

_ /dR dQ\ (dR dP\ (dQ 8P\ 
\ dy dz ) \ dx dz / \ dx dy J 
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EXAMPLE 7 Let F(x, y, z) = jci + xy\ + k. Find V x F. 

S O L U T I O N We use the preceding formula: 

V x F = 

i J k 
a a a 

dx dz 
X xy l 

= ( 0-0 ) i - (0 -0 ) j + O>-0)k. 

Thus, V x F = yk. A 

J O Q I U H S y Find the curl of xy\ — sinzj + k. 

S O L U T I O N Letting F = xyi — sinzj + k, 

V x F = 

i j k 
a a a 

dx dy dz 
xy —sin z 1 

a a 
dy dz 

—sinz 1 

= coszi — xk. 

a d a a 
i — dx d~z j + dx dy 

xy 1 xy —sinz 

Unlike the divergence, which can be defined in W1 for any n, we define the 
curl only in three-dimensional space (or for planar vector fields, regarding their third 
component as zero). 

The Curl and Rotations 
The physical significance of the curl will be discussed in Chapter 8, when we study 
Stokes' theorem. However, we can now consider a specific situation, in which the curl 
is associated with rotations. 

Consider a solid rigid body B rotating about an axis L. The rota-
tional motion of the body can be described by a vector lj along the axis of rotation, 
the direction being chosen so that the body rotates about lj, as in Figure 4.4.7. We 
call u the angular velocity vector. The length co = ||u;|| is taken to be the angular 
speed of the body B, that is, the speed of any point in B divided by its distance from 
the axis L of rotation. The motion of points in the rotating body is described by the 
vector field v whose value at each point is the velocity at that point. To find v, let Q 
be any point in B and let a be the distance from Q to L. 

Figure 4.4.7 shows that a = ||r|| sin 0, where r is the vector whose initial point 
is the origin and whose terminal point is Q and 0 is the angle between r and the axis 
L of rotation. The tangential velocity v of Q is directed counterclockwise along the 
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Figure 4.4.7 The velocity v and angular velocity uj of a 
rotating body are related by v = u> x r. 

tangent to a circle parallel to the xy plane with radius a and has magnitude 

||v|| = CO a = co\\r\\ sin 6 = |M|||r|| sin 0. 

The direction and magnitude of v imply that v = u> x r. Selecting a coordinate system 
in which L is the z axis, we can write u> = cok and r = xi + y\ + zk. Thus, 

v = uj x r = — coyi + cox'], 

and so 

curl v : 

i j k 
d d d 

dx 3 y 3z 
—coy cox 0 

2 cok = 2uj. 

Hence, for the rotation of a rigid body, the curl of the velocity vector field is a vector 
field whose value is the same at each point. It is directed along the axis of rotation 
with magnitude twice the angular speed. A 

The Curl and Rotational Flow 
If a vector field represents the flow of a fluid, then the value of V x F at a point is 
twice the angular velocity vector of a rigid body that rotates as the fluid does near 
that point. In particular, V x F = 0 at a point P means that the fluid is free from rigid 
rotations at P; that is, it has no whirlpools. Another justification of this idea depends 
on Stokes' theorem from Chapter 8. However, we can say informally that curl F = 0 
means that if a small rigid paddle wheel is placed in the fluid, it will move with the 
fluid but will not rotate around its own axis. Such a vector field is called irrotational. 
For example, it has been determined from experiments that fluid draining from a tub 
is usually irrotational except right at the center, even though the fluid is "rotating" 
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around the drain (see Figure 4.4.8). In Example 10, the flow lines of the vectorfield V 
are circles about the origin, yet we show that the flow is irrotational. Thus, the reader 
should be warned of the possible confusion the word "irrotational" can cause. 

E X A M P L E 10 Verify that the vector field 

y* ~ x J V(x,y,z) = 

is irrotational when ( x , y ) ^ (0, 0) (i.e., except where V is not defined). 

