Solutions

(1) (a) If n =1, the result is true. Assume that the result is true for n and
let us prove it for n + 1. Since
n(n+1)
2

(n+1)(n+2)

1+2+-+n+(n+1)= 5 :

+(n+1)=

the result follows.
(b) If n =1, the result is true. Assume that the result is true for n and
let us prove it for n + 1. Since

n(n + 1)6(2n +1) b (n+1)?

_ (n+1D(n+2)(2n+3)
6 k)

12+22 4. 402+ (n+1)?=

the result follows.
(¢) If n =1, the result is true. Assume that the result is true for n and
let us prove it for n + 1. Since

n%(n+1)2

P42 tetn®+ (1) = ————+(n+1)°
(n+1)2%(n +2)?
= 1 ,
the result follows.
(2) We only need to observe that
nd = B+ 4+ 40 -3 +234. 4+ (n-1)?)
_ (n(n+1) 2_ (n—1)n 2
B 2 2 '
where we used the identity of Problem 1 (c).
. . . 1/3 2n 2n+1 1 .
(3) The given expression can be written as = | = — for each posi-
2\2 n(n+ 1

tive integer n.
(4) By using the formula of Problem 1 (a), we obtain

nn+1)

244+ 4+2n=21+2+---+n)=2- 5 =n(n+1).

(5) Since ;L:lj = "("2+1), it is enough to check that
- ; +1)
gy (et D)
(% St =t

We use induction. First of all, (x) is true for n = 1. Assume that (x) is
true for n = k; we will show that this implies that it is true for n = k4 1.
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Indeed, this implies successively

k+1 k

YV = YD+ (DM R+ 1)?

j=1 j=1
= R ey
B . k(k+1)
= (=1 ((k+ 1)2 - —2—>
B (k+1)(k +2)
— (_1)k+1_2—’

as required.

(6) This result can be proved by induction by observing that
@2l p2ntl o gondl | a2pon—l 2pon-1 4 pontl
= a2(am1 4 2y _p2nl(g? ),
(7) This result can be proved by induction by observing that
@intd _pinta _ gantd _ odpdn | odpdn pdntd
= a*(a®™ — b*") + b2 (a — b).
(8) This result can be proved using induction by observing that
a™tt — bt = o™ — "+ a"b — " = a"(a — b) + b(a™ — b™).
(9) We use induction as well as the relation

n+1 n

Yoidt=> i+ m+1)(n+1)
j=1 j=1

(10) Multiplying the given inequality (2n)! < 22"(n!)? by the trivial inequality
(2n+1) < 2%2(n+1)2, then using induction, one easily proves the inequality.

(11) Multiplying the relation (n + 1)3/n3 < (n + 1) (valid for n > 3) by the
given inequality n3 < n! allows one to use induction and thereby obtain
the result.

(12) This follows from

1+ =14+60)"1+6)>(1+n0)(1+0)=1+06+nb+nb?
> 14+ (n+1)6.

REMARK: This inequality is often called the Bernoulli inequality, being

attributed to Jacques Bernoulli (1654-1705).
(13) By using the induction hypothesis and by observing that
(1+6)"=1+6)(1+6)">(1+6)(1+nb+ @

>1+(n+1)0+

6?)
(n+1)n

02
2 )

the result follows.
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(14) We prove this result by induction. For n = 1, the result is true. Assume
that it is true for n and let us prove it for n + 1. Since

1 1
§0n+n3+ﬂn+n)=§Uﬁ+&#+3n+1+2n+®
) ‘
Zg(n3+2n)+n2+n+1

is an integer because of the induction hypothesis, the result follows.
(15) Let f(n) = 10" + 3 -4"*2 4+ 5. Since f(0) = 54 is divisible by 9 and since
fln+1) - f(n)

9 = 10" + 4™*? is an integer, the

for each integer n > 0,

result follows.
(16) The first equation is equivalent (after simplification) to

11
n—k k+1

which in turn is equivalent to n = 2k + 1, as was to be shown.
(17) (a) By adding the relations

k=0 k=0
we obtain
n 2n ~. /2n
=g (i) 53
Z;( (=1)%) f Z; ok

which yields the result.
(b) This follows essentially from part (a) and the fact that 5, (3") =
22n,

(18) Comparing the geometric mean with the arithmetic mean, we obtain

()17 < 1+2+---4n _ n(n+1) _ n+1,
n 2n 2
so that the result follows by raising each side to the power n.

(19) (Gelfand [13]) For n = 8 the result is true. Assume that k can be written
as a sum of 3’s and 5’s. Then, this sum contains one 5 (possibly many) or
none at all. In the first case, we replace a 5 by two 3’s. The new number
k + 1 then contains 3’s or 5’s. In the second case, there is at least three
3’s, and we can replace them by two 5’s. The new number k£ + 1 then
contains 3’s or 5’s. This proves the result.

(20) Let P, be the following proposition: the number of lines thus created by n
points for which no combination of three of these points are on a straight
line is n(n — 1)/2. Since two points determine a straight line and since
2(2-1)/2 = 1, P, is true. Assume now that P, is true for an integer
n > 2. If a new point is added to the collection of n points in such a way
that it cannot be on a straight line created by two of the points, then n
additional lines will thus be added and the new collection of n 4 1 points
will determine n(n —1)/2 +n = @ lines. The result then follows by
induction.
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(22
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) The proof is done by induction. If

11 1
1+ —=+ =+ +—F=>Vk
V2 V3 vk

then, since vk + 1 — vk < 1/vk + 1, the sum of these two inequalities
gives the result.

) Let
Rop_1 =1 +3+55+... + (2k - 1)%.
In light of Problem 1 (c), we know that
0 2
Spi=12 422433 +...+nd = (@) .
For n = 2k — 1, this last sum can be written as
Sop—1 = (P43 +. -+ (2k—1)%) + (22 +4°+ -+ (2k - 2)%)
(BP+3+ -+ (2k-1)3) +22(13+23+ 83+ + (k- 1)3)
= Rok—1+2Sk_1.
It follows that
2k — 1)(2k)\ ? k— k>
Rok—1 = Sak—1—23Sk1 = ((—%) -8 (( 5 ) >
= k%(2k—1)% —2k%*(k — 1)* = K*(2k* - 1),
as was to be shown.
) Using the Binomial Theorem, we have

(’I’L + 1)k+1 -1 = ((n + 1)k+1 _ nk+1) + (nk+1 _ (’l’l _ 1)k+1) 4.
+ (2k+1 _ 1k+1)

k+1 k+1}

16
_ z”:{]m <k+1>] +(k-2+1)jk_l+'_.
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Therefore, if S,.(n) is a polynomial of degree r+ 1 for each positive integer
r < k — 1, we may conclude, using induction, that Si(n) is a polynomial
of degree k + 1.

1 1
(24) (a) The required formula is H (1 - —) = —, since
i n

=2
ﬁ o123 n-2mn-1_1
by i/ 234 n-1 n n
1 1
(b) The required formula is 11—[2 (1 - ﬁ) = %, since
& 1 3 B-1DB+1) 4-1)@4+1)
H 1_22_ =5 o . e
=2
b-1)54+1) (n—2)n (n—1)(n+1) n+1
52 (n—1)2 n? o 2n
(25) Let S, be the given sum. Since
1=+ 1) - =G i )P i+ 1)

and since

i 1 1 1
(Z+i+1)E2—i+1) 2\2—i+1 24+4i4+1)°

we have

1 (<& 1 -~ 1
S, = = S . S
" 2(222—z+1 ;i2+z’+1>

i=1

n n 1
(Z 1)i+1 ;z’(i+1)~l—1)

1=

1
2
1 1
= Z(1—- ———),
2 n(n+1)+1

and the result follows.

(26) We will show that the choice (m,n,r) = (2,3,7), for which S = 41/42,
maximizes the sum .S in the sense that for any other choice (m,n,r), with
S < 1, we must have S < 41 So let us consider such a triple (m,n,r).
Wlthout any loss in generahty, we may assume that 2 <m <n <r. We
shall first show that m = 2. Indeed, if m > 3, then

s<i4ipl o4
37371 12742

Hence, m = 2. Let us now show that n = 3. If n > 4, we have

S< 1+1+1_19<4_1
=2 4 5 20 42

Hence, n = 3. It remains to show that » = 7. Two situations need to be
considered: 3 < r < 6 and r > 8. In the first case, we have

(R S S S
T2 '3 =2 36 7

—
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a contradiction. In the second case, we have

Szl 1+1<1+1+1:§<£

2 3 r~ 2 3 8 24 42

We may therefore conclude that r = 7, thus completing the proof.
The problem is equivalent to the combinatorial problem which consists in
distributing & balls in £ urns with the restriction that there must be at least
one ball in the first urn. We shall call upon the combinatorial theorem
according to which there are (’Zj) distinct vectors with (positive) integer
components satisfying the relation

T+ x4+ x40 =k
We then place the first ball in the first urn and distribute the £ — 1
remaining balls in the £ urns. The above result then yields
k+2¢-2
a0 = ("7E77)
as required.

We prove the first formula; the proof of the second formula is similar.
First of all, it is true for n = 1. Assume that it is true for each odd
number n < k, k odd. Since

2 92 | r2 2 2 k+2 2

P43 45"+ -+ k" + (k+2)" = 3 + (k+2)7,

the result will follow if we manage to show that

k+2 9 k+4
k+2) =
("5 rer2r=(*37)
or similarly that

(k;“l) - (’“;2) = (k+2)°.
But this relation is true, since
(k+4) 3 (k+2) _ k+4! (k+2)!

3 3 Wk+1)! 3 (k—1)!
(k2 ((k+3)(k+4) 1
3k —1)! ( k(k+1) )

(k+2)! (6k+12)
1k —1)! k(k+1)

- 52—2(% +12) = (k+2)%,

which completes the proof.

(CRUX, 1975). Since the sum of the elements of any subset cannot exceed
90+ 91 + - - - 4+ 99 = 945, the sum of the elements of the subsets of S can
be found amongst the numbers 1,2, ...,945. Since the set S contains 10
elements, we can form 2'© — 1 = 1023 nonempty different subsets. The
Pigeonhole Principle then allows us to conclude that there exist (at least)
two subsets having the same sum. By removing the elements which are
common to these two subsets, we obtain two disjoint subsets with the
same sum.
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There are exactly 50 possible remainders when we divide the numbers
by 50, and these remainders are the numbers: 0,1,2,..., 49. Since we
have 51 integers and only 50 possible remainders, it follows that using
the Pigeonhole Principle, there are at least two numbers amongst these
51 integers having the same remainder. Then, the difference of these two
integers has 0 as a remainder and is therefore divisible by 50.

For each n-th day of the year, let a,, be the total number of solved prob-
lems between the first day and the n-th day inclusively. Then a;,as,...
is a strictly increasing sequence of positive integers. Consider another
sequence by, by, ... obtained by adding 20 to each element of the preced-
ing sequence, that is b, = a, + 20, n = 1,2,... . The b,’s are strictly
increasing and are also all distinct. But for a period of eight consecutive
weeks (one needs to consider at least seven consecutive weeks) during the
year, the student cannot solve more than 11 -8 = 88 problems. Then, the
numbers a,, are located between 1 and 88 inclusively, while the b,’s are
between 21 and 108 inclusively. Since there are 56 days in eight weeks,
the concatenation of the two sequences gives

0,1,0,2,...,0,56,0,1+20,a2+20,...,a56+20,

which yields a total of 112 distinct integers all located between 1 and
108 inclusively. By the Pigeonhole Principle, at least two elements of the
concatenated sequence must be equal. One of the two must be in the first
half of the sequence and the other in the second part. Let a; and aj + 20
be these two integers. We then have ay — a; = 20, which implies that the
student must solve exactly 20 problems between the (j + 1)-th day and
the k-th day of the year.

