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ON APPROXIMATIONS BY TRIGONOMETRIC POLYNOMIALS

OF CLASSES OF FUNCTIONS DEFINED BY MODULI OF

SMOOTHNESS

NIMETE SH. BERISHA, FATON M. BERISHA, MIKHAIL K. POTAPOV,

AND MARJAN DEMA

Abstract. In this paper, we give a characterization of Nikol’skĭı-Besov type

classes of functions, given by integral representations of moduli of smoothness,
in terms of series over the moduli of smoothness. Also, necessary and sufficient

conditions in terms of monotone or lacunary Fourier coefficients for a function

to belong to a such a class are given. In order to prove our results, we make
use of certain recent reverse Copson- and Leindler-type inequalities.

1. Introduction

Let 1 f ∈ Lp[0, 2π], 1 < p < ∞, be a 2π-periodic function. We say that the
function f has monotone Fourier coefficients if it has a cosine Fourier series with

f(x) ∼
∞∑
n=0

an cosnx, an ↓ 0.

We say that the function f has lacunary Fourier coefficients if

f(x) ∼
∞∑
ν=1

λν cos νx,

where

λν =

{
aµ ≥ 0 for ν = 2µ,

0 for ν 6= 2µ,

that is

f(x) ∼
∞∑
µ=0

aµ cos 2µx, aµ ≥ 0.

By ωk(f, t)p we denote the modulus of smoothness of order k in Lp metrics of a
function f ∈ Lp, 1 < p <∞:

ωk(f, t)p = sup
|h|≤t

‖∆k
hf‖p,

where

∆k
hf(x) =

k∑
ν=0

(−1)k−ν
(
k

ν

)
f(x+ νh)

is the k-th order shift operator.
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By En(f)p we denote the best approximation in Lp metrics of a function f ∈ Lp,
1 < p <∞, by means of trigonometric polynomials whose degree is not greater than
n− 1, i.e.

En(f)p = inf
Tn−1

‖f − Tn−1‖p,

where Tn−1 =
∑n−1
ν=0(αν cos νx+ βν sin νx), αν and βν are arbitrary real numbers.

We say that a 2π-periodic function f belongs to the Nikol’skĭı-Besov classN(p, θ, r, λ, ϕ),
1 < p <∞, if the following conditions are satisfied

(1) f ∈ Lp[0, 2π];
(2) Numbers θ, r, λ belong to the interval (0,∞), and k is an integer satisfying

k > r + λ;
(3) The following inequality holds true(∫ δ

0

t−rθ−1ωk(f, t)θp dt+ δλθ
∫ 1

δ

t−(r+λ)θ−1ωk(f, t)θp dt

)1/θ

≤ Cϕ(δ),

while the function ϕ satisfies the conditions

(4) ϕ is a non-negative continuous function on (0, 1) and ϕ 6= 0;
(5) For every δ1, δ2 such that 0 ≤ δ1 ≤ δ2 ≤ 1 holds ϕ(δ1) ≤ C1ϕ(δ2);
(6) For every δ such that 0 ≤ δ ≤ 1

2 holds ϕ(2δ) ≤ C2ϕ(δ),

where constants2 C, C1 and C2 do not depend on δ1, δ2 and δ.
A more detailed approach to the classes N(p, θ, r, λ, ϕ) is given in [6] and [12]

(see also [2]). In the paper, we give a characterization of N(p, θ, r, λ, ϕ) classes
of functions in terms of series over their moduli of smoothness. Then we give
the necessary and sufficient conditions in terms of monotone or lacunary Fourier
coefficients for a function f ∈ Lp[0, 2π] to belong to a class N(p, θ, r, λ, ϕ). In
the process of proving the results, we make use of certain recent reverse lp-type
inequalities [10], closely related to Copson’s and Leindler’s inequalities.

Finally, by making use of our results, we construct an example of a function ha-
ving a lacunary Fourier series, which shows that N(p, θ, r, λ, ϕ) classes are properly
embedded between the appropriate Nikol’skĭı classes and Besov classes.

2. Statement of Results

Now we formulate our results.

Theorem 2.1. A function f belongs to the class N(p, θ, r, λ, ϕ) if and only if3( ∞∑
ν=n+1

ωk

(
f,

1

ν

)θ
p

νrθ−1 + n−λθ
n∑
ν=1

ωk

(
f,

1

ν

)θ
p

ν(r+λ)θ−1
)1/θ

≤ Cϕ
(

1

n

)
, (1)

where constant C does not depend on n.

Theorem 2.2. For a function f ∈ Lp[0, 2π], 1 < p <∞, such that

f(x) ∼
∞∑
ν=1

aν cos νx, aν ↓ 0, (2)

2Without mentioning it explicitly, we will consider all the constants positive.
3Here and below we assume that the parameters θ, r, λ and k satisfy the condition 2, and the

function ϕ satisfies the conditions 4–6 of the definition of the class N(p, θ, r, λ, ϕ).
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to belong to the class N(p, θ, r, λ, ϕ) it is necessary and sufficient that its Fourier
coefficients satisfy the condition( ∞∑

ν=n+1

aθνν
rθ+θ−θ/p−1 + n−λθ

n∑
ν=1

aθνν
rθ+λθ+θ−θ/p−1

)1/θ

≤ Cϕ
(

1

n

)
,

where constant C does not depend on n.

