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ON SOME TRANSFORMS OF TRIGONOMETRIC SERIES

F. M. BERISHA AND M. H. FILIPOVIĆ

Abstract. We give a transform of convergent trigonometric series into equiv-

alent convergent series and sufficient conditions for the transformed series to
converge faster than the original one.

1. Introduction

Let
∞∑
n=1

an cos(αn+ β)x (1)

be a convergent real or complex trigonometric series. A method of accelerating the
convergence of (1) is given in [5]. It consists of as follows:

Let r 6= 1 be a real or complex number and ∆k
r a linear operator defined by

∆r(an) = an+1 − ran
∆k+1
r (an) = ∆r(∆

k
r (an)) (k = 1, 2, . . . ).

If limn→∞
an+1

an
= r, limn→∞

∆k
r (an+1)

∆k
r (an)

= r (k = 1, 2, . . . , p), then

∞∑
n=1

an cos(αn+ β)x =
a1C

1
r (0)

1− 2r cosαx+ r2
+

p−1∑
k=1

∆k
r (a1)Ck+1

r (0)

(1− 2r cosαx+ r2)k+1

+
1

(1− 2r cosαx+ r2)p

∞∑
n=1

∆p
r(an)∆p

r cos(αn+ β)x, (2)

where are Ckr (n) = ∆k
r cos(αn+ β)x (n = 0, 1, 2, . . . ).

A generalisation for number series is given in [3] and for power series in [4]. More
detailed aproach on these issues is given in [2]. In this paper we obtain a general-
isation of transform (2) for cosine and sine series and give sufficient conditions for
the modified transform to converge faster than (1).

For a sequence of real or complex numbers {an}∞n=1 and a given sequence {rn}∞n=1

we define a linear operator Lr1...rp by

Lr1(an) = an+1 − r1an

Lr1...rp+1
(an) = Lr1...rp(an+1)− rp+1Lr1...rp(an) (p = 1, 2, . . . ). (3)

In particular, for the sequence {cos(αn+ β)x}∞n=1 we put

Cr1...rp(n) = Lr1...rp cos(αn+ β)x (n = 0, 1, 2, . . . ).
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For fixed p put

E0 = 1, E1 =

p∑
i=1

ri, E2 =
∑

1≤i<j≤p

rirj ,

E3 =
∑

1≤i<j<k≤p

rirjrk, . . . , Ep = r1r2 . . . rp

(where the summation for Em is performed over all combinations of distinct indices
between 1 and p taken m at a time); we note that

Lr1...rp(an) =

p∑
k=0

(−1)kEkan+p−k. (4)

In order to establish the modified transform, we use the following

Lemma 1. Suppose that the coefficients tnm (0 ≤ m ≤ n) of the infinite triangu-
lar matrix (tnm) satisfy the following conditions:

(1) limn→∞ tnm = 0 for each fixed m;
(2) there exists a constant K such that

∑p
k=0 |tpk| ≤ K for each nonnegative p.

Let {xn}∞n=1 be a sequence and define the sequence {x′n}∞n=1 by

x′n =

n∑
k=0

tnkxk (n = 0, 1, 2, . . . ).

Then we have: if limn→∞ xn = 0, then limn→∞ x′n = 0.

The proof of the lemma is due to Toeplitz [1, p. 325].

2. A modified transform of trigonometric series

The following theorem gives a generalisation of transform (2) for trigonometric
series (1).

Theorem 1. Let (1) be a convergent real or complex trigonometric series (α 6= 0),
r1, . . . , rp (rje

±αxi 6= 1, j = 1, . . . , p) arbitrary real or complex numbers. Then

∞∑
n=1

an cos(αn+ β)x =
a1Cr1(0)

1− 2r1 cosαx+ r2
1

+

p−1∑
k=1

Lr1...rk(a1)Cr1...rk+1
(0)

(1− 2r1 cosαx+ r2
1) . . . (1− 2rk+1 cosαx+ r2

k+1)

+

( p∏
j=1

(1− 2rj cosαx+ r2
j )

)−1 ∞∑
n=1

Lr1...rp(an)Lr1...rp cos(αn+ β)x. (5)

Proof. Considering the Euler’s formula for cos(αn+ β)x we have

∞∑
n=1

an cos(αn+ β)x =
1

2

∞∑
n=1

ane
(αn+β)xi +

1

2

∞∑
n=1

ane
−(αn+β)xi.