Divide the surface of the table into squares of 3 inches by 3 inches. We
then have a total of 2000 squares. The diagonal of each of these squares is
v/18 inches long, that is approximately 4.25 inches. Therefore, a cylindri-
cal glass of diameter 5 inches will cover entirely any given square. Hence,
if we place seven marbles in each square, there will be a total of 14000
marbles on the table. Hence, by the Pigeonhole Principle, since we have
a total of 14001 marbles, one of these will contain at least eight marbles.
We easily see that the number N; of secants thus drawn is given by N, =
(g) Let N3 be the number of points of intersection of these secants. For
any group of points taken four by four, there is exactly two secants joining
the points that intersect inside the circle, so that N = ().

We are then ready to count the number of regions in terms of n. At
each drawn secant, the circle is divided into an additional region. At each
intersection point, the circle is divided into an additional region. The
solution is therefore given by

1+ N+ Ny = (Z)-}-(Z)-}-l,

which can also be written in the polynomial form n*/24—n3/4+23n2/24—
3n/4 + 1, provided that n > 3.

Let f(n) be the number of required moves, that is the number of moves
that are necessary to succeed in transferring a tower of n disks. It is easy
to see that we must
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(a) first move the n — 1 disks from the top of the first post to the second
post (using in the process the third post);
(b) then move the largest disk to the third post;
(c) and finally move the n — 1 disks from the second post to the third
(using if need be the first post).
We then obtain, by setting f(0) =0 and f(1) =1,

fn)=2f(n-1)+1 (n2>1).
We observe that f(2) =3, f(3) =7,..., and we then conjecture that
f(n) =2" - ]-7

a result which can easily be proved by induction.

Let N be an arbitrary positive integer. Let F;, be such that F;, < N <
F,, +1. Set Ay = N—F;,. If Ay =0, we are done, since N = F;,.
Otherwise, let F;, with i3 < i; be such that Fi2 <A< Fiz + 1. If
Ay = Ay — F;, = 0, we are done, since in this case N = A; + F;, =
Ay + F, + F;, = F;, + F;,. Otherwise, we choose F;, such that F;, <
Ay < Fi,+1, and so on. The process will end since the sequence of positive
integers A; is decreasing, so that eventually we will obtain A, = 0 for a
certain positive integer r, in which case we have

N=F, +F,+ - +F,.

(Problem #360 in Barbeau, Klamkin & Moser [3]) We first observe that
12 _ 02 —
32-22 = 5
5247 =
-6 = 13
while
22-1% =
42 32 =
62 -5 = 11
8 -7 = 15

Hence, it easily follows that

(m+3?=(m+2? —((m+1)?-m?)=4 (m=0,1,2,3,...);
that is

4=m?> —(m+1)? - (m+2?%*+(m+3)? (m=0,1,2,3,...).

It follows from this that if n can be written as

n=e;12+e2%+ 6332 +eqd? 4+ -4 ekkz,



SOLUTIONS 111

the same is true for n + 4, since we then have

ntd=e 1% +e22+ - ek + (k+1)% - (k+2)°
—(k+3)* + (k+4)2

As we mentioned in the statement of the problem, the numbers 1, 2, 3 and
4 can be written in the stated form. We may therefore conclude that all the
integers can be written in this form. Our argument therefore establishes
the result without however providing the explicit form taken by any given
integer. Curiously, it is nevertheless possible to obtain explicitly such a
representation. Here it is. Each integer > 5 is of the form 4r + 1, 4r + 2,
4r + 3 or 4r 4+ 4, with r > 1, and we can establish that

4r41 = 12+Z 1)71((2i)2 — (2i + 1)2),
2r+1
ar+2 = 32+42+Z ((2i +1)% — (20 +2)?),
4r+3 = —12+22+Z (20 +1)2 — (20 + 2)?),
2r+1
4r4+4 = 22+32+Z 1(20)% = (2i + 1)?).

(37) We construct a procedure, using MAPLE software (here, we have used
version 5), which gives the positive integers n < N such that (In,n!) # 2.

> kurepa:=proc(N)
> local n;
> for n from 1 to N do
> if gecd(sum(k!,k=0..n-1),n!)<>2
> then print(‘ n‘=n) else fi;od; end:
> kurepa(1000) ;
(38) Assume that the integers a and b are increased by n. Then we have

a+n=(b+n)652+ 8634 — 651n.

Since the remainder must be positive, it follows that 651n < 8634, that is
n < 13.26. Hence, n = 13.
REMARK: More generally, with a = bg + r instead of (x), the quantity n

L I
is given by n = pi)

(39) Let n be the number of “1”s in N. We then have

N=1+2"422423 ... 42n"l=9on_1.
Therefore,
N? = 22r ot =2rti(2nTl —1) 41
= omtl(2n 242" 4 424 1) 41
22—l g g2n=2 4 .. g gnt2 4 ontl 4,
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an expression which can be written as follows in basis 2:
11...1100...001.
N e N e
n—1 n

Let N = 737+ 1337 4 1937. We will show that 3|N and that 13|N. Indeed,
N=6+1)%+12+1)% +(18+1)3"=34+3
for a certain integer A, while
N =(13-6)% +13% + (13 +6)>" = 13 B + (—6)*>" + 65" = 13°"B

for a certain integer B. Since (3,13) = 1, it follows that 39|N.

REMARK: This result remains true when the integer 37 is replaced by an
arbitrary odd positive integer. Moreover, note that by using congruences,
the proof is almost immediate.

We first observe that

49=48+1, 2352=72-48 and 2304 =48>

We therefore need to show that

(1) 482|49™ — 49 -48 - n — 1.

In fact, we will show the more general result

(2) (a—1)a" —a(a—1)n —1.

First of all, we observe that

a”—ala—1n-1 = (@ —-1)—ala—1)n
= (@-D@ '+a" 2+ - +a+1)—ala—1)n
= (a-1)(a""+a" ?+---+a+1—an).

Since the expression a"~! +a" "2+ ...+ a + 1 — an vanishes when ¢ = 1
and is divisible by a — 1, we have

a"—ala—1)n—-1=(a—-1)%-N

for a certain positive integer N, which establishes (2) and therefore (1).
Let n be an arbitrary positive integer and let N = n*+42n3+2n2+2n+1.
It is clear that

N = (n+1)* — (2n3 + 4n? + 2n)
=m+1D*-2n(n+1)? = (n+1)%(n +1).

Therefore, if N is a perfect square, there exists a positive integer a such
that (n + 1)2(n? + 1) = a?, in which case there exists another integer b
such that n? + 1 = b2. Since two perfect squares cannot be consecutive,
the result is proved.

We write N =10a +bwhere0<a<9,0<b<9and M =10b+a. In
this case, M — N = 9(b— a) and the first result is proved. In order to find
the integers N such that |M — N| = 18, it is enough to choose |b—a| = 2.
Therefore, N = 13,20, 24, 31, 35, 42, 46, 53, 57, 64, 68, 75, 79, 86, 97.

The answer is YES. Since n = 3m +r, 0 < r < 2, it is obvious that
(3,n2 +1) = 1, and the statement is verified.
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(45) The answer is YES. By simply writing n = 5m + r, where 0 < r < 4, we
easily obtain the result. The result is clearly the same when we replace 5

by 7.
(46) Let n =kp+r, 0 <r < p— 1. Using the Binomial Theorem, we obtain
N(n) = ag+ai(kp+r)+-+as_1(kp+7)*"' +as(kp+r)°

= N(r)+pM,

for a certain integer M. Hence, p|N(n) if and only if p|N(r).
Setting n = 7k +r, 0 < r < 6, we find that the required integers are
those of the form n = 7k + 1 as well as those of the form n = 7k + 4,
where k € Z.
(47) (1987 American Invitational Mathematics Examination). Let N be the
number to compute. Since 324 = 182 and since

a* 4 18?2 = (a? + 18)% — 36a? = (a® + 18 + 6a)(a® + 18 — 6a),
the number N can be written as

H (10 + 12k)* + 182
(4 + 12k)4 + 182

_ fr [(10 + 12K)% + 18 + 6(10 + 12k)][(10 + 12k)2 + 18 — 6(10 + 12k)]
=11 [(4+ 12k)2 + 18 + 6(4 + 12k)][(4 + 2k)2 + 18 — 6(4 + 12Kk)]

1 (144Kk? + 312k + 178)(144k2 + 168k + 58)
- (144k2 + 168k + 58)(144k2 + 24k + 10)

B f[ 144k? + 312k + 178
B 144k% + 24k + 10

But since 144(k + 1)? 4 24(k + 1) + 10 = 144k? + 312k + 178, the number

N can be written as

(48) Consider the number 10101 in basis b > 2. Then
10101 =1-4*+0-5*+1-b+0-b+1-0=b*+b"+1
=B +b+1)(% -b+1),

a product of two integers larger than 1.
(49) The product of four consecutive integers is
N :=n(n+1)(n+2)(n+3).

Since a member of the product is divisible by 4 and another is divisible
by 2, this shows that 8| N. On the other hand, if we write n = 3k + r,
0 < r < 2, we easily see that 3|N. Since (3,8) = 1, we conclude that
24|N.

(50) If n is an odd positive integer, we know that a + bja™ + b™. Therefore,

T=1+6014+6%, 7=2+52""+5Y, 7=3+4[3*" +4*,

and the result follows.
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(CRUX, 1987; solution given by Aage Bondesen). Let N = n(n+ 1)(n +
2)(n+ 3)(n+4) be the given product. It is clear that N must contain two
or three multiples of 2, one or two multiples of 3, only one multiple of 5
and no more than one multiple of any other prime number. Thus, if the
product is a perfect square, each of the integers n+ j (0 < j < 4) can be
written as

2r3°52e72 ... (r>2,5>1,a>1,b>0,...).

In short, each of the integers n + j (0 < j < 4) is of one of the following
forms:
(i) r even, s even:

n+ j = 22k32mp2e72b... = (2k3mpaTh. .. )2, a perfect square;
(ii) 7 odd, s even:
n 4 j = 22k+132mp2a72b . — 9 (9k3mzarb..)? twice a perfect
square;
(iii) r even, s odd:
n+ j = 22k32mFlg2a72b. .. = 3 (2k3m5a7b. .. )2, that is three times

a perfect square;
(iv) r odd, s odd:

n 4 j = 22k+132m+lg2ay2b. . — 6 (2k3m5arb...)% that is six times

a perfect square.
But we have five factors in the product N, each being of one of the above
four types. Using the Pigeonhole Principle, we may conclude that two
of the factors n + j must be of the same type. Let us first examine the
possibility that it is one of the types (ii), (iii) or (iv). This is not possible,
since if we take for example type (ii), we would have that two amongst
five consecutive numbers belong to the sequence 2, 8, 18, 32, 50, ...,
that is numbers separated by at least 6. Therefore, two of the factors
n + j must be of type (i), that is perfect squares. But the only chain
of five consecutive numbers which contains two perfect squares is 1, 2, 3,
4, 5, whose product is equal to 120, which is not a perfect square. This
completes the proof.
We only need to observe that n® —n = (n — 2)(n — 1)n(n + 1)(n +2) +
5n(n? —1).
Since n and (n+ 1) are two consecutive integers, 2|n(n+1). To show that
3|n(n + 1)(2n + 1), it is enough to consider the three cases: n = 3k +r,
0<r<2 Ifn=3korn = 3k+ 2, the result is immediate. When
n = 3k + 1, we have that 3|(2n + 1). The result is therefore true for each
n > 1.
We only need to observe that using the Binomial Theorem, there exists a
positive integer M such that

(a+ 1" =14 (n+1)a+a®M.
Observe that
nrl=mn+1-1)2+1=n+1)>2*-2(n+1)+2.

