Pythagorean Triples

The Pythagorean Theorem, that “beloved” formula of all high school geometry
students, says that the sum of the squares of the sides of a right triangle equals the
square of the hypotenuse. In symbols,

a? + b? = 2 b

—

Figure 1: A Pythagorean Triangle

Since we’re interested in number theory, that is, the theory of the natural num-
bers, we will ask whether there are any Pythagorean triangles all of whose sides are
natural numbers. There are many such triangles. The most famous has sides 3, 4,
and 5. Here are the first few examples:

P2 +42=52 524+122=132, 82+152=17%, 28%+45%=53%

The study of these Pythagorean triples began long before the time of Pythago-
ras. There are Babylonian tablets that contain lists of parts of such triples, including
quite large ones, indicating that the Babylonians probably had a systematic method
for producing them. Even more amazing is the fact that the Babylonians may have
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used their lists of Pythagorean triples as primitive trigonometric tables. Pythago-
rean triples were also used in ancient Egypt. For example, a rough-and-ready way
to produce a right angle is to take a piece of string, mark it into 12 equal segments,
tie it into a loop, and hold it taut in the form of a 3-4-5 triangle, as illustrated in Fig-
ure 2. This provides an inexpensive right angle tool for use on small construction
projects (such as marking property boundaries or building pyramids).

String with 12 knots String pulled taut

Figure 2: Using a knotted string to create a right triangle

The Babylonians and Egyptians had practical reasons for studying Pythagor-
ean triples. Do such practical reasons still exist? For this particular problem, the
answer is “probably not.” However, there is at least one good reason to study
Pythagorean triples, and it’s the same reason why it is worthwhile studying the art
of Rembrandt and the music of Beethoven. There is a beauty to the ways in which
numbers interact with one another, just as there is a beauty in the composition of a
painting or a symphony. To appreciate this beauty, one has to be willing to expend
a certain amount of mental energy. But the end result is well worth the effort. Our
goal in this book is to understand and appreciate some truly beautiful mathematics,
to learn how this mathematics was discovered and proved, and maybe even to make
some original contributions of our own.

Enough blathering, you are undoubtedly thinking. Let’s get to the real stuff.
Our first naive question is whether there are infinitely many Pythagorean triples,
that is, triples of natural numbers (a, b, c) satisfying the equation a® + bv*> = ¢2. The
answer is “YES” for a very silly reason. If we take a Pythagorean triple (a, b, ¢)
and multiply it by some other number d, then we obtain a new Pythagorean triple
(da, db, dc). This is true because

(da)?® + (db)? = d?(a® + b?) = d*¢* = (dc)%.

Clearly these new Pythagorean triples are not very interesting. So we will concen-
trate our attention on triples with no common factors. We will even give them a
name:
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A primitive Pythagorean triple (or PPT for short) is a triple of num-
bers (a,b,c) such that a, b, and ¢ have no common factors' and
satisfy

a® 4+ b* = 2.

The first step is to accumulate some data. I used a computer to substitute in
values for a and b and checked if a® + b? is a square. Here are some primitive
Pythagorean triples that I found:

(3,4,5), (5,12,13), (8,15,17),  (7,24,25),
(20,21,29), (9,40,41), (12,35,37), (11,60,61),
(28,45,53), (33,56,65), (16,63,65).

A few conclusions can easily be drawn even from such a short list. For example, it
certainly looks like one of a and b is odd and the other even. It also seems that c is
always odd.

It’s not hard to prove that these conjectures are correct. First, if a and b are both
even, then ¢ would also be even. This means that a, b, and ¢ would have a common
factor of 2, so the triple would not be primitive. Next, suppose that ¢ and b are
both odd, which means that ¢ would have to be even. This means that there are
numbers z, y, and z such that

a=2r+1, b=2y—+1, and c=2z.
We can substitute these into the equation a? + b? = ¢ to get

(22 +1)* + (2y + 1)* = (22)%,
4a? + 4o + 4% + dy + 2 = 422
Now divide by 2,
222 4 2z + 2% + 2y + 1 = 222

This last equation says that an odd number is equal to an even number, which is
impossible, so a and b cannot both be odd. Since we’ve just checked that they
cannot both be even and cannot both be odd, it must be true that one is even and

YA common factor of a, b, and c is a number d such that each of a, b, and c is a multiple of d . For
example, 3 is a common factor of 30, 42, and 105, since 30 = 3 - 10,42 = 3 - 14, and 105 = 3 - 35,
and indeed it is their largest common factor. On the other hand, the numbers 10, 12, and 15 have
no common factor (other than 1). Since our goal in this chapter is to explore some interesting and
beautiful number theory without getting bogged down in formalities, we will use common factors
and divisibility informally and trust our intuition.

