Chapter 1
The Complex Number System

§1. The real numbers

We denote the set of all real numbers by R. It is assumed that each
reader is acquainted with the real number system and all its properties. In
particular we assume a knowledge of the ordering of R, the definitions and
properties of the supremum and infimum (sup and inf), and the complete-
ness of R (every set in R which is bounded above has a supremum). It is
also assumed that every reader is familiar with sequential convergence in
R and with infinite series. Finally, no one should undertake a study of
Complex Variables unless he has a thorough grounding in functions of one
real variable. Although it has been traditional to study functions of several
real variables before studying analytic function theory, this is not an
essential prerequisite for this book. There will not be any occasion when
the deep results of this area are needed.

§2. The field of complex numbers

We define C, the complex numbers, to be the set of all ordered pairs
(a, b) where a and b are real numbers and where addition and multiplication
are defined by:

(@, b)+(c, d) = (a+c, b+d)
(a, b) (¢, d) = (ac—bd, bc+ad)

It is easily checked that with these definitions C satisfies all the axioms for
a field. That is, C satisfies the associative, commutative and distributive
laws for addition and multiplication; (0,0) and (1,0) are identities for
addition and multiplication respectively, and there are additive and multi-
plicative inverses for each nonzero element in C.

We wil] write a for the complex number (g, 0). This mapping a — (a, 0)
defines a field isomorphism of R into C so we may consider R as a subset of
C. If we put i = (0, 1) then (a, b) = a+bi. From this point on we abandon
the ordered pair notation for complex numbers.

Note that i2 = — 1, so that the equation z+1 = 0 has a root in C. In
fact, for each z in C, z2+1 -- (z+1i) (z—1i). More generally, if z and w are
complex numbers we obtain

2wt iw)(z—in)
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By letting z and w be real numbers a and b we can obtain (with both & and
b # 0)

1 a-ib  a ; b
a+ib  a+b*  a®+b? a*+b?
so that we have a formula for the reciprocal of a complex number.

When we write z = a-+ib (a, b € R) we call a and b the real and imaginary
parts of z and denote this by a = Re z, b = Imz. '

We conclude this section by introducing two operations on C whlch‘are
not field operations. If z = x+iy(x, y € R) then we define |z| = (x*+yH)* to
be the absolute value of z and Z = x—iy is the conjugate of z. Note that
21 lz]> = 2z
In particular, if z # 0 then
1 z
z  |zf?

The following are basic properties of absolute values and conjugates
whose verifications are left to the reader.

1
2.2 Rez = ¥(z+z) and Imz = z—i(z—i).
2.3 ‘ GEFw)=Z+% and Zw = Zw.
24 |zw] = |z] |w]|.
2.5 jzhw] = lz1/]wl-
2.6 Z] = |z].

The reader should try to avoid expanding z and w into their real and
imaginary parts when he tries to prove these last three. Rather, use 2.1,
(2.2), and (2.3).

Exercises
1. Find the real and imaginary parts of each of the following:

- 3+5i (—1+i/3\%;
z z+a 2

. S\6 N\ n
SIABY e (MY e 2<mcs.
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2. Find the absolute value and conjugate of cach of the following:
i 3 (2 1) (44 3): 3—i 0
—2+4i; =3 2+ (44 30); J24 3 Lias
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3. Show that z is a real number if and only if z = Z.
4. If z and w are complex numbers, prove the following equations:

|z+w|* = |z]>+2Re zWw +|w|%
|z—w]? = |z]*—2Re zw+|w|*.
24w + |z—w]? = 2(z]* +|w]?).

5. Use induction to prove that for z = z;+...+z,; W= wiWw,...w,:
W] = [wi|.oo Wl 2 =Z4. . 425 W =W ...W,

6. Let R(z) be a rational function of z. Show that R(z) = R(Z) if all the
coeflicients in R(z) are real.

§3. The complex plane

From the definition of complex numbers it is clear that each z in C can
be identified with the unique point (Re z, Im z) in the plane R?. The addition
of complex numbers is exactly the addition law of the vector space RZ.
If z and w are in C then draw the straight lines from z and w to 0 (=(0, 0)).
These form two sides of a parallelogram with 0, z and w as three vertices.
The fourth vertex turns out to be z+w.

Note also that |z—w| is exactly the distance between z and w. With this
in mind the last equation of Exercise 4 in the preceding section states the
parallelogram law: The sum of the squares of the lengths of the sides of a
parallelogram equals the sum of the squares of the lengths of its diagonals.