S O L U T I O N The curl is 

V X V: 

i j k 
d a d 

dx äy dz 

y —x 
0 + y2 

x2+y2 
0 

<X2 + y2) + 2x2 -(x2 + y2) + 2 y 
(x2 + y2)2 (x2 + y2)2 

Figure 4.4.8 Looking at a paddle 
wheel from above a moving fluid. 
The velocity field V(x, y,z) = 
(yi — x\)/(x2 + y2) is irrotational; 
the paddle wheel does not rotate 
around its axis u . 

Gradients are Curl Free 
The following identity is a basic relation between the gradient and curl, which should 
be compared with the fact that for any vector v, we have v x v = 0. 
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T H E O R E M 1: Curl of a Gradient For any C2 function / , 

V x (V/) = 0. 

That is, the curl of any gradient is the zero vector. 

PROOF Because V/ = (df/dx, df/dy, df/dz) we have, by definition, 

V x V / = 

i j k 
3 3 3 

dx 3y 3z 
df df df 
dx dy 3 z 

f a 2 / >2/ 
\3j> 3 z 3z dy 

W J V W J V 
J \3z3x dxdzj \3x3_y dydx J 

Each component is zero because of the equality of mixed partial derivatives. • 

The converse to this theorem (a vector field with zero curl is a gradient, under 
suitable hypotheses) will be discussed in Chapter 8. 

Let V(JC, y, z) = yi- xj. Show that V is not a gradient field. 

S O L U T I O N If V were a gradient field, then it would satisfy curl V = 0 by The-
orem 1. But 

curl V : 

i j k 
3 3 3 

dx dy 3z 
y —x 0 

- 2 k / 0, 

so V cannot be a gradient. 

Scalar C u r l 
There is an operation on vector fields in the plane that is closely related to the curl. 
If F = P(x, y)I + Q(x, y)J is a vector field in the plane, it can also be regarded as a 
vector field in space for which the k component is zero and the other two components 
are independent of z. The curl of F then reduces to 

d Q 3 P\ 
V x F = - k \ dx 3y ) 
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and always points in the k direction. The function 

dQ dP 
3x 3 y 

of x and y is called the scalar curl of F. 

E X A M P L E 12 Find the scalar curl of V(x, y) 

S O L U T I O N The curl is 

-y2 i + xj. 

V x V: 

i j k 
3 9 3 

3x 3Z 
X 0 

= (l+2y)k, 

so the scalar curl, which is the coefficient of k, is 1 + 2y. A 

Curls are Divergence Free 
A basic relation between the divergence and curl operations is given next. 

THEOREM 2: Divergence of a Curl For any C2 vector field F, 

div curl F = V - (V x F) = 0. 

That is, the divergence of any curl is zero. 

As with the curl of a gradient, the proof rests on the equality of the mixed partial 
derivatives. The student should write out the details. A converse will be discussed in 
Chapter 8. 

E X A M P L E 13 Show that the vector field V(x, y, z) = xi + y\ + zk cannot be 
the curl of some vector field F; that is, there is no F with V = curl F. 

S O L U T I O N If this were so, then div V would be zero by Theorem 2. But 

3x 3v 3z 
div V = -—I--— + — = 3 ^ 0 , 

3x 3y 3z 

so V cannot be curl F for any F. 
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Laplacian 
The Laplace operator V2, which operates on functions / , is defined to be the diver-
gence of the gradient: 

v 7 = v . ( v / , = 0 + 0 + g . 

This operator plays an important role in many physical laws, as we have mentioned 
in Section 3.1. 

E X A M P L E 14 Show that V 2 / = 0 for 

/ ( x , y, z) = 1 = - and (x,y, z) ? (0,0,0), 
y/x + y + z2 r 

where r = xi + y\ + zk and r = ||r||. 

