10 The Complex Number System

Exercises

1. Give the details in the derivation of (6.7) and (6.8).

2. For each of the following points in C, give the corresponding point of
S:0, 1+, 3+2i.

3. Which subsets of S correspond to the real and imaginary axes in C.

4. Let A be a circle lying in S. Then there is a unique plane P in R® such
that P N S = A. Recall from analytic geometry that

P = {(xq, X3, X3): X1 By +x2B2+x3B3 = I}

where (8;, B, B3) is a vector orthogonal to P and / is some real number.
It can be assumed that f2+83+8% = 1. Use this information to show that
if A contains the point N then its projection on C is a straight line. Otherwise,
A projects onto a circle in C.

5. Let Z and Z’ be points on S corresponding to z and z’ respectively. Let
W be the point on S corresponding to z+2z'. Find the coordinates of W in
terms of the coordinates of Z and Z’.

Chapter 11

Metric Spaces and the Topology of C

§1. Definition and examples of metric spaces

A metric space is a pair (X, d) where X is a set and d is a function from
X x X into R, called a distance function or metric, which satisfies the following
conditions for x, y, and z in X:

dix,y) = 0
dix,y) =0ifandonlyif x = y
d(x, y) = d(y, x) (symmetry)
d(x, z) < d(x,y)+d(p, ) (triangle inequality)
If x and r > 0 are fixed then define
CB(x;r) = {yeX: dx,y) <r}
B(x;ry = {yeX: d(x,y) <1}

B(x; r) and B(x; r) are called the open and closed balls, respectively, with
center x and radius r.

Examples

1.1 Let X = R or C and define d(z, w) = |z—w|. This makes both (R, d)
and (C, d) metric spaces. In fact, (C, d) will be the example of principal
interest to us. If the reader has never encountered the concept of a metric
space before this, he should continually keep (C, d) in mind during the study
of this chapter.

1.2 Let (X, d) be a metric space and let ¥ < X; then (Y, d) is also a metric
space.

1.3 Let X = C and define d(x+iy, a+ib) = |x—a|+|y—>b|. Then (C, d) is
a metric space.

1.4 Let X = C and define d(x+iy, a+ib) = max {{x—al, |y—>b[}.

1.5 Let X be any set and define d(x,y) = 0if x = yand d(x,y) = 1 if x # y.
To show that the function d satisfies the triangle inequality one merely
considers all possibilities of equality among x, y, and z. Notice here that
B(x; €) consists only of the point x if ¢ < 1 and B(x; ¢) = X if € > 1. This
metric space docs not appear in the study of analytic function theory.

1.6 Let X = R" and for x = (v ... ) ¥ = (V... ), in R" define

o !
: dwy) | Y (\'r)u)’]
j=1
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1.7 Let S be any set and denote by B(S) the set of all functions f: S—C
such that

I flleo = sup {[f(s)]: s€S} < o0.

That is, B(S) consists of all complex valued functions whose range is con-
tained inside some disk of finite radius. For f and g in B(S) define af, g =
| f—gll.. We will show that d satisfies the triangle inequality. In fact if £,
g, and / are in B(S) and s is any point in S then [f(s)—g(s)| = [f(s)—h(s)+
h(s)—g(s)] < |f(5)—h(s)| + h(s)—g(s)| < [If=hll,+ h—gll. Thus, when the
supremum is taken over all sin S, [ f—gllo, < I f=hlle+11h—glle, Which is
the triangle inequality for d.

1.8 Definition. For a metric space (X, d) a set G < X is open if for each
x in G there is an € > 0 such that B(x; ¢) < G.

Thus, a set in C is open if it has no ‘“‘edge.” For example, G = {z e C:
a < Rez<b}is open; but {z: Rez < 0} U {0} is not because B(0; €) is not
contained in this set no matter how small we choose e.

We denote the empty set, the set consisting of no elements, by (.

1.9 Proposition. Let (X, d) be a metric space; then:
(a) The sets X and [] are open; ,,
(b) If Gy, . . ., G, are open sets in X then so is () G
k=1
(¢) If {G;: jeJ} is a collection of open sets in X, J any indexing set,
then G = L {G;: jeJ} is also open.

Proof. The proof of (a) is a triviality. To prove (b) let xc G = ) Gy; then
k=1

xeG,fork =1,...,n Thus, by the definition, for each k there is an ¢, > 0
such that B(x; €) < G,. Butif e = min {e;, €3, ..., e, thenforl < k <n
B(x; €) < B(x; ¢) < G,. Thus B(x; €) = G and G is open.

The proof of (c) is left as an exercise for the reader. |l

There is another class of subsets of a metric space which are distinguished.
These are the sets which contain all their “‘edge”; alternately, the sets whose
complements have no “edge.”

1.10 Definition. A set F < X is closed if its complement, X' —F, is open.

The following proposition is the complement of Proposition 1.9. The
proof, whose execution is left to the reader, is accomplished by applying
de Morgan’s laws to the preceding proposition.

1.11 Proposition. Let (X, d) be a metric space. T hen:
(a) The sets X and [} are closed.

() If F\, ..., F,are closed sets in X then so is U Fa
K

() If {F;: jo J} is any collection of closed sets in X, J any indexing set,
then IF° 0 F cjo JYis also closed.

The most common error made upon learning of open and closed sets

is to interpret the definition of ¢losed set to mean that i1 i set s not open it is
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closed. This, of course, is false as can be seen by looking at {zeC: Rez > 0}
U {0}; it is neither open nor closed.

1.12 Definition. Let 4 be a subset of X. Then the interior of A, int A4, is the
set { ) {G: G is open and G <= A}. The closure of A, A”, is the set N {F:F
is closed and F = A}. Notice that int 4 may be empty and 4~ may be X.
If A = {a+bi: a and b are rational numbers} then simultaneously 4™ = C
and int 4 = []. By Propositions 1.9 and 1.11 we have that 4~ is closed and
int A is open. The boundary of A is denoted by 84 and defined by 64 = A~
NX—-A4)".

1.13 Proposition. Let A and B be subsets of a metric space (X, d). Then:
(@) A is open if and only if A = int A4;
(b) Aisclosed if and only if A = A~
(€ int A=X—(X—A4A)"; A~ = X—int (X—A); a4 = A~ —int 4,
dAUB)y =47 UB;
(€) xo €int A if and only if there is an € > 0 such that B(xo; €) < A,
(f) xo€ A~ if and only if for every € > 0, B(x,; € N A # [].

