
Congruences, Powers,
and Fermat’s Little Theorem

Take a number a and consider its powers a, a2, a3, . . . modulo m. Is there any
pattern to these powers? We will start by looking at a prime modulus m = p,
since the pattern is easier to spot. This is a common situation in the theory of
numbers, especially when working with congruences. So whenever you’re faced
with discovering a congruence pattern, it’s usually a good idea to begin with a
prime modulus.

For each of the primes p = 3, p = 5, and p = 7, we have listed integers
a = 0, 1, 2, . . . and some of their powers modulo p. Before reading further, you
should stop, examine these tables, and try to formulate some conjectural patterns.
Then test your conjectures by creating a similar table for p = 11 and seeing if your
patterns are still true.

a a2 a3 a4

0 0 0 0
1 1 1 1
2 1 2 1

ak modulo 3

a a2 a3 a4 a5 a6

0 0 0 0 0 0
1 1 1 1 1 1
2 4 3 1 2 4
3 4 2 1 3 4
4 1 4 1 4 1

ak modulo 5

a a2 a3 a4 a5 a6 a7 a8

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
2 4 1 2 4 1 2 4
3 2 6 4 5 1 3 2
4 2 1 4 2 1 4 2
5 4 6 2 3 1 5 4
6 1 6 1 6 1 6 1

ak modulo 7

Many interesting patterns are visible in these tables. The one that we will be
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concerned with in this chapter can be seen in the columns

a2 (mod 3), a4 (mod 5), and a6 (mod 7).

Every entry in these columns, aside from the top one, is equal to 1. Does this
pattern continue to hold for larger primes? You can check the table you made for
p = 11, and you will find that

110 ≡ 1 (mod 11), 210 ≡ 1 (mod 11), 310 ≡ 1 (mod 11) . . .

910 ≡ 1 (mod 11), and 1010 ≡ 1 (mod 11).

This leads us to make the following conjecture:

ap−1 ≡ 1 (mod p) for every integer 1 ≤ a < p.

Of course, we don’t really need to restrict a to be between 1 and p − 1. If a1
and a2 differ by a multiple of p, then their powers will be the same modulo p. So
the real condition on a is that it not be a multiple of p. This result was first stated
by Pierre de Fermat in a letter to Frénicle de Bessy dated 1640, but Fermat gave
no indication of his proof. The first known proof appears to be due to Gottfried
Leibniz.1

Theorem 1 (Fermat’s Little Theorem). Let p be a prime number, and let a be any
number with a �≡ 0 (mod p). Then

ap−1 ≡ 1 (mod p).

Before giving the proof of Fermat’s Little Theorem, we want to indicate its
power and show how it can be used to simplify computations. As a particular
example, consider the congruence

622 ≡ 1 (mod 23).

This says that the number 622 − 1 is a multiple of 23. If we wanted to check this
fact without using Fermat’s Little Theorem, we would have to multiply out 622,
subtract 1, and divide by 23. Here’s what we get:

622 − 1 = 23 · 5722682775750745.
1Gottfried Leibniz (1646–1716) is best known as one of the discoverers of the calculus. He and

Isaac Newton worked out the main theorems of the calculus independently and at about the same
time. The German and English mathematical communities spent the next two centuries arguing over
who deserved priority. The current consensus is that both Leibniz and Newton should be given joint
credit as the (independent) discoverers of the calculus.

68



Congruences, Powers, and Fermat’s Little Theorem

Similarly, in order to verify directly that 73100 ≡ 1 (mod 101), we would have to
compute 73100 − 1. Unfortunately, 73100 − 1 has 187 digits! And notice that this
example only uses p = 101, which is a comparatively small prime. Fermat’s Little
Theorem thus describes a very surprising fact about extremely large numbers.

We can use Fermat’s Little Theorem to simplify computations. For example,
in order to compute 235 (mod 7), we can use the fact that 26 ≡ 1 (mod 7). So we
write 35 = 6 · 5 + 5 and use the law of exponents to compute

235 = 26·5+5 = (26)5 · 25 ≡ 15 · 25 ≡ 32 ≡ 4 (mod 7).