S O L U T I O N The first derivatives are 

d / d / - y 9 / _ - z 

dx ~ (x2 + .y2 + z2)3/2 ' ~ (x2 + y2 + z2)3/2 ' dz ~ (x2 + y2 + z2)3/2 ' 

Computing the second derivatives, we find that 

6 2 / _ 3x2 1 
dx2 " (x2 + y2 + z2)5/2 ~ (x2 + y2 + z2)3 /2 ' 
a 2 / = 3y2 1 
a^2 (x2 + y2 + Z2)5/2 (x2 + y2 + Z2)3/2 ' 

a 2 / _ 3z2 l 
~dz2 ~ (x2 + y2 + z2)5/2 ~ (x2 + y2 + z2)3/2 ' 

Thus, 

9 2 / 3 2 / 9 2 / = 3 ( x 2 + y 2 + z 2 ) 3 
dx2 dy2 dz2 (x2 + y2 + z 2 ) 5 / 2 (x2 + y2 + z2)3/2 

(x2 + y2 + z2)3/2 (x2 + y2 + z2)3/2 0. 
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Vector Identities 
We now have these basic operations on hand: gradient, divergence, curl, and the 
Laplace operator. The following box contains some basic general formulas that are 
useful when computing with vector fields. 

Basic Identities of Vector Analysis 

1. V ( / + g) = V / + Vg 

2. V(c / ) = c V / , for a constant c 

3- V( /g) = / V g + g V / 

4. V( / /g ) = ( g V / - / Vg)/g2 , at points x where g(x) / 0 

5. div (F + G) = div F + div G 

6. curl (F + G) = curl F + curl G 

7. div ( / F) = /d iv F + F - V / 

8. div (F x G) = G• curl F — F-curl G 

9. div curl F = 0 

10. curl ( / F) = /curl F + V / x F 

11. curl V / = 0 

12. V 2 ( /g) = / V 2 g + g V 2 / + 2 ( V / . V g ) 

13. div ( V / x Vg) = 0 

14. d i v ( / V g - g V / ) = / V 2 g - g V 2 / 

E X A M P L E 15 Prove identity 7 in the preceding box. 

S O L U T I O N The vector field / F has components fFt, for / = 1,2,3, and so 

div ( / F) = — ( / F , ) + — ( / F 2 ) + t - ( / F 3 ) . 
9x 9z 

However, (d/dx)(fF\) = / 9 F i / 9 x + F i9 / /9xby the product rule, with similar ex-
pressions for the other terms. Therefore, 

. ^ /dFi dF2 9 F 3 \ 9 / 9 / 9 / 
div ( / F) = / ( — - + — - + — — + F 2 — + F3 — 

9x dy dz J dx dy dz 

= / ( V - F ) + F - V / . A 

Let us use these identities to redo Example 14. 
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laWJATiltilalM Show that for r ^ 0 , V 2 ( l / r ) = 0. 

S O L U T I O N As in the case of the gravitational potential, V(1 / r ) = —r/r3. In 
general, V(rn) = nrn~2r (see Exercise 30). By the identity V - ( / F) = / V • F + 
V / • F, we get 

r 3 00 
M -

3 / — 3 r \ 3 3 
= — + r - | — J = _ _ _ = 0. 

Divergence and Curl 

William Rowan Hamilton, in his investigation of quaternions (discussed in 
Section 1.3) introduced the del operator, defined formally as 

V = — 1 + — J + —k. dx dy dz 

Hamilton firmly believed in the significance of this operator. If 
f(x, y, z) is a scalar function on R3, then "multiplication"' by V gives the 
gradient of / : 

r 3 / . 3 / . V , 

ox oy 92: 

which, of course, gives the direction of steepest ascent (see Section 2.6). If 

V(x,ytz) = Vi(x,y,2r)i+ V2{x,y)z)j + V3(x,y,̂ )k 

is a vector field, then the "quaternionic multiplication" of V with V yields 

VV = - d i v V + curlV. 
Thus, what we now call the divergence of V is the negative of the scalar part 
of this product, and curl V is the vector part (c.f. the quaternion discussion in 
Section 1.3). 

As far as we are aware, Hamilton never gave a physical interpretation 
of divergence and curl, but he surely believed that, as a consequence of his 
faith in them, they must have an important physical interpretation. His faith 
in his mathematical formalism was justified, but a physical explanation of 
divergence and curl had to wait for James Clerk Maxwell's Treatise on 
Electricity and Magnetism. Here, Maxwell used both the divergence and the 
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curl in his equations for the interaction of electric and magnetic fields (the 
Maxwell equations are discussed in Chapter 8). 

