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But using (8.6) this gives

| l f| < FedlB) = <dl.

Since ¢ was arbitrary and d and £ are fixed, [ f= 0.l

Complex Integration
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Singularities

In this chapter functions which are analytic in a punctured disk (an open
disk with the center removed) are examined. From information about the
behavior of the function near the center of the disk, a number of interesting
and useful results will be derived. In particular, we will use these results to
evaluate certain definite integrals over the real line which cannot be evaluated
by the methods of calculus.

§1. Classification of singularities

This section begins by studying the best behaved singularity—the
removable kind.

1.1 Definition. A function f has an isolated singularity at z=a if there is an
R >0 such that f is defined and analytic in B(a;R)— {a} but not in
B(a; R). The point a is called a removable singularity if there is an analytic
function g: B(a; R)—C such that g(z)=f(z) for 0<|z~a|<R.

} sinz 1 1 . . "
The functions —— , —, and exp - all have isolated singularities at z = 0.
z 'z z

sin z . . . .
However, only —— has a removable singularity (see Exercise 1). It is left to
zZ

the reader to see that the other two functions do not have removable
singularities.

How can we determine when a singularity is removable? Since the function
has an analytic extension to B(a; R), |,f = 0 for any closed curve in the
punctured disk; but this may be difficult to apply. Also it must happen that
lim f(z) exists. This is easier to verify, but a much weaker criterion is

Z—=a

available.

1.2 Theorem. If f has an isolated singularity at a then the point z = a is a
removable singularity iff

lim (z—a)f(z) = 0
Proof. Suppose f is analytic in {z: 0 < [z—a| < R}, and define g(z) =
(z—a)f(z) for z # a and g(a) = 0. Suppose lim (z—a)f(z) = 0; then g is

z—a

clearly a continuous function. 1f we can show that g is analytic then it follows
that a is a removable singularity. In fact, if g is analytic we have g(z) =
(z—a)h(z) for some analytic function defined on B(a: R) because g(a) = 0
(IV. 3.9). But then #(2) and f(2) must agree for 0 < z—q] < R, s0 that a is,
by dcefinition, a removable singularity.
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104 Singularities

To show that g is analytic we apply Morera’s Theorem. Let T be a
triangie in B(a; R) and let A be the inside of T together with 7. If @ ¢ A then
T~0in {z: 0 < [z—a] < R} and so, frg = 0 by Cauchy’s Theorem. If a
is a vertex of T then we have T = [a, b, ¢, a]. Let x ¢[a, b] and y €[c, d] and

[4

N

Z AN AV

X

a

form the triangle T, = [a, x, y, a]. If P is the polygon [x, .b, ¢ ¥, x] the.n
frg=Jr.g+lrg = fr, & since P~0 in the punctured disk. Since g is
continuous and g(a) = 0, for any « > 0 x and y can be chosen such that
lg(z)] < €/ for any z on T, where ¢ is the length of T. Hence |f; g| =
Ifr, gl < ; since e was arbitrary we have _!'Tg‘= O S

Ifac Aand T = [x, y, z, x] then consider the triangles 1, = [x, ), 4, X,
T, =y, z, @, ¥}, T3 = [z, x, a, z]. From the preceding paragraph [, g = 0

Z

AN
LN

X ¥

forj=1,23and so, [rg = [r,g+fr,g+fr,g = 0. Since this exhausts all
possibilities, g must be analytic by Morera’s Theorem. Since the converse is
obvious, the proof of the theorem is complete. Il

The preceding theorem points out another stark difference betwc.ten
functions of a real variable and functions of a complex variable. The function
F(x) = |x|, x € R, is not differentiable because it has a “corner’? at x = 0.
Such a situation does not occur in the complex case. For a function to have
an honest singularity (i.e., a non-removable one) the function must pehave
badly in the vicinity of the point. That is, either | f(=)| becomes infinite as .:
ncars the point (and does so at least as quickly as (z — ) 1, or | f(2)] doesn™t
have any limit as = > a.

1
|
|
|
|
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1.3 Definition. If z = a is an isolated singularity of f then a is a pole of f
if lim [f(z)| = oo. That is, for any M > 0 there is a number ¢ > 0 such that

[f(2)] = M whenever 0 < |[z—a| < e If an isolated singularity is neither a
pole nor a removable singularity it is called an essential singularity.

It is easy to see that (z—a)™™ has a pole at z = a for m > 1. Also, it is
not difficult to see that although z = 0 is an isolated singularity of exp (z %),
it is neither a pole nor a removable singularity ; hence it is an essential singu-
larity.

Suppose that fhas a pole at z = q; it follows that [f(z)]~! has a removable
singularity at z = a. Hence, h(z) = [f(z)]"! for z# a and h(a) = 0 is
analytic in B(a; R) for some R > 0. However, since i(a) = 0 it follows by
Corollary IV. 3.9 that A(z) = (z—a)"h,(z) for some analytic function 4, with
hi(a) # 0and some integer m > 1. But this gives that (z—a)"f(z) = [h,(2)] "}
has a removable singularity at z = a. This is summarized as follows.

1.4 Proposition. If G is a region with a in G and if f is analytic on G— {a}
with a pole at z = a then there is a positive integer m and an analytic function
g: G — C such that

1.5 o) = 22

(z—a)"'
\ 7

1.6 Definition. If f has a pole at z = g and m is the smallest positive integer
such that f(z) (z—a)™ has a removable singularity at z = a then f has a pole
of order m at z = a.

Notice that if m is the order of the pole at z = a and g is chosen to
satisfy (1.5) then g(a) # 0. (Why?)

Let f'have a pole of order m at z = a and put f(z) = g(z) (z—a)™™. Since
g is analytic in a disk B(a; R) it has a power series expansion about a. Let

[+ )

8(2) = Ayt A -+ -+ A z—a)"" " +(z-a)" Y a(z—-a)t.