A fundamental property of a distance function is that it satisfies the
triangle inequality (see the next chapter). In this case this inequality becomes

[zi=25| < |zy~23] + |z3—2,]

for complex numbers z;, z,, z5. By using z; —z, = (z; —z3) +(z;—2z,), it is
easy to see that we need only show

31 |z+w| < |z| + |w]|(z, weC).

To show this first observe that for any z in C,

3.2 —[z] < Rez < [z]
~zl cImz < |7
Hence, Re (zw) < |zW| = |z| |w|. Thus,

|z+w|? = |z|*+2Re (z®) + |w|?
< |2? +2]z| [wl +|w]?
= (z[+ D7,

from which (3.1) follows. (This is called the triangle inequality because, if we
represent = and woin the plane, (3.1) says that the length of one side of the
triangle [0, z, z 4] is fess than the sum of the lengths of the other two sides.
Or, the shortest distance between twa points is a straight line.) On encounter-



4 The Complex Number System
ing an inequality one should always ask for necessary and sufficient conditions
that equality obtains. From looking at a triangle and considering the geo-
metrical significance of (3.1) we are led to consider the condition z = tw
for some tcR, ¢ > 0. (or w =tz if w=0). It is clear that equality will
occur when the two points are colinear with the origin. In fact, if we look
at the proof of (3.1) we see that a necessary and sufficient condition for
|z-+w| = |z|+|w] is that |z%] = Re (zW). Equivalently, this is zw > 0(.e.,zw
is a real number and is non negative). Multiplying this by w/w we get
|w|*(z/w) = 0if w # 0. If

t=zlw= <ﬁ) lw|*(z/w)

thent > 0 and z = tw.
By induction we also get

33 |zi 4+ 2o+ . 42| < |z +lz|+. ]z
Also useful is the inequality
3.4 llzl—]ww < |z—w|

Now that we have given a geometric interpretation of the absolute value
let us see what taking a complex conjugate does to a point in the plane.
This is also easy; in fact, Z is the point obtained by reflecting z across the
x-axis (i.e., the real axis).

Exercises

1. Prove (3.4) and give necessary and sufficient conditions for equality.
2. Show that equality occurs in (3.3) if and only if z,/z, > O for any integers
kand!l 1 < k,1 < n, for which z; # 0.

3. Let acR and ¢ > O be fixed. Describe the set of points z satisfying

lz—a|—|z++a] = 2¢

for every possible choice of a and ¢. Now let a be any complex number
and, using a rotation of the plane, describe the locus of points satisfying the
above equation.

§4. Polar representation and roots of complex numbers

Consider the point z = x+iy in the complex plane C. This point has
polar coordinates (r, 6): x = r cos 8, y = r sin 6. Clearly r = |z| and 8 is
the angle between the positive real axis and the line segment from O to z.
Notice that @ plus any multiple of 27 can be substituted for @ in the above
cquations. The angle 0 is called the argument of = and is denoted by 8 = arg z.
Because of the ambiguity of 6, “arg™ is not a function. We introduce the
notation

4.1 cis ! cos O tisin

Polar representation and roots of complex numbers 5
Let z; = r, cis 0, z, = r, cis 0,. Then z,z, = ryr, cis 8, cis 8, = r,r,

[(cos 6; cos 6,—sin 0, sin 6,)+i (sin §; cos 0,+sin 8, cos §,)]. By the

formulas for the sine and cosine of the sum of two angles we get

4.2 2,2, = ryry cis (8, +6,)

Alternately, arg (z,z,) = arg z, +arg z,. (What function of a real variable
takes products into sums?) By induction we get forz, = r,cis 6,, 1 < k < n.

4.3 ZyZy .. Zy =TTy, .. . Fycis(0+...4+0)
In particular,
4.4 z" = 1" cis (nb),

for every integer n > 0. Moreover if z # 0, z-[r™! cis (—8)] = 1; so that
(4.4) also holds for all integers n, positive, negative, and zero, if z # 0. As a
special case of (4.4) we get de Moivre’s formula:

(cos 0+isin )" = cos nf+i sin 1o,

We are now in a position to consider the following problem: For a given
complex number a # O and an integer n > 2, can you find a number z
satisfying z" = a? How many such z can you find? In light of (4.4) the
solution is easy. Let a = |a]| cis «; by (4.4), z = |a]'/" cis («/n) fills the bill.