Curiously, Maxwell referred to divergence as convergence and to curl as 
rotation, a term still used in the literature. It was Josiah Gibbs (Figure 4.4.9) 
who renamed convergence and rotation as the more familiar terms we use 
today—divergence and curl. 

Maxwell gave a physical interpretation of the divergence using the 
Gauss divergence theorem, as we do in Section 8.4. His physical 
interpretation of the curl as a rotation was rather brief. Gibbs provided a 
more elementary interpretation of divergence, as we do in this section. In the 
spirit of Leibniz (who believed in infinitesimal quantities dx,dy,dz), Gibbs 
imagined placing a small cube of dimensions dx by dy by dz in a fluid. The 
faces of this cube have areas dx dy, dy dz, and dxdz. 

At this point, students may be interested to hear Gibbs through the 
words of his student E. B. Wilson: 

Consider the amount of fluid which passes through those faces of 
the cube which are parallel to the YZplane, i.e., perpendicular to the 
Xaxis [see Figure 4.4.10]. 

The normal to the face whose x coordinate is the lesser, that is, 
the normal to the left-hand face of the cube is -i . The flux of 
substance through this face is 

Figure 4,4.9 Josiah Willard 
Gibbs (1839-1903). 

—i • V(x, 3/, z) dy dz. 
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—i dy dz 
> — -

- i dy dz 
Figure 4.4.10 Cube with faces 
parallel to the YZ plane. 

/[x, y, z) (JC + dx, y, z) 

The normal to the opposite face, the face whose x coordinate is 
greater by the amount dx, is +i, and the flux through it is therefore 

i • V(x + dx, y, z)dy dz = i • £v(x, y, z) + d x ] dy dz 
dx J 

9V 
= i • V(x , y, z)dydz + i dx dy dz. 

dx 

The total flux outward from the cube through these two faces is 
therefore the algebraic sum of these quantities. This is simply 

i • dx dy dz = —- dx dy dz. 
dx dx 

In like manner the fluxes through the other pairs of faces of the cube 
are 

j.^dxdydz and k .^dxdyd, 
dy dz 

The total flux out from the cube is therefore 

a v . a v , a v \ _ J 
+ j h k I dx dy dz. dx dy dz ) 

This is the net quantity of fluid that leaves the cube per unit time. 
The quotient of this by the volume dx dy dz of the cube gives the 
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rate of diminution of density. This is 

. a v . a v , a v dvx av2 av3 V - V = i + j + k — = — - + — + — . 
dx oy dz dx dy dz 

Because V • V thus represents the diminution of density or the 
rate at which matter is leaving a point per unit volume per unit time, 
it is called the divergence. Maxwell employed the term convergence to 
denote the rate at which fluid approaches a point per unit volume 
per unit time. This is the negative of the divergence. In the case that 
the fluid is incompressible, as much matter must leave the cube as 
enters it. The total change of contents must therefore be zero. For 
this reason, the characteristic differential equation that any 
incompressible fluid must satisfy is 

V - V = 0, 

where V is the velocity of the fluid. This equation is often known as 
the hydrodynamic equation. It is satisfied by any flow of water, since 
water is practically incompressible. The great importance of the 
equation for work in electricity is due to the fact that according to 
Maxwell's hypothesis, electric displacement obeys the same laws as 
an incompressible fluid. If, then, D is the electric displacement, 

div D = V • D = 0. 

Gibbs' interpretation of curl was much like the one we gave in Example 9 for 
the rotation of a rigid body. Wilson remarks that an analysis of the meaning 
of curl for fluid motion was "rather difficult." It remains a bit elusive, even 
today, as can be seen from our discussion following Example 9. We provide 
another interpretation in Chapter 8. 

EXERCISES 

Find the divergence of the vector fields in Exercises 1 to 4. 

1. V(JC, z) = exyi - exy\ + eyzk 

2. \(x, y, z) = yzi + xz\ + xyk 

3. V(JC, y, z) = xi + O + cosx)j + (z + exy)k 

4. V(x, y, z) = x2i + (JC + y)2j + (x+y + z)2k 

5. Figure 4.4.11 shows some flow lines and moving regions for a fluid moving in the plane 
field velocity field V. Where is div V > 0, and also where is div V < 0? 
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y A 

Figure 4.4.11 The flow lines of a fluid moving in 
the plane. 