Hence

Am . Al
1.7 f) = oap b g T 8@

where g, is analytic in B(a; R) and 4,, # 0.

i . if / has a pole of order m at z = a and f satisfies (i.7) then
An(z—a) "+ -+ A,(z—a)" ! is called the singular part of f at z = a.

As an example consider a rational function H(z) = p(z)/q(z), where
p(z) and g(z) are polynomials without common factors. That is, they have
no common zeros; and conscquently the poles of r(z) are exactly the zeros of
q(z). The order of each pole of r(z) is the order of the zero of g(z). Suppose
q(a) = 0 and ict S(z) be the singuiar part of r(z) at . Then r(z)—S(z) =
Fi(2) and ry(2) is a rational function whose poles are also poles of r(z). More-
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over, it is not difficult to see that the singular part of rl(z) at any of its poles
is aiso the smgurar part of r(z) at that pole. Using induction we arrive at the
following: if a;,- -, a, are the poles of r(z) and Sj(z) is the singular part of
r(z) atz = a; then

1.9 M) = Y S@+PE)

where P(z) is a rational function without poles. But, by the Fundamental
Theorem of Algebra, a rational function without poles is a polynomial! So
P(z) is a polynomial and (1.9) is nothing else but the expansion of a rational
function by partial fractions.

Is this expansion by partial fractions (1.9) peculiar only to rational
functions? Certainly it is if we require P(z) in (1.9) to be a polynomial. But
if we allow P(z) to be any analytic function in a region G, then (1.9) is valid
for any function r(z) analytic in G except for a finite number of poles.
Suppose we have a function f analytic in G except for infinitely many poles
(e.g., f(z) = (cos z)™'); can we get an analogue of (1.9) where we replace the
finite sum by an infinite sum? The answer to this is yes and is contained in
Mittag-Leffler’s Theorem which will be proved in Chapter VIL.

There is an analogue of the singular part which is valid for essential
singularities. Actually we will do more than this as we will investigate

functions which are analytic in an annulus. But first, a few definitions.

1.10 Definition. If {z n=0,+1, +2,...}is a doubly 1nﬁn1te sequence of

complex numbers, Z z, is absolutely convergent if both Z z, and Z zZ_,
A= - n=0 n=1

Z z,. If u, is a

Ms

are absolutely convergent. In this case Z Z, =

n=—00 n

function on a set Sforn =0, +1,...and Z u,(s) is absolu’tely convergent

-
for each s S, then the convergence is uniform over S if both Z u, and Z
n=0 n=1
u_, converge uniformly on S.
The reason we are limiting ourselves to absolute convergence is that this

is the type of convergence we will be most concerned with. One can define

convergence of Z z,, but the definition is not that the partial sums Z z,

- n=-m

A it

négo n ol

series we wish to have convergent. On the other hand, if )’ z, is absolutely
a0

converge. In fact, the series

convergent with sum z then it readily follows that z = lim Y z.

n-— -m
If0 < R, < R, £ o and a is any complex number, define ann (a; Ry,
R,)) = {z: R, < |z—a] < R,}. Notice that ann (a; 0, R,) is a punctured
disk.
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1.11 Laurent Series Development. Let f be analytic in the annulus ann (a; R,
R,). Then

00

= 3% afz—ay
n=—ao
where the convergence is absolute and uniform over ann (a; ry, r;))” if Ry <
ry < ry, < R,. Also the coefficients a, are given by the formula

1.12 f fe)
n 2771 - )'1+1

where vy is the circle |z—a| = r for any r, R, < r < R,. Moreover, this series
is unique.

Proof If Ry < ry < ry, < R, and y,, v, are the circles |z—a| = r, [z—a| =
r, respectively, then y, ~ y, in ann (a; R,, R;). By Cauchy’s Theorem we
have that for any function g analytic in ann (a; R,, R,), §,, & = f,,& In
particular the integral appearing in (1.12) is independent of r so that for each
integer n, a, is a constant. Moreover, f,: B(a; R,;) — C given by the formula

1
1.13 f2(2) = — f S d
2mi ) w—z
lw—al|=r2
where |z —.a| <ry Ry <ry<R,,is a well defined function. Also, by Lemma
1V.5.1 f, is analytic in B(a;R,). Similarly, if G={z:|z—a|>R,} then
f1:G>C defir@ by

1 I £\
1.14 S = -5 J I dw,
lw—al=r1

where [z—a| > r, and R; < r, < R,, is analytic in G.

If R, < |z—a| < R, letry and r, be chosen so that R, < r; < |z—a| <
r, < Ry,. Let y,(f) = a+re™ and y,(f) = a+r,e, 0 < t < 2=. Also choose
a straight line segment A going from a point on y, radially to v, which
misses z. Since y; ~ y, in ann (a; R;, R,) we have that the closed curve
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y = y,—A—y, + A is homotopic to zero. Also n(y,, z) = 1 and n(y,,2) =0
gives, by Cauchy’s Integral Formula, that

1
f(z)=5;l.j{vi—f)zd

L[, L[S0,
~2'sz 2mi jw—z
= [2(2)+/1(2)-

The plan now is to expand f; and f, in power series (f; having negative
powers of (z—a)); then adding them together will give the Laurent series
development of f(z). Since f is analytic in the disk B(a; R,) it has a power

series expansion about a. Using Lemma IV. 5.1 to calculate fi(a),
L15 f2) = Zo a,(z—a)"

where the coefficients a, are given by (1.12).
Now define g(z) for
L by g(2) {a + 1\
R,

so z = 0 is an isolated singularity. We cla1m that z = 0 is a removable
singularity. In fact, if r > R, then let p(z) = d(z, C) where C is the circle
{w: lw—a| = r}; also put M = max {|f(w)l we C}. Then for |z—a| > r