Hence, for the relation to be true, we must have that (n + 1)|2, that is
n=1
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Since
n8 +206 = (n? +2 — 2)% 4+ 206 = (n? + 2)3 — 6(n? + 2)?
+12(n? +2) + 198,

the relation will be true if (n?+2)|198. The only possibilities are therefore:
n?+2=1,23,6,9,11,18,22,33,66,99,198, in which case the positive
values of the required n are: 1, 2, 3, 4, 8 and 14. For example, with b =5
and a = 2, we have 5[22 +1,5/2-22 and 5 /2% + 1 = 17.

First observe that n® + 216 = (n3 + 2 — 2)2 + 216. Then we proceed as
in the preceding problem, and we obtain that the only possible integer n
satisfying the given property is n = 2.

The answer is NO. Indeed, if b|a® + 1, then there exists a positive integer k
such that a?+1 = kb. It follows that a*+1 = (kb—1)?+1 = k2b? —2kb+2
and therefore that in order to have bla* + 1, we must have that b[2. It is
easy to choose integers a and b in such a way that bla? + 1 and b}2a?.
For instance, with b = 5 and a = 2, we obtain that 5|22 + 1, 5 /2 - 22 and

’ Sff?:)(:i))(n<Z)’n<’23><”(Z>’k§>)

we obtain the result.
(b) This follows from the fact that

mr =0 (1) (7)) = (e rr-n(2)#(2))

- Z)(n+1—k,k)
and from the fact that (n+1—k,k) = (n+ 1,k).
(c) Let
z n . .
A= {x€Z| m(k—l) 1san1nteger}.

Obviously, x =n+2 — k € A. Since

k-1 no\ (k—1)n! [ n
n+2—k<k—1> T n+2-k)(k—-D!(n+1-k)! (k—2)’
then x = k — 1 € A. Hence, any linear combination of (k — 1) and
(n+2—k) also belongs to A. In particular, (n+2—k, k —1) belongs
also to A and since (n+2—k,k—1) = (n+ 1,k — 1), we obtain the
result.

REMARK: Parts (a) and (b) of this problem could have been solved
as in part (c).

(60) (Putnam, 1984). It is clear that

fn+2)—fn+)=n+2)=(n+2)(n+1)!
=(n+2)(fn+1) = f(n)).
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(61)

(62)

(63)

(65)

(66)

(67)

(68)

(69)
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Therefore, choosing P(z) = z 4+ 3 and Q(z) = —z — 2, the result follows.
We only need to observe that

(23(n+1)+3 _ 7(TL + 1) _ 8) _ (23n+3 —Tn — 8) — 7(23n+3 _ 1)

and that 7|23"*3 — 1, and thereafter use induction.
REMARK: This result follows also from Problem 54. Indeed,

PHT+1)3 - — (T4 1)} =23 —Tn—8.

We have a = 10g+7, 0 < r < 10. Therefore, we must have that 10|r1°+1,
and this is why we must have r =3 or 7.
The answer is YES. Indeed,

22" 1 = 4" -1=3+1)" -1

3+ (M)t (D)2 (" )3430-1
1 2 n—1

n n n—1 n n—2 n

3 +(1>3 +(2)3 ¥ +<n_1)3,

an expression which is divisible by 3.

Let 6k + 5 be an integer. To show that this integer can be written in the
form 3m — 1, we must find an integer m such that 6k +5 = 3m —1. To do
so0, it is enough to choose m = 2k + 2, thus ending the proof of the first
part. For the second part, let 3k — 1 be an integer. Can one find, for each
positive integer k, an integer m such that 3k — 1 = 6m + 5, that is such
that 6m = 3k — 67 The answer is NO, because if k is odd, it is clear that
it is impossible to find such an integer m.

The answer is YES. Indeed, if n = 8k + 7 = 6¢ + 5 for certain integers k
and /¢, then 4k = 3/ — 1, which happens if and only if £ = 3,7,11,15,.. .,
that is when £ is of the form 4m + 3. Hence, all numbers n of the form

It

n=60+5=6(4m+3)+ 5= 24m + 23

are automatically of the two required forms, and, of course, there are
infinitely many of them.

Let k € N; then My = 2pops---pr +1=2(2r +1)+ 1 =4r + 3. But we
know that each perfect square is of the form 47 or 4r + 1, and certainly
not of the form 4r + 3.

Let N = n? = m2 for certain positive integers n and m. We easily see
that n? is of the form 7k, 7k + 1, Tk +2 or 7k + 4, while m? is of the form
7k, Tk + 1 or 7k 4+ 6. Hence, N must be of the form 7k or 7k + 1.

Since 2 and y? are of the form 4n + 1, we see that 22 + y? is of the form
4m + 2. But each perfect square is of the form 4k or of the form 4k + 1.
Thus the result.

The Binomial Theorem gives

(n+1)" -1 Z;nk(;D =n2+§ (Z)"’“

n

and since (Z) is an integer, the result is immediate.
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(70) By using the Binomial Theorem, we obtain
nfF—1 = [(n-1)+1]F-1
= (n-1D)*+kn-1)*14+.. .+ k(n-1),
and we observe that all the terms of this last expression are divisible
by (n — 1)? except perhaps the term k(n — 1), thus the result. The more
general case can be treated in a similar manner, by considering the relation
nk —a* = ((n —a) +a)k — a*.
(71) (a) By using the Binomial Theorem, we find

a"=(a—b+b)"=(a—-b"+ (?)(a—b)n_lb—k---

+ (n " 2) (a—b)%""2 + (n " 1) (@ —b)b™ +b".

Hence, there exists an integer K such that

a™ —b"

— = (e (T)(a—b)"—2b+...

+(n T_l 2) (a—b)b" 2 4+ nb" ! = K(a—b) +nb"" L.
It follows that
n _ pn
(1) <aaT,a—b) = (nbn_l,a—b).
Similarly,

b*=(a—(a—0b)" =a" - (T;)an_l(a— b) +---
#e (" ata- 0t (-1a -0,

and therefore, we find

aa : z =na™"' + L(a—b)
for a certain integer L. Hence,
a” —b" n—1
(2) (a_b,a—b)=(na ,a—Db).

Using the equations (1) and (2), we obtain

am — b o
(S5 a-0) = (tanam).
Indeed, let d = (na™',a —b) = (nb"~',a —b) and g = (n(a,b)" !,
a—b). Since d|na™! and d|nb™"1, it follows that
d|(na™ 1, nb" 1) = n(a™ 1, 5" ) = n(a,b)" L.

By using this relation and the fact that d|(a — b), we have d|g. Con-
versely, since g|n(a,b)" "1, then glna™1; and since g|(a—b), it follows
that g|(na™!,a — b) = d. Hence, g = d, which gives the result.
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(b) Setting b = —B, we have
a”+b" a" - B"
a+b  a—-B "’
Part (a) allows us to conclude that

a™ +b" a™ — B™
( o+ ’““’) = (ﬁ’a'3>
= (n(a,B)" ',a— B) = (n(a,b)" ',a+b),

as was required to prove.
(c) Part (b) allows us to conclude that

(a”—{—bp

a+b

depending whether p divides a + b or not.
(72) If 2|n and n > 2, then (n — 1)! is even while n* — 1 is odd. If 2 /n and
n > 5, then n — 1 is even and

,a+b) =(p,a+b)=1lorp

-1
n—1=2n

| (n—2)!

so that (n—1)2|(n—1)!. Since (n—1)! = n*—1, we must have (n—1)%|nF -1,
and using Problem 70, we must have (n — 1)|k and therefore k > n — 1.
In this case, for n > 5,

nF—1>p" 11> (n-1).
Hence, the only possible cases yielding a solution are n = 2, n = 3 and
n = 5, the corresponding values of k then being 1, 1 and 2.
(73) (a) Since b = aqy + r; and since @ > 71, ¢ > 1, then b = aqy + 71 >
r1q1 +r1 > 2ry. Similarly, @ = 7192 + 72 > r2q2 + 2 > 2r5. Finally,
for each k > 1,
Tk = Tkt1qk+2 T Tht2, 0 <Thio <Thi1,
so that

Tk = Tk+1qk+2 + Tk42 > Th2qk+2 + Tht2 = 2Tk42.
(b) Since
b>2r > 22r3 > 2%r5 > ... > 20D/ 2, > 9 HD/2 5 93/2)

we conclude that 7 < 2logb/log2, and the result follows.
(74) Consider the numbers of the form n = 3%, k =0,1,2,3,..., so that

_ _ 1\ 2 _
() 2041 =28 4+1=28"""841 = (2“ 1+1) ((2” ) — 2 ‘+1).

We will show that

(i) the first factor on the right-hand side is divisible by 3¥=! while

(ii) the second factor is divisible by 3.
From this, it follows that the left-hand side of (%) is divisible by 3¥~1.3 =
3k =n.

To show (i), we will show by induction that 2™ + 1 is divisible by 3.

It is clear that this result is true for m = 1, since 3|9. Assume now that
237" 4+ 1 is divisible by 3. Thus, if we set z = 23", we may write
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m m — 3
23 +1:(23 1) +1=2*+1=(z+ (2?2 —2+1)
= (2" 1) (@2 -2+ 1),

an expression divisible by 3, because of our induction hypothesis.

In order to show (ii), we only need to observe that if a is an odd
positive integer (namely, here a = 3*¥~1!), then (2%)? — 22 + 1 is divisible
by 3, which is indeed the case since

(292 =2 +1=4"-241=1-2+1=0 (mod 3).
(75) Using Euclidean division, we can write m = ng+r, 0 < r < n. Hence,
am—1=a"" —a""+a" —1=0a"(a" — 1)+ (a™)? - 1.
In light of Problem 8, a™ — 1|a™? — 1, so that we have
a”—1la™ -1 < a" —1|a™(a” — 1).

But (a™ — 1,a™) = 1, meaning that o™ — 1 must divide a” — 1, and this
is true provided r # 0. Finally, the result follows.

(76) We only need to observe that N, = 1071 + 102 + ... + 10+ 1 =
(10™ — 1)/9 and to use the fact that 10™ — 1]10™ — 1 if and only if n|m
(see the preceding problem).

(77) Any number in the sequence is of the form 100k + 11 = 4(25k + 2) + 3,
where k is a nonnegative integer (made up entirely of the digit “1”). Then,
any integer in the sequence leaves 3 as a remainder when it is divided by
4 and therefore cannot be a perfect square, since it is well known that any
perfect square is of the form 4r or 4r + 1.

(78) The required number is 2% - 3%. For the general case, the smallest number
is 2(nm] . 3lnml,

(79) Since 371 = 370 + 1, and since 370 is already in the list, it is obvious that
371 is this fourth number.