Regarding Theorem 2.1, a very interesting open question remains its analogue
for functions with general monotone Fourier coefficients, generalized in the sense
of [13, 9].

Corollary 2.1. Put ϕ(δ) = δα, 0 < α < λ, in the definition of the class N(p, θ, r, λ, ϕ),
we obtain [6] the Nikol’skĭı class Hr+α

p . Thus Theorems 2.1 and 2.2 give the single
coefficient condition

aν ≤
C

νr+α+1− 1
p

,

for f ∈ Hr+α
p , given in [5], where the function f is given by (2).

Corollary 2.2. If ϕ(δ) ≥ C, then we obtain [6] the Besov class Bθrp . Thus Theo-
rems 2.1 and 2.2 give the necessary and sufficient condition

∞∑
ν=1

aθνν
rθ+θ−θ/p−1 <∞

for f ∈ Bθrp , given in [11], where the function f is given by (2).

Theorem 2.3. For a function f ∈ Lp, 1 < p <∞, such that

f(x) ∼
∞∑
ν=1

λν cos νx, (3)

and

λν =

{
aµ ≥ 0 for ν = 2µ,

0 for ν 6= 2µ,

to belong to the class N(p, θ, r, λ, ϕ) it is necessary and sufficient that its Fourier
coefficients satisfy the condition4( ∞∑

ν=m+1

λθνν
rθ +m−λθ

m∑
ν=1

λθνν
(r+λ)θ

)1/θ

≤ Cϕ
(

1

m

)
,

where constant C does not depend on m.

Corollary 2.3. Putting ϕ(δ) = δα, 0 < α < λ, in the definition of the class
N(p, θ, r, λ, ϕ), we obtain [6] the Nikol’skĭı class Hr+α

p . Thus Theorem 2.3 gives
the single coefficient condition

aµ ≤ C2−µ(r+α)

for f ∈ Hr+α
p , where the function f is given by (3).

Corollary 2.4. If ϕ(δ) = C, then we obtain [6] the Besov class Bθrp . Thus Theo-
rem 2.3 gives the necessary and sufficient condition

∞∑
µ=1

aθµ2µrθ <∞

for f ∈ Bθrp , given in [11], where the function f is given by (3).

4Here and below we assume that the parameters θ, r, λ and k satisfy the condition 2, and the
function ϕ satisfies the conditions 4–6.
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Example 2.1. Let

f(x) ∼
∞∑
µ=0

aµ cos 2µx,

where are

aµ = 2−µr(µ+ 1)−(α+1/θ), α > 0.

Then, we have

C1n
−α ≤

( ∞∑
µ=n+1

aθµ2µrθ
)1/θ

≤ C2n
−α

and

C3n
−(α+1/θ) ≤

(
2−nλθ

n∑
µ=0

aθµ2µ(r+λ)θ
)1/θ

≤ C4n
−(α+1/θ),

thus implying (see the proof of Theorem 2.3) f ∈ N(p, θ, r, λ, ϕ) for ϕ(δ) =
(
ln 1

δ

)−α
.

This means that classes N are classes of embedding between classes H and B.

3. Auxiliary statements

In order to establish our results, we use the following lemmas.

Lemma 3.1. Let 0 < α < β <∞ and aν ≥ 0. The following inequality holds true( n∑
ν=1

aβν

)1/β

≤
( n∑
ν=1

aαν

)1/α

.

Proof of the lemma is due to Jensen [4, p. 43].

Lemma 3.2. Let {aν}∞ν=1 be a sequence of non-negative numbers, α > 0, λ a real
number, m and n positive integers such that m < n. Then

(1) for 1 ≤ p <∞ the following equalities hold

n∑
µ=m

µα−1
( n∑
ν=µ

aνν
λ

)p
≤ C1

n∑
µ=m

µα−1(aµµ
λ+1)p,

n∑
µ=m

µ−α−1
( µ∑
ν=m

aνν
λ

)p
≤ C2

n∑
µ=m

µ−α−1(aµµ
λ+1)p;

(2) for 0 < p ≤ 1 the following equalities hold

n∑
µ=m

µα−1
( n∑
ν=µ

aνν
λ

)p
≥ C3

n∑
µ=m

µα−1(aµµ
λ+1)p,

n∑
µ=m

µ−α−1
( µ∑
ν=m

aνν
λ

)p
≥ C4

n∑
µ=m

µ−α−1(aµµ
λ+1)p,

where constants C1, C2, C3 and C4 depend only on numbers α, λ and p, and do
not depend on m, n as well as on the sequence {aν}∞ν=1.

Proof of the lemma is given in [4, p. 308].
Lemmas 3.3 and 3.4 that follow state certain lp-type inequalities which are rever-

sed to the ones given in Lemma 3.2 and closely related to Copson’s and Leindler’s
inequalities (see, e.g., [3, 7, 8, 14]).

We write aν ↓ if {aν}∞ν=1 is a monotone-decreasing sequence of non-negative
numbers, i.e. if aν ≥ aν+1 ≥ 0 (ν = 1, 2, . . . ).