Proof. The proofs of (a)-(e) are left to the reader. To prove (f) assume
xoeA™ = X—int (X—4); thus, xo¢int (X—A4). By part (), for every
€ > 0 B(x,; €) is not contained in X — A. That is, there is a point y € B(x,; €)
which is not in X—A. Hence, y € B(xo; €) N A. Now suppose xg¢ A~ =
X—int (X—A). Then x4 eint (X—A4) and, by (e), there is an ¢ > 0 such
that B(xy; €) © X—A. That is, B(x,; ¢ N A =[] so that x, does not
satisfy the condition. [l
Finally, one last definition of a distinguished type of set.

1.14 Definition. A subset A4 of a metric space X is dense if 4~ = X.

The set of rational numbers Q is dense in R and {x+iy: x, yeQ} is
dense in C.

Exercises

1. Show that each of the examples of metric spaces given in (1.2)-(1.6) is,
indeed, a metric space. Example (1.6) is the only one likely to give any
difficulty. Also, describe B (x;r) for each of these examples.

2. Which of the following subsets of C are open and which are closed: (a)
{z:]z]<1}; (b) the real axis; (¢) {z:z"=1 for some integer n=>1}; (d)
{zeC:zisreal and 0<z<1};(e) {zeC:zisreal and 0<z<1}?

3. If (X, d) is any metric space show that every open ball is, in fact, an open
set. Also, show that every closed ball is a closed set.

4. Give the details of the proof of (1.9¢).

S. Prove Proposition 1.11.

6. Prove that a set & < X is open if and only if X—G is closed.

7. Show that (17, , d) where d is given by (1. 6.7y and (1. 6.8) is a metric space.
K. Let (X, d) be a metric space and ¥« Y. Suppose G« X is open; show
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that G N Y is open in (¥, d). Conversely, show that if G, < Y is open in
(Y, d), there is an open set G < X such that G, = G N Y.

9. Do Exercise 8 with “closed” in place of “open.”

10. Prove Proposition 1.13.

11. Show that {cisk:k =0} is dense in T={zeC:|z]=1}. For which
values of 8 is {cis(kf):k =0} dense in T?

§2. Connectedness

Let us start this section by giving an example. Let X = {zeC: |z < 1}
U {z: |z=3| < 1} and give X the metric it inherits from C. (Henceforward,
whenever we consider subsets X of R or C as metric spaces we will assume,
unless stated to the contrary, that X has the inherited metric d(z, w) = |z—w].)
Then the set A = {z: |z| < 1} is simultaneously open and closed. It is closed
because its complement in X, B = X—A = {z: |z—3| < 1} is open; A is
open because if ae A then B(a; 1) < A. (Notice that it may not happen
that {zeC: |z—a] < 1} is contained in A—for example, if a = 1. But the
definition of B(a; 1) is {zeX: |z—a| < 1} and this is contained in A.)
Similarly B is also both open and closed in X.

This is an example of a non-connected space.

2.1 Definition. A metric space (X, d) is connected if the only subsets of X
which are both open and closed are (J and X. If 4 < X'then 4isa connected
subset of X if the metric space (4, d) is connected.

An equivalent formulation of connectedness is to say that X is not
connected if there are disjoint open sets 4 and B in X, neither of which 1s
empty, such that X = 4 U B. In fact, if this condition holds then 4 = X—B
is also closed.

2.2 Proposition. 4 set X < R is connected iff’ X is an interval.

Proof. Suppose X = [a, b], a and b elements of R. Let A < X be an open
subset of X such that @ € 4, and 4 # X. We will show that 4 cannot also be
closed—and hence, X must be connected. Since A is open and a € A4 there is
an ¢ > 0 such that [a, a+¢) < A. Let
r=sup {e:[a,ate) © A4}

Claim.[a,a+r) © A.Infact,ifa < x < a+rthen,puttingh = a+r—x > 0,
the definition of supremum implies there is an e with r—h < e <7 and
la, a+€¢) © A. But a < x = a+(r—h) < a+eimplies x e A and the claim is
established.

However, a+r ¢ A for if, on the contrary, a+r € A4 then, by the openness
of A, there is a 8 > 0 with [a+r, a+r+38) < A. But this gives [a, a+r+98)
< A, contradicting the definition of r. Now if A4 werc also closed thena+rc B
— X—A which is open. Hence we could find a 8 > 0 such that (a+r—3,
a+r] < B, contradicting the above claim.

The proof that other types of intervals are connected is similar and it will
be left as an exercise.

" e proo o the converse is Exercise 1. R
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If w and z are in C then we denote the straight line segment from z to w
by
[z, w] = {tw+(1—0z: 0 <t <1}

A polygon from a to b is a set P = | } [z, w,] where z; = a, w, = b and
k=1
w,=2.,,forl <k <n—1;or, P=]a, z,...2, b

2.3 Theorem. An open set G < C is connected iff for any two points a, b in
G there is a polygon from a to b lying entirely inside G.

Proof. Suppose that G satisfies this condition and let us assume that G is
not connected. We will obtain a contradiction. From the definition, G =
A U B where A and B are both open and closed, A N B = [J, and neither
A nor B is empty. Let a € 4 and b € B; by hypothesis there is a polygon P
from a to b such that P < G. Now a moment’s thought will show that one
of the segments making up P will have one point in 4 and another in B.
So we can assume that P = [a, b]. Define,

S = {se[0,1]: sb+(1—s)aec A}
T={tel0,1]: thb4+(1—1t)a < B}

Then SNT=,SUT=][0,1],0e Sand 1 € T. However it can be shown
that both S and T are open (Exercise 2), contradicting the connectedness of
[0, 1]. Thus, G must be connected.

Now suppose that G is connected and fix a point a in G. To show how to
construct a polygon (lying in G!) from a to a point b in G would be difficult.
But we don’t have to perform such a construction; we merely show that one
exists. For a fixed a in G define

A = {beG: thereisapolygon P < Gfromatob}.

The plan is to show that A4 is simultaneously open and closed in G. Since
ae A and G is connected this will give that A = G and the theorem will be
proved.