(80) There are

1000 1000 1000 1000 1000
1 — — —
- [5-[5- 15 [50 r

1 1
+[ 000] _ [ 000} o6

15 30
such numbers.
(81) We are looking for a,b € N such that

p=a2~b2:(a+b)(a—b).

But since p is a prime number, we must have a —b =1 and a + b = p.
Hence,
p+1
Y d bp=2_-—.
a 5 an 5

‘We have thus obtained that

(3 -2



120

1001 PROBLEMS IN CLASSICAL NUMBER THEORY

(82) The result follows immediately from the fact that the system of equations
a—b=1and a+b = p has a solution, namely a = (p+1)/2,b = (p—1)/2.

(83) The answer is YES. However, uniqueness does not hold because for in-
stance 21 = 112 — 10? = 5% — 22.

(84) This follows from the fact that 7 = 10 — 3 is a divisor of 109 — 3°.

(85) Let m be this integer. Then,

m =2k +1=a?+ b2 a odd, b even.

We then have that there exist nonnegative integers M and N such that
a=2M +1 and b = 2N. Hence, a> = 4M? +4M +1 = 4K + 1 for a
certain integer K, and b?> = 4N2. We have therefore established that

m=a’>+b>=4K+1+4N? =4n+1,

for a certain integer n, as required.

(86) If @ and b are odd, that is a = 2m + 1 and b = 2n + 1, say, then we have
a® + b = 4k + 2 = 2, which is impossible since any perfect square is of
the form 4k or 4k + 1.

(87) (TYCM, March 85). For k = 0, we have 10* — 1 =10"-1=0= 0% a
cube. If k < 0, then 10¥ — 1 is not an integer. Hence, assume that & > 1
and that 10¥ — 1 = n3. Setting Ny = 5(10* — 1), we then have

Ne=11...1=10*"1+10F24+... + 10+ 1.
k

But, for j > 1, there exists a constant A > 1 such that 10/ = (32 +1)7 =
3A + 1, which allows us to conclude that there exists a constant M > 1
such that N = 3M + k. Since 9|(10% — 1) = n3, it follows that 27|10% — 1.
Therefore 3| Ny so that k = 3r for a certain positive integer r. We have
thus established that 103" — 1 and 103" are two consecutive cubes (with
r > 1), a contradiction. Hence, the only integer k such that 10 — 1 is a
cube is £ = 0.

(88) Since a|42n + 37 — 6(7n + 4) = 13, the result follows.

(89) By hypothesis, we have that (a + b)/ab is an integer and therefore that
abl(a +b). Since ala + b and ala, it follows that a|b. Moreover, bla + b
and b|b imply bla. Now clearly, a|b and b|a, with a, b positive, implies that
a = b. It then follows that, for 1/a+1/a = 2/a to be an integer, we must
have a|2, which means that a = 1 or 2.

(90) We write a = 4A, b = 4B where (A, B) = 1. Then, (a?,b%) = 16(A%,4B3),
and since (A2, B®) = 1, we conclude that each common divisor of A% and
4B3 must be 1 or 4. Hence, the possible values of (a2,b?) are 16 and 64.

(91) Set d; = (3a+5b,5a+8b) and d = (a, b). Since d;|(3a+5b) and d; [(5a+8b),
then d4 | (8(3a+5b) — 5(5a+8b)), that is di|a. In a similar way, we obtain
that d;|b and consequently d; |d.

Since d = (a, b), it follows that d|(3a+5b) and d|(5a+8b) and therefore
d|d;. Since d|d; and d;|d, we conclude that d = d;.

The general case can he handled in a similar way, and we obtain
(ma + nb,ra + sb) = (a,b) when ms —nr = 1.
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(96)

(97)

(98)

(99)

(100)

(101)

(102)

(103)
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Let r = (d,m) and set s = d/r. Since r|m, it is enough to show that s|n.
Letting M = m/r, then

(é,ﬁ) = (s,M)=1.

Since d|mn, there exists an integer ¢t such that d¢ = mn, so that rst =
Mrn, that is s|Mn. Since (s, M) = 1, it follows that s|n. Let d’' = (r, s);
then d’|r and 7|m imply that d’'|m and d’|n. We therefore have d'|(m,n) =
1, so that (r,s) =1.

We have that d|(a + b) + (e — b) = 2a and therefore that d|a since d is
odd. Similarly, we have that d|{a + b) — (a — b) = 2b and therefore that
d|b since d is odd. Hence, d|(a, b).

Since 19?2 = 361, each composite number < 360 is divisible by a prime
number < 17. Since there are only seven prime numbers < 17, it follows
by the Pigeonhole Principle that at least two of these given eight composite
numbers must be divisible by the same prime number.

Since ab =12 = qfal . -qi“’“ for certain prime numbers g1, qs, - .., g and
certain positive integers a;, as, ..., ax and since (a,b) = 1, it is clear that

some of the ¢>*’s will be factors of a while the others will be factors of b,

thus establishing that a and b are perfect squares.

If it were true, it would follow from Problem 95 that n and n + 1 are two
consecutive perfect squares, which is not possible.

The only possible values are 1, 2, 7 and 14. Indeed, if d = (n,n + 14),
then d|14.

The first statement is true because it is equivalent to 3|(n — 1)n(n + 1).
The second statement is false: simply take n = 4. The third statement is
true because it is easily shown to be equivalent to 8/4n(n+1). The fourth
statement is true because 2|n(n + 1) and 3|n(n + 1)(n + 2).

The answer is YES. Indeed, on the one hand, 3|n(n + 1)(n + 2), while on
the other hand, one of the two numbers n and n + 2 is divisible by 4, the
other by 2.

Since we have n? + 47 = n? + 48 — 1, it is enough to show that 24|n? — 1.
First of all, any positive integer n is of one of the following six forms: 6k,
6k + 1, 6k + 2, 6k + 3, 6k + 4, 6k + 5. Since (n,2) = (n,3) = 1, it is
clear that n can only be of the form 6k + 1 or 6k + 5, in which case it is
immediate that n? — 1 is divisible by 24.

Let a = dr and b = ds where (r,s) = 1. Dividing each of the integers a,
2a,...,ba by b, we obtain the quotients

ror roor
- 2—, ..., (b=1)—, ds—.
(x) s’ s’ 2t )s’ s

Since (r, s) = 1, the only integers amongst (%) are those whose numerator
is a multiple of s. Since b = ds, this will happen exactly d times.

Part {(a) is immediate. For part (b), it is sufficient to observe that
(xo +b)a+ (yo — a)b = d.

Let d = (a,mn); then d|a and d|mn. Since (m,n) = 1, using Problem 92,
we have d = rs, (r,s) = 1, r|m and s|n. But rs|a implies r|a and s|a.
It follows that r|(a,m) and s|(a,n), so that d|(a,m)(a,n). To complete
the proof, we must now show that (a,m)(a,n)|d. Let d2 = (a,m) and
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(105)

(107)

(108)

d =

1001 PROBLEMS IN CLASSICAL NUMBER THEORY

(a,n); then dy|a and da|mn, so that da|(a, mn). But d;|a and di|mn

imply d1|(a, mn). Since (m,n) = 1, it follows that (d1,dz) = 1, which
allows us to conclude that dids|(a, mn).

(104) Let d = (n? 4 3n+2,6n3 + 15n% + 3n — 7). We then have that d|6n(n? +
3n+2) — (6n3 +15n% +3n —7) = 3n? + 9n + 7. Now since d|n? + 3n + 2,
it follows that d[3n% + 9n + 7 — 3(n? + 3n + 2) = 1 and therefore d = 1.
The first three problems can be solved in a similar way. For (a), we
proceed as follows. Let d = (a + b, a — b), so that d|2b and d|2a. We then
have d|(2b,2a) = 2(a, b) so that d|2, which proves that d = 1 or 2. Finally,
for (d), it is sufficient to notice that a? — 3ab + b% = (a + b)? — 5ab.

(106) (a) Set d = (a® + b, a® — b3). We then have that d|2a® and d|2b?, and

(b)

(a)

(a)

(b)
()

since (a,b) = 1, we have d|2. Therefore, d = 1 or d = 2. More
precisely, when a and b are of opposite parity, we find the value 1,
while if @ and b are of the same parity, we obtain the value 2.

We have

(a? —b%,a® - b°) z(a—b)(a+b,a2—ab+b2)

=(a—b)(a+b,(a+b)2—3ab) z(a—b)(a+b,3ab>.

Let d = (a+b,3ab), so that d|3b(a +b) — 3ab = 3b* and d|3a(a+b) —
3ab = 3a?, and therefore d|3. It follows that (a2 —~b2%,a®> —b%) =a—b
or 3(a —b). More precisely, the value isa—b if 3 f(a+b) and 3(a—b)
if 3[(a + b).

False. Indeed, (2,3) = (2,5) = 1 even though 6 = [2, 3] # [2,5] = 10.
True. It is enough to show that: (a,b) = g = (a?,b%) = g%. We
know that if (4, B) = 1, then (42, B?) = 1. But by hypothesis we
have a = Ag and b = Bg with (A, B) = 1. It follows that a? =
A%g% and b® = B2%g?, which means that (a?,b%) = (A%2¢2, B%g?) =
9%(A?,B%) = ¢°.

True. Indeed, let g = (a,b) and h = (a,b,¢). It is clear that h|g.
Therefore, it follows that g|h. But g = (a,b) = (a, ¢), which implies
that gla, g|b and g|c. It follows that g|(a,b,c) = h, as was to be
shown.

The statement is true. Indeed, let (a,b) = d, so that a = dA and
b = dB with (A, B) = 1. Therefore, (A", B™) = 1, and since a™|b",
we obtain A™d"|B™d", that is A"|B™. Hence, A™|(A™, B™) = 1,
which shows that A = 1 and therefore that d = a. It follows that
b = dB = aB, which proves the statement.

One can also prove this result by writing a = [[p{* and b = [] p?i,
and then using the fact that a™|b™ to obtain that na; < nb;; that is
a; < b; for each 7, so that alb.

The statement is true because a™|b™ implies a™ a™ " |b™ and there-
fore a™|b™. From part (a), we draw the conclusion.

False. Indeed, (23)?|(2%)3, although 23 J22.

(109) We have (a,b) =1 <= there exist z,y € Z such that az + by = 1. Since
cla, there exists ¢ € Z such that a = qc; therefore, az + by = qcz + by =1

—

(c,b) =1.
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We have (a,bc) =1 <= there exist z,y € Z such that az + bcy = 1. We
therefore obtain that (a,b) =1 and (a,c) = 1.
Assuming that (a,b) = 1, we must show that 1 = (a + b,ab). Setting
d = (a + b,ab), we obtain that d|a? and d|b?, so that d|(a?,b%) = 1. The
more general case (a,b) = d > 1 can be obtained from the first part, using
the fact that (a/d,b/d) = 1.

Let a and b be the integers such that a + b = 186 and [a, b] = 1440.

Since (a,b) = (a + b, [a,b]) and since (186,1440) = 6, then a = 6A and

= 6B where (A, B) = 1. This leads to A+ B = 31 and [A4, B] = 240,

and since (A, B) = 1, we have AB = 240. We then have A(31 — A) = 240

and therefore A = 15 or A = 16. The other two numbers are therefore

90 =2-32-5 and 96 = 2° - 3.

(a) Let d = (a,bc) and g = (a, (a,b)c). We have that gla and g|(ac, bc)
and therefore that g|bc. Consequently, g|d. But d|a and d|bc imply
that d|(ac, bc) = (a,b)c and therefore that d|g. Hence, d = g.