Lemma 3.3. Let aν ↓, α > 0, λ a real number, m and n positive integers. Then
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(1) for 1 ≤ p <∞, n ≥ 16m the following equalities hold

n∑
µ=m

µα−1
( n∑
ν=µ

aνν
λ

)p
≥ C1

n∑
µ=8m

µα−1(aµµ
λ+1)p,

n∑
µ=m

µ−α−1
( µ∑
ν=m

aνν
λ

)p
≥ C2

n∑
µ=4m

µ−α−1(aµµ
λ+1)p;

(2) for 0 < p ≤ 1, n ≥ 4m the following equalities hold

n∑
µ=4m

µα−1
( n∑
ν=µ

aνν
λ

)p
≤ C3

n∑
µ=m

µα−1(aµµ
λ+1)p,

n∑
µ=4m

µ−α−1
( µ∑
ν=4m

aνν
λ

)p
≤ C4

n∑
µ=m

µ−α−1(aµµ
λ+1)p,

where constants C1, C2, C3 and C4 depend only on numbers α, λ and p, and do
not depend on m, n as well as on the sequence {aν}∞ν=1.

Proof of the lemma is given in [10].

Lemma 3.4. Let aν ↓, α > 0, λ a real number, m and n positive integers. For
0 < p <∞ the following inequalities hold

C1

n∑
µ=1

µα−1(aµµ
λ+1)p ≤

n∑
µ=1

µα−1
( n∑
ν=µ

aνν
λ

)p
≤ C2

n∑
µ=1

µα−1(aµµ
λ+1)p,

C3

n∑
µ=1

µ−α−1(aµµ
λ+1)p ≤

n∑
µ=1

µ−α−1
( µ∑
ν=1

aνν
λ

)p
≤ C4

n∑
µ=1

µ−α−1(aµµ
λ+1)p,

where constants C1, C2, C3 and C4 depend only on numbers α, λ and p, and do
not depend on m, n as well as on the sequence {aν}∞ν=1.

The lemma is also proved in [10].

Lemma 3.5. Let f ∈ Lp[0, 2π] for a fixed p from the interval 1 < p <∞ and let

f(x) ∼
∞∑
ν=1

aν cos νx, aν ↓ 0.

The following inequalities hold

C1
1

nk

( n∑
ν=1

apνν
(k+1)p−2

)1/p

+

( ∞∑
ν=n+1

apνν
p−2
)1/p

≤ ωk
(
f,

1

n

)
p

≤ C2
1

nk

( n∑
ν=1

apνν
(k+1)p−2

)1/p

+

( ∞∑
ν=n+1

apνν
p−2
)1/p

,

where constants C1 and C2 do not depend on n and f .

The lemma is proved in [11].

Lemma 3.6. A function f belongs to the class N(p, θ, r, λ, ϕ) if and only if( ∞∑
µ=n+1

2µrθE2µ(f)θp + 2−nλθ
n∑
µ=0

2µ(r+λ)θE2µ(f)θp

)1/θ

≤ Cϕ
(

1

2n

)
,

where constant C does not depend on n.

Proof of the lemma is given in [6].
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Lemma 3.7. Let f ∈ Lp, 1 < p <∞, and

f(x) ∼
∞∑
µ=0

aµ cos 2µx, aµ ≥ 0.

The following inequalities hold

C1

( ∞∑
µ=0

a2µ

)1/2

≤ ‖f‖p ≤ C2

( ∞∑
µ=0

a2µ

)1/2

,

where constants C2 and C1 do not depend on f .

Proof of the lemma is due to Zygmund [16, vol. I, p. 326].

Corollary 3.1. Lemma 3.7 yields the following estimate

C1

( ∞∑
µ=n

a2µ

)1/2

≤ E2n(f)p ≤ C2

( ∞∑
µ=n

a2µ

)1/2

,

where constants C2 and C1 do not depend on n and f .

4. Proofs

Now we prove our results.

Proof of Theorem 2.1. Put

I1 =

∫ 1
n+1

0

t−rθ−1ωk(f, t)θp dt, I2 =

∫ 1

1
n+1

t−(r+λ)θ−1ωk(f, t)θp dt.

We have [4, p. 55]

I1 =

∫ 1
n+1

0

t−rθ−1ωk(f, t)θp dt =

∞∑
ν=n+1

∫ 1
ν

1
ν+1

t−rθ−1ωk(f, t)θp dt

≤
∞∑

ν=n+1

ωk

(
f,

1

ν

)θ
p

∫ 1
ν

1
ν+1

t−rθ−1 dt ≤ C1

∞∑
ν=n+1

ωk

(
f,

1

ν

)θ
p

νrθ−1

and, taking into account properties of modulus of smoothness [15],

I1 ≥
∞∑

ν=n+1

ωk

(
f,

1

ν + 1

)θ
p

∫ 1
ν

1
ν+1

t−rθ−1 dt ≥ C2

∞∑
ν=n+1

ωk

(
f,

1

ν

)θ
p

νrθ−1.

In an analogous way we estimate

I2 ≤
n∑
ν=1

ωk

(
f,

1

ν

)θ
p

∫ 1
ν

1
ν+1

t−(r+λ)θ−1 dt ≤ C3

n∑
ν=1

ωk

(
f,

1

ν

)θ
p

ν(r+λ)θ−1

and

I2 ≥
n∑
ν=1

ωk

(
f,

1

ν + 1

)θ
p

∫ 1
ν

1
ν+1

t−(r+λ)θ−1 dt ≥ C4

n∑
ν=1

ωk

(
f,

1

ν

)θ
p

ν(r+λ)θ−1.