To show that A is open let be A and let P=]a, z,,...,2,, b] be a
polygon from a to b with P <= G. Since G is open (this was not needed in the
first half), there is an € > 0 such that B(b; ¢) < G. But if z € B(b; ¢) then
[b, z] < B(b; €) = G. Hence the polygon @ = P U [b, 7] is inside G and goes
from a to z. This shows that B(b; €) < A, and so 4 is open.

To show that A4 is closed suppose there is a point zin G—A4 and let ¢ > 0
be such that B(z; €) = G. If there is a point b in A N B(z; ¢) then, as above,
we can construct a polygon from a to z, Thus we must have that B(z;e) N A
= [, or B(z; ) = G— A. That is, G— A is open so that A4 is closed. |l

2.4 Corollary. If G < C is open and connected and a and b are points in G
then there is a polygon P in G from a to b which is made up of line segments
parallel to cither the real or imaginary axis.

Proct " Chere are two wav:' of proving th  corolarv. O e ¢yl Hybtiim a



16 Metric Spaces and the Topology of C

polygon in G from a to b and then modify each of its line segments SO that a
new polygon is obtained with the desired properties. However, this proof
is more easily executed using compactness (see Exercise 5.7). Another proof
can be obtained by modifying the proof of Theorem 2.3. Define the set 4 as
in the proof of (2.3) but add the restriction that the polygon’s segments are
all parallel to one of the axes. The remainder of the proof will be valid with
one exception. If z € B(b; €) then [b, z] may not be parallel to an axis. But it
is easy to see that if z = x+i, b = p+iq then the polygon [B, p+iy] Y
[p+iy, 21 < B(b; ¢ and has segments parallel to an axis. |l

It will now be shown that any set S in a metric space can be expressed,
in a canonical way, as the union of connected pieces.

2.5 Definition. A subset D of a metric space X is a component of X ifitis a
maximal connected subset of X. That is, D is connected and there is no
connected subset of X that properly contains D.

If the reader examines the example at the beginning of this section he
will notice that both 4 and B are components and, furthermore, these are
the only components of X. For another example let X = {0, 1, LS TP
Then clearly every component of X is a point and each point is a component.

1

Notice that while the components {—} are all open in X, the component {0}
n

is not.

2.6 Lemma. Let xo € X andlet {D;:jeJ} bea collection of connected subsels
of X such that xo € D; for each j in J. Then D = J{D;:je J} is connected.

Proof. Let A4 be a subset of the metric space (D, d) which is both open and
closed and suppose that 4 # (. Then A N D; is open in (D;, d) for each j
and it is also closed (Exercises 1.8 and 1.9). Since D; is connected we get that
either AN D; = (Jor AND; = D, Since A # [ there is at least one k
such that 4 N D, # (J; hence, 4 N Dy = D,. In particular x € A so that
xo €A N D; for every j. Thus AN D; = Dj, or D; < A, for each index j.
This gives that D = 4, so that D is connected. ll

2.7 Theorem. Let (X, d) be a metric space. Then:
(a) Each xo in X is contained in a component of X.
(b) Distinct components of X are disjoint.
Note that part (a) says that X'is the union of its components.

Proof. (a) Let 2 be the collection of connected subsets of X which contain
the given point x,. Notice that {x,} € 2 so that @ + . Also notice that
the hypotheses of the preceding lemma apply to the collection 2. Hence
C=\{D:Dc 21} is connected and x ¢ C. But C must be a component.
In fact, if D is connected and C < D then v, ¢ D so that D« & but then
D < C. sothat C = D. Thus Cis maximal and part (a) is proved.

(b) Suppose €, and C, are components, ¢, / Cy. and suppose there is
a point xo in ¢, NGy Again the lemma says that €, Cy iy connected.
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Since bf)th C, and C, are components, this gives C; = C; U C, = C;, a
contradiction. [Jj 2 2>

2.8 Proposit%on. (a) If A © X is connected and A < B < A™, then B is connected
(b) If Cis a component of X then C is closed. '
The proof is left as an exercise.

2.9 Theorem. Let G be open in C; then the components of G are open and
there are only a countable number of them.

Proof. Let C be a component of G and let x, € C. Since G is open there is an
e > 0 with B(x,; €) © G. By Lemma 2.6, B(x,; €) U C is connected and so
must be C. That is B(x,; ¢€) < C and C is, therefore, open.

To see that the number of components is countable let S = {a+ib:
a and b are rational and a+bie G}. Then S is countable and each com;

ponent of G contains a point of S, so that th
> e number of compo i
countable. |l ponents is

Exercises

.l. The purpose of this exercise is to show that a connected subset of R is an
interval.

(a) Show that a set 4 < R is an interval iff for i

( ) any two points ‘

in 4 with a < b, the interval [a, b] < A. P @and b
(b) Use part (a) to show that if a set 4 = R is connected then it is an
interval.

2. Sho.w that the sets S and T in the proof of Theorem 2.3 are open.

3. Which .of the following subsets X of C are connected; if X is not connected
what are its components: (a) X = {z: |z] < 1}V {z: [z=2] < 1}. (b)) X =’

1
[0, l)u{l+’-1: n = 1}. () X = C~(A U B) where A = [0, ) and B =

{z=rcisf:r=6,0<6< 0}?

4. Prove the following generalization of Lemma 2.6. If {D;: jeJ} is a
collection of connected subsets of X and if for each j and k in J we have
D, r\ D, # (] then D = U {D;: jeJ} is connected.

S. SlTow that if F < X is closed and connected then for every pair of points
a, b in F and each € > 0 there are points zy, 25, ..., 2, in F with zy = a
z, = band d(z,_ |, z;) < efor1 < k < n. Is the hypothesis that F be (c):lose(i
nceded? If Fis a set which satisfies this property then F is not necessaril

connected, even if F is closed. Give an example to illustrate this. ’

§3. Sequences and completeness

Onc of {llc most uscful concepts in a metric space is that of a convergent
sequence, Their central role in calealus is duplicated in the study of metric
spaces and complex analysis.

3.1 Definition, 1 {v,. as .. g sequence ina ometric space (Y, ) then
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{x,} converges to x—in symbols x = lim x, or x, — x—if for every ¢ > 0
there is an integer N such that d(x, x,) < ¢ whenever n > N.

Alternately, x = lim x, if 0 = lim d(x, x,).