6. Let F(x, y, z) = xi be the velocity field of a fluid in space. Relate the sign of the 
divergence with the rate of change of volume under the flow. 

7. Sketch a few flow lines for F(x, y) = yi. Calculate V • F and explain why your answer is 
consistent with your sketch. 

8. Sketch a few flow lines for F(x, y) = —3xi — y\. Calculate V • F and explain why your 
answer is consistent with your sketch. 

Calculate the divergence of the vector fields in Exercises 9 to 12. 

9. F(x, y) — x3 i — x sin (xy)j 

10. F(x,y)=y\-xi 

11. F(x, y) = sin — c o s (Jf2>;)j 

12. F(x,y) = xey\-[y/(x+y)]i 

Compute the curl, V x F, of the vector fields in Exercises IS to 16. 

13. F(x, y, z) = xi + y\ + zk 

14. F(x,y,z) — yzi-\-xz\ + xyk 

15. F(x, z) = (x2 + y2 + z2)(3i + 4j + 5k) 

16. F ( x , y , z ) = 
yzi — xzj + xyk 

x2 + y2 + z2 
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Calculate the scalar curl of each of the vector fields in Exercises 17 to 20. 

17. F(JC, y) = sinxi + cosxj 

18. ¥(x,y) = yi-xi 

19. F(x, = x^i + (x2 - 3/2)j 

20. F(x,y) = xi + y\ 

Verify that V x ( V / ) = 0 for the functions in Exercises 21 to 24. 

21. f(x,y,z) = y/x2+y2+z2 

22. f ( x , y, z) = xy -f yz + xz 

23. f(x,y,z) = \/(x2+y2 + z2) 

24. f(x,y,z) = x2y2 +y2z2 

25. Show that F = y(cosx)i + x(siny)j is not a gradient vector field. 

26. Show that F = (x2 4- y2)i — 2xyj is not a gradient field. 

27. Prove identity 10 in the list of vector identities. 

28. Suppose that V • F = 0 and V • G = 0. Which of the following necessarily have zero 
divergence? 

(a) F + G (b) F x G 

29. Let F = 2XZ2\ + j + y3zxk and / = x2y. Compute the following quantities: 

(a) V / (b) V x F (c) FxVf (d) F . ( V / ) 

30. Let r(x, y, z) = (x, y, z) and r — y/x2 + y2 + z2 = ||r||. Prove the following identities. 

(a) V(1 /r) = —r/r3, r / 0; and, in general, V(r") = nr"~2r and V(logr) = r/r2. 
(b) V 2 ( l / r ) = 0, r + 0; and, in general, V2rw = n(n + l ) r " - 2 . 
(c) V . (r /r3) = 0; and, in general, V • (r"r) = (n + 3 )r n . 
(d) V x r = 0; and, in general, V x (r" r) = 0. 

31. Does V x F have to be perpendicular to F? 

32. Let F(x, y, z) = ?>x2y\ + (.x3 + y3)j. 

(a) Verify that curl F = 0. 
(b) Find a function / such that F = V / . (Techniques for constructing / in general are 

given in Chapter 8. The one in this problem should be sought by trial and error.) 
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33. Show that the real and imaginary parts of each of the following complex functions 
form the components of an irrotational and incompressible vector field in the plane; 
here i = V^-I. 

(a) (x — iy)2 (b) (x — iy)3 (c) ex~iy = ex(cos y — i sin 

R E V I E W E X E R C I S E S F O R C H A P T E R 4 

For Exercises 1 to 4, at the indicated point, compute the velocity vector, the acceleration 
vector, the speed, and the equation of the tangent line. 