11



12

Pythagorean Triples

the other is odd. It’s then obvious from the equation a? + b? = ¢? that c is also
odd.

We can always switch a and b, so our problem now is to find all solutions in
natural numbers to the equation

a odd,
a4+ b =2 with b even,
a, b, ¢ having no common factors.

The tools that we use are factorization and divisibility.
Our first observation is that if (a, b, ¢) is a primitive Pythagorean triple, then
we can factor
a?=c - b = (c—b)(c+b).

Here are a few examples from the list given earlier, where note that we always
take a to be odd and b to be even:

32=52-42=(5-4)(5+4)=1-9,
152 =17 — 82 = (17— 8)(17+8) = 9 - 25,
35% = 372 — 122 = (37 — 12)(37 + 12) = 25 - 49,
33% = 652 — 562 = (65 — 56)(65 + 56) = 9 - 121.

It looks like ¢ — b and ¢ + b are themselves always squares. We check this obser-
vation with a couple more examples:

21% = 292 — 202 = (29 — 20)(29 + 20) = 9 - 49,
63% = 652 — 162 = (65 — 16)(65 + 16) = 49 - 81.

How can we prove that ¢ — b and ¢ + b are squares? Another observation ap-
parent from our list of examples is that ¢ — b and ¢ + b seem to have no common
factors. We can prove this last assertion as follows. Suppose that d is a common
factor of ¢ — b and c + b; that s, d divides both ¢ — b and ¢ + b. Then d also divides

(c+b) 4+ (c—b) =2¢ and (c+b)— (c—b) = 2b.

Thus, d divides 2b and 2¢. But b and ¢ have no common factor because we are
assuming that (a, b, ¢) is a primitive Pythagorean triple. So d must equal 1 or 2.
But d also divides (¢ — b)(c +b) = a?, and a is odd, so d must be 1. In other
words, the only number dividing both ¢ — b and ¢ 4+ bis 1, so ¢ — b and ¢ + b have
no common factor.
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We now know that ¢ — b and c + b are positive integers having no common
factor, that their product is a square since (¢ — b)(c + b) = a?. The only way that
this can happen is if ¢ — b and ¢ + b are themselves squares.> So we can write

c+b=s? and c—b=1t

where s > ¢t > 1 are odd integers with no common factors. Solving these two
equations for b and c yields

2 | 42 2 42
s“+t s“—t
= and b=
¢ 2 9

and then
a=+/(c=0b)(c+b)=st.

We have (almost) finished our first proof! The following theorem records our
accomplishment.

Theorem 1 (Pythagorean Triples Theorem). We will get every primitive Pythago-
rean triple (a, b, c) with a odd and b even by using the formulas

s? —t? sS4t

a St, 2 ) c 2 )

where s >t > 1 are chosen to be any odd integers with no common factors.

Why did we say that we have “almost” finished the proof? We have shown
that if (a, b, c) is a PPT with a odd, then there are odd integers s > t > 1 with
no common factors so that a, b, and c are given by the stated formulas. But we
still need to check that these formulas always give a PPT. We first use a little bit of
algebra to show that the formulas give a Pythagorean triple. Thus

5 (82 —1t2 2_ 2,9 54—2$2t2+t4_54—|—252t2+t4_ s2 412\
(st)“+ 5 = s“t°+ 1 = 1 = 5 .

2 2 2 2 o .
We also need to check that st, =5, and =+ have no common factors. This is
most easily accomplished using an important property of prime numbers.

“This is intuitively clear if you consider the factorization of ¢ — b and ¢ + b into primes, since
the primes in the factorization of ¢ — b will be distinct from the primes in the factorization of ¢ + b.
However, the existence and uniqueness of the factorization into primes is by no means as obvious as
it appears.
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For example, taking t = 1 in Theorem 1 gives a triple (s, 52; L 52; 1) whose b

and c entries differ by 1. This explains many of the examples that we listed. The
following table gives all possible triples with s < 9.