If X = C then z = lim z, means that for each ¢ > 0 there is an N such
that [z—z,| < e whenn > N.

Many concepts in the theory of metric spaces can be phrased in terms
of sequences. The following is an example.

3.2 Proposition. 4 set F < X is closed iff for each sequence {x,} in F with
x = lim x, we have x € F.

Proof. Suppose Fis closed and x = lim x, where each x, is in F. So for every
€ > 0, there is a point x, in B(x; €); that is B(x; ¢) " F # [J,sothat x e F~
= F by Proposition 2.8.

Now suppose F is not closed; so there is a point x4 in F~ which is not
in F. By Proposition 1.13(f), for every ¢ > 0 we have B(xq; ¢ N F # [1.

. . . . . 1
In particular for every integer » there is a point x, in B(xo; ~> N F, Thus,-
n

1

d(xo, x,) < - which implies that x, — x,. Since x, ¢ F, this says the con-
n

dition fails. i

3.3 Definition. If 4 < X then a point x in X is a limit point of A if there
is a sequence {x,} of distinct points in A4 such that x = lim x,.

The reason for the word “distinct” in this definition can be illustrated
by the following example. Let X = C and let 4 = [0, 1]V {i}; each point
in [0, 1] is a limit point of 4 but i is not. We do not wish to call a point such
as i a limit point; but if “distinct” were dropped from the definition we
could taken x, = i for each i and have { = lim x,.

3.4 Proposition. (a) A set is closed iff it contains all its limit points.

(b) If A < X then A~ = AV {x: x is a limit point of A}.

The proof is left as an exercise.

From real analysis we know that a basic property of R is that any sequence
whose terms get closer together as n gets large, must be convergent. Such
sequences are called Cauchy sequences. One of their attributes is that you
know the limit will exist even though you can’t produce it.

3.5 Definition. A sequence {x,} is called a Cauchy sequence if for every
e > 0 there is an integer N such that d(x,, x,) < e for all n, m > N.

If (X, d) has the property that each Cauchy sequence has a limit in X
then (X, d) is complete.

3.6 Proposition. C is complete.
Proof. If {x,4iy,}is a Cauchy sequence in € then {v,} and {y,} are Cauchy
sequences in R, Since R is complete, v, »xand y, -y for points v, yin R.
It follows that x4y Lm (v, 4iy,), and so € is complete. i

Consider €, with its metric d (1. 6.7 and 1. 6.8). Let z,, 2 be points in C;
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it can be shown that d(z,, z) - 0 if and only if |z,—z| — 0. In spite of this,
any sequence {z,} with lim |z,| = co is Cauchy in C,,, but, of course, is not
Cauchy in C.

If A = X we define the diameter of A by diam 4 = sup {d(x, y): x and
y are in A}.

3.7 Cantor’s Theorem. 4 metric space (X, d) is complete iff for any sequence

{F,} of non-empty closed sets with F; = F, = ... and diam F, 0, () F,
consists of a single point. n=1

Proof. Suppose (X, d) is complete and let {F,} be a sequence of closed sets
having the properties: (i) F;, > F, > ... and (ii) im diam F, = 0. For each
n, let x, be an arbitrary point in F,; if n, m > N then x,, x,, are in Fy so that,
by definition, d(x,, x,) < diam Fy. By the hypothesis N can be chosen
sufficiently large that diam F < €; this shows that {x,} is a Cauchy sequence.
Since X is complete, x, = lim x, exists. Also, x, is in Fy for all n > N

since F, < Fy; hence, x, is in Fy for every N and this gives x, € () F, = F.
n=1

So F contains at least one point; if, also, y is in F then both x, and y are in

F, for each »n and this gives d(x,, y) < diam F, — 0. Therefore d(x,, y) = 0,

or x, = y.

Now let us show that X is complete if it satisfies the stated condition.
Let {x,} be a Cauchy sequence in X and put F, = {x,, X4+, ...} ; then
FioF,>....1If e >0, choose N such that d(x,, x,) < € for each n,
m = N; this gives that diam {x,, x,;1,...} < € for n > N and so diam
F, < efor n > N (Exercise 3). Thus diam F, — 0 and, by hypothesis, there
is a point xy in X with {xo} = F, N F, N ... . In particular xq is in F,,
and so d(xg, x,) < diam F, — 0. Therefore, x, = lim x,. [l

There is a standard exercise associated with this theorem. It is to find a
sequence of sets {F,} in R which satisfies two of the conditions:

(a) each F, is closed,

b)) FF>2F,>...,

(c) diam F, — 0;
but which has F = F; N F, N ... either empty or consisting of more than
one point. Everyone should get examples satisfying the possible combina-
tions.

3.8 Proposition. Let (X,d) be a complete metric space and let Y < X. Then
(Y.d) is a complete metric space iff Y is closed in X.

Proof. Tt is left as an exercise to show that (Y.d) is complete whenever Y is
a closed subset. Now assume ( Y.d) to be complete; let x, be a limit point
of Y. Then there is a sequence {1} of points in Y such that x,=limy,,.
Hence {»,} 18 a Cauchy sequence (Lxercise 5) and must converge to a
point v, 1 Y, since (Yod) s complete. Tt follows that v, = v, and so Y
contans all ats Timnt points, Tlence ¥ s closed by Proposition 3.4, [l
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Exercises

1. Prove Proposition 3.4.

2. Furnish the details of the proof of Proposition 3.8.

3. Show that diam 4 = diam 4~.

4. Let z,, z be points in C and let d be the metric on C,,. Show that |z,—z| -0
if and only if d(z,, z) — 0. Also show that if |z,| — oo then {z,} is Cauchy
in C,. (Must {z,} converge in C.?)

5. Show that every convergent sequence in (X, d) is a Cauchy sequence.
6. Give three examples of non complete metric spaces.

7. Put a metric d on R such that |x,—x| — 0 if and only if d(x,, x} 0,
but that {x,} is a Cauchy sequence in (R, d) when |x,| — oo. (Hint: Take
inspiration from C,,.)

8. Suppose {x,} is a Cauchy sequence and {x, } is a subsequence that is
convergent. Show that {x,} must be convergent.

§4. Compactness

The concept of compactness is an extension of the benefits of finiteness to
infinite sets. Most properties of compact sets are analogues of properties
of finite sets which are quite trivial. For example, every sequence in a finite
set has a convergent subsequence. This is quite trivial since there must be at
least one point which is repeated an infinite number of times. However the
same statement remains true if “finite” is replaced by ‘“compact.”