1. c(0 = (t3 4- 1, e~\ cos (jzt/2)), at t = 1 

2. c(0 = (t2 - 1, cos 012), t4), at t = yfn 

3. c(0 = (e\ sini, cosi), at t = 0 

t2 
4 ' c (0= Y ^ i + d + k,at/ = 2 

5. Calculate the tangent and acceleration vectors for the helix c(i) = (cos sin t, t) at 
t = 7t/4. 

6. Calculate the tangent and acceleration vector for the cycloid c(/) = (t — sin t, 1 — cos t) 
at t = 7r/4 and sketch. 

7. Let a particle of mass m move on the path c ( t ) = (t2, sin t, cos t). Compute the force 
acting on the particle at t = 0. 

8. (a) Let c(/) be a path with \\c(t)\\ = constant; that is, the curve lies on a sphere. Show 
that c'(0 is orthogonal to c(0-

(b) Let c be a path whose speed is never zero. Show that c has constant speed if and only 
if the acceleration vector c" is always perpendicular to the velocity vector c'. 

9. Express the arc length of the curve x2 = y3 = z5 between JC = 1 and x = 4 as an 
integral, using a suitable parametrization. 

10. Find the arc length of c(0 = fi + (log f)j + 2V2tk for 1 < t < 2. 

11. A particle is constrained to move around the unit circle in the xy plane according to the 
formula (x, y9 z) = (cos (t2), sin(/2), 0), t > 0. 

(a) What are the velocity vector and speed of the particle as functions of tl 
(b) At what point on the circle should the particle be released to hit a target at (2, 0, 0)? 

(Be careful about which direction the particle is moving around the circle.) 
(c) At what time t should the release take place? (Use the smallest t > 0 that will work.) 
(d) What are the velocity and speed at the time of release? 
(e) At what time is the target hit? 
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12. A particle of mass m moves under the influence of a force F = — kr, where k is a 
constant and r(i) is the position of the particle at time t. 

(a) Write down differential equations for the components of r(7). 
(b) Solve the equations in part (a) subject to the initial conditions r(0) = 0, 

r'(0) = 2j + k. 

13. Write the curve described by the equations x — 1 = 2y + 1 = 3z + 2 in parametric form. 

14. Write the curve x = y3 = z2 + 1 in parametric form. 

15. Show that c(t) = (1/(1 - t), 0, e*/(I - t)) is a flow line of the vector field defined by 
F(x, j / ,z ) = (jt2 ,0, Z(1+JC)). 

16. Let F(x, y) = f(x2+ y2)[—yi + for a function / of one variable. What equation 
must g(t) satisfy for 

c ( 0 = [cosg(f)]i + [sing(i)]j 

to be a flow line for F? 

Compute V • F and V x F for the vector fields in Exercises 17 to 20. 

17. F = 2xi + 3y\ + 4zk 

18. F = x2i + y2j + z 2 k 

19. F = ( x + j / ) i + 0 + z)j + (z + x)k 

20. F = x\ -f 3xyj + zk 

Compute the divergence and curl of the vector fields in Exercises 21 and 22 at the points 
indicated. 

21. F(x, y, z) — yi + z j + xk, at the point (1, 1, 1) 

22. F(x, y, z) = (x + y)3i + (sinxy)j + (cosxyz)k, at the point (2, 0, 1) 

Calculate the gradients of the functions in Exercises 23 to 26, and verify that V x V / = 0. 

23. f(x,y) = e<y + cos(xy) 

2 2 

24. f(x,y)=^ 
x2+y2 

25. f(x,y) = e*2 — cos (xy2) 

26. f(x,y) = tan - 1 (x2 + y2) 
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27. (a) Let f(x,y,z) = xyz2; compute V / . 
(b) Let F(x, y, z) = xyi + yzj + zyk; compute V x F. 
(c) Compute V x ( / F ) using identity 10 of the list of vector identities. Compare with a 

direct computation. 

28. (a) Let F = 2xyezi + ezx2j + (x2yez + z2)k. Compute V • F and V x F. 
(b) Find a function f(x,y,z) such that F = V / . 

29. Let F(x, y) = f(x2 + y2)[—yi + xj], as in Exercise 16. Calculate div F and curl F and 
discuss your answers in view of the results of Exercise 16. 