Let f1(x) =
∑∞
n=1 ane

(αn+β)xi, f2(x) =
∑∞
n=1 ane

−(αn+β)xi. Then

f1(x) = a1e
(α+β)xi + eαxiΦ1(x),

where Φ1(x) =
∑∞
k=1 ak+1e

(αk+β)xi. So

(1− r1e
αxi)Φ1(x) =

∞∑
k=1

(ak+1 − r1ak)e(αk+β)xi + r1a1e
(α+β)xi.
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Thus

Φ1(x) =
r1a1e

(α+β)xi

1− r1eαxi
+

1

1− r1eαxi

∞∑
k=1

(ak+1 − r1ak)e(αk+β)xi

and hence

f1(x) = a1e
(α+β)xi + eαxi

r1a1e
(α+β)xi

1− r1eαxi
+

eαxi

1− r1eαxi

∞∑
k=1

(ak+1 − r1ak)e(αk+β)xi

=
a1e

(α+β)xi

1− r1eαxi
+

eαxi

1− r1eαxi

∞∑
k=1

Lr1(ak)e(αk+β)xi. (6)

Applying a similar technique to
∑∞
k=1 Lr1(ak)e(αk+β)xi, we get

∞∑
k=1

Lr1(ak)e(αk+β)xi = Lr1(a1)e(α+β)xi + eαxiΦ2(x)

(where now Φ2(x) =
∑∞
k=1 Lr1(ak+1)e(αk+β)xi), where from using (3), we get

(1− r2e
αxi)Φ2(x) =

∞∑
k=1

(Lr1(ak+1)− r2Lr1(ak))e(αk+β)xi + r2Lr1(a1)e(α+β)xi

=

∞∑
k=1

Lr1r2(ak)e(αk+β)xi + r2Lr1(a1)e(α+β)xi.

Hence

∞∑
k=1

Lr1(ak)e(αk+β)xi = Lr1(a1)e(α+β)xi + eαxi
r2e

(α+β)xiLr1(a1)

1− r2eαxi

+
eαxi

1− r2eαxi

∞∑
k=1

Lr1r2(ak)e(αk+β)xi.

Thus, using (6), we obtain

f1(x) =
a1e

(α+β)xi

1− r1eαxi
+

Lr1(a1)e(2α+β)xi

(1− r1eαxi)(1− r2eαxi)

+
e2αxi

(1− r1eαxi)(1− r2eαxi)

∞∑
k=1

Lr1r2(ak)e(αk+β)xi. (7)

Repeating this process p times we find that

f1(x) =
a1e

(α+β)xi

1− r1eαxi
+

p−1∑
k=1

Lr1...rk(a1)
e(α(k+1)+β)xi

(1− r1eαxi) . . . (1− rk+1eαxi)
+R(1)

p (x), (8)

where

R(1)
p (x) =

1

(1− r1eαxi) . . . (1− rpeαxi)

∞∑
n=1

Lr1...rp(an)e(α(n+p)+β)xi. (9)

Notice that (6) and (7) are the p = 1 and p = 2 cases of (8), respectively. Since
f2(x) = f1(−x), we have

f2(x) =
a1e
−(α+β)xi

1− r1e−αxi
+

p−1∑
k=1

Lr1...rk(a1)
e−(α(k+1)+β)xi

(1− r1e−αxi) . . . (1− rk+1e−αxi)
+R(2)

p (x),

(8′)
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where

R(2)
p (x) =

1

(1− r1e−αxi) . . . (1− rpe−αxi)

∞∑
n=1

Lr1...rp(an)e−(α(n+p)+β)xi. (9′)

Multiplying the equations (8) and (8′) by 1
2 and then summing the two together,

using (4) for the sequence {cos(αn+ β)x}∞n=1, we obtain

∞∑
n=1

an cos(αn+ β)x =
a1Cr1(0)

1− 2r1 cosαx+ r2
1

+

p−1∑
k=1

Lr1...rk(a1)Cr1...rk+1
(0)