(b) From part (a), we have

(a,bc) = (a,c(a,b)) = (a, (a,c)(a,b)).

Indeed, (c,ab) = (¢, (a,c)b) = (¢, b).

It is enough to show that the two numbers are both powers of the same
prime number. Assume that p® divides either one of the two expressions.
Then, p®|mn, and since (m,n) = 1, then either p®|m and (p,n) = 1 or
else p®|n and (p,m) = 1. Since both cases are identical, we can assume
that p®|m, in which case we must have (p,n) = 1. Therefore,

p%|(ma + nb,mn) <= p“|(ma + nb)
= plb = p*|(b,m) < p®|(a,n)(b,m).

Setting b = a, we obtain (a(m + n), mn) = (a,n)(a,m). Since (m,n) =1
also implies (m + n,mn) = 1, we conclude that (a, mn) = (a,n)(a,m),
thus also obtaining the result of Problem 103.

The answer is NO. This follows from the identity

n\(s\ _(n\(n-r
()0 -C)E=0)
and from the fact that both quantities () and (7~") are larger than 1.
REMARK: This problem remained unsolved until one thought about using
the above identity (see Guy [16], B31). P. Erd6s and G. Szekeres [11]
asked if the largest prime factor of the greatest common divisor of (:)

and (’;) is always larger than 7, the only counter-example with r > 3

being (@ @) ) (@8), Gi)) _9%.38.555.

Let (a,b) = d with [a, b] — (a,b) = 143. First of all, it is clear that d|143.
We must therefore examine the possibilities d = 1, d = 11, d = 13 and
d = 143. Set a = Ad and b = Bd with (A, B) = 1.

If d = 1, then [a,b] — (a,b) = 143 becomes AB — 1 = 143 and since
(A,B)=1,wehave A=a=16and B=b=09,aswellas A=a =1 and
B =0b=144.
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If d = 11, then AB — 1 = 13 and therefore A = 2 and B = 7 (which
gives a = 22 and b = 77), as well as A = 1 and B = 14 (which gives
a =11 and b = 154).

If d = 13, we obtain a = 39 and b = 52.

If d = 143, we have a = 143 and b = 286.

The only six possible (ordered pairs) solutions are therefore

{a,b} = {1,144}, {9,16}, {11,154}, {22, 77}, {39,52}, {143,286}.

(117) For the first part we proceed as follows. Let d = (a,b,¢) and d; =
({a,b),c). Since d|a and d|b, we have d|(a,b). Similarly, d|c; hence, d|d;.
On the other hand, d;|(a,b); it follows that d;|a and d1|b, and since d|c,
this shows that d;|d. Since d|d; and d;|d, we have d = d;.

For the second part, we proceed in the following manner. Let M =
[a,b,c], m = [a,b] and m; = [m,c|]. From the definition of m;, it fol-
lows that m|m; and ¢|m;. Consequently, a|my, bjm; and ¢|m;; that is
[a, b, c]|m1. Conversely, M = [a, b, ¢| implies a|M, b|M and c|M, and there-
fore [a,b]|M and c|M. This allows us to conclude that m; = [[a, b], c||M
and the result follows.

More generally, we have

(a1,a2,...,a,) = (a1, (az,...,a,)) and [a1,a9,...,a,] = [a1, [a2, . . ., a4]].

By using Euclid’s algorithm, we obtain

132 = 102-1+ 30,
102 = 30-3+12,
30 = 12-246,
12 = 6.2

It follows from this that (132,102) = 6 and therefore that
(132,102, 36) = ((132,102), 36) = (6, 36) = 6.
Using the above system of equations starting at the second one from
the bottom and moving up, we obtain successively
6 = 30—12-2=30-(102—-3-30)-2=7-30—2-102
7-(132-102) —102-2=17-132—9-102.
On the other hand, since 7 -6 4+ (—1) - 36 = 6, we obtain that
7-(7-132—9-102) — 36 = 6 = 49 - 132 + (—63) - 102 + (—1) - 36 = 6.
We may thus choose z =49, y = —63 and z = —1.
(118) It is easy to see that (n,n+1,n+2) = ((n,n+1),n+2)=(1,n+2)=1.
Since (n,n+1) = 1, it follows that [n,n+1,n+2] = [[n,n+1],n+2] =
[n(n+1),n+2]. Since (n(n+1),n+2) = (n,n+2) =1 or 2, then
n(n+1)(n+2) if nis odd ,
n(n+1)(n+2)/2 if nis even.
(119) We know that (x) (ab,c)[ab,c] = abe. Since (a,b) = 1, it follows that
[a,b] = ab, and since (a,c¢) = (b,¢) = 1, we have (ab,c¢) = 1. Therefore,
(%) becomes [ab, c] = abe, so that [[a,b],c] = abc. By using Problem 117,
we reach the conclusion.

[n,n+1,n+ 2 :{
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(120) The answer is YES. If (a,b) = 1, we have (a?,b%?) = 1; hence, using
Problem 117, we obtain
(a2, ab,b%) = ((a?,b%),ab) = (1,ab) = 1.

(121) The answer is YES. If (a,b) = 1, then (a?,b%) = 1, [a?,b?] = a?b? and
Problem 120 allows us to obtain that (a?, ab, b?) = 1. Consequently, from
Problem 117, we have

[a?,ab, b?] = [[a?,b%], ab] = [a®b?, ab] = a®b* = [a?, b?].

For the general case (a,b) = d, it is enough to redo the last part with
(a/d,b/d) = 1.

(122) The answer is YES. We set h = (a,b,¢) and g = ((a,b), (a,¢)), and we
easily show that g|h and h|g.

(123) The answer is NO. It is enough to consider the counter-example provided
by choosing a = 6, b =3 and ¢ = 15.

(124) This problem was stated by the mathematician Jean-Henri Lambert (1728
1777). Letting (m,n) = e and using the fact that [m,n](m,n) = mn, we
have

dmnl 1 = (@™ -1+ 1)V —1=(d™ -1)V°
#(" ) am —arer (E Yam-

and we conclude that a|dl™™ — 1. Similarly,

dmm 1 = (@ —1+1)™°—1=(@d"—1)"e
+(m1/e)(d"—1)m/6*1+---+( m/e )(d"—l)

mje—1

and we obtain that b|d™™ — 1. Since (a,b) = 1, the result follows.
(125) Assume that (m,n) =1, m > n. We will show that

(1) (@™ —-1,a"—1)=a—1.

Since (a,b+ ma) = (a,b), we have

(@™ —-1a"-1)=@" -1-(a"-1),a" —1)=(a™ —a",a" - 1).
Since (a™,a™ — 1) = 1, this shows that

(@™ —-1a"-1)=(a"(@a™ " ~1),a" —1)=(a™ " - 1,a™ —-1).

Without any loss in generality, we may assume that m > n, in which case
we can write m =ng+r, 0 < r < n, so that

(@™ —-1,a"-1)=(a" — 1,a" - 1).
Then, writing n =rs +t, 0 <t < r, we obtain
(@"—1,a" —1) = (a" — 1,a’ — 1),

and so on until we arrive at (¢ — 1,a — 1) = a — 1, which proves (1).
Assume now that d = (m,n) > 1. Since (m/d,n/d) = 1, we are brought
back to the first case, and we thus have

((ad)m/d —1,(a%)"/¢ — 1) =at-1,
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which takes care of the first part of the problem. For the other cases
mentioned in the second part (which by the way cover also the first part),
we proceed in the following manner. First letting (m,n) =1 and u = +1,
v = *x1, we have
(@™ 4+u,a”+v) = (a™+u—wv(a" +v),a" +v)

= (e —wa™,a"+v)=(a"" —uv,a" +v),
since (a™,a™ +1) = 1. Continuing this process, we obtain
(@™ +1L,a"+1)=(a"+1,a"—1)=(a+1,a+1)or (a+1,a—1)
according to the parities of m and n. More precisely, we have the following;:
Since (a + 1)|(a* + 1) for k odd and since (a + 1)|(a* — 1) for k even, it

follows that taking into account the fact that a + 1 cannot divide a* + 1
if k£ is even unless a = 1, we obtain that

a+1 if mn is odd,

(@™ +1,a"+1)=< 1 if mn is even and a is even,
2 if mn is even and a is odd
and that
1 if n is odd and a is even,
(@™ +1,a"-1)=¢ 2 if n is odd and a is odd,

a+1 if niseven.

When d = (m,n) > 1, we can proceed essentially as we did for the first
case. To find the value of (a™—b™, a™ —b"), we may assume that (a,b) =1
and a > b. In this case, set d = (m,n), v = a®—b? and v = (a™ —b™,a™ —
b™). Since d|m, it follows that u|(a™ — ™), and since d|n, we also have
u|(a™ — b™) and we obtain that u|v. Then, we only need to show that v|u.
Choose integers > 0 and y > 0 such that mz — ny = d. It is clear that

amz — any+d — any(bd =+ U),
and therefore
™ = b = @ (b 4 u) — b = b — B 4 ua™.

Since v|(a™ —b™), we have v|(a™* — b™*) and similarly v|(a™ —b™¥), and
the last equation allows one to obtain that v|ua™. Since (a,b) = 1, we
have (v,a) = 1. Indeed, every common divisor of a and v divides a™ and
a™—b™, and therefore divides b™, and since (a,b) = 1, we have (a,v) = 1.
Finally, v|ua™ implies v|u and the result follows.

Let a and b be two arbitrary integers, and set x = 5a and y = 5b. In
order to have z + y = 5a + 5b = 40, we must have a + b = 8. Moreover,
to have (z,y) = 5, we must have (a,b) = 1. Therefore, it remains to show
that it is possible to find infinitely many relatively prime pairs of integers
a and b such that a4+ b = 8. To do so, it is enough to choose, for example,
a=3+2tand b=5—2t, where t € Z.

There are four possible pairs: a = 15, b = 90; ¢ = 90, b = 15; a = 30,
b =45; a = 45, b = 30. For the general case, we proceed in the following
way. Since (a,b) = d, there exist integers A and B such that a = dA,
b = dB, where (A,B) = 1. But [a,b] = m implies that [dA,dB] =
d[A, B] = dAB = m. Hence, the system of equations (a,b) = d, [a,b] =m



SOLUTIONS 127

has solutions if and only if d|m. These solutions will be the same as that of
AB = m/d where (A, B) = 1. For each prime number p dividing m/d, we
cannot have both p|A and p|B. Therefore, either A contains the largest
power of p which divides m/d, or else A does not have p as a divisor.
Hence, for each prime factor p of m/d, we have two choices for the pair
{A, B}, and therefore in total as many pairs as m/d has distinct prime
factors, that is as many as 2«(m/d),

(128) This follows from the fact that 3|m and 3|n while 3 f101.

(129)

(a) We observe that
" =T

It follows that
() @ —1="" + 1)
="’

2

2m—1

—1)

+1)@@ 7 +1) @+ D)@+ 1)(a—1).
Hence, if m > n, a®" + 1 is a divisor of a?” — 1, as required.

(b) Note that a®” —1 = (a?” 4+ 1) — 2 and that this integer is divis-
ible by each of the factors on the right-hand side of (). Let d =
(a®” + 1,a*" + 1). We may assume that n < m, and therefore
a®" +1|(a*" + 1) — 2, which implies d|(a®” + 1) — 2. Therefore,
d|2sothatd=1ord=2.