Ifi(2)] <

0 <zl <

(2)
But lim p(z) = oo; so that
Z—> 0

1
lim g(z) = llmf,( —) =0.
z—+0 z

Hence, if we define g(0) = O then g is analytic in B(0; 1/R;). Let

o0

1.16 g(z) = Z 2"
be its power series expansion about 0. It is easy to show that this gives

1.17 fiey= Y a_(z—a)"
n=1
where a_, is defined by (1.12) (the details are to be furnished by the reader

in Exercise 3). Also, by the convergence properties of (1.15) and (1.17), Y

a,(z — a)’ converges absolutely and uniformly on properly smaller annuli.
The umquenese of this expansion can be demonstrated by showing that

if f(2)= 2 a,(z —a)’ converges absolutely and uniformly on pr
”n -

annuh then lhc coefficients @, must be given by the formula (1. 12). 8

oper
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We now use the Laurent Expansion to classify isolated singularities.

o0
1.18 Corollary. Let z = a be an isolated singularity of f and let f(z) = Y,
a,(z—a)" be its Laurent Expansion in ann (a; 0, R). Then: -

(a) z = a is a removable singularity iff a, =0 for n < —1;

(b) z = ais a pole of order miffa_, # 0 and a, = Ofor n < —(m+1);

(c) z = a is an essential singularity iff a, # O for infinitely many negative
integers n.

Proof. (a) If g, =0 for n < —1 then let g(z) be defined in B(a; R) by
g2 = Z a,(z—a)"; thus, g must be analytic and agrees with f in the punc-
n=0

tured disk. The converse is equally as easy.
(b) Suppose g, = 0 for n < —(m+1); then (z—a)"f(2) has a Laurent

AV BLppUoe &y = FA) Sy £ 27, iR 2aas

Expansion which has no negative powers of (z— a) By part (a), (z—a)"f(2)
has a removable singularity at z—a. Thus f has a pole of order m at z = a.
The converse follows by retracing the steps in the preceding argument.

(c) Since f has an essential singularity at z = a when it has neither a
removable smgulanty nor a pole part (c) follows from parts (a) and (b). N

One can also uabbuy muxawu musuxauuco uy examimus the cqua tions

1.19 limlz—al*|f(2)} = 0
z—a

1.20 lim|z—af* |f(2)| =
z—a

where s is some real number. This is outlined in Exercises 7, 8, and 9; the
reader is strongly encouraged to work through these exercises.

The following gives the best information which can be proved at this time
concerning essential singularities. We know that f has an essential singularity
at z = a when lim | f(2)] fails to exist (“existing” includes the possibility that

zZ—a
the limit is infinity). This means that as z approaches a the values of f(z)
must wander through C. The next theorem says that not only do they wander,
but, as z approaches a, f(z) comes arbitrarily close to every complex number.
Actually, there is a resuit due to Picard that says that f(z) assumes each
complex value with at most one exception. However, this is not proved until
Chapter XII.

1.21 Casorati-Weierstrass Theorem. If f has an essential singularity at z = a
then for every 8 > 0, {f[ann (a; 0, §)}}~ = C.

Proof. Suppose that f is analytic in ann (a; 0, R); it must be shown that if
c and € > 0 are given then for each 8§ > 0 we can find a z with |z—a]| < &
and |f(z)—c| < e. Assume this to be false; that is, assume there isa cin C

and € > 0 such that |f(z)—c| = e for all z in G = ann (a; 0, 8). Thus lim
|z—a| "|f(z)— c¢|=0c0. which implies that a) " '(f(z)—c) has a pole

(z
S g
11C

at z=a. If m is the order of this pole then lim [z —a|™*'| f(z)—c|]=0
I
Hence |z —al™*"|f() <]z @™ '|[f(z) c¢|+]z~a]"""|c| gives that
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hm ]z—a]"'*'|f(z)|—0 since m = 1. But, according to Theorem 1.2, this

glves that f(z)(z—a)™ has a removable singularity at z=qa. This con-
tradicts the hypothesis and completes the proof of the theorem. Ml

Exercises

1. Each of the following functions f has an isolated singularity at z = 0.
Determine its nature; if it is a removabie singularity define 7(0) so that f'is
analytic at z = 0; if it is a pole find the singular part; if it is an essential

singularity determine f({z: 0 < |z] < 8}) for arbitrarily small values of é.

@ fa =27 ® 1) = 2%,

© f@) = 2221 @ f) = exp ™ );
(e)f()—’—"—g—(zz—fl—), © =2,
® /) = —“} ; ®) £ = (1-e)7;

. ! !
D) fz) = zsin—; () f(2) = 2"sin_.

2241
@+z+1) (= 1)
3. Give the details of the derivation of (1.17) from (1.16).

1
4 LetfO) = 5T

the following annuli: (a) ann (0; 0, 1); (b) ann (0; 1, 2); (c) ann (0; 2, ).
5. Show that f(z) = tan z is analytic in C except for simple poles at

2. Give the partial fraction expansion of r(z) =

; give the Laurent Expansion of f(z) in each of

T
z= 3 + nm, for each integer n. Determine the singular part of f at each of

these poles.

6. If f/: G — C is analytic except for poles show that the poles of f cannot
have a limit point in G.

7. Let f have an isolated singularity at z = a and suppose f# 0. Show that
if either (1.19) or (1.20) holds for some s in R then there is an integer m such
that (1.19) holds if s > m and (1.20) holds if s < m.

8. Let f, a, and m be as in Exercise 7. Show: (a) m = 0 iff z = a is a remov-
able singularity and f(a) # 0; (b) m < 0 iff z = a is a removable singularity
and fhas a zero at z = a of order —m; (¢) m > 0iff 2 = a is a pole of f of
order m. .