4.1 Definition. A subset K of a metric space X is compact if for every collec-
tion & of open sets in X with the property
4.2 K<) {G:Ge¥},

there is a finite number of sets Gy, . . ., G, in & such that K < G, YVG,,U
...UG,. A collection of sets & satisfying (4.2) is called a cover of K; if
each member of ¥ is an open set it is called an open cover of K.

Clearly the empty set and all finite sets are compact. An example of a

1

non compact set is D = {zeC: |z < 1} 1f G, = {z: lz) <1 - ’;} forn =
2,3,..., then {G,, Gs,...} is an open cover of D for which there is no
finite subcover.

4.3 Proposition. Let K be a compact subset of X; then:
(a) K is closed,;
(b) If Fis closed and F < K then F is compact.

Proof. To prove part (a) we will show that K = K. Let xy¢€ K~ ; by Pro-
1
position 1.13(f), B(vy: )N K # 1] for cach € ~ 0. Let G, = X =Bl xo: n)

and suppose that v, ¢ K. Then cach G, is open and K« {J G, (because N
. n |\

n=1
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o1 . .
B(xo; n) = {x,}). Since K is compact there is an integer m such that
Kc UIG,,. But G, <G, <...sothat K< G, = X—B(xo; -1>. But this
n= m

. 1
gives that B(xo; ;) N K = [, a contradiction. Thus K = K.

To prove part (b) let ¥ be an open cover of F. Then, since F is closed,
% U {X—F}is an open cover of K. Let G, ..., G, be sets in & such that
KcGiu... UG, UX~=F). Clearly, F< G, V...UG, and so F is
compact. i

If % is a collection of subsets of X we say that .# has the finite inter-
section property (f.i.p.) if whenever {F, F,, ..., F,} <, F,NF,Nn...N
F, # []. An example of such a collection is {D—G,, D—G5, ...} where
the sets G, are as in the example preceding Proposition 4.3.

4.4 Proposition. A set K < X is compact iff every collection F of closed
subsets of K with the f.i.p. has [ {F: Fe #} # [.

Proof. Suppose K is compact and % is a collection of closed subsets of K
having the fi.p. Assume that () {F: FeF} =[] and let ¥ = {X—F:
Fe#}. Then, \J{X—F: FeF}=X—(){F: Fe#} =X by the
assumption; in particular, 4 is an open cover of K. Thus, there are Fy, ...,

F,e Z such that K © UI(X—F,() = X — () F.. But this gives that h F,
= k=1 k=1

. k= = n
< X—K, and since each F, is a subset of K it must be that ﬂ F, = [1. This
contradicts the f.i.p. k=1

The proof of the converse is left as an exercise. |l

4.5 Corollary. Every compact metric space is complete.

2’1‘7004 This follows easily by applying the above proposition and Theorem

4.6. Corollary. If X is compact then every infinite set has a limit point in X.

Proof. Let S be an infinite subset of X and suppose S has no limit points.
Let {a,, a,,...} be a sequence of distinct points in S; then F, = {a,
dyy 1, - - -} also has no limit points. But if a set has no limit points it contains
all its limits points and must be closed! Thus, each F, is closed and {F,:

.. . . . o
n = 1} has the f.i.p. However, since the points a4, a,, . . . are distinct, ﬂ F,
I, contradicting the above proposition. i n=1
§.7 Peﬁnition. A metric space (X, d) is sequentially compact if every sequence
in A" has a convergent subsequence.
It will be shown that compact and sequentially compact metric spaces

are the same. To do this the following is needed.

4.8 Lebesgue's Covering Lemma. [/ (X, ) is sequentially  compact and
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G is an open cover of X then there is an € > 0 such that if x is in X, there is a
set G in % with B(x; ¢) < G.

Proof. The proof is by contradiction; suppose that ¢ is an open cover of X
and no such ¢ > O can be found. In particular, for every integer n there is a

1y . ) . . .
point x, in X such that B(x,,; —) is not contained in any set G in %. Since X
n

is sequentially compact there is a point xg in X and a subsequence {x,, }
such that x, = lim x,_. Let Gy ¢ @ such that xo € G, and choose ¢ > 0
such that B(xq; €) < Go. Now let N be such that d(x,, x,) < €2 for all
n, > N. Let n, be any integer larger than both N and 2/e, and let y € B(x,, ;
1/n,). Then d(x,, ¥) < d(xg, Xp, +d(x,, ) < €¢2+1[n < e That is, B(x,,;
1/n) < B(xo; € < Go, contradicting the choice of x,. Il

There are two common misinterpretations of Lebesgue’s Covering
Lemma; one implies that it says nothing and the other that it says too much.
Since % is an open covering of X it follows that each x in X is contained in
some G in %. Thus there is an € > 0 such that B(x; ¢) < G since G is open.
The lemma, however, gives one € > 0 such that for any x, B(x; €) is con-
tained in some member of &. The other misinterpretation is to believe that
for the ¢ > 0 obtained in the lemma, B(x; €) is contained in each G in
such that x € G.

4.9. Theorem. Let (X, d) be a metric space; then the following are equivalent
statements:
(a) X is compact;
(b) Every infinite set in X has a limit point;
(©) X is sequentially compact;
(d) X is complete and for every ¢ > 0 there are a finite number of points
Xy, - .., Xy in X such that

X =) Blx; o).
1

k

(The property mentioned in (d) is called total boundedness.)

Proof. That (a) implies (b) is the statement of Corollary 4.6.

(b) implies (¢): Let {x,} be a sequence in X and suppose, without loss of
generality, that the points x;, x5, ... are all distinct. By (b), the set {x,,
X,, ...} has a limit point xo. Thus there is a point x,, € B(x,; 1); similarly,
there is an integer n, > ny with x,, € B(xo; 1/2). Continuing we get integers
ny < ny <..., with x,, € B(xo; 1/k). Thus, xo = lim x,, and X is sequen-
tially compact.