(130) (AMM, Vol. 75, 1971, p. 201). Let d be the greatest common divisor of

(131)

the given numbers. In particular, d divides the sum of these numbers and
since (see Problem 17 (b))

() () () + e (o) =2

it follows that d must be of the form 2%. If n = 2*r, where r is an odd
integer and k a nonnegative integer, then since (21" ) = 2k+1y it follows
that any common divisor of the given numbers cannot be larger than
2k+1  To show that 2¥*! divides all these numbers, we first write, for
m=13,...,2n—1,

m 2k+1,r 2k+1,r 2k+1,,‘71
(-G -5 G

Since the binomial coefficients are integers and since m is an odd number,

we have -
2\ _ (2% ok+1 1
m m ’

where M is an integer and m = 1,3,...,2n — 1. This proves that 25+1 is
the greatest common divisor of the given numbers.

Each a; can be written in the form a; = 2%b;, where «; > 0 and b; is odd.
Let B = {b1,b2,...,bpt1}. Wehaveb; <2n,i=1,2,...,n+1. But there
exist only n odd numbers < 2n; hence, there exist j, k such that b; = bg.
Then, consider the two integers

a; =2%b; and ap=2%b.

It is clear that a; # ay (since b; = by). If a; < ai, then ajlak. If o < v,
then ar|a;. In each case, the result follows.
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(132) (Contribution of Imre Kdtai, Budapest). Let

n
=3 (@ +a®)(@® +a).

7=1
Then,
n n n n
= 3P S+ 3 3ol -
j=1 j=1 j=1

But since it is clear that the expression (a] +a§2))(a§-1) +a§- )) is a multiple
of 4, the result follows.

(133) In order to show that a series made up of nonnegative real numbers con-
verges, we only need to bound it by a series which converges. So let £(n)
be the number of digits of the positive integer n, in its decimal represen-
tation. We first observe that, for each positive integer r, we have

> 1=8.91

neA
Ln)=r

Hence, it follows from this that

Si-y vyl Zomzl

neA r=1 neaA nEA
2(n)=r £(n)=r

.Qr- 1 00 9 r—1
_Z o = ;(E) = 80,
from which the result follows.
(134) If a > b, it is clear that a — b > (a,b), and we know that (a,b)[a,b] = ab.
Hence, since
(un+1 - un)[un-f-l’ un] > (un+1a un)[un+17 un] = Un+1 * Un,

we obtain
1 Unt1 —Un 1 1

[Unt1,Un] = Uny1-Un Un  Un41

Therefore the series is bounded above by a convergent series and this is
why it converges.
(135) (a) With MAPLE, we have > for i from 3 by 2 to 525 do
> if isprime(2"i-1)
> then print(2"i-1, ¢ is a prime number °)
> else fi; od;
(b) With MAPLE, we may use
> nextprime(10A(100)+1);
We thus obtain the integer 10100 4 267.
(136) With MAPLE, the program below enumerates the first N (here N = 120)
prime numbers.
> for 7 to 120 do
> p.i:=ithprime(i) od;
For example, p.(1..120) gives the first 120 prime numbers.
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(137) In order to find four consecutive integers with the same number of prime
factors, we must use the function 2. First we type in

>

readlib(ifactors): with(numtheory):

and thereafter, we type in the following instructions:

>
>
>
>
>

Omega:=n->sum(ifactors(n) [2] [i] [2],
i=1..nops(factorset(n))):

for n to 1000 do if Omega(n)=Omega(n+1) and
Omega (n+1)=0Omega(n+2) and Omega(n+2)=0mega(n+3)
then print(n) else fi; od;

To find four consecutive integers having the same number of divisors, it
is enough to type in the instructions

>
>
>
>
>

(138) (a)

A%
>
>
> m:=n; s:=0;
>
>
>

with(numtheory) :

for n to 1000 do

if tau(n)=tau(n+1) and tau(n+i)=tau(n+2)
and tau(n+2)=tau(n+3)

then print(n) else fi; od;

ith the procedure “return”, the search is easily done:
return:=proc(n::integer)
local m,s;

while m<>0 do
s:=10*s+irem(m,10);
m:=iquo(m,10) od; s end:

And for our problem, we have the following procedure:

>
>
>
>

invp:=proc(N::integer) local n;
for n from 1 to N do if isprime(n)
and isprime(return(n)) then

print (n) fi; od; end:

Without the procedure “return”, we may proceed as follows:

>

VVVYV

VVVVYVYV

If

>

>
>
>
>

invp:=proc(N)

for j from 169 to N do

L:=convert (ithprime(j),base,10);# N <= 1229

if type(1000*L[1]+100%L[2]+10*L[3]+L[4],prime)=true
then print(ithprime(j)) else fi; od; end:

invp:=proc(N::integer)

local n;

for n from 1 to N do

if isprime(n)=false then elif
type(sqrt(return(n)),integer)=true
then print(n) else fi; od; end:

we do not use the procedure “return”, we may proceed as follows:

invp:=proc(N) local j, L;

for j from 26 to N

do L:=convert(ithprime(j),base,10);# N <= 168

if type(sqrt(100*L[1]1+10*L[2]+L[3]),integer)=true then
print(ithprime(j)) else fi; od; end:
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or the following procedure:
invp:=proc(N) local j, L;
for j from 169 to N
do L:=convert(ithprime(j),base,10);# N <= 1229
if type(sqrt(1000+L[1]+100+L[2]+10+L[3]+L[4]),
integer)=true
then print(ithprime(j)) else fi; od; end:
With MAPLE:

> for n from 3 by 2 to 10000 do

> if isprime(n) and isprime(n + 2) and isprime(n + 6)

> then print(n) else fi; od;
We prove this result using induction on k. The result is immediate for
k = 2. Assume that the result is true for a certain integer k > 2, that is
for which we have py < 2%. It is enough to show that py,1 < 25*1. From
Bertrand’s Postulate, there exists a prime number between py and 2pg, in
which case pr1 < 2pg, and the result is proved.
It is enough to show that d # 2,4 (mod 6). First of all, assume that d = 2:
if pp =1 (mod 3), then pry1 = pr+2 =0 (mod 3), contradicting the fact
that piy1 is prime; similarly if pp = 2 (mod 3), then px_1 = pr —2=0
(mod 3), contradicting the fact that px_; is prime. The same type of
contradiction emerges when we assume that d = 4. If d = 6k+2 or 6k +4
with £ > 1, the same argument works. For d = 6, it is p1g = 53; for
d= 12, it is Par = 211; for d = 18, it is D2285 = 20201.
REMARK: It is interesting to observe that the gap d = 24 is reached earlier
than might be expected in the sequence of prime numbers, namely with
P1939 = 16 787.
This statement follows from the fact that each of the listed numbers is a
perfect square, since

12321 = 1112, 1234321 = 1111%,. ..,
12345678987654321 = 1111111112,

VVVYVVYV

Let k > 2. Since each number < ny is either 1, a prime number or else a
composite number, it is clear that

(1) ng =1+ 7(ng) + k.
By using MATHEMATICA and the program
n=1;Do[n=n+1;While[PrimePi[n] !=n-10"a-1,n++]; Print[10~a,

" "’n]’{a’l,s}]
we obtain the table

10 18
100 133
1000 1197

This reveals that nig = 18, nigg = 133 and nig990 = 1197. For values
of k larger than 1000, and to accelerate the computations, one can use
the approximation (guaranteed by the Prime Number Theorem) w(z) ~

Togz T Toazg SO that (1) gives
ng N

logng  log? ny

ne ~

+k




(144)
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and therefore that

1 1
(2) ng (1 - - 2 ) ~ k,
lognk  log” ng

which in particular means that

(3) log ny ~ log k.

Combining (2) and (3), we obtain the approximation

(4) nkzk-(l ! ! >_{

logk  log’k

Setting sk(n) := 1+ m(n) + k — n, it follows that if a number n satisfies
sk(n) = 0, then n = ny.
First consider the case k = 10*. From (4), we have as a first approxi-
mation nige = 11 369. By using MATHEMATICA and the program
n=11369;While[(a=s[n]) !=0,n=n+a] ;Print[n]
where s(n) = $1000(n), we obtain that nijggoo = 11374. Similarly, with
the approximation nigs =~ 110425, we obtain that nigs = 110487. The
following is the table giving the values of njgo for 1 < a < 10.

« | Nyo« (67 N0

1118 6 | 1084605

2 |133 7 | 10708555
31197 8 | 106 091745

4 11374 9 | 1053422339
5 | 110487 10 | 10475688 327

Let k > 2. Setting r = [logng/log2|, it is clear that the number ny
satisfies

Z W(n,lc/i) = k.

i=1

From this relation and the approximation m(z) = (guaranteed by

log x
the Prime Number Theorem), it follows that

23

~ R,

log ny
so that logny ~ log k 4 loglognk =~ log k and therefore that
ng =~ klogny = klogk,

which gives a starting point for the computation of the exact value of ny.
Using MATHEMATICA and the program
Do[k = 107j; n = Floor[N[k*Log[k]]];
While[r = Floor[N[Log[n]/Log[2]1];
s=Sum[PrimePi[n~(1/1i)]1,{i,1,r}]; (a=k-s) !=0,n=n+a]l;
Print[j,"->", n,"=",FactorInteger[n]],{j,3,10}]
we finally obtain the following table:
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« | Njpe 87 Nnipe

1116 6 | 15474787

2 1419 7 | 179390821

3| 7517 8 | 2037968761

4 | 103511 9 |22801415981
5 | 1295953 10 | 252096 677813

If n is even, then 2™ +n? is also even and therefore not a prime. It follows
that n = 1,3 or 5 modulo 6. If n = 6k + 1 for a certain nonnegative
integer k, then 2" = 26k*1 =2 (mod 3) and n? = 1 (mod 3); in this case,
we have that 2" + n? =2+ 1 =0 (mod 3). Similarly, if n = 6k + 5 for a
certain nonnegative integer k, we easily show that 32" + n?. Therefore,
the only way that 2" + n? can be a prime number is that n = 3 (mod 6).
Thus, by considering all the positive integers n < 100 of the form
n = 6k + 3 and using a computer, we easily find that the only prime
numbers of the form 2" 4+ n?, with n < 100, are those corresponding to
n=1,9,15,21,33.
We will show that if n is of the form n = 3k+1 or n = 3k + 2 with £ > 1,
then 7|a,. Moreover, we will show that if n is of the form n = 3(3k + 1)
or n = 3(3k + 2) with k > 1, then 73|a,. Finally, since 3|a, if n is even,
it will follow that, for a, to be prime, n must be an odd multiple of 9.
So let n = 3k + a, with a = 1 or 2. Since 8* = 1 (mod 7) for each
integer k£ > 1, we have

an =2"(2" +1) + 1 =22 (2% +e 1 1) 41
=8F29(8%2° + 1) +1=2°(2°+1)+1 (mod 7).
But
7=0 (mod7) ifa=1,
21=0 (mod?7) ifa=2,

which establishes our first statement.
Let us now assume that n = 3(3k + a) with a = 1 or 2. Since 2° =1
(mod 73), we have

an = 2n(2n + 1) + 1= 29k+3a(29k+3a + 1) + 1
= (29)k2%e((2%9*2%2 £ 1) +1=2%(232 + 1)+ 1 (mod 73).