9. A function f has an essential singularity at = - a T neither (1.19) nor
(1.20) holds for any real number s.

0 o e A ot o AN st
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10. Suppose that f has an essential singularity at z = a. Prove the following
strengthened version of the Casorati-Weierstrass Theorem. If ¢ C and
e > 0 are given then for each & > 0 there is a number «, [c—«| < ¢, such
that f(z) = « has infinitely many solutions in B(a; 9).

1

11. Give the Laurent series development of f(z) = exp (—

). Can you
z

generalize this result?
12. (a) Let A e C and show that

S UG SERDXICEE

for 0 < |z| < oo, where forn > 0

n

a, = 1Je"m“cos nt dt

T

(b) Similarly, show
exp {%)\ (z - 2)} = by + Z b, (z" + (__’:))

for 0 < |z| < oo, where

/ b, = 1J\cos (nt—Asin ¢) dt.

0

:;

13. Let R > 0 and G = {z: |z| > R}; a function f: G — C has a removable
singularity, a pole, or an essential singularity at infinity if f(z~ 1) has, respec-
tively, a removable singularity, a pole, or an essential singularity at z = 0.
If f has a pole at o then the order of the pole is the order of the pole of
fz"Hatz=0.

(a) Prove that an entire function has a removable singularity at infinity
iff it is a constant.

(b) Prove that an entire function has a pole at infinity of order m iff it is a
polynomial of degree m.

(c) Characterize those rational functions which have a removable singularity
at infinity.

(d) Characterize those rational functions which have a pole of order m at
infinity.

14. Let G = {z: 0 < |z] < 1} and let f: G — C be analytic. Suppose that
y is a closed rectifiable curve in G such that n(y; a) = 0 for all a in C-G.
What is [,/ ? Why?

15. Let f be analytic in G = {z: 0 < |z—aj < r} cxcept that there is a
sequence of poles {a,} in G with @, »a. Show that for any w in C there is
a sequence {z,} in G witha - lim -, and @ - lim f(z,).
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16. Determine the regions in which the functions f(z)=(sin%)‘l and

1

g(2)= f (t—2)~'dt are analytic. Do they have any isolated singularities?
Do they have any singularities that are not isolated?

17. Let f be analytic in the region G =ann(a; 0, R). Show that if f f |f(x+

iv)[*dxdy < oo then f has a removable singularity at z

a0 oA | £1+ NP L, PYRES PSS |
g~ v ana J} U\ATU/)' uAuV\w, wuat camn o saic

Suppose that

RS RN ..A:.. o ~F
Outl tN¢ nawure o1

o
cr

the smgularlty at z=aq?
§ 2. Residues

The inspiration behind this section is the desire for an answer to the
following question: If f has an isolated singularity at z=a what are the
possible values for [, f when y is a closed curve homologous to zero and
not passing through a? If the singularity is removable then clearly the
integral will be zero. If z=a is a pole or an essential singularity the answer
is not always zero but can be found with little difficulty. In fact, for some

curves v, the answer is given by equation (1.12) with n=—1.
2.1 Definition. Let £ have an isolated singularity at z = g and let

f@= 3 a@z-ar
n= -

be its Laurent Expansion about z = a. Then the residue of f at z = a is the
coefficienta_ ;. Denote this by Res (f;a) = a_,. The following is a generaliza-
tion of formula (1.12) for v = —1.

2.2 Residue Theorem. Let f be analytic in the region G except for the isolated
singularities a, a,, . . ., a,. If y is a closed rectifiable curve in G which does not
pass through any of the points a, and if y = 0 in G then

1

;—,[‘f=7 n(y; a) Res (f; a,).
Zﬂ'lJ kl:l

k4
Proof. Let m,=n(y;a,) for 1=k <m, and choose positive numbers
ris..., I, such that no two disks B(a,; r,) intersect, none of them intersects
{7y}, and each disk is contained in G. (This can be done by induction and
by using the fact that y does not pass through any of the singularities.) Let
Y(N=a,+r.exp(—2mim,t) for 0<¢t<1. Thenfor 1<;<m

m
n(vig)+ Z n(via)=0.
k=1

Since y~0(G) and B_(a,‘;r,‘)c G,

n(y.a)+ 2 n(y,;a)=0
k=1
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for all @ not in G—{a,,...,a,}. Since f is analytic in G- {a,...,a,}
Theorem IV.5.7 gives

23 0= ff—i—k_lf

Yh

If f(z)= 2 b,(z—a,)" is the Laurent expansion about z =g, then this

series converges uniformly on B(a,;r,). Hence jf 2 b j (z—a)"
R

But f (z—a)'=0 if n# —~1 since (z— a,)" has a primitive. Also f (z—
a)” —Zmn(yk,ak)Res(f a,). Hence (2.3) implies the desired result. .

Remark. The condition in the Residue Theorem that f have only a finite
number of isolated singularities was made to simplify the statement of the
theorem and not because the theorem is invalid when f has infinitely many
isolated singularities. In fact, if f has infinitely many singularities they can
only accumulate on 3G. (Why?) If r=d({vy},dG) then the fact that y~0
gives that n(y;a)=0 whenever d(a; 3G)< 5r. (See Exercise IV.7.2.)

The Residue Theorem is a two edged sword; if you can calculate the
residues of a function you can calculate certain line integrals and vice versa.
Most Ou'c‘ﬁ, huwcvcn it is used as a medns to calculate line uuegrals To use
it in this way we will need a method of computing the residue of a function at
a pole.