.. . 1
However this is not the only solution because z' = |a]'/" cis — (x+27) also
n

satisfies (z')" = a. In fact each of the numbers
1

4.5 la|'/* cis — («+27k), 0 < k < n—1,
n

in an nth root of a. By means of (4.4) we arrive at the following: for each
non zero number a in C there are n distinct nth roots of a; they are given by
formula (4.5).

Example
Calculate the nth roots of unity. Since 1 = cis 0, (4.5) gives these roots as

. 2 A4rm . 2n
1,cis —,cis—,...,cis — (n—1).
n n n

In particular, the cube roots of unity are

| [ :
I - . / . .
. \/2(1 +i/3) /2 (1-i/3).

Exercises

+

1. ind the sixth roots of unny.
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2. Calculate the following:

(a) the square roots of

(b) the cube roots of i

(c) the square roots of /3 +3i
3. A primitive nth root of unity is a complex number a such that
l.a,a%...,a"" " are distinct nth roots of unity. Show that if a and b are
primitive nth and mth roots of unity, respectively, then ab is a kth root of
unity for some integer k. What is the smallest value of k? What can be said
if @ and b are nonprimitive roots of unity?
4. Use the binomial equation

@+by = ¥, (Z) @B,

k=0

(Z) - k!(nn—!k)!’

and compare the real and imaginary parts of each side of de Moivre’s
formula to obtain the formulas:

n) cos" 2 sin? 6+ (2) cos" 4 fsin* —. ..

where

cos nf = cos” 60— (2

sin 7 = (’17) cos" ! esine-(’;) cos" 3 Osind O+. ..

2 .
5. Let z = cis — for an integer n > 2. Show that 1+z+...+2""' = 0.
n

6. Show that @(f) = cis 7 is a group homomorphism of the additive group
R onto the multiplicative group T = {z: |z| = 1}.

7. If z e C and Re(z")= 0 for every positive integer n, show that z is a
positive real number.

§5. Lines and half planes in the complex plane

Let L denote a straight line in C. From elementary analytic geometry,
L is determined by a point in L and a direction vector. Thus if a is any point
in L and b is its direction vector then

L={z=atth: —o <t < 0}

Since b # O this gives, for zin L,

Im <Z%") =0
-m()
()

In facf if z is such that

then
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implies that z = a-+tbh, —o0 < t < co. That is

R R

What is the locus of each of the sets
{z: Im (5;;_“) > 0} .
{z: Im(z—;—a) < 0} ?

As a first step in answering this question, observe that since b is a direction
we may assume |b| = 1. For the moment, let us consider the case where
a=0, and put Hy = {z: Im (z/b) > 0}, b =cis B. If z = r cis 8 then
z/b = rcis (§—pB). Thus, z is in H, if and only if sin (6—pB) > 0; that is, when
B < 0 < m+pB. Hence H, is the half plane lying to the left of the line L if

,,\\\\\\\\\\\\\\ A

we are “walking along L in the direction of 5.” If we put

wen()-

then it i.s easy to see that H, = a+H, = {a+w: we Hy}; that is, H, is the
translation of H, by a. Hence, H, is the half plane lying to the left of L.

Similarly,
K, = {z: Im (%’) < 0}

is the half plane on the right of L.

Exercise

Lo Let € be the circle fz: |z-¢]  rir -0ileta - c+r¢s « and put
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= e ()

where b = cis B. Find necessary and sufficient conditions in terms of § that
L, be tangent to C at a.

§6. The extended plane and its spherical representation

Often in complex analysis we will be concerned with functions that be-
come infinite as the variable approaches a given point. To discuss this situa-
tion we introduce the extended plane which is CU {w} = C,. We also
wish to introduce a distance function on C, in order to discuss continuity
properties of functions assuming the value infinity. To accomplish this
and to give a concrete picture of C, we represent C, as the unit sphere
in R3,

S = {(x, X2, x3) e R*: X2+xi+x; =1}

Let N = (0, 0, 1); thatis, N is the north pole on S. Also, identify C with
{(x1, X2, 0): Xy, X3 € R} so that C cuts S along the equator. Now for each
point z in C consider the straght line in R* through z and N. This intersects

the sphere in exactly one point Z # N. If |z] > 1 then Z is in the northern
hemisphere and if |z| < 1 then Z is in the southern hemisphere; also, for
|z| = 1, Z = z. What happens to Z as |z| > o0? Clearly Z approaches N;
hence, we identify N and the point oo in C. Thus Cq is represented as
the sphere S.