2“(2“+1)+1:{

But
2222 +1)+1=73=0 (mod 73) ifa=1,

2323 L )41 =
(2% +1) {26(212+1)+1=416150 (mod 73) ifa =2,

which establishes our second statement.

Having observed that a, is prime for n = 1,3 and 9, and then con-
sidering all the numbers of the form n = 9(2k + 1), we obtain using a
computer that a, is composite for each integer n, 10 < n < 1000.

That number is n = 9; we then have ag = 326981 = 79 - 4139.
First observe that it follows from Wilson’s Theorem that

[G=bie1_ o=y

J J

1 if j is prime,

0 if j is composite.
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Hence, to obtain the formula of Mindc and Willans, we only need to prove

that
1/n
pn—2+z [1+7r(m] l

But we easily prove that

A 1 ifr(m)<n-—1,
[ﬁ]/l

14+ 7w(m -

0 otherwise.

Now, as m varies from 2 to 2", we have that 7(m) < n — 1 for m =
2,3,... — 1, that is a total of p,, — 2 numbers. Therefore,

1/n
2+Z |:1+7_‘_ :| =2+ pn—2=pp,

as was to be shown.

We use an induction argument. The result is true for n = 1 and for n = 2.
So let n > 3. Assume that the result is true for all natural numbers
< n —1 and let us show that it implies that it must be true for n. Let
P, = Hp<n p. First of all, if n is even, then P,, = P,_1, so that the result
is true for n. Let us examine the case where n is odd, that isn =2k + 1
for a certain positive integer k. It follows that each prime number p such
that k +2 < p < 2k + 1 is a divisor of the number

2k+1\  (2k+1)(2k)(2k —1)(2k —2)--- (kK +2)
(%) ( k >_ 1-2.3.--k ’
Since

2k+1 2k+1 2k+1
2k+1 _ 2k+1 —
et = s (D) 4 (D) (P ),

we obtain ok + 1
+ k
(51 <
It follows that the product of all the prime numbers p such that k + 2 <

2k +1
]:_ ) and therefore smaller than 4*. On the

other hand, using the induction hypothesis, we have that Py, < 4F+1.
This is why

Po=Pyp= [[ - ][] p<a dF=a"=yn
p<h+l  k+2<p<2k+l

p < 2k+1 is a divisor of (

as was to be shown.

Let m = (a,c). Then, there exist two integers u and v such that (u,v) =1
and such that a = mu and ¢ = mv. Hence, since ab = cd, we have
mub = mvd and therefore ub = vd. Since (u,v) = 1, we have u|d and this
is why there exists an integer n such that d = nu. Since ub = vnu, we
therefore have b = nv. It follows from these relations that

a? +b? + % + d? = m*u? + n?0? + m2? + n2u? = m?(u? +0?)
+n2(u2 +v2) — (u2 +v2)(m2 +n2),
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a product of two integers larger than 1.
(151) Since

4nd 4+ 6n% +4n+1=n*+4n3 +6n® +4n+1—n* = (n +1)* — n*
=((n+12=n?)((n+1)?+n?) =2n+1)2n* +2n+1),

the product of two integers larger than 1, the result follows.
(152) First of all, since p + g is even, we can write

Pty
7
Since %‘1 is an integer located between the two consecutive prime numbers
p and ¢, it must be composite, that is the product of at least two prime
numbers, and this is why the right-hand side of (x) has at least three
prime factors.
(153) The answer is YES. We look for positive integers n,a, b and c such that

() p+q=2

n 2 N 3 n 5
— = —_ = b p —_ = .
2 =% 3 5 ¢
It is sufficient to find integers a,b and c¢ such that
20 = 3b% = 5¢°.

The task is therefore to find integers a;, 3; and 7; (¢ = 1,2, 3) such that
2 (2213015m)% = 3 (202302572)° — 5 (29383573)”

To do so, we must find integers «;, 3; and ~v; (i = 1,2,3) such that

207 +1=3as =5as, 201 =302+1=5083, 2v1 =37y =5y3+ 1.

We easily find

ar=T,aa=5,a3=3, P1=5,02=3,03=2, m=3,72=2,713=1

We then obtain that n = 2(27 - 3% - 53)2 = 30233088 000000 serves our
purpose.
(154) This follows from the identity

n42 — 97 = (n14)3 _ 33 — (n14 _ 3)(7128 + 3n14 + 32)

(155) We proceed by contradiction by assuming that there does not exist any
prime number in the interval |z, 2z], in which case we have 6(2z) = 6(z).
By using the inequalities 0.73z < 6(z) < 1.12z, we would then have

1.46z = 2(0.73)z < 6(2z) = 0(x) < 1.12z,

a contradiction.

(156) We proceed by induction. First of all, for n = 4, the result is true,
since 121 = 112 = p2 < pipap3ps = 210. Assume that the inequality
pi < p1p2 - Pk—1 is true for a certain integer k > 5. By using Bertrand’s
Postulate in the form pyy1 < 2py, we then have

pi+1 < 4P% < 4p1p2 - Pr—1 < P1P2 Pk,

and the result then follows by induction.
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If there exist ¢,7,a € N such that ¢" = (¢"/?)? = a2, where r is even
and ¢" = p + m? with p prime and m € N, then a® — m? = p, so that
(a—m)(a+m) = p. Since p is prime, we must have a—m = 1 and a+m = p,
and therefore m = a — 1 and p = 2a — 1. Hence, if 20 — 1 = 2¢"/2 — 1 is
composite, ¢" cannot be written as p + m?, as was to be shown.
For p = 3, the result is immediate. Assume that p > 5. If p = 3k + 1
for a certain positive integer k, then 8k + 1 = 24k + 9, a multiple of 3.
Otherwise, that is if p = 3k — 1 for a certain positive integer k, then
8p — 1 = 24k — 9, a multiple of 3, which contradicts the fact that 8p — 1
is prime. In both cases, the result is proved.
If a positive integer of the form 3k + 2 has no prime factor of the form
3k + 2, then all its prime factors are of the form 3k + 1. Since the product
of two integers of the form 3k + 1 is of the form 3k + 1, the result follows.
Since each product of prime numbers of the form 4k+1 is of the same
form and since each product of prime numbers of the form 6k + 1 is of the
same form, the result follows.
(a) Wehave 23 =3-31+2-21+1-1land 57=2-4!+1-31+1-21+1- 1L
(b) To find the Cantor expansion of a positive integer n, we proceed as
follows. Let m be the largest positive integer such that m! < n and
let a,, be the largest positive integer such that a,, -m! < n. It is
clear that 0 < a,, < m; otherwise, this would contradict the maximal
choice of m. If a,, - m! = n, then the Cantor expansion is given by
n = a,,-m!. Otherwise, that is if a,,-m! < n, let dy = n—a,, -m! > 0,
let m1 be the largest positive integer such that m;! < d; and let an,,
be the largest positive integer such that a,,, -mi! < d;. As above, we
have a < am,; < my. If ay,, - my! = dy; then the Cantor expansion
is given by n = ay, - m! + @, - mq!, where 0 < ap, < my < m. If
Qm, - M1! < di, then we set do = di — ap,, - m1! and we let my be
the largest positive integer such that ms! < dy. And so on. We thus
build a sequence of positive integers m > mj; > my > ... with the
corresponding integers 0 < a.,, < m,;. Since the sequence of m;’s is
decreasing, it must have an end. Let us show the uniqueness of this
representation. Assume that for 0 < a;,b; < j, we have

n=amm!+---+all=bym!+---+ b1l

that is (am — bm)m! + - -+ + (a1 — b1)1! = 0. If both expansions are
different, then there exists a smaller integer j such that 1 < j < m
and a; # b;. Hence,

. m! .
3t ((am = bm) o a1 = by 1)+ (05— ) ) =0
and therefore
m! .
bj —a; = (am — bm)? + (a1 — b)) (G + 1)
) m!
=G+ 1) (am — ) s e (o = b))

which implies that (j + 1)|(b; — a;). Since 0 < a;,b; < j, it follows
that a; = b;, a contradiction.
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(TYCM, Vol. 19, 1988, p. 191). The expression in the statement can be
written as

(p—1'+1  (=Dddl(p—-1)!+1
p - p+d '
Since p+d—-1)! = (p+d-1)(p+d—2)---(p+d—d)(p— 1), we
have (p+d —1)! = (—1)4d!(p — 1)! (mod p + d), and it follows that the
expression in the statement is an integer if and only if
1) (p—l)!+1+(p+d—1)!+1
p p+d

is an integer. From Wilson’s Theorem, if p and p + d are two prime
numbers, then each of the terms of (1) is an integer, which proves the
necessary condition.

Conversely, assume that expression (1) is an integer. If p or p + d is
not a prime, then by Wilson’s Theorem, at least one of the terms of (1) is
not an integer. This implies that none of the terms of (1) is an integer or
equivalently neither of p and p + d is prime. It follows that both fractions
of (1) are in reduced form.

It is easy to see that if a/b and a' /b’ are reduced fractions such that
a/b+a' /b = (ab' + a'b)/(bb') is an integer, then blb' and b'|b.

Applying this result to (1), we obtain that (p+ d)|p, which is impossi-
ble. We may therefore conclude that if (1) is an integer, then both p and
p + d must be primes.

If p =3, then p+2 = 5 is prime and p? +2p—8 = 7 is prime. It is the only
number with this property. Indeed, p = 2 does not have this property,
while if p > 3, then
P’ +20-8=1+2p—-2=2(p+1)=0 (mod 3) <= 3|(p+1).
But for p > 3, p = 3k + 1, and in each of the cases it is easily seen that at
least one of the two numbers p 4+ 2 and p? + 2p — 8 is not a prime.
The answer is YES. If p = 3, then p? + 8 = 17 is prime and p® 4+ 4 = 31 is
prime. It is the only prime number with this property. Indeed, p = 2 does
not have this property, while if p > 3, then p = +1 (mod 3), in which
case p? =1 (mod 3), that is p? +8 =9 =0 (mod 3), so that p? + 8 is not
a prime. Thus the result.
(Ribenboim [28], p. 145). First assume that the congruence is satisfied.
Then n # 2,4 and (n — 1)! + 1 = 0 (mod n). Thus, using Wilson’s
Theorem, n is prime. Moreover, 4(n — 1)1 + 2 = 0 (mod n + 2); thus,
multiplying by n{n + 1) we obtain
4n+ 1) +1]+20* +2n—4=0 (mod n + 2)
and therefore
An+)N+1]+(n+2)(2n—2)=0 (mod n + 2);
hence, 4[(n + 1)! + 1] = 0 (mod n + 2). This is why, using Wilson’s
Theorem, n + 2 is also prime.
Conversely, if n and n + 2 are prime, then n # 2 and

(n=1)!4+1 = 0 (modn),
(n+)!+1 = 0 (modn+2).
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But n(n+1) = (n+2)(n—1)+2, and this is why 2(n—1)!+1 = k(n+2),

where k is an integer. From the relation (n — 1)! = —1 (mod n), we
obtain 2k +1 =0 (mod n). Now, 2(n —1)!+1 = k(n +2) is equivalent to
4n—1)14+2=0=—(n+2) (mod n+2). Moreover, 4(n—1)!+2 =4k =

—2 = —(n+2) (mod n). Hence, 4(n—1)!1+2 = —(n+2) (mod (n(n+2));
that is 4((n -1+ 1) +n =0 (mod n(n + 2)).