Suppose f has a pole of order m > 1 at z = a. Then g(z) = (z—a)"f(2)
has a removable singularity at z = aand g(a) # 0. Letg(z) = by +b,(z—a)+

- be the power series expansion of g about z = a. It follows that for z near
but not equal to a,

by bp—
1O ==t e

This equation gives the Laurent Expansion of f in a punctured disk about
z = a. But then Res (f, a) =b,_,;in particular if z = a is a simple pole

) o RN £,

NN L s follawe
Res (f; a) = g{a) = lim (z—a)f(2). This is summarized as follows.
zZ—ra

+ Z bm + k(Z a)k

2.4 Proposition. Suppose f has a pole of order m at z = a and put g(z) =
(z—a)"f(2); then

g™ V).

Res(fid) = o~

The remainder of this section will be devoted to calculating certain integrals
by means of the Residue Theorem

2.5 Example. Show



114 ) Singularities

If (2) = l—f_—7; then f has as its poles the fourth roots of —1. These are

exactly the numbers e*® where

Let
([= 7|\
a, = CXp leZ +(n—-1 E_J}

for n = 1, 2, 3, 4; then it is easily seen that each g, is a simple pole of f.
Consequently,

Res (f; a,) = lim (z—a,)f(2) = ai(a; —a;)) (@~ a3) " (@;—ay) ™"

_l_i_&ex 7_T_l
_4\/5_ p 1)

—1-i . —3mi
Res(f;ay) = 475 % €Xp 4 .
1./2 b

\

Similarly

~A
1~

sed path which i

Now let R > 1 and let y be the clo
the upper half of the disk of radius R with center zero, traversed in the
counter-clockwise direction. The Residue Theorem gives

-R -1 0 1 R

2L7ri [f= Res (f; a;)+Res (f; az)
—i

22

But, applying the definition of line integral,

R n
l 1 x2 1 . R3e3it
—_— = — —_— —— T A Ase dt-
271 ) = 2mi j i 2J1+R4e‘*"
v -R 0
This gives
v T R ‘:‘ ("‘“

2.6 h dt

1
a(—ﬁ .

1+t dv - J2 iR J L R
)
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For 0 <t <, 1 + R%* lies on the circle centered at 1 of radius R*; hence

111 nd ditl~ n4 o o MY SR
1T e | = R 10Nererore

z‘R3fﬂ e yl< R,
o 1+ R% R*-1’

2 = O for aii x in R, it follows from (2.6) that

1
- 1.

2

1 3 X
ana since 1

+Xx
o] R
x2 d l x2 d
14 x4 x—Rer:D 1+
~ @ -R
_ T
= \/i
2.7 Example. Show
sin x 7
[‘ X dx = 5 .
]

iz

The function f(z) = fz— has a simple pole at z = 0. If 0 < r < R let y be the

closed curve that is depicted in the adjoining figure. It follows from Cauchy’s

TN
h R‘mb\k

m

heorem that 0 = j'y J. Breaking y into its pieces,

R oy
2.8 0=ff—dx+fe—dz+ff—dx+fe—dz
X z X z
r YR —-R ’r

where yx and y, are the semicircles from R to — R and —r to r respectively.

But
R

R

sin x 1 [e¥—e™™

- = _ | dx
X 2i X

r
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Also
| . | | = |

ifexp (iR db

0

< [ lexp i Re™)| db
0

= fexp (—Rsin ) df
0

By the methods of calculus we see that, for 8 > 0 sufficiently small, the
largest possible value of exp (—R sin 6), with 8 < 8 < =—39, is exp (—R
sin 8). (Note that 8 does not depend on R if R is larger than 1.) This gives that

ol U}. \A‘UI.U LAl U ULO 1TV UV pwl AL &
n-8
eiz
j—dz < 28 + exp (— R sin 6) db
z
YR [

< 28+ exp (— Rsin 8).
If € > 0 is given then, choosing 8 < } ¢, there is an R, such that exp (- R

sin 8) < 3i for all R > R,. Hence
™

R-w

lim Je— dz = 0.
z
YR

iz _

21

has a removabie singularity at z = 0, there is a constant

Since
z
iz

! < M for |z| < 1. Hence,

J’e —ldz
<

lve |

iz_l
0=1imje dz.
z

r—+0

M > 0 such that ¢ "

< mrM;

that is,

Yr

But [1 dz = —i for each r so that
z

T el'z
—ai = lim > dz

r—0
Yr

So, if we let r — 0 and R — oo in (2.8)

a0
(sinx . n
X 2
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Notice that this example did not use the Residue Theorem. In fact, it could

A am cem e ko

the methods used to evaluate this integral are the same as the methods used
in applying the Residue Theorem.

2.9 Example. Show that for a > 1,

A9

{1-‘ uv ks
J a+cosf N
0

, 1
If z = e then Z = - and so
z

4 1\ z?+2az+1
at+cos @ = a+1(z+2) = a+%(z + ~) =
z 2z
Hence
T 2r
@ __, [ _a

a+cosf a+cos @
0 0

| &

_IJ 22 +2az+1
?

where y is the circle |z| = 1. But z2+2az+1 = (z—«) (z—B) where « =
—a+(@*—1)} B = —a—(a®—1)%. Since a > 1 it follows that |«| < 1 and
|8] > 1. By the Residue Theorem

dz _ kd) .
Z+2az+1 Jg2—1’

k4

by combining this with the above equation we arrive at

i
[ o

w
J atcos 0 Jg2_1°
0

2.10 Example. Show that

To solve this problem we do not use the principal branch of the logarithm.
Instead define log z for z belonging to the region

f L 3
G = C:z# 0and - z ;
{Zc # 0 an 2<arg < 2}
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if z = 2] € # 0 with —g <f< g, let A(z) = log |z]+i0. Let 0 <r < R

and let y be the same curve as in Example 2.7. Notice that £(x) = log x for
x > 0, and Ax) = log |x|+=i for x < 0. Hence,