Let f ∈ N(p, θ, r, λ, ϕ). For a positive integer n we put δ = 1
n+1 . Then we have

Iθ = I1 + δλθI2

≥ C5

( ∞∑
ν=n+1

ωk

(
f,

1

ν

)θ
p

νrθ−1 + n−λθ
n∑
ν=1

ωk

(
f,

1

ν

)θ
p

ν(r+λ)θ−1
)
.
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Hence we obtain

J =

( ∞∑
ν=n+1

ωk

(
f,

1

ν

)θ
p

νrθ−1 + n−λθ
n∑
ν=1

ωk

(
f,

1

ν

)θ
p

ν(r+λ)θ−1
)1/θ

≤ C6I ≤ C7ϕ(δ) = C7ϕ

(
1

n+ 1

)
≤ C8ϕ

(
1

n

)
,

which proves inequality (1).
Now we suppose that inequality (1) holds. For δ ∈ (0, 1) we choose the positive

integer n satisfying 1
n+1 < δ ≤ 1

n . Then, taking into consideration the estimates
from above for I1 and I2 we have

Iθ =

∫ 1
n+1

0

t−rθ−1ωk(f, t)θp dt+

∫ δ

1
n+1

t−rθ−1ωk(f, t)θp dt

+ δλθ
∫ 1

δ

t−(r+λ)θ−1ωk(f, t)θp dt ≤ I1 + δλθI2

≤ C9

( ∞∑
ν=n+1

ωk

(
f,

1

ν

)θ
p

νrθ−1 + n−λθ
n∑
ν=1

ωk

(
f,

1

ν

)θ
p

ν(r+λ)θ−1
)
.

Hence

I ≤ C10J ≤ C11ϕ

(
1

n

)
≤ C12ϕ

(
1

2n

)
≤ C13ϕ(δ),

implying f ∈ N(p, θ, r, λ, ϕ).
Proof of Theorem 2.1 is completed. �

Proof of Theorem 2.2. Theorem 2.1 implies that the condition f ∈ N(p, θ, r, λ, ϕ)
is equivalent to the condition

∞∑
ν=n+1

ωk

(
f,

1

ν

)θ
p

νrθ−1 + n−λθ
n∑
ν=1

ωk

(
f,

1

ν

)θ
p

ν(r+λ)θ−1 ≤ C1ϕ

(
1

n

)θ
,

where constant C1 does not depend on n. Lemma 3.5 yields that the last estimate
is equivalent to the estimate

∞∑
ν=n+1

ν(r−k)θ−1
( ν∑
µ=1

apµµ
(k+1)p−2

)θ/p
+

∞∑
ν=n+1

νrθ−1
( ∞∑
µ=ν

apµµ
p−2
)θ/p

+ n−λθ
n∑
ν=1

ν(r+λ−k)θ−1
( ν∑
µ=1

apµµ
(k+1)p−2

)θ/p

+ n−λθ
n∑
ν=1

ν(r+λ)θ−1
( ∞∑
µ=ν

apµµ
p−2
)θ/p

≤ C2ϕ

(
1

n

)θ
,

where constant C2 does not depend on n. Hence, if we denote the terms on the
left-hand side of the inequality by J1, J2, J3 and J4 respectively, then condition
f ∈ N(p, θ, r, λ, ϕ) is equivalent to the condition

J1 + J2 + J3 + J4 ≤ C2ϕ

(
1

n

)θ
. (4)

Now we estimate the terms J1, J2, J3 and J4 from below and above by means
of expression taking part in the condition of the theorem.
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First we estimate J1 and J2 from below. We have

J1 =

∞∑
ν=n+1

ν(r−k)θ−1
( ν∑
µ=1

apµµ
(k+1)p−2

)θ/p

≥
∞∑

ν=n+1

ν−(k−r)θ−1
( ν∑
µ=n+1

apµµ
(k+1)p−2

)θ/p
.

For k − r > 0, making use of Lemmas 3.2 and 3.3 we obtain

J1 ≥ C3

∞∑
ν=4(n+1)

ν−(k−r)θ−1(apνν
(k+1)p−2ν)θ/p

= C3

∞∑
ν=4(n+1)

aθνν
rθ+θ−θ/p−1. (5)

In an analogous way, for rθ > 0 we get

J2 =

∞∑
ν=n+1

νrθ−1
( ∞∑
µ=ν

apµµ
p−2
)θ/p

≥ C4

∞∑
ν=8(n+1)

aθνν
rθ+θ−θ/p−1. (6)

We estimate the term J2 from above:

J2 ≤ C5

∞∑
ν=[n+1

4 ]

νrθ−1(apνν
p−2ν)θ/p = C5

∞∑
ν=[n+1

4 ]

aθνν
rθ+θ−θ/p−1. (7)

For J1 we have

J1 ≤ C6

( ∞∑
ν=n+1

ν−(k−r)θ−1
( ν∑
µ=n+1

apµµ
(k+1)p−2

)θ/p

+

∞∑
ν=n+1

ν−(k−r)θ−1
( n∑
µ=1

apµµ
(k+1)p−2

)θ/p)
,

and applying once more Lemmas 3.2 and 3.3 we obtain

J1 ≤ C7

∞∑
ν=[n+1

4 ]

aθνν
rθ+θ−θ/p−1 + n−(k−r)θ

( n∑
µ=1

apµµ
(k+1)p−2

)θ/p
. (8)

Put

I1 = n−(k−r)θ
n∑
µ=1

apµµ
(k+1)p−2.