52 — 12 s% + ¢
s t a = st b= 5 c= >
3 1 3 4 5
5 1 5 12 13
7 1 7 24 25
9 1 9 40 41
5 3 15 8 17
7 3 21 20 29
7 5 35 12 37
9 5 45 28 53
9 7 63 16 65
A Notational Interlude

Mathematicians have created certain standard notations as a shorthand for various
quantities. We will keep our use of such notation to a minimum, but there are a
few symbols that are so commonly used and are so useful that it is worthwhile to
introduce them here. They are

N = the set of natural numbers = 1,2,3.4,... ,
Z, = the set of integers = ... — 3, —2,—1,0,1,2,3, ...,

Q = the set of rational numbers (i.e., fractions).

In addition, mathematicians often use R to denote the real numbers and C for the
complex numbers, but we will not need these. Why were these letters chosen?
The choice of N, R, and C needs no explanation. The letter Z for the set of inte-
gers comes from the German word “Zahlen,” which means numbers. Similarly, Q
comes from the German “Quotient” (which is the same as the English word). We
will also use the standard mathematical symbol € to mean “is an element of the
set.”” So, for example, a € N means that ¢ is a natural number, and z € QQ means
that x is a rational number.

Exercises

1. (a) We showed that in any primitive Pythagorean triple (a, b, ¢), either a or b is even.
Use the same sort of argument to show that either a or b must be a multiple of 3.
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(b) By examining the above list of primitive Pythagorean triples, make a guess about
when a, b, or ¢ is a multiple of 5. Try to show that your guess is correct.

2. A nonzero integer d is said to divide an integer m if m = dk for some number k. Show
that if d divides both m and n, then d also divides m — n and m + n.

3. For each of the following questions, begin by compiling some data; next examine the
data and formulate a conjecture; and finally try to prove that your conjecture is correct. (But
don’t worry if you can’t solve every part of this problem; some parts are quite difficult.)

(a) Which odd numbers a can appear in a primitive Pythagorean triple (a, b, ¢)?

(b) Which even numbers b can appear in a primitive Pythagorean triple (a, b, ¢)?

(c) Which numbers ¢ can appear in a primitive Pythagorean triple (a, b, ¢)?

4. In our list of examples are the two primitive Pythagorean triples
332 +56° =65 and  16° +63% = 65°.

Find at least one more example of two primitive Pythagorean triples with the same value
of c. Can you find three primitive Pythagorean triples with the same ¢? Can you find more
than three?

5. We have seen that the n'™ triangular number 7}, is given by the formula

The first few triangular numbers are 1, 3, 6, and 10. In the list of the first few Pythagorean
triples (a, b, ¢), we find (3, 4, 5), (5,12,13), (7,24, 25), and (9, 40, 41). Notice that in each
case, the value of b is four times a triangular number.
(a) Find a primitive Pythagorean triple (a, b, ¢) with b = 4T}. Do the same for b = 4T}
and for b = 47T.
(b) Do you think that for every triangular number T, there is a primitive Pythagorean
triple (a, b, ¢) with b = 4T,,? If you believe that this is true, then prove it. Otherwise,
find some triangular number for which it is not true.

6. If you look at the table of primitive Pythagorean triples in this chapter, you will see
many triples in which c¢ is 2 greater than a. For example, the triples (3,4, 5), (15,8,17),
(35,12,37), and (63, 16, 65) all have this property.
(a) Find two more primitive Pythagorean triples (a, b, ¢) having ¢ = a + 2.
(b) Find a primitive Pythagorean triple (a, b, ¢) having ¢ = a + 2 and ¢ > 1000.
(c¢) Try to find a formula that describes all primitive Pythagorean triples (a, b, ¢) having
c=a+2.

7. For each primitive Pythagorean triple (a, b, ¢) in the table in this chapter, compute the
quantity 2¢ — 2a. Do these values seem to have some special form? Try to prove that your
observation is true for all primitive Pythagorean triples.

1

8. Let m and n be numbers that differ by 2, and write the sum -
lowest terms. For example, % + % = % and % + % = %.

+ ;ll as a fraction in

15
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(a) Compute the next three examples.

(b) Examine the numerators and denominators of the fractions in (a) and compare them
with the table of Pythagorean triples. Formulate a conjecture about such fractions.

(c) Prove that your conjecture is correct.

9. (a) Read about the Babylonian number system and write a short description, including
the symbols for the numbers 1 to 10 and the multiples of 10 from 20 to 50.

(b) Read about the Babylonian tablet called Plimpton 322 and write a brief report, in-
cluding its approximate date of origin.

(c) The second and third columns of Plimpton 322 give pairs of integers (a, c¢) having
the property that c? — a? is a perfect square. Convert some of these pairs from Baby-
lonian numbers to decimal numbers and compute the value of b so that (a,b,c) is a
Pythagorean triple.
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