(¢) implies (d): To sec that X is complete let {x,} be a Cauchy
sequence, apply the definition of sequential compactness, and appeal to
Exercise 3.8. )

Now let € - O and fix x, « X AF X By, ) then we are done; other-
wise choose v, « X = B(x ;). Again, if ¥ - B(x, 1)V B(x,:«) we are donc;
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if not, let x3 € X—[B(x,; €) U B(x,; ¢)]. If this process never stops we find a
sequence {x,} such that

Xpp1 €X — U B(xy; e).
k=1

But this implies that for n # m, d(x,, x,,) = € > 0. Thus {x,} can have no
convergent subsequence, contradicting (c).

(d) implies (c): This part of the proof will use a variation of the “pigeon
hole principle.” This principle states that if you have more objects than you
haye receptacles then at least one receptacle must hold more than one
ob]_ect. Moreover, if you have an infinite number of points contained in a
finite number of balls then one ball contains infinitely many points. So
part (d) says that for every ¢ > 0 and any infinite set in X, there is a point
y e X such that B(y; €) contains infinitely many points of this set. Let {x,}
be a sequence of distinct points. There is a point y, in X and a subsequenge
{x(V} of {x,} such that {x{"} < B(y,; 1). Also, there is a point y, in X
and a subsequence {x@} of {x{} such that {x»} < B(y,; %). Continuing,
for each integer k > 2 there is a point y, in X and a subsequence {x®} of
{x%*~ DY such that {x®} < B(y,; 1/1;)). Let F, = {x¥}~; then diam F, < 2/k

and F;, © F, @ ... . By Theorem 3{6,.(] F, = {x,}. We claim that x{ —
k=1

X, (and {x{1 is a subsequence of {x,}). In fact, xo € F, so that d(x,, x¥) <
diam F, < 2/k, and x, = lim x{.

(c) implies (a): Let & be an open cover of X. The preceding lemma gives
ane >0 .such. that for every x € X there is a G in ¢ with B(x; ¢) < G. Now
(c) also implies (d); hence there are points x;,...,x, in X such that

X :kyl B(x,; €). Now for 1 < k < nthere is a set G, €  with B(x;; €) < G.
Hence X =kL_)1 G,; that is, {G, ..., G,} is a finite subcover of 4.

4.10 Heine-Borel Theorem. A subset K of R" (n = 1) is compact iff K is closed
and bounded.

Proof. ‘If K is compact then K is totally bounded by part (d) of the
preceding theorem. It follows that K must be closed (Proposition 4.3);
also, it is easy to show that a totally bounded set is also bounded. )

Now suppose that K is closed and bounded. Hence there are real
numbers ay,...,q, and b,,...,b, such that K < F=[a,b,]% ... X][a,,b,]. If
it can be shown that F is compact then, because K 1s closed, it follows that
A is compact (Proposition 4.3(b)). Since R” is complete and F 1s closed it
follows that F is complete. Hence, again using part (d) of the preceding
theorem we need only show that F is totally bounded. This is easy

although somewhat “messy” to write down. Let € >0; we now will write F
as the union of n-dimensional rectangles each of diameter less than e

"

After doing this we will have F+ {) B(y,:¢) where each x, belongs to
k=1
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one of the aforementioned rectangles. The execution of the details of this
strategy is left to the reader (Exercise 3). i

Exercises

1. Finish the proof of Proposition 4.4. -
2. Letp =(py,...,p,) and g = (g, - . . , g) be points in R" with p, < g,
for each k. Let R = [p,, ¢,]1%. . .%x[p,, g,] and show that

n E
dism R = dp, ) = [ 3, @-p?]
3. Let F = [ay, b,]%...%x[a, b,] = R" and let € > 0; use Exercise 2 to

show that there are rectangles Ry, ..., R, such that F = U R, and diam

R, < e for each k. If x; € R, then it follows that R, < B(xk; e)

4. Show that the union of a finite number of compact sets is compact.

5. Let X be the set of all bounded sequences of complex numbers. That is,
{x,}eX iff sup {|x.: n =1} < co. If x = {x,} and y = {y,}, define
d(x, y) = sup {|x,—ya|: n = 1}. Show that for each x in X and ¢ > 0, B(x; ¢)
is not totally bounded although it is complete. (Hint: you might have an
easier time of it if you first show that you can assume x = (0, 0, ...).)

6. Show that the closure of a totally bounded set is totally bounded.

§5. Continuity

One of the most elementary properties of a function is continuity. The
presence of continuity guarantees a certain degree of regularity and smooth-
ness without which it is difficult to obtain any theory of functions on a metric
space. Since the main subject of this book is the theory of functions of a
complex variable which possess derivatives (and so are continuous), the study
of continuity is basic.

5.1 Definition. Let (X, d) and (Q, p) be metric spaces and let /2 X — Q be
a function. If g € X and w € Q, then lim f(x) = w if for every ¢ > 0 thereis a

8 > 0 such that p(f(x), w) < € whenever 0 < d(x, a) < 8. The function f is
continuous at the point a if lim f(x) = f(a). If f is continuous at each point of

xX—a
X then f is a continuous function from X to Q.

5.2 Proposition. Let f: (X, d) —(Q, p) be a function and ac X, o« = f(a).
The following are equivalent statements

(a) f is continuous at a;

(b) For every € > 0, f~'(B(x; €)) contains a ball with center at a;

(¢) « = lim f(x,) whenever a — lim x,.

The proof will be left as an excrcise for the reader.

That was the last proposition concerning continuity of a function at a
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point. From now on we will concern ourselves only with functions continuous
on all of X.

5.3 Proposition. Let f: (X, d)— (2, p) be a function. The following are
equivalent statements:

() f is continuous;

(b) If A is open in Q then f~'(A) is open in X;

(¢) If I is closed in Q then f~'(T) is closed in X.

Proof. (a) implies (b): Let A be open in Q and let x e f~'(A). If o = f(x)
then w is in A; by definition, there is an € > 0 with B(w; €) < A. Since f'is
continuous, part (b) of the preceding proposition gives a 6 > 0 with B(x; 9)
< f7Y(B(w; €)) < f'(A). Hence, f~'(4) is open.

(b) implies (¢): If I' < Q is closed then let A = Q—T. By (b), £~ }(4) =
X —f~XI') is open, so that f~'(I) is closed.