Then for

I2 = I1n
(k−r)θ,

taking into account that (k + 1)p− 2 ≥ 0 and aν ↓ 0 we get

I2 =

n∑
µ=1

apµµ
(k+1)p−2 ≤

[n2 ]∑
µ=1

apµµ
(k+1)p−2 + ap

[n2 ]+1

n∑
µ=[n2 ]+1

µ(k+1)p−2

≤
[n2 ]∑
µ=1

apµµ
(k+1)p−2 + C8n

(k+1)p−1ap
[n2 ]+1

≤ C9

[n2 ]∑
µ=1

apµµ
(k+1)p−2.
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Since k − r − λ > 0, we have

I
θ/p
1 ≤ C10n

−(k−r)θ
( [n2 ]∑
µ=1

apµµ
(k+1)p−2

)θ/p

≤ C11n
−λθ

n∑
ν=[n2 ]

ν−(k−r−λ)θ−1
( ν∑
µ=1

apµµ
(k+1)p−2

)θ/p

≤ C11n
−λθ

n∑
ν=1

ν−(k−r−λ)θ−1
( ν∑
µ=1

apµµ
(k+1)p−2

)θ/p
.

Applying Lemma 3.4 we obtain

I
θ/p
1 ≤ C12n

−λθ
n∑
ν=1

ν−(k−r−λ)θ−1(apνν
(k+1)p−2ν)θ/p

= C12n
−λθ

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1.

From (8) it follows that

J1 ≤ C13

( ∞∑
ν=[n+1

4 ]

aθνν
rθ+θ−θ/p−1 + n−λθ

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1

)
. (9)

This way, inequalities (5), (6), (7) and (9) yield

C14

∞∑
ν=8(n+1)

aθνν
rθ+θ−θ/p−1 ≤ J1 + J2

≤ C15

( ∞∑
ν=[n+1

4 ]

aθνν
rθ+θ−θ/p−1 + n−λθ

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1

)
. (10)

Now we estimate J3 and J4. Put

A1 = nλθJ3 =
n∑
ν=1

ν(r+λ−k)θ−1
( ν∑
µ=1

apµµ
(k+1)p−2

)θ/p
and

A2 = nλθJ4 =

n∑
ν=1

ν(r+λ)θ−1
( ∞∑
µ=ν

apµµ
p−2
)θ/p

,

applying Lemma 3.4 for r + λ− k < 0 we get

A1 ≤ C16

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1. (11)

We estimate A2 in an analogous way:

A2 ≤ C17

( n∑
ν=1

ν(r+λ)θ−1
( n∑
µ=ν

apµµ
p−2
)θ/p

+

n∑
ν=1

ν(r+λ)θ−1
( ∞∑
µ=n+1

apµµ
p−2
)θ/p)

≤ C18

( n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1 + n(r+λ)θ

( ∞∑
µ=n+1

apµµ
p−2
)θ/p)

. (12)
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We estimate the series

B =

( ∞∑
µ=n+1

apµµ
p−2
)θ/p

.

First let θ
p > 1. Applying Hölder inequality we have

∞∑
µ=n+1

apµµ
p−2 ≤

( ∞∑
µ=n+1

(apµµ
p−1+rp−p/θ)θ/p

)p/θ

×
( ∞∑
µ=n+1

µ−(rp−p/θ+1)θ/(θ−p)
)(θ−p)/θ

.

Since
(
rp− p

θ + 1
)

θ
θ−p = rp θ

θ−p + 1 > 1, we get

∞∑
µ=n+1

apµµ
p−2 ≤ C19n

−rp
( ∞∑
µ=n+1

aθµµ
θ−θ/p+rθ−1

)p/θ
.

So, for θ
p > 1 we have proved that

B ≤ C20n
−rθ

∞∑
µ=n+1

aθµµ
rθ+θ−θ/p−1.

Let θ
p ≤ 1. For given n we choose the positive integer N such that 2N ≤ n+ 1 <

2N+1. Then we have

B ≤
( ∞∑
µ=2N

apµµ
p−2
)θ/p

≤
( ∞∑
ν=N

ap2ν

2ν+1−1∑
µ=2ν

µp−2
)θ/p

≤ C21

( ∞∑
ν=N

ap2ν2ν(p−1)
)θ/p

.

Making use of Lemma 3.1 we obtain

B ≤ C21

∞∑
ν=N

aθ2ν2ν(θ−θ/p) ≤ C22

∞∑
ν=N

2ν−1∑
µ=2ν−1

aθµµ
θ−θ/p−1

= C22

∞∑
ν=2N−1

aθνν
θ−θ/p−1 ≤ C22

∞∑
ν=[n+1

4 ]

aθνν
θ−θ/p−1

≤ C22

[
n+ 1

4

]−rθ ∞∑
ν=[n+1

4 ]

aθνν
rθ+θ−θ/p−1.

Since for n ≥ 3 holds
[
n+1
4

]
≥ n

12 , we get

B ≤ C23n
−rθ

∞∑
ν=[n+1

4 ]

aθνν
rθ+θ−θ/p−1.

This way, for 0 < θ
p <∞ we proved that

B ≤ C24n
−rθ

∞∑
ν=[n+1

4 ]

aθνν
rθ+θ−θ/p−1.
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Hence (12) yields

A2 ≤ C25

( n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1 + nλθ

∞∑
ν=[n+1

4 ]

aθνν
rθ+θ−θ/p−1

)
.