(1− 2r1 cosαx+ r2
1) . . . (1− 2rk+1 cosαx+ r2

k+1)
+Rp(x), (8′′)

where

Rp(x) =
1

2

(
R(1)
p (x) +R(2)

p (x)
)

=

( p∏
j=1

(1− 2rj cosαx+ r2
j )

)−1 ∞∑
n=1

Lr1...rp(an)Lr1...rp cos(αn+ β)x. (9′′)

Equalities (8′′) and (9′′) complete the proof. �

In completely analogous way we obtain the similar transform for sine series

∞∑
n=1

an sin(αn+ β)x =
a1Sr1(0)

1− 2r1 cosαx+ r2
1

+

p−1∑
k=1

Lr1...rk(a1)Sr1...rk+1
(0)

(1− 2r1 cosαx+ r2
1) . . . (1− 2rk+1 cosαx+ r2

k+1)

+

( p∏
j=1

(1− 2rj cosαx+ r2
j )

)−1 ∞∑
n=1

Lr1...rp(an)Lr1...rp sin(αn+ β)x, (10)

where Sr1...rp(n) = Lr1...rp sin(αn+ β)x (n = 0, 1, 2, . . . ).

Remark 1. If Lr1...rp(an) = 0 for some p ≥ 1 and for n sufficiently large, then (5)
and (10) transform trigonometric series into finite sums.

Remark 2. In particular, for r1 = r2 = · · · = rp = r we obtain the transform (2).

3. Accelerating convergence of trigonometric series

The following theorem gives a transform of convergent trigonometric series (1)
into an equivalent convergent series.

Theorem 2. Let (1) be a convergent series on x, π/2 ≤ |α|x ≤ 3π/2 and {rn}∞n=1

a sequence of positive real numbers such that for some real λ > 1

rn = O
(
n−λ

)
or 1/rn = O

(
n−λ

)
. (11)

Then

∞∑
n=1

an cos(αn+ β)x =
a1Cr1(0)

1− 2r1 cosαx+ r2
1

+

∞∑
k=1

Lr1...rk(a1)Cr1...rk+1
(0)

(1− 2r1 cosαx+ r2
1) . . . (1− 2rk+1 cosαx+ r2

k+1)
. (12)
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Proof. In order to prove (12) we need to show that in (8′′), limp→∞Rp(x) = 0.

Let rn(x) be the remainder of the convergent series
∑∞
n=1 ane

(αn+β)xi. Then
limn→∞ rn(x) = 0. Thus, using (4) we get

R(1)
p (x) =

( p∏
j=1

(1− rjeαxi)
)−1 ∞∑

n=1

e(α(n+p)+β)xi

p∑
k=0

(−1)kEkan+p−k

=

( p∏
j=1

(1− rjeαxi)
)−1 p∑

k=0

(−1)p−ke(p−k)xiEp−krk(x).

In the lemma of Introduction we put

tpk =

( p∏
j=1

(1− rjeαxi)
)−1

(−1)p−ke(p−k)xiEp−k (0 ≤ k ≤ p).

We have to show that the conditions of the lemma are satisfied. For each nonneg-
ative integer p we have

|tpk| =
∣∣∣∣( p∏

j=1

(1− rjeαxi)
)−1

Ep−k

∣∣∣∣
=

∣∣∣∣ ∑
1≤i1<···<ip−k≤p

( p∏
s=p−k+1

(1− riseαxi)
)−1 p−k∏

j=1

rij
1− rijeαxi

∣∣∣∣.
Without lost in generality we may assume that α > 0. Then π/2 ≤ αx ≤ 3π/2,
and since rj ≥ 0 (j = 1, . . . , p), we have∣∣1− rjeαxi∣∣ > 1,

∣∣rj/ (1− rjeαxi)∣∣ < 1 (j = 1, . . . , p). (13)

Hence

|tpk| ≤
∑

1≤i1<···<ip−k≤p

p−k∏
j=1

∣∣∣∣ rij
1− rijeαxi

∣∣∣∣ ≤ ( p

p− k

)
Mp−k ≤ pkMp−k,

where M = max1≤j≤p
∣∣rj/ (1− rjeαxi)∣∣ < 1. Thus limp→∞ tpk = 0, so the condi-

tion 1 of the lemma holds. Notice that

p∑
k=0

|tpk| ≤
∣∣∣∣ p∏
j=1

(1− rjeαxi)
∣∣∣∣−1 p∑

k=0

Ep−k =

∣∣∣∣ p∏
j=1

(1− rjeαxi)
∣∣∣∣−1 p∏

k=1

(1 + rk). (14)

From (11) we derive that one of the two series
∑∞
j=1 rj or

∑∞
j=1 1/rj converges, and

hence one of the two infinite products
∏∞
j=1(1 + rj) or

∏∞
j=1(1 + 1/rj) converges.

