
Congruences, Powers,
and Euler’s Formula

Here is Fermat’s Little Theorem: If p is a prime and p � a, then ap−1 ≡ 1 (mod p).
This formula is certainly not true if we replace p by a composite number. For
example, 55 ≡ 5 (mod 6) and 28 ≡ 4 (mod 9). So we ask whether there is some
power, depending on the modulus m, such that

a??? ≡ 1 (mod m).

Our first observation is that this is impossible if gcd(a,m) > 1. To see
why, suppose that ak ≡ 1 (mod m). Then ak = 1 +my for some integer y, so
gcd(a,m) divides ak −my = 1. In other words, if some power of a is congruent
to 1 modulo m, then we must have gcd(a,m) = 1. This suggests that we look at
the set of numbers that are relatively prime to m,

{
a : 1 ≤ a ≤ m and gcd(a,m) = 1

}
.

For example,
m {a : 1 ≤ a ≤ m and gcd(a,m) = 1}
1 {1}
2 {1}
3 {1, 2}
4 {1, 3}
5 {1, 2, 3, 4}
6 {1, 5}
7 {1, 2, 3, 4, 5, 6}
8 {1, 3, 5, 7}
9 {1, 2, 4, 5, 7, 8}

10 {1, 3, 7, 9}
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The number of integers between 1 and m that are relatively prime to m is an
important quantity, so we give this quantity a name:

φ(m) = #
{
a : 1 ≤ a ≤ m and gcd(a,m) = 1

}
.

The function φ is called Euler’s phi function. From the preceding table, we can
read off the value of φ(m) for 1 ≤ m ≤ 10. Thus

m 1 2 3 4 5 6 7 8 9 10

φ(m) 1 1 2 2 4 2 6 4 6 4

Notice that if p is a prime number then every integer 1 ≤ a < p is relatively
prime to p. So for prime numbers we have the formula

φ(p) = p− 1.

We are going to try to mimic a proof of Fermat’s Little Theorem. Suppose,
for example, that we want to find a power of 7 that is congruent to 1 modulo 10.
Rather than taking all the numbers 1 ≤ a < 10, we will just take the numbers that
are relatively prime to 10. They are

1, 3, 7, 9 (mod 10).

If we multiply each of them by 7, we get

7 · 1 ≡ 7 (mod 10), 7 · 3 ≡ 1 (mod 10),

7 · 7 ≡ 9 (mod 10), 7 · 9 ≡ 3 (mod 10).

Notice that we get back the same numbers, but rearranged. So if we multiply them
together, we get the same product,

(7 · 1)(7 · 3)(7 · 7)(7 · 9) ≡ 1 · 3 · 7 · 9 (mod 10)

74(1 · 3 · 7 · 9) ≡ 1 · 3 · 7 · 9 (mod 10).

Now we can cancel 1 · 3 · 7 · 9 to get 74 ≡ 1 (mod 10).
Where does the exponent 4 come from? It’s equal to the number of integers

between 0 and 10 that are relatively prime to 10; that is, the exponent is 4 be-
cause φ(10) = 4. This suggests the truth of the following formula.

Theorem 1 (Euler’s Formula). If gcd(a,m) = 1, then

aφ(m) ≡ 1 (mod m).
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Proof. Now that we have identified the correct set of numbers to consider, the proof
of Euler’s formula is almost identical to the proof of Fermat’s Little Theorem. So
we let

1 ≤ b1 < b2 < · · · < bφ(m) < m

be the φ(m) numbers between 0 and m that are relatively prime to m.

Lemma 2. If gcd(a,m) = 1, then the numbers

b1a, b2a, b3a, . . . , bφ(m)a (mod m)

are the same as the numbers

b1, b2, b3, . . . , bφ(m) (mod m),

although they may be in a different order.

Proof of the lemma. We note that if b is relatively prime to m, then ab is also rela-
tively prime to m. Hence, each of the numbers in the list

b1a, b2a, b3a, . . . , bφ(m)a (mod m)

is congruent to one number in the list

b1, b2, b3, . . . , bφ(m) (mod m).

Furthermore, there are φ(m) numbers in each list. So if we can show that the
numbers in the first list are distinct modulo m, it will follow that the two lists are
the same (after rearranging).

Suppose that we take two numbers bja and bka from the first list, and suppose
that they are congruent,

bja ≡ bka (mod m).

Then m|(bj−bk)a. But m and a are relatively prime, so we find that m|bj − bk. On
the other hand, bj and bk are between 1 and m, which implies |bj − bk| ≤ m− 1.
There is only one number with absolute value strictly less than m that is divisible
by m and that number is zero. Hence, bj = bk. This shows that the numbers in the
list

b1a, b2a, b3a, . . . , bφ(m)a (mod m)

are all distinct modulo m, which completes the proof that the lemma is true.
Using the lemma, we can easily finish the proof of Euler’s formula. The lemma

says that the lists of numbers

b1a, b2a, b3a, . . . , bφ(m)a (mod m)

and
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b1, b2, b3, . . . , bφ(m) (mod m)

are the same, so the product of the numbers in the first list is equal to the product
of the numbers in the second list:

(b1a) · (b2a) · (b3a) · · · (bφ(m)a) ≡ b1 · b2 · b3 · · · bφ(m) (mod m).

We can factor out φ(m) copies of a from the left-hand side to obtain

aφ(m)B ≡ B (mod m), where B = b1b2b3 · · · bφ(m).

Finally, we observe that B is relatively prime to m, since each of the bi’s is rela-
tively prime to m. This means we may cancel B from both sides to obtain Euler’s
formula

aφ(m) ≡ 1 (mod m).

Exercises

1. Let b1 < b2 < · · · < bφ(m) be the integers between 1 and m that are relatively prime
to m (including 1), and let B = b1b2b3 · · · bφ(m) be their product. The quantity B came up
during the proof of Euler’s formula.
(a) Show that either B ≡ 1 (mod m) or B ≡ −1 (mod m).
(b) Compute B for some small values of m and try to find a pattern for when it is equal

to +1 (mod m) and when it is equal to −1 (mod m).

2. The number 3750 satisfies φ(3750) = 1000. Find a number a that has the following
three properties:

(i) a ≡ 73003 (mod 3750).

(ii) 1 ≤ a ≤ 5000.

(iii) a is not divisible by 7.

3. A composite number m is called a Carmichael number if the congruence am−1 ≡
1 (mod m) is true for every number a with gcd(a,m) = 1.
(a) Verify that m = 561 = 3 · 11 · 17 is a Carmichael number. [Hint. It is not necessary

to actually compute am−1 (mod m) for all 320 values of a. Instead, use Fermat’s
Little Theorem to check that am−1 ≡ 1 (mod p) for each prime p dividing m, and
then explain why this implies that am−1 ≡ 1 (mod m).]

(b) Try to find another Carmichael number. Do you think that there are infinitely many
of them?
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