Now, from (11) it follows that

J3 + J4 = n−λθ(A1 +A2)

≤ C26

(
n−λθ

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1 +

∞∑
ν=[n+1

4 ]

aθνν
rθ+θ−θ/p−1

)
. (13)

Further, we estimate the series

A3 =

∞∑
ν=[n+1

4 ]

aθνν
rθ+θ−θ/p−1 = A4 +

∞∑
ν=n+1

aθνν
rθ+θ−θ/p−1,

where is

A4 =
n∑

ν=[n+1
4 ]

aθνν
rθ+θ−θ/p−1 ≤ C27a

θ

[n+1
4 ]n

rθ+θ−θ/p

≤ C28n
−λθ

[n+1
4 ]∑

ν=1

aθνν
(r+λ)θ+θ−θ/p−1 ≤ C28n

−λθ
n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1.

Hence

A3 ≤ C29

(
n−λθ

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1 +

∞∑
ν=n+1

aθνν
rθ+θ−θ/p−1

)
. (14)

Making use of (14) and (13) we have

J3 + J4 ≤ C30

(
n−λθ

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1 +

∞∑
ν=n+1

aθνν
rθ+θ−θ/p−1

)
.

Hence, applying (14) in (10) we obtain

J1 + J2 + J3 + J4

≤ C31

(
n−λθ

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1 +

∞∑
ν=n+1

aθνν
rθ+θ−θ/p−1

)
. (15)

Now we estimate A1 and A2 from below. Making use of Lemma 3.4 we get

A1 ≥ C32

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1,

and in an analogous way

A2 ≥
n∑
ν=1

ν(r+λ)θ−1
( n∑
µ=ν

apµµ
p−2
)θ/p

≥ C33

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1.

Hence

A1 +A2 ≥ C34

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1.

This way the following inequality holds

J3 + J4 ≥ C35n
−λθ

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1.
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From (10) it follows that

J1 + J2 + J3 + J4

≥ C36

( ∞∑
ν=8(n+1)

aθνν
rθ+θ−θ/p−1 + n−λθ

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1

)
. (16)

Since

ν=8(n+1)−1∑
ν=n+1

aθνν
rθ+θ−θ/p−1 ≤ C37a

θ
nn

rθ+θ−θ/p

≤ C38n
−λθ

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1

holds, we have

∞∑
ν=n+1

aθνν
rθ+θ−θ/p−1 + n−λθ

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1

≤ C39

( ∞∑
ν=8(n+1)

aθνν
rθ+θ−θ/p−1 + n−λθ

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1

)
.

Now, estimates (16) and (15) imply

C40

( ∞∑
ν=n+1

aθνν
rθ+θ−θ/p−1 + n−λθ

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1

)
≤ J1 + J2 + J3 + J4

≤ C41

( ∞∑
ν=n+1

aθνν
rθ+θ−θ/p−1 + n−λθ

n∑
ν=1

aθνν
(r+λ)θ+θ−θ/p−1

)
.

This way we proved that condition (1) is equivalent to the condition of the
theorem. Since condition (1) is equivalent to the condition f ∈ N(p, θ, r, λ, ϕ),
proof of Theorem 2.2 is completed. �

Proof of Theorem 2.3. Considering Lemma 3.6, condition f ∈ N(p, θ, r, λ, ϕ) is
equivalent to the condition

∞∑
ν=n+1

2νrθE2ν (f)θp + 2−nλθ
n∑
ν=0

2ν(r+λ)θE2ν (f)θp ≤ C42ϕ

(
1

2n

)θ
,

where constant C does not depend on n. Corollary 3.1 yields that the last estimate
is equivalent to the estimate

∞∑
ν=n+1

2νrθ
( ∞∑
µ=ν

a2µ

)θ/2
+ 2−nλθ

n∑
ν=0

2ν(r+λ)θ
( ∞∑
µ=ν

a2µ

)θ/2
≤ C43ϕ

(
1

2n

)θ
, (17)

where constant C43 does not depend on n.
Put

J1 =

∞∑
ν=n+1

2νrθ
( ∞∑
µ=ν

a2µ

)θ/2
, J2 = 2−nλθ

n∑
ν=0

2ν(r+λ)θ
( ∞∑
µ=ν

a2µ

)θ/2
,

we estimate J1 and J2 from below and above.
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Let 0 < θ
2 ≤ 1. Using Lemma 3.1, changing the order os summation we get

J1 ≤
∞∑

ν=n+1

2νrθ
∞∑
µ=ν

aθµ =

∞∑
µ=n+1

aθµ

µ∑
ν=n+1

2νrθ.

Therefrom, taking into consideration that rθ > 0 while computing the second sum
we obtain

J1 ≤ C44

∞∑
µ=n+1

aθµ2µrθ.

Let 1 ≤ θ
2 <∞ and 0 < ε < r. Applying Hölder inequality we have

A =

∞∑
µ=ν

a2µ ≤
( ∞∑
µ=ν

aθµ2µεθ
)2/θ( ∞∑

µ=ν

2−2µεθ
′
)1/θ′

,

where is 2
θ + 1

θ′ = 1. Computing the second sum we obtain

A ≤ C45

22εν

( ∞∑
µ=ν

aθµ2µεθ
)2/θ

.

Now we have

J1 ≤ C46

∞∑
ν=n+1

2ν(r−ε)θ
∞∑
µ=ν

aθµ2µεθ

= C46

∞∑
µ=n+1

aθµ2µεθ
µ∑

ν=n+1

2ν(r−ε)θ ≤ C47

∞∑
µ=n+1

aθµ2µrθ.