(c) implies (a): Suppose there is a point x in X at which f'is not continuous.
Then there is an ¢ > 0 and a sequence {x,} such that p(f(x,), f(x)) = «
for every n while x = lim x,. Let I' = Q— B(f(x); €); then T" is closed and
each x, is in £~ }(I"). Since (by (c)) f~'(T) is closed we have x < f ~'(I'). But
this implies p(f(x), f(x)) = ¢ > 0, a contradiction. i

The following type of result is probably well understood by the reader
and so the proof is left as an exercise.

5.4 Proposition. Let [ and g be continuous functions from X into € and let
o, Be C. Then of +Bg and fg are both continuous. Also, f|g is continuous
provided g(x) # 0 for every x in X.

5.5 Proposition. Let f: X — Y and g: Y —> Z be continuous functions. Then g o f
(where gof(x) = g(f(x))) is a continuous function from X into Z.

Proof. If U is open in Z then g~'(U) is open in Y; hence, f ~'(g"'(V)) =
(gof) " '(U)is open in X. W

5.6 Definition. A function f: (X, d) — (Q, p) is uniformly continuous if for
every € > Othereis a 8 > 0 (depending only on €) such that p(f(x), f())) < ¢
whenever d(x, y) < 8. We say that fis a Lipschitz function if there is a constant
M > 0 such that p(f(x), f(3)) < Md(x, y) for all x and y in X.

It is easy to see that every Lipschitz function is uniformly continuous.
In fact, if € is given, take 8 = ¢/M. It is even easier to see that every uniformly
continuous function is continuous. What are some examples of such func-
tions? If X = Q = R then f(x) = x? is continuous but not uniformly
continuous. 1f X = Q = [0, 1] then f(x) = x* is uniformly continuous but
is not a Lipschitz function. The following provides a wealthy supply of
Lipschitz functions.

Let 4 © X and x « X, define the distance from x to the set A, d(x, A) by

d(x, A inf {d(x, @):ac A}

5.7 Proposition. .t A < X then:
(a) d(x, A)  d(x. A ),
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by dix, A=0if xecd™;
(c) |d(x, A)—d(y, A)| < d(x, y) for all x, y in X.

Proof. (a) If A < B then it is clear from the definition that d(x, B) < d(x, A).
Hence, d(x, A7) < d(x, A). On the other hand, if ¢ > 0 there is a point
yin A~ such that d(x, 47) > d(x, y)—¢/2. Also, there is a point a in A with
d(y, a) < /2. But |d(x, y)—d(x, a)} < d(y, a) < /2 by the triangle inequality.
In particular, d(x, y) > d(x, a)—¢/2. This gives, dix, A7) = d(x, a)—e >
d(x, A)—e. Since € was arbitrary d(x, A7) > d(x, A), so that (a) is proved.

(b) If xe A~ then 0 = d(x, A7) = d(x, A). Now for any x in X there is
a minimizing sequence {a,} in 4 such that d(x, 4) = lim d(x, a,). So if
d(x, A) = 0, lim d(x, a,) = 0; that is, x = lim a, and so x € A~

(c) For a in 4 d(x, a) < d(x, y)+d(y, a). Hence, d(x, A) = inf {d(x, a):
ae A} <inf {d(x,y)+d(y,a):ae A} = d(x, y)+d(y, 4). This gives d(x, 4)—
d(y, 4) < d(x, y). Similarly d(y, 4)—d(x, 4) < d(x, y) so the desired in-
equality follows. i

Notice that part (c) of the proposition says that f: X — R defined by
f(x) = d(x, A) is a Lipschitz function. If we vary the set A we get a large
supply of these functions.

It is not true that the product of two uniformly continuous (Lipschitz)
functions is again uniformly continuous (Lipschitz). For example, f(x) = x
is Lipschitz but f-f is not even uniformly continuous. However if both f and
g are bounded then the conclusion is valid (see Exercise 3).

Two of the most important properties of continuous functions are
contained in the following result.

5.8 Theorem. Let f: (X, d) —(Q, p) be a continuous function.
(a) If X is compact then f(X) is a compact subset of €1.
(b) If X is connected then f(X) is a connected subset of Q.

Proof. To prove (a) and (b) it may be supposed, without loss of generality,
that f(X) = Q. (a) Let {w,} be a sequence in ; then there is, for each
n > 1, a point x, in X with w, = f(x,). Since X is compact there is a point
x in X and a subsequence {x, } such that x = lim x,, . But if = f(x), then
the continuity of f gives that w = lim w,,; hence Q is compact by Theorem
49. (b) Suppose = < Q is both open and closed in Q and that = # [].
Then, because f(X) = Q, [J # £~ Y(Z); also, f~1(Z) is both open and closed
because f'is continuous. By connectivity, £~ () = X and this gives Q = X.
Thus, Q is connected. [l

5.9 Corollary. If f: X — < is. continuous and K < X is either compact or
connected in X then f(K) is compact or connected, respectively, in 2.

5.10 Corollary. If f: X -> R is continuous and X is connected then f(X) is an
interrval.

This follows from the characterization of connected subsets of R as
intervals.
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5.11 Intermediate Value Theorem. If f: [a, b] — R is continuous and f(a) < ¢
< f(b) then there is a point x, a < x < b, with f(x) = £.

5.12 Corollary. If f: X — R is continuous and K < X is compact then there are

points x, and yo in K with f(xg) = sup {f(x): x € K} and f(y,) = inf {f(x):
xeK}.

Proof. If « = sup {f(x): x € K} then « is in f(K) because f(K) is closed and
bounded in R. Similarly 8 = inf {f(x): x e K} is in f(K). R

5.13 Corollary. If K < X is compact and f: X — C is continuous then there
are points x, and yq in K with

|f(xo)l = sup {|f(x)]: x € K} and [f(yo)| = inf {{f(x)]: x € K}.

Proof. This corollary follows from the preceding one because g(x) = | f(x)|
defines a continuous function from X into R.

5.14 Corollary. If K is a compact subset of X and x is in X then there is a
point y in K with d(x, y) = d(x, K).

Proof. Define - X — R by f(3») = d(x, y). Then f is continuous and, by
Corollary 5.12, assumes a minimum value on K. That is, there is a point
y in K with f(y) < f(2) for every z € K. This gives d(x, y) = d(x, K). i

The next two theorems are extremely important and will be used re-
peatedly throughout this book with no specific reference to the theorem
numbers.