30. Let a particle of mass m move along the elliptical helix c(t) = (4 cos t, sin t, t). 

(a) Find the equation of the tangent line to the helix at t — 7r/4. 
(b) Find the force acting on the particle at time t = 7r/4. 
(c) Write an expression (in terms of an integral) for the arc length of the curve c(t) 

between t = 0 and t — n/A. 

31. (a) Let g(x, y, z) = x3 + 5yz + z2 and let h(u) be a function of one variable such that 
h'( 1) = 1 /2. Let f — hog. Starting at (1, 0, 0), in what directions is / changing at 50% of 
its maximum rate? 

(b) For g(jt, y, z) = x3 + 5yz + z2, calculate F = Vg, the gradient of g, and verify 
directly that V x F = 0 at each point (x,y, z). 

32. (a) Write in parametric form the curve that is the intersection of the surfaces 
x2 + y2 -h z2 = 3 and y = 1. 

(b) Find the equation of the line tangent to this curve at (1, 1, 1). 
(c) Write an integral expression for the arc length of this curve. What is the value of this 

integral? 

33. In meteorology, the negative pressure gradient G is a vector quantity that points from 
regions of high pressure to regions of low pressure, normal to the lines of constant pressure 
(isobars). 

(a) In an xy coordinate system, 
dP dP. 

G = i j. 
dx dy 

Write a formula for the magnitude of the negative pressure gradient. 
(b) If the horizontal pressure gradient provided the only horizontal force acting on the 

air, the wind would blow directly across the isobars in the direction of G, and for a given 
air mass, with acceleration proportional to the magnitude of G. Explain, using Newton's 
second law. 

(c) Because of the rotation of the earth, the wind does not blow in the direction that part 
(b) would suggest. Instead, it obeys Buys-Ballot's law, which states: "If in the Northern 
Hemisphere, you stand with your back to the wind, the high pressure is on your right and the 
low pressure is on your left." Draw a figure and introduce xy coordinates so that G points in 
the proper direction. 

(d) State and graphically illustrate Buys-Ballot's law for the Southern Hemisphere, in 
which the orientation of high and low pressure is reversed. 
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34. A sphere of mass m, radius a, and uniform density has potential u and gravitational force 
F, at a distance r from the center (0, 0, 0), given by 

3m 
2a 

mr2 

~ 2J* 
F = 

m 
r 

VI 

m 
u — —, 

r 
F = 

m 
(r> 

Here, r — ||r||, r = x\ + yj + zk. 

(a) Verify that F = Vw on the inside and outside of the sphere. 
(b) Check that u satisfies Poisson's equation: d2u/dx2 + d2u/dy2 + d2u/dz2 = 

constant inside the sphere. 
(c) Show that u satisfies Laplace's equation: d2u/dx2 + d2u/dy2 + d2u/dz2 = 0 

outside the sphere. 

35. A circular helix that lies on the cylinder x2 + y2 = R2 with pitch p may be described 
parametrically by 

x = R cos#, j / ^ t f s i n t f , z = pO, 0 > 0. 

A particle slides under the action of gravity (which acts parallel to the z axis) without friction 
along the helix. If the particle starts out at the height z0 > 0, then when it reaches the height z 
along the helix, its speed is given by 

^ = y/(z0-z)2g, 

where 5 is arc length along the helix, g is the constant of gravity, t is time, and 0 < z < z0. 

(a) Find the length of the part of the helix between the planes z = z0 and 
z = Z\,0 < Z\ < ZQ. 

(b) Compute the time T0 it takes the particle to reach the plane z = 0. 

36. A sphere of radius 10 centimeters (cm) with center at (0, 0, 0) rotates about the z axis 
with angular velocity 4 in such a direction that the rotation looks counterclockwise from the 
positive z axis. 

(a) Find the rotation vector a; (see Example 9, in Section 4.4). 
(b) Find the velocity v = l j X r when r = 5>/2(i — j) is on the "equator." 
(c) Find the velocity of the point (0, 5y/3, 5) on the sphere. 

37. Find the speed of the students in a classroom located at a latitude 49°N due to the 
rotation of the earth. (Ignore the motion of the earth about the sun, the sun in the galaxy, 
etc.; the radius of the earth is 3960 miles.) 