Similarly, suppose that we want to solve the congruence x103 ≡ 4 (mod 11).
Certainly, x �≡ 0 (mod 11), so Fermat’s Little Theorem tells us that

x10 ≡ 1 (mod 11).

Raising both sides to the 10th power gives x100 ≡ 1 (mod 11), and then multiply-
ing by x3 gives x103 ≡ x3 (mod 11). So, to solve the original congruence, we just
need to solve x3 ≡ 4 (mod 11). This can be solved by trying successively x = 1,
x = 2, . . . . Thus,

x (mod 11) 0 1 2 3 4 5 6 7 8 9 10

x3 (mod 11) 0 1 8 5 9 4 7 2 6 3 10

So the congruence x103 ≡ 4 (mod 11) has the solution x ≡ 5 (mod 11).
We are now ready to prove Fermat’s Little Theorem. In order to illustrate the

method of proof, we will first prove that 36 ≡ 1 (mod 7). Of course, there is no
need to give a fancy proof of this fact, since 36 − 1 = 728 = 7 · 104. Nevertheless,
when attempting to understand a proof or when attempting to construct a proof, it
is often worthwhile using specific numbers. Of course, the idea is to devise a proof
that doesn’t really use the fact that we are considering specific numbers and then
hope that the proof can be made to work in general.

To prove that 36 ≡ 1 (mod 7), we start with the numbers

1, 2, 3, 4, 5, 6,

multiply each of them by 3, and reduce modulo 7. The results are listed in the
following table:

x (mod 7) 1 2 3 4 5 6

3x (mod 7) 3 6 2 5 1 4

Notice that each of the numbers 1, 2, 3, 4, 5, 6 reappears exactly once in the second
row. So if we multiply together all the numbers in the second row, we get the same
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result as multiplying together all the numbers in the first row. Of course, we must
work modulo 7. Thus,

(3 · 1)(3 · 2)(3 · 3)(3 · 4)(3 · 5)(3 · 6)
︸ ︷︷ ︸

numbers in second row

≡ 1 · 2 · 3 · 4 · 5 · 6
︸ ︷︷ ︸

numbers in first row

(mod 7).

To save space, we use the standard symbol n! for the number n factorial, which is
the product of 1, 2, . . . , n. In other words,

n! = 1 · 2 · 3 · · · (n− 1) · n.
Factoring out the six factors of 3 on the left-hand side of our congruence gives

36 · 6! ≡ 6! (mod 7).

Notice that 6! is relatively prime to 7, so we can cancel the 6! from both sides. This
gives 36 ≡ 1 (mod 7), which is exactly Fermat’s Little Theorem.

We are now ready to prove Fermat’s Little Theorem in general. The key ob-
servation in our proof for 36 (mod 7) was that multiplication by 3 rearranged the
numbers 1, 2, 3, 4, 5, 6 (mod 7). So first we are going to verify the following claim:

Lemma 2. Let p be a prime number and let a be a number with a �≡ 0 (mod p).
Then the numbers

a, 2a, 3a, . . . , (p− 1)a (mod p)

are the same as the numbers

1, 2, 3, . . . , (p− 1) (mod p),

although they may be in a different order.

Proof. The list a, 2a, 3a, . . . , (p−1)a contains p−1 numbers, and clearly none of
them are divisible by p. Suppose that we take two numbers ja and ka in this list,
and suppose that they happen to be congruent,

ja ≡ ka (mod p).