Put

K =

{∏∞
j=1(1 + rj), if

∏∞
j=1(1 + rj) converges∏∞

j=1(1 + 1/rj), if
∏∞
j=1(1 + 1/rj) converges,

using (14) and (13), we conclude that the condition 2 of the lemma is also satisfied.

Thus limp→∞R
(1)
p (x) = 0. On the other hand, since∣∣1− rjeαxi∣∣ =

∣∣1− rje−αxi∣∣ (j = 1, 2, . . . ),

the inequalities (13) hold true if we replace x by −x. This however, based on (9)

and (9′), means that limp→∞R
(2)
p (x) = 0. Hence, using (9′′), limp→∞Rp(x) = 0.

Now (12) follows from (8′′). �
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Obviously, the result of Theorem 2 can be applied for transform (10) of sine
series. The obtained transform, analogous with (12), is

∞∑
n=1

an sin(αn+ β)x =
a1Sr1(0)

1− 2r1 cosαx+ r2
1

+

∞∑
k=1

Lr1...rk(a1)Sr1...rk+1
(0)

(1− 2r1 cosαx+ r2
1) . . . (1− 2rk+1 cosαx+ r2

k+1)
. (15)

Remark 3. Let rj > 0 (j = 1, 2, . . . ) and π/2 ≤ |α|x ≤ 3π/2. Suppose for p =

1, 2, . . . that Lr1...rp(an) 6= 0 for n sufficiently large and that limn→∞
Lr1...rp (an+1)

Lr1...rp (an)

exists. Since, according to (3),

Lr1(an)

an
=
an+1

an
− r1

Lr1...rp+1
(an)

Lr1...rp(an)
=
Lr1...rp(an+1)

Lr1...rp(an)
− rp+1 (p = 1, 2, . . . ),

(16)

if we require the additional condition that the sequence {rn}∞n=1 is chosen so that

r1 = lim
n→∞

an+1

an
, rp+1 = lim

n→∞

Lr1...rp(an+1)

Lr1...rp(an)
(p = 1, 2, . . . ),

then the sequences (16) are null-sequences. Whence

lim
n→∞

Lr1...rp(an)

an
= lim
n→∞

Lr1(an)

an

Lr1r2(an)

Lr1(an)
. . .

Lr1...rp(an)

Lr1...rp−1(an)
= 0 (p = 1, 2, . . . ).

Therefore, according to (8′′), (9′′), (9), (9′) and (13), we conclude that the series on
the right-hand side of (5) and (10) converge faster than the ones on the left-hand
side.

If we require that the sequence {rn}∞n=1 from Remark 3 satisfies the condi-
tion (11), then the right-hand sides of (12) and (15) converge faster than the
left-hand sides.

Example 1. Let an = 1/(an + bn) (0 < a < b). Then

r1 = lim
n→∞

an+1

an
=

1

b
, rp+1 = lim

n→∞

Lr1...rp(an+1)

Lr1...rp(an)
=

ap

bp+1
(p = 1, 2, . . . ).

Obviously, the sequence {rn}∞n=1 satisfies the condition (11) of Theorem 2. In
particular, put a = 2, b = 3, α = 1, β = 0, x = 3π/4; then in order to calculate the
approximate sum of the number series

∑∞
n=1

1
2n+3n cos 3nπ

4 with an error not greater

than 10−6 we must compute the sum of first 12 terms. Applying the transform (5)
of Theorem 1, the same accuracy is obtained by computing the sum of first 7 terms
for p = 1, 4 terms for p = 2, and 2 terms for p = 3.
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Terezë 5, 10000 Prishtinë, Kosovo
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