R T
log R+i6] .
2.11 j 1) 4 - j logx , ;g [UoBR+EL 4 4

1+22 1+x2 X 1+R2e210
b4 r ]
-r 0
log |x|+ =i . (Mogr+io] ,,
—_—— = e'%dl
+ _[ 14+ x2 dxir 147270 ¢
—R .4

Now the only pole of 4z) (1+2*)~! inside y is at z = i; furthermore, this

1
is a simple pole. By Proposition 2.4 the residue of #Az) (1+:z*)7" is 2%

[og Ji| +4wi] = ’74'. So,

Also,

=

R -r

log x log |x| + i _ logx 4 0 dx
.[1+x2dx+f—_1:§2—dx 2 e T 1

r -R

Letting r — 0+ and R — o0, and using the fact that

{ dx
J 1+x2
0

(Exercise 2(f)), it follows from (2.11) that

1 Fliog r+i]
f 8 dx =1 lim ir [———[,frzpm ¢i?df
] 1477
0

v2
1+x r~0+ J
0

Y

~ (logR+i8)
-1 lim leWe dob.
]

We now show that both of these limits are zero. If p > 0 then
n n
[1-p% 3

e <
1+ pet® [1— 2|
2
mp |logp| prt
= JETRERPY i
I‘_Pl LT P

letting p >0+ or p -» oo, the limit of this expression is sero.
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x"° T
dx = —
1+x sin ¢

bl

‘(‘.’
2.i2 Exampie. Show that J
0

if0<c¢< 1.

To evaluate this integral we must consider a branch of the function z <.
The point z = 0 is called a branch point of z~¢, and the process used to

/_\\ .
L,
A=

evaluate this integral is sometimes called integration around a branch point.

LetG = {z:z # 0and 0 < argz < 2x}; define a branch of the logarithm
on G by putting /(re’’) = log r+if where 0 < ¢ < 2#. For z in G put
J(2) = exp [~ c4(2)]; so fis a branch of z~¢. We now select an appropriate
curve yin G. Let 0 < r <1 < Rand let 8§ > 0. Let L, be the line segment
[r+0i, R+3i]; vg the part of the circle |z| = R from R+8i counterclockwise
to R—3di; L, the line segment [R—38i, r—3&i]; and y, the part of the circle
|z| = r from r—3&i clockwise to r+8i. Put y = L, +yg+L,+y,.

Since y ~0 in G and Res (f(z) (1+2)7!; —1) = f(—=1) = e, the
Residue Theorem gives

2.13 @ dZ = 2 le—mc

14z

b4

Using the definition of a line integral

FG) R fGEs)
L]szz—f EET

Let g(1.8) be defined on the compact set [r, R]X[0, 1] by

fl+is) ;-
l+7+i8  T1+1

g(1.6)=

when 8 >0 and g(7.0) - 0. Then g 18 continuous and hence uniformly
contimuous. If € -0 then there s a 8, such that if (1 7)Y +(8 8) < 8y
then [g(2.8) g(r.6)]- ¢/ R. In particular, g(1.8)- ¢/ R when r- 1+ R
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and 6 < §, Thus
R
f g(1,8)dr <e

r

for § < §,. This implies that

R ;- z
2.14 [ 1 di= lim 1@,
J, 80+ Jp 1+:z
Similarly, using the fact that 1(z')=1(z)+27ri
(R e z
2.15 _e_sz L T f LI
1+1¢ 50+ +z
r L,
Now the value of the .ntegral in (2.13) does not depen
fore, letting 6 -0+ and using (2.14) and (2.15) gives
: o (R f(2)
2. P, ITmC __ p—2mic —
16 2mie ™ —(1—e )f, L a= gim | [ 1
Yr

Now if p>0 and p#1 and if y, is the part of the circle |z|=p from

12 [ Y }2 o2 LS\ | N
VP —8° +id to yp~—46° —id then

—-C
P
[1—p]

f(2)
1+:z dz
Yy

Since this estimate is independent of §,

< r

(2.16) implies
\ 7/ r

27p

—-C

f(2)
+ f m .

27”e mc_(l_e—ch)f 1+t

But as r—0+ and R-—>oo the right-hand side of this last inequality

converges to zero. Hence

|1=r

|

-c

dt;

141

. : t
daie” " = (l_e—ZmC)J‘____
0

or,

t~° 2mie” ™
dt = PR T
1+¢ 1—e ™€

R
2ar+ I _R|2wR.
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TR

Residues
Exercises

1. Calculate the following integrals:

cos 20d0
—2acosf+a

Jx +x2+1
6[

2. Verify the following equations:

(b) J’cos x2—1 I
X
H

———————— wherea® < 1 (d)j(m wherea > 1.

\
Foax » ‘ (log x)°
(a) J (P +a?)? PR 0; (®) _[ 1+x?
9 9
F -
© cos axr dx = m(a+1) e i a>0
J@+x%)? 4
0
n/2
do ™
@ _[a+sin29 daaryp: >0
0
T log x 7 F dx
(e)J(l Fot e (f)J1+x2=§’
0 0
) f ¢ T_if 0<a<1
1+ sinam

2n n
(h) f log sin? 2040 = 4 f log sin 0d8 = — 4 log 2.
0 0

121

3. Find all possible values of [ expz™ 'dz where v is any closed curve not

passing through z=0.

4. Suppose that f has a simple pole at z = a and let g be analytic in an open
set containing a. Show that Res (fg; a) = g(a) Res (f; a).
5. Use Exercise 4 to show that if G is a region and f'is analytic in G except

for simpie poles at ay, ...