This way, for 0 < θ <∞ we have

J1 ≤ C48

∞∑
µ=n+1

aθµ2µrθ,

where constant C48 does not depend on n.
Now we estimate J1 from below.
Let 1 ≤ θ

2 <∞. Making use of Lemma 3.1 we get

J1 ≥
∞∑

ν=n+1

2νrθ
∞∑
µ=ν

aθµ =

∞∑
µ=n+1

aθµ

µ∑
ν=n+1

2νrθ.

Computing the second sum we get

J1 ≥ C49

∞∑
µ=n+1

aθµ2µrθ.

Let 0 < θ
2 ≤ 1 and ε > 0. Applying Hölder inequality we have

∞∑
µ=ν

aθµ2−µεθ ≤
( ∞∑
µ=ν

a2µ

)θ/2( ∞∑
µ=ν

2−µεθθ
′
)1/θ′

≤ C50

2νεθ

( ∞∑
µ=ν

a2µ

)θ/2
,

where is θ
2 + 1

θ′ = 1. The last estimate implies

J1 ≥ C51

∞∑
ν=n+1

2ν(r+ε)θ
∞∑
µ=ν

aθµ2−µεθ.

Changing the order of summation and then computing the second sum we obtain

J1 ≥ C51

∞∑
µ=n+1

aθµ2−µεθ
µ∑

ν=n+1

2ν(r+ε)θ ≥ C52

∞∑
µ=n+1

aθµ2µrθ,
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where constant C52 does not depend on n.
Consequently, for every 0 < θ <∞ the following estimate holds

C53

∞∑
µ=n+1

aθµ2µrθ ≤ J1 ≤ C54

∞∑
µ=n+1

aθµ2µrθ, (18)

where constants C53 and C54 do not depend on n.
Now we estimate J2. Obviously

J2 ≥ 2−nλθ
n∑
ν=0

2ν(r+λ)θ
( n∑
µ=ν

a2µ

)θ/2
.

Let 1 ≤ θ
2 < ∞. Applying Lemma 3.1, changing the order of summation, and

then computing the second sum we obtain

J2 ≥ 2−nλθ
n∑
ν=0

2ν(r+λ)θ
n∑
µ=ν

aθµ

= 2−nλθ
n∑
µ=0

aθµ

µ∑
ν=0

2ν(r+λ)θ ≥ C552−nλθ
n∑
µ=0

aθµ2µ(r+λ)θ.

Let 0 < θ
2 ≤ 1 and ε > 0. Applying Hölder inequality we get

n∑
µ=ν

aθµ2−µεθ ≤
( n∑
µ=ν

a2µ

)θ/2( n∑
µ=ν

2−µεθθ
′
)1/θ′

≤ C56

2νεθ

( n∑
µ=ν

a2µ

)θ/2
,

where is θ
2 + 1

θ′ = 1. The last estimate implies

J2 ≥ C572−nλθ
n∑
ν=0

2ν(r+λ+ε)θ
n∑
µ=ν

aθµ2−µεθ.

Changing the order of summation and computing the second sum we have

J2 ≥ C572−nλθ
n∑
µ=0

aθµ2−µεθ
µ∑
ν=0

2ν(r+λ+ε)θ ≥ C582−nλθ
n∑
µ=0

aθµ2µ(r+λ)θ.

Thus, for every 0 < θ <∞ holds

J2 ≥ C592−nλθ
n∑
µ=0

aθµ2µ(r+λ)θ. (19)

Now we estimate J2 from above. Taking into consideration that (r + λ)θ > 0,
we have

J2 ≤ C602−nλθ
n∑
ν=0

2ν(r+λ)θ

(( n∑
µ=ν

a2µ

)θ/2
+

( ∞∑
µ=n+1

a2µ

)θ/2)

≤ C61

(
2−nλθ

n∑
ν=0

2ν(r+λ)θ
( n∑
µ=ν

a2µ

)θ/2
+ 2nrθ

( ∞∑
µ=n+1

a2µ

)θ/2)
. (20)

Since

2nrθ
( ∞∑
µ=n+1

a2µ

)θ/2
≤

∞∑
µ=n+1

2νrθ
( ∞∑
µ=n+1

a2µ

)θ/2
= J1

holds and an upper bound for J1 is already found, we estimate from above the
expression

J3 =

n∑
ν=0

2ν(r+λ)θ
( n∑
µ=ν

a2µ

)θ/2
.
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Let 0 < θ
2 ≤ 1. Applying Lemma 3.1 we obtain

J3 ≤
n∑
ν=0

2ν(r+λ)θ
n∑
µ=ν

aθµ =

n∑
µ=0

aθµ

µ∑
ν=0

2ν(r+λ)θ ≤ C62

n∑
µ=0

aθµ2µ(r+λ)θ.

Let 1 ≤ θ
2 <∞ and 0 < ε < r + λ. Then applying Hölder inequality we have

n∑
µ=ν

a2µ ≤
( n∑
µ=ν

aθµ2µεθ
)2/θ( n∑

µ=ν

2−2µεθ
′
)1/θ′

,

where is 2
θ + 1

θ′ = 1. Using the last estimate we get

J3 ≤
n∑
ν=0

2ν(r+λ)θ
( ∞∑
µ=ν

2−2µεθ
′
) θ

2θ′
n∑
µ=ν

aθµ2µεθ ≤ C63

n∑
ν=0

2ν(r+λ−ε)θ
n∑
µ=ν

aθµ2µεθ.