Then p | (j − k)a, so p | (j − k), since we are assuming that p does not divide a.
Notice that we are using the Prime Divisibility Property, which says that if a prime
divides a product then it divides one of the factors. On the other hand, we know
that 1 ≤ j, k ≤ p− 1, so |j − k| < p− 1. There is only one number with absolute
value less than p − 1 that is divisible by p and that number is zero. Hence, j = k.
This shows that different multiples in the list a, 2a, 3a, . . . , (p − 1)a are distinct
modulo p.
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So we now know that the list a, 2a, 3a, . . . , (p − 1)a contains p− 1 distinct
nonzero values modulo p. But there are only p− 1 distinct nonzero values mod-
ulo p, that is, the numbers 1, 2, 3, . . . , (p−1). Hence, the list a, 2a, 3a, . . . , (p−1)a
and the list 1, 2, 3, . . . , (p− 1) must contain the same numbers modulo p, although
the numbers may appear in a different order. This finishes the proof of the lemma.

Using the lemma, it is easy to finish the proof of Fermat’s Little Theorem. The
lemma says that the lists of numbers

a, 2a, 3a, . . . , (p− 1)a (mod p) and 1, 2, 3, . . . , (p− 1) (mod p)

are the same, so the product of the numbers in the first list is equal to the product
of the numbers in the second list:

a · (2a) · (3a) · · · ((p− 1)a) ≡ 1 · 2 · 3 · · · (p− 1) (mod p).

Next we factor our p− 1 copies of a from the left-hand side to obtain

ap−1 · (p− 1)! ≡ (p− 1)! (mod p).

Finally, we observe that (p− 1)! is relatively prime to p, so we may cancel it from
both sides to obtain Fermat’s Little Theorem,

ap−1 ≡ 1 (mod p).

Fermat’s Little Theorem can be used to show that a number is not a prime
without actually factoring it. For example, it turns out that

21234566 ≡ 899557 (mod 1234567).

This means that 1234567 cannot be a prime, since if it were, Fermat’s Little The-
orem would tell us that 21234566 must be congruent to 1 modulo 1234567. It turns
out that 1234567 = 127 · 9721, so in this case we can actually find a factor. But
consider the number

m = 10100 + 37.

When we compute 2m−1 (mod m), we get

2m−1 ≡ 36263603275458610624877601996335839108
36873253019151380128320824091124859463

579459059730070231844397 (mod m).
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Again we deduce from Fermat’s Little Theorem that 10100+37 is not prime, but it
is not at all clear how to find a factor. A quick check on a desktop computer reveals
no prime factors less than 200,000. It is somewhat surprising that we can easily
write down numbers that we know are composite, yet for which we are unable to
find any factors.

Exercises

1. Use Fermat’s Little Theorem to perform the following tasks.
(a) Find a number 0 ≤ a < 73 with a ≡ 9794 (mod 73).
(b) Solve x86 ≡ 6 (mod 29).
(c) Solve x39 ≡ 3 (mod 13).

2. The quantity (p − 1)! (mod p) appeared in our proof of Fermat’s Little Theorem, al-
though we didn’t need to know its value.
(a) Compute (p − 1)! (mod p) for some small values of p, find a pattern, and make a

conjecture.
(b) Prove that your conjecture is correct. [Try to discover why (p− 1)! (mod p) has the

value it does for small values of p, and then generalize your observation to prove the
formula for all values of p.]

3. Exercise 2 asked you to determine the value of (p − 1)! (mod p) when p is a prime
number.
(a) Compute the value of (m − 1)! (mod m) for some small values of m that are not

prime. Do you find the same pattern as you found for primes?
(b) If you know the value of (n − 1)! (mod n), how can you use the value to definitely

distinguish whether n is prime or composite?

4. If p is a prime number and if a �≡ 0 (mod p), then Fermat’s Little Theorem tells us that
ap−1 ≡ 1 (mod p).
(a) The congruence 71734250 ≡ 1660565 (mod 1734251) is true. Can you conclude that

1734251 is a composite number?
(b) The congruence 12964026 ≡ 15179 (mod 64027) is true. Can you conclude that

64027 is a composite number?
(c) The congruence 252632 ≡ 1 (mod 52633) is true. Can you conclude that 52633 is a

prime number?
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