14

[
21riJ'/g -

,a,; and if g is analytic in G then

Y nly:a) gl@) Res (f; ay)

k=1
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for any closed rectifiable curve y not passing through a,, . . ., a, such that

o~ i (3
g. Let y be the rectangular path [n+%{+ni, —n—%+ni, —n—3%—ni, n+4—ni,
n+3%+ni] and evaluate the integral §,7(z+a)~? cot nzdz for a # an integer.
Show that lim {, m(z+a)~? cot mzdz = 0 and, by using the first part, deduce
that n®
L R
sinf ma néw (a+n)?

(Hint: Use the fact that for z=x+ iy, |cosz[*=cos® x+sinh® y and
|sinz]>=sin’> x+sinh? y to show that [cotmz|<2 for z on y if n is
sufficiently large.)

7. Use Exercise 6 to deduce that

? < i
8 Z @n+1)?
8. Lety be the polygonal pathdefined in Exercise 6 and evaluate |, #(z> —a?) ™"
cot mzdz for a # an integer, Show that lim |, m(z*—a?)™" cot #zdz = 0, and
consequently >
LS
L a

le—-

for a # an integer.
9. Use methods similar to those of Exercises 6 and 8 to show that

2(—1)a

a*—n?

w

+

1
sinma a

DMs

1

for a # an integer.
10. Let y be the circle |z| =1 and let m and n be non-negative integers.

Show that

{ (£ DP(n+2p)! Fm = Ip4
plntpy @ NPT
1 ((2x)mdz p =
2—7”- zm+n+1 -
Y
0 otherwise

11. In Exercise 1.12, consider a, and b, as functions of the parameter A and

use Exercise 10 to compute power series expansions for a,(A) and b,(}).

(b,(X) is called a Bessel function.)

12. Let f be analytic in the plane except for isolated singularitics at a,, a,,
, 4,,. Show that

Res (f: o) == — :Zl Res (f: ay).

W‘ i m e .
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(Res(f: o0) is defined as the residue of —z “2f(z" ") at z=0. Equivalently,
Res(f; o0)=— 7;-5 [f when y(f)=Re", 0 < ¢ <2, for sufficiently large R.)
What can you say if f has infinitely many isolated singularities?

13. Let f'be an entire function and let a, b € C such that |a] < Rand |b| < R.
If ¥(t) = Re",0 < t < 2w, evaluate |, [(z—a) (z—b)] " f(z)dz. Use this result
to give another proof of Liouville’s Theorem.

§3 The Argument Principle

Suppose that fis analytic and has a zero of order m at z = a. So f(z) =
(z—a)"g(z) where g(a) # 0. Hence “

31 f@_m o ge
&) z—a  g(2)
and g’/g is analytic near z = a since g(a) # 0. Now suppose that f has a

pole of order m at z = a; that is, f(2) = (z—a) "g(z) where g is analytic
and g(a) # 0. This gives

2 O _-m g
o = +
@ z-a g

and again g’/g is analytic near z = a.
Also, to avoid the phrase “analytic except for poles” which may have
already been used too frequently, we make the following standard definition.

3.3 Definition. If G is open and f'is a function defined and analytic in G except
for poles, then [ is a meromorphic function on G.

Suppose that f is a meromorphic function on G and define f: G - C_,
by setting f(z) = oo whenever z is a pole of f. It easily follows that f is
continuous from G into C,, (Exercise 4). This fact allows us to think of
meromorphic functions as analytic functions with singularities for which
we can remove the discontinuity of f, although we cannot remove the non-
differentiability of f.

3.4 Argument Principle. Letr f be meromorphic in G with poles py, P2y« .+ o Pm
and zeros zy, z,, ..., z, counted according to multiplicity. If y is a closed
rectifiable curve in G with y= 0 and not passing through py,...,pn,;
Zyy ...y 2,; then

@,
35 f (Z)

=X nlr;z) — X nly;py).
k=1 j=1

Proof. By a repeated application of (3.1) and (3.2)

‘ "

)ﬁ' - >
=i h gmsmey 8(09)

1(
J A

1)

»
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where g is analytic and never vanishes in G. Since this gives that g'lg is

analytic, Cauchy’s Theorem gives the result. i@

Why is this called the “Argument Principle”? The answer to this is not
completely obvious, but it is suggested by the fact that if we could define
log f(2) then it would be a primitive for f”/f. Thus Theorem 3.4 would give
that as z goes around y, log f(z) would change by 2#iK where K is the integer
on the right hand side of (3.5). Since 27K is purely imaginary this would
give that Im log f(z) = arg f(z) changes by 2nK.

Of course we can’t define log f(z) (indeed, if we could then |, f'/f = 0
since f7/f has a primitive). However, we can put the discussion in the above
paragraph on a solid logical basis. Since no zero or pole of flies on y there
is a disk B(a; r), for each @ in{y}, such that a branch of log f(z) can be defined
on B(a; r) (simply select r sufficiently small that f(2) # 0 or oo in B(a; r)).
The balls form an open cover of {y}; and so, by Lebesgue’s Covering Lemma,
there is a positive number ¢ > 0 such that for each a in {y} we can define a
branch of log f(z) on B(a; ). Using the uniform continuity of (suppose
that y is defined on [0, 1]), there is a partition 0 = 1o < #; <* "< = 1
such that y(f) e B(y(t;-,); &) for t;_, <t <t;and 1 <j < k. Let £; be a
branch of log f defined on B(¥(t;-,); €) for 1 < j < k. Also, sinc? the j-th
and (j+1)-st sphere both contain y(t;) we can choose £}, ..., ¢ SO that
L)) = L0AL); L)) = 230120 - -3l Orti-1)) = Gt 1)

If y; is the path y restricted to [¢;-,, ¢,] then, since £} = i,

J\fol = £y(t)l— fj[)’(’f— ]

Lo 1 3 _ TTre I "
for 1 <j < k. Summing both sides of th
€

“telescopes” and we arrive at

f§=4@—4@
Y
where a = y(0) = y(1). That is, £(a)— £;(a) = 2=iK. Because 27K is purely
imaginary we get Im £ (a)—Im /,(a) = 2#K. This makes precise our con-
tention that as z traces out y, arg f(z) changes by 2#K.
The proof of the following generalization is left to the reader (Exercise 1).