Let us explore this representation. Put z = x+iy and let Z = (xy, X2, X3)
be the corresponding point on S. We will find equations expressing Xy, Xz,
and x, in terms of x and y. The line in R? through z and N is given by
{N+(1 =Nz —0 < I < w}, or by

6.1 (1 =Nv (1=ny. N =0 < 1S 0

Hence, we can find the coordinates of Zf we can find the value of £ at
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which this line intersects S. If ¢ is this value then

1 = (1=8)2x2+(1—t)%y* + 12
= (1-0)*|z]*+1*
From which we get
1-12 = (1-0)?%z)%
Since t # 1 (z # o0) we arrive at
_lP-1

TP+l

t
Thus

2x 2y 21

6.2 X, = s Xy = —x——— =
TP T R B T P

But this gives

z+7Z —i(z—12) |z|*—1
S pE e Xy=

6.3 X, =
: |zP+1 lZP+1

|z +1

If the poin.t Z is given (Z # N) and we wish to find z then by setting
t = x3 and using (6.1), we arrive at

6.4 5 = Xy +ix;
1_x3

Now let us define a distance function between points in the extended
plane in the following manner: for z, z’ in C,, define the distance from z to 2’
d(z, z'), to be the distance between the corresponding points Z and Z' in R”‘,
If Z = (x;, x5, x3) and Z' = (x{, x3, x3) then .

6.5 d(z, 2') = [(x = x{)? + (xp = x3)* +(x3—x})*]
Using the fact that Z and Z’ are on S, (6.5) gives

6.6 [d(z, 2)]* = 2—2(x x|+ XX} + X 3X3)

By using equation (6.3) we get

2|z—2'|
[+ A+

6.7 d(z,z") = (z,z' € C)

In a similar manner we get for z in C

2
6.8 diz, o) - - - -
) (1+]z]H?

This cprrespondence between points of 8 and €, is called the stercographic
projection.
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Exercises

1. Give the details in the derivation of (6.7) and (6.8).

2. For each of the following points in C, give the corresponding point of
S:0, 1+, 3+2i.

3. Which subsets of S correspond to the real and imaginary axes in C.

4. Let A be a circle lying in S. Then there is a unique plane P in R® such
that P N S = A. Recall from analytic geometry that

P = {(xq, X3, X3): X1 By +x2B2+x3B3 = I}

where (8;, B, B3) is a vector orthogonal to P and / is some real number.
It can be assumed that f2+83+8% = 1. Use this information to show that
if A contains the point N then its projection on C is a straight line. Otherwise,
A projects onto a circle in C.

5. Let Z and Z’ be points on S corresponding to z and z’ respectively. Let
W be the point on S corresponding to z+2z'. Find the coordinates of W in
terms of the coordinates of Z and Z’.

Chapter 11

Metric Spaces and the Topology of C

§1. Definition and examples of metric spaces

A metric space is a pair (X, d) where X is a set and d is a function from
X x X into R, called a distance function or metric, which satisfies the following
conditions for x, y, and z in X:

dix,y) = 0
dix,y) =0ifandonlyif x = y
d(x, y) = d(y, x) (symmetry)
d(x, z) < d(x,y)+d(p, ) (triangle inequality)
If x and r > 0 are fixed then define
CB(x;r) = {yeX: dx,y) <r}
B(x;ry = {yeX: d(x,y) <1}

B(x; r) and B(x; r) are called the open and closed balls, respectively, with
center x and radius r.

Examples

1.1 Let X = R or C and define d(z, w) = |z—w|. This makes both (R, d)
and (C, d) metric spaces. In fact, (C, d) will be the example of principal
interest to us. If the reader has never encountered the concept of a metric
space before this, he should continually keep (C, d) in mind during the study
of this chapter.

1.2 Let (X, d) be a metric space and let ¥ < X; then (Y, d) is also a metric
space.

1.3 Let X = C and define d(x+iy, a+ib) = |x—a|+|y—>b|. Then (C, d) is
a metric space.

1.4 Let X = C and define d(x+iy, a+ib) = max {{x—al, |y—>b[}.

1.5 Let X be any set and define d(x,y) = 0if x = yand d(x,y) = 1 if x # y.
To show that the function d satisfies the triangle inequality one merely
considers all possibilities of equality among x, y, and z. Notice here that
B(x; €) consists only of the point x if ¢ < 1 and B(x; ¢) = X if € > 1. This
metric space docs not appear in the study of analytic function theory.

1.6 Let X = R" and for x = (v ... ) ¥ = (V... ), in R" define

o !
: dwy) | Y (\'r)u)’]
j=1