5.15. Theorem. Suppose f: X — Q is continuous and X is compact; then f is
uniformly continuous.

Proof. Let € > 0; we wish to find a & > O such that d(x, y) < & implies
p(f(x), f(3)) < e. Suppose there is no such §; in particular, each 8 = 1/n
will fail to work. Then for every n > 1 there are points x, and y, in X with
d(x,, ¥,) < 1/n but p(f(x,), f(,)) = e Since X is compact there is a sub-
sequence {x, } and a point x € X with x = lim x,,_.

Claim. x = lim y,,. In fact, d(x, y,,) < d(x, x,,)+1/n and this tends to zero
as k goes to oo.
But if w = f(x), w = lim f(x, ) = lim f(y,,) so that

€ < p(f(x) (V)
< p(f(x,), @)+ p(w, f(Va )

and the right hand side of this inequality goes to zero. This is a contradiction
and completes the proof. i

5.16. Definition. If A4 and B are subsets of X then define the distance from
A to B, d(A, B), by

d(A, B) = it {d(a, b):a« A, b B}.
Notice that if 8 is the single-point set {x) then d(A4, {x})  d(x, A). If
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A = {y} and B = {x} then d({x}, {y}) = d(x, ). Also, if AnB # []
then d(4, B) = 0, but we can have d(4, B) = 0 with 4 and B disjoint. The
most popular type of example is to take 4 = {(x, 0): x e R} < R* and
B = {(x, €): x €« R}. Notice that 4 and B are both closed and disjoint and
still d(A4, B) = 0.

5.17 Theorem. If A and B are disjoint sets in X with B closed and A compact
then d(A, B) > 0.

Proof. Define f: X — R by f(x) = d(x, B). Since A ©" B = ] and B is closed,
f(a) > 0 for each a in A4. But since A is compact there is a point a in 4 such
that 0 < f(a) = inf {f(x): xe A} = d(4, B). &

Exercises

1. Prove Proposition 5.2.

2. Show that if f and g are uniformly continuous (Lipschitz) functions from
X into C then so is f+g.

3. We say that f: X — C is bounded if there is a constant M > 0 with
[f(x)] < M for all x in X. Show that if f and g are bounded uniformly
continuous (Lipschitz) functions from X into C then so is fg.

4. Is the composition of two uniformly continuous (Lipschitz) functions
again uniformly continuous (Lipschitz)?

5. Suppose f: X — Q is uniformly continuous; show that if {x,} is a Cauchy
sequence in X then {f(x,)} is a Cauchy sequence in Q. Is this still true if we
only assume that f is continuous? (Prove or give a counterexample.)

6. Recall the definition of a dense set (1.14). Suppose that Q is a complete
metric space and that f (D, d) — (Q; p) is uniformly continuous, where D is
dense in (X, d). Use Exercise 5 to show that there is a uniformly continuous
function g: X — Q with g(x) = f(x) for every x in D.

7. Let G be an open subset of C and let P be a polygon in G from a to b.
Use Theorems 5.15 and 5.17 to show that there is a polygon Q < G from a
to b which is composed of line segments which are parallel to either the real
or imaginary axes.

8. Use Lebesgue’s Covering Lemma (4.8) to give another proof of Theorem
5.15.

9. Prove the following converse to Exercise 2.5. Suppose (X, d) is a compact
metric space having the property that for every ¢ > 0 and for any points a,
b in X, there are points zq, z(, ..., z, in X with zy = @, z, = b, and d(z, -,
z) < efor 1 < k < n. Then (X, d) is connected. (Hint: Use Theorem 5.17.)
10. Let £ and g be continuous functions from (X, d) to (X, p) and let D be
a dense subset of X. Prove that if f{x) = g(x) for x in D then f = g. Use
this to show that the function g obtained in Exercise 6 is unique.

§6. Uniform convergence

Let X be a set and (12, p) a metric space and suppose [, [y, [, ... are
functions from X into . The sequence {f,} converges uniformiy to f written
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f=u—-lim f,—if for every ¢ > 0 there is an integer N (depending on e
alone) such that p(f(x), f,(x)) < € for all x in X, whenever n > N. Hence,

sup {p(f(x),fu(x)): x e X} <€

whenever n > N.
The first problem is this: If X is not just a set but a metric space and each
f,, is continuous does it follow that f'is continuous? The answer is yes.

6.1 Theorem. Suppose f,: (X, d) — (Q, p) is continuous for each n and that
= u—lim f,; then f is continuous.

Proof. Fix x4 in X and ¢ > 0; we wish to find a 6 > 0 such that p(f(x,),
f(x)) < e when d(x,, x) < 8. Since f = u—lim f,, there is a function f, with
p(f(x), f.(x)) < ¢/3 for all x in X. Since f, is continuous there is a 6 > 0
such that p(f,(xo), fu(x)) < €¢/3 when d(x,, x) < 8. Therefore, if d(xg, x) <3,

p(f(x0), f(x) < p(f(x0), ful(Xo)) + p(fulX0), [ulX)) +p(f(x), f(x)) < . I
Let us consider the special case where Q = C. If u,: X — C, let f(x) =

u(x)+. .. Fu(x). Wesay f(x) = i u,(x) iff f(x) = lim f,(x) for each x in X.

n=1

The series Z u, is uniformly convergent to f iff f = u—Ilim f,.

6.2 Weierstrass M-Test. Let u,: X — C be a functton such that [u,,(x)] <M,
for every x in X and suppose the constants satisfy Z M, < 0. Then Z u, is
uniformly convergent.

Proof. Let f,(x) = u(x)+...+u,(x). Then for n > m,
1) =11 = e () +. . .+, (0] < i M, for each x. Since i M,
k=m+1 1

converges, {f,(x)} is a Cauchy sequence in C. Thus there is a number § e C
with ¢ = lim f,(x). Define f{x) = &; this gives a function f: X-> C. Now

0
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k=n+1 k=n+1
O O

since Y, M, is convergent, for any ¢ > 0 there is an integer N such that )’

1 k=n+1
M, < e whenever n = N. This gives | f(x)—f(x)| < € for all x in X when
n>N.R

Exercise

1. Let {f,} in a sequence of uniformly continuous functions from (X, d)
into (€2, p) and suppose that f = u—lim f, exists. Prove that fis uniformly
continuous. If each f, is a Lipschitz function with constant M, and sup
M, < oo, show that fis a Lipschitz function. If sup M, = oo, show that f
may fail to be Lipschitz,