3.6 Theorem. Let f be meromorphic in the region G with zeros 2y, Zs, . - -, Z,
and poles p,, . . . , p,, counted according to multiplicity. If g is analytic in G
and y is a closed rectifiable curve in G with y ~ 0 and not passing through
any z; or p; then

1 f’ n m
g, = Y gContyizy — X glpn(y; p)-
27 f i=1 j=1

Y

We already know that a onc-one analytic function f* has an analytic
inverse (1V. 7.6). 1t is a remarkable fact that Theorem 3.6 can be used 10 give
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a formula for calculating this inverse. Suppose R > 0 and that f is analytic
and onc-one on Bla; R); let @ = f[B(a; R)}. If |z—a] < Rand { = f(z) @

then f(w)— ¢ has one, and only one, zero in B(a; R). If we choose g(w) = w,
Theorem 3.6 gives

L1 [
2n1 ) f(W)— €

where v is the circle [w—a| = R. But z = f~(£); this gives the following

3.7 Proposition. Let f be analytic on an open set-eontaining B(a; R) and
suppose that f is one-one on B(a; R). If Q = f[B(a; R)} and vy is the circle
|z—a| = R then f~Y(w) is defined for each w in Q by the formula

1y 1 { zf'(z)
7 0 ) - ™

k4

This section closes with Rouché’s Theorem.

3.8 Rouché’s Theorem. Suppose f and g are meromorphic in a neighborhood
of B(a; R) with no zeros or poles on the circle y={z:|z—a|=R}.If Z,,Z,
( Pf, Pg) are the number of zeros ( poles) of f and g inside v counted according

£€50N { [JOIES LAY LA LOHNRICE GO0

to their multiplicities and if
|f(2)+g () <|f(2)|+]g(2)|
on vy, then
Z-P=2Z,—P,
Proof. From the hypothesis
z z
f(2) +1l< f(2)
g(z) g(2)

on y. If A=f(z)/g(z) and if A is a positive real number then this inequality

h ALl antradiction
oecomes A+ 1<A+1, a contradiction.

+1

| & PREON P R vy zaa ke
H 1. +

1 PN i~ £
CIILe tllC HicioHiurpiie ruusuon

f/g maps y onto @ =C—[0, c0). If / is a branch of the logarithm on  then

1(f(2)/g(2)) is a well-defined primitive for (f/g)'(f/g)” ' in a neighbor-
hood of y. Thus

0= 5 [ /8 (/2"

=(Z,-P)-(Z,-P,). M
This statement of Rouché’s Theorem was discovered by Irving Glicks-

berg (Amer. Math. Monthly, 83 (1976), 186 187). In the more classical
statements of the theorem, f and g are assumed to satisfy the inequality



126 Singularities
| f+g|<|g| on y. This weaker version often suffices in the applications as
can be seen in the next paragraph.

Rouché’s Theorem can be used to give another proof of the Fundamental
Theorem of Algebra. If p(z) = z"+a,z" '+ -+ +a, then

<1

We also mention that the use of a circle in Rouché’s Theorem was a
convenience and not a necessity. Any closed rectifiable curve y with y ~0in
G could have been used, although the conclusion would have been modified
by the introduction of winding numbers.

Exercises

1. Prove Theorem 3.6. _

2. Suppose f is analytic on B(0; 1) and satisfies | f(z)| <1 for |z|=1. Find
the number of solutions (counting multiplicities) of the equation f(z)=2z"
where n is an integer larger than or equal to 1.

3. Let f be analytic in B(0; R) with f(0)=0, f(0)#0 and f(z)#0 for
0<|z| < R. Put p=min{| f(2)|:|z]= R} >0. Define g: B(0; p)—C by

2(0)= 5 f G
2ai f(z) —w
v
where y is the circle |z|=R. Show that g is analytic and discuss the
properties of g.
4. If f is meromorphic on G and f: G—C_ is defined by f(z)= o0 when z is
a pole of f and f(z)=f(z) otherwise, show that f is continuous.
5. Let f be meromorphic on G; show that neither the poles nor the zeros of f
have a limit point in G.
6. Let G be a region and let H(G) denote the set of all analytic functions on
G. (The letter ““H” stands for holomorphic. Some authors call a differentiable
function holomorphic and call functions analytic if they have a power series
expansion about each point of their domain. Others reserve the term
“analytic” for what many call the complete analytic function, which we will
not describe here.) Show that H(G) is an integral domain; that is, H(G) is a
commutative ring with no zero divisors. Show that M(G), the meromorphic
functions on G, is a field.
We have said that analytic functions are like polynomials; similarly,
meromorphic functions are analogues of rational functions. The guestion
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arises, is every meromorphic function on G the quotient of two analytic
functions on G? Alternately, is M(G) the quotient field of H(G)? The answer
is yes but some additional theory will be required before this answer can be
proved.

7. State and prove a more general version of Rouché’s Theorem for curves
other than circles in G.

8. Is a non-constant meromorphic function on a region G an open mapping
of G into C? Is it an open mapping of G into C_,?

9. Let A > | and show that the equation A—z—e™? = 0 has exactly one
solution in the half plane {z: Re z > 0}. Show that-this solution must be
real. What happens to the solution as A — 1?

10. Let f be analytic in a neighborhood of D= B(0; 1). If | f(2)| <1 for
]pz|= 1, show that there is a unique z with |z| <1 and f(z)=2z. If | f(2)| <1
for |z]=1, what can you say?