Changing the order of summation and computing the second sum we obtain

J3 ≤ C63

n∑
µ=0

aθµ2µεθ
µ∑
ν=0

2ν(r+λ−ε)θ ≤ C64

n∑
µ=0

aθµ2µ(r+λ)θ.

Therefore, for every 0 < θ <∞ the following estimate holds

J3 ≤ C65

n∑
µ=0

aθµ2µ(r+λ)θ.

Now making use of inequalities (20) and (18) we have

J2 ≤ C66

(
2−nλθ

n∑
µ=0

aθµ2µ(r+λ)θ +

∞∑
µ=n+1

aθµ2µrθ
)
.

This way, inequalities (18), (19) and the last inequality imply the estimate

C67

( ∞∑
µ=n+1

aθµ2µrθ + 2−nλθ
n∑
µ=0

aθµ2µ(r+λ)θ
)
≤ J1 + J2

≤ C68

( ∞∑
µ=n+1

aθµ2µrθ + 2−nλθ
n∑
µ=0

aθµ2µ(r+λ)θ
)
,

where constants C67 and C68 do not depend on n. Hence, considering the con-
dition (17) we conclude that condition f ∈ N(p, θ, r, λ, ϕ) is equivalent to the
condition

An =

∞∑
µ=n+1

aθµ2µrθ + 2−nλθ
n∑
µ=0

aθµ2µ(r+λ)θ ≤ C69ϕ

(
1

2n

)θ
, (21)

where constant C69 does not depend on n.
We put

Dm =

∞∑
ν=m+1

λθνν
rθ +m−λθ

m∑
ν=1

λθνν
(r+λ)θ.

For given m we choose the positive integer n such that 2n ≤ m+ 1 < 2n+1.
First we consider the case 2n < m+ 1 < 2n+1. We have

Dm =

∞∑
ν=2n+1

λθνν
rθ +

2n+1−1∑
ν=m+1

λθνν
rθ +m−λθ

2n−1∑
ν=1

λθνν
(r+λ)θ

+m−λθ
m∑

ν=2n

λθνν
(r+λ)θ.
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Since λν = 0 for ν 6= 2µ, we get

Dm =

∞∑
ν=2n+1

λθνν
rθ +m−λθ

2n−1∑
ν=1

λθνν
(r+λ)θ +m−λθλθ2n2n(r+λ)θ

=

∞∑
µ=n+1

2µ+1−1∑
ν=2µ

λθνν
rθ +m−λθ

n−1∑
µ=0

2µ+1−1∑
ν=2µ

λθνν
(r+λ)θ +m−λθλθ2n2n(r+λ)θ

=

∞∑
µ=n+1

λθ2µ2µrθ +m−λθ
n−1∑
µ=0

λθ2µ2µ(r+λ)θ +m−λθλθ2n2n(r+λ)θ.

Further, since λ2µ = aµ, we get

Dm =

∞∑
µ=n+1

aθµ2µrθ +m−λθ
n∑
µ=0

aθµ2µ(r+λ)θ.

Hence, for 2n < m+ 1 < 2n+1 we obtain

C70

( ∞∑
µ=n+1

aθµ2µrθ + 2−nλθ
n∑
µ=0

aθµ2µ(r+λ)θ
)
≤ Dm

≤ C71

( ∞∑
µ=n+1

aθµ2µrθ + 2−nλθ
n∑
µ=0

aθµ2µ(r+λ)θ
)
,

where constants C70 and C71 do not depend on m and n.
Let us assume now that m+ 1 = 2n. In an analogous way we have

Dm =

∞∑
ν=2n

λθνν
rθ + 2−nλθ

2n−1∑
ν=1

λθνν
(r+λ)θ

=

∞∑
µ=n

aθµ2µrθ + 2−nλθ
n−1∑
µ=0

aθµ2µ(r+λ)θ

=

∞∑
µ=n+1

aθµ2µrθ + 2−nλθ
n∑
µ=0

aθµ2µ(r+λ)θ = An.

Thus, for 2n ≤ m+ 1 < 2n+1 the following estimate holds

C72An ≤ Dm ≤ C73An,

where constants C72 and C73 do not depend on m and n. Hence, considering the
condition (21) we conclude that condition f ∈ N(p, θ, r, λ, ϕ) is equivalent to the
condition

Dm ≤ C74ϕ

(
1

2n

)θ
, (22)

where constant C74 does not depend on m and n.
Since 1

2n <
2

m+1 <
2
m , we get

ϕ

(
1

2n

)
≤ C75ϕ

(
2

m+ 1

)
≤ C76ϕ

(
2

m

)
,

where constant C76 does not depend on m and n; and since 1
2n ≥

1
m+1 ≥

1
2m we

get

ϕ

(
1

2n

)
≥ C77ϕ

(
1

2m

)
≥ C78ϕ

(
1

m

)
,
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where constant C78 does not depend on m and n. This way, condition (22) is
equivalent to the condition

Dm ≤ C79ϕ

(
1

m

)θ
,

where constant C79 does not depend on m.
This completes the proof of Theorem 2.3. �

Remark 4.1. Notice that another way of proving Theorems 2.2 and 2.3 is presented
in [12]. Our approach here is similar to that used in [1].
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