The prime number p = 3 is the only one with this property, because if
p > 3, then p = 2k + 1 for a certain integer k > 2, in which case

2P = 22k+1 — 4k .92 =92 (mod 3)

while
p’=1 (mod 3),
so that
2 +p =0 (mod 3).

The answer is p = 19. Indeed, 17p+1 =a%? = 17p = (a — 1)(a + 1). We
then have 17=a—-1land p=a+1lor17=a+1and p=a—1. The
first case yields a = 18 and p = 19, while the second case yields a = 16
and p = 15, which is to be rejected. Thus the result.

(a) The possible values of (a2,b) are p and p.

(b) The only possible value of (a2,b?) is p?.

(c) The possible values of (a3,b) are p, p? and p3.

(d) The possible values of (a3,b?) are p? and p3.

(a) The only possible value is p®.

(b) The only possible value is p.

(c) The only possible value is p.

(d) The possible values are p?, p3, p* and p°.
We have (a?b%,p*) = p* and (a? + b%, p*) = p°.

(a) True. (b) True. (c) True.

(d) False. Indeed, we have 13|22 + 32 and 13|3% + 2%, while 13 /22422 =

8.

It is an immediate consequence of Theorem 12.
Let
a=pit--py,
b=pp*pf,
C:p‘lh ceep)r.
From Theorem 12,
(a,b,c) = pllnin(al,ﬁl ) ‘p:lin(ar,ﬂr,'yr)

and
[a, b, C] _ pllnax(ahﬂl,"/l) . ‘pmax(a,.,ﬁ,.,'y,.)
- .
To prove the result, we proceed by contradiction. Assume for example
that (a,b) > 1. Using the fact that (a, b, c)[a, b, c] = abe, it follows, using
the above notation, that

min(aia ,811)711) + max(aiaﬁi,’yi) =a; + ﬂi + Yi (7’ = 15 27 ce ,7').

But it is easy to prove that for the sum of three nonnegative integers to
be equal to the sum of the smallest and of the largest of these same three
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numbers, at least two of these numbers must be 0. But this contradicts
the fact that (a,b) > 1, an inequality which means that there exists an ig
(1 <idg < r) for which min(ey,,B;,) > 1. Hence, the result.

We use Theorem 12 and the fact that

min{e, B, v} = min{ay, 5;} + min{s;,v:} + min{e, v}
—min{o; + B, Bi + Vi, @i + 73}

The second part follows from the first part and Problem 171.
Let
a :p‘l"l Y
b=p* -,
c=plt--pr.
Since [a,b] = []°_, p™* %} and (a,b) = [T7_, p™™*#} it is enough

i=1Pi i=1P;
to show that, for each 1,

2max{a, B, vi} — max{a;, B;} — max{f;, v} — max{vy;, a;}
= 2min{a;, B, 7} — min{ay, B;} — min{B;,v;} — min{~;, o;}.

Without loosing in generality, we may assume that, for a given i, a; >
Bi > i, from which the result easily follows.
Let a = [[_, p®, b=TI\_, ¥, ¢ = [}, p*. Without loosing in gener-
ality, we may assume that a; < b; < ¢;. The equation of the statement
allows one to conclude that ¢; +a; = %(ai + b; + ¢;) and therefore that
a; + ¢; = b;, which implies, since ¢; > b;, that b; = ¢; and a; = 0. This
means that in order for the relation to be true, for the same prime num-
ber, two of the exponents must be equal while the third one should be
0. Hence, we can choose a = 21 - 31 .50 =6, b =21 -39.51 = 10 and
c=20.31.51 = 15. Note that the numbers 42, 70, 15 will also do.
The left inequality is obvious. To prove the right equality, first observe
that

#n=1[1,2,...,n] = Hp‘sp,

p<n

where p’» is the largest power of p not exceeding n. In other words,
0p is defined implicitly by the inequalities pP» < n < pot1 Tt follows
successively that

0plogp <logn < (6, + 1) logp,

logn
0, < —— <6 1
p‘logp<p+’

logn
0p = | —|.
Y [logp]

We have thus established that
#n = H p[log n/ logp],

p<n

which was to be shown.
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(177) It is easy to see that

_J p ifpn,
(p,p+7‘)—{1 if pfr

and that

plp+r) ifpfr.

(178) We have that p|(8ad — bd) — (8bc — bd) = 8(ad — be), and therefore that
p|(ad — be), since p is odd.

(179) Since p is odd, it is clear that p +p + 2 = 2(p + 1) is a multiple of 4. On
the other hand, since p + 2 is prime, the prime number p must be of the
form 3k + 2. It follows that p+p+ 2 =2p + 2 = 2(3k + 2) + 2 = 6k + 6,
a multiple of 3. Hence, the result.

(180) Set n = pr, where p is a prime number. If p # r, then p and r show up as
factors in the product (n — 1)! and therefore n divides (n — 1)!. If r = p,
then n = p? and

(n=1!=@*-1)@*-2)---p---1.
Hence, in order for (n—1)! to be divisible by p?, we must have that (n—1)!
contains the factors p and 2p; that is we must have p? —a = 2p for a certain
integer o > 2. But this is possible only if we choose a = p(p—2) (provided
that p > 2). If p = 2, that is n = 4, it is clear that the result does not
hold.
(181) If it is the case, we will have
1 1
nint1) n!,  that is ntl (n—1)L
2 2
This means that we are looking for the positive integers n for which there
exists a positive integer M = M (n) such that
1 —1)!
(n—l)!:MM, that is 2(n ) =M
2 (n+1)
If n+ 1 = p, with p prime, then n = p — 1, in which case M is not an
integer. Therefore, n + 1 must be composite; that is n + 1 = pr, where
p is prime. If p and r can be chosen in such a way that p # r, then p
and r will show up as factors in the product (n — 1)!, implying that M is
an integer. If the only possible choice for p and r is p = r, then we have
n+1=r%and

2(n — 1) =2(p* —2)! =2(p* - 2)(p* - 3)---p--- 1.

Hence, in order for 2(n — 1)! to be divisible by p?, we must have that
2(n —1)! contains the factors p and 2p; that is we must have (p?> —a) = 2p
for a certain integer o > 2. But this is possible only if a = p(p — 2)
(provided p > 2). It follows that the result is true for all integers n such
that n  p — 1, p being an odd prime number.

(182) (AMM, Vol. 81, 1974, p. 778). From the solution of Problem 181, we
have that if n > 5 is a composite integer, (n —2)!/n is an even integer and

therefore that |
2 n

+r if p|r,
[p,p+r]={p 7
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On the other hand, if n = p is prime, then by Wilson’s Theorem, (p—2)! =
—(p—1)!'=1 (mod p), in which case there exists an integer k such that
(p—2)! = kp + 1 and therefore

(0=2) =2
p p
Hence, if p > 5, then 4|(p — 2)! and therefore

.7 ((p—2)! . . (T T
sm2p( ’ ) —s1n2((p 2)! 1)—sm<2(p 2)! 2) = -1
These two cases allow us to conclude that for n > 5, the term indexed by
n in the sum is 0 if n or n + 2 is composite and is (—1)(—1) =1 if n and
n + 2 are prime. Note that the term “2” is necessary in order to count
the pairs of twin primes (3,5) and (5, 7).

Assume that there does not exist any prime p between n and n!. Then,
consider the number N = n! — 1. If N is prime, we have found a prime
number between n and n!, a contradiction. If N is composite, then there
exists a prime number p such that p < n and p|(n! — 1); but since p|n!, we
must have p|1, again a contradiction. Thus, the result.

The answer is NO. Since 1 + 2 + 22 + ... 4+ 2" = 27+l _ 1 it is easy to
check that 142+ --- 4 2% can be written as

20 -1=2%*-1=8-1=(8-1)(82+8+1),

a composite number, while the preceding number, that is 255, is also
composite.

REMARK: The prime numbers of the form 2* — 1 are called Mersenne
primes, and it is not known if there exist infinitely many of them. See the
next problem.

It is easy to see that

a"—1=(a—1)(@" ' +a" 2+ --+a+1)

where the second factor is larger than 1. This implies that a —1 = 1; that
is a = 2. Moreover, if n is composite, then there exist integers r and s
such that n =rs, r > 1, s > 1, and therefore

A" —1=2"—1=(2"—1)(27CV ... 427 +1),

where each factor is larger than 1, which contradicts the fact that a™ — 1
is prime.

If a is odd, then a™ + 1 > 4 and is an even integer, hence not prime. On
the other hand, if n has an odd factor r > 1, then there exists a positive
integer m such that n = mr, in which case

a"+1=(am+ 1)(am(r_1) —qmr=2) 4 gy 1).

Since r > 3, both factors are larger than 1, and this contradicts the fact
that a™ +1 is prime. Hence, n has no odd factor larger than 1 and n must
be of the form 2.

(TYCM, Vol. 13, 1982, p. 208). We reduce these expressions modulo 3.
Since 22" + 1 with z > 0 is of the form 2%t + 1 with ¢ > 0, it follows that

22 11=2241=(22'+1=2 (mod 3).
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But 2*—1=0o0r1 (mod 3) depending whether z is even or odd. Hence,
(2 —1)(2¥ —1) =0or 1 (mod 3), and since 22° + 1 = 2 (mod 3), the
result follows.

The result is true for n = 1, since in this case it is easy to check that
Fo=2"+1=3and ; —2=2% +1-2=5—2=3. Assume that the
result is true for n = k and let us show that it implies that the result is
then true for n = k 4 1. Indeed, by the induction hypothesis, we have

FoFyFy--- Fo_1 Fy (Fy — 2)Fp = (22’° _ 1) (22'“ + 1)

= 92 1 (22“1 + 1) —2=Fp1 -2,

as required.
Assume the contrary, that is that there exist two integers m > n > 0 such
that (F,,, F,,) = d > 1. Then, using Problem 188, we have

(*) FOFl"'Fm—l :Fm — 2.

Since F, is one of the factors on the left of (*), it follows that d|2. But
since each Fermat number is odd, it is impossible to have d = 2. Hence,
d =1, and the result follows.

With the help of a computer, we find that this number is 29 341.

From Problem 189, all Fermat numbers are pairwise relatively prime.
Each Fermat number therefore introduces in its factorization at least one
new prime number. As a consequence, the Fermat numbers generate in-
finitely many prime numbers.

To prove part (a), we proceed by induction. First of all, it is clear that
32|23" 4+ 1. Assuming that 3*|fx_, for some k > 2, we will show that this
implies that 3**1|f;. Using the fact that a3 + 1= (a+1)(a? —a +1), we
have

(%) Tk

Il

_1\ 3
2 1= (2) 41

i (23’°‘1 + 1) ((23’°‘1)2 - (23'“’1) + 1)

say. The expression A is divisible by 3* because of the induction hypoth-
esis. It therefore remains to show that 3|B. But B = a? — a + 1, where

a=2"""" =2 (mod 3). It follows that
B=a’-a+1=22-24+1=0 (mod 3),

as required.

To prove part (b), we only need to observe that f,_1|f», as is implied
by the second line of ().
(This problem can be found on page 64 of the book of D.J. Newman [24]).
Consider the arithmetic progression 15k+7, k = 1,2, ..., which by Dirich-
let’s Theorem contains infinitely many prime numbers. If p = 15k + 7, it
is clear that p — 2 = 15k + 5 is a multiple of 5 and that p+2 =15k + 9 is
a multiple of 3, which proves the result.
Since

216 — 92" — 65536 = 154 (mod 641),
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we have
2%2 = (219)2 = (154)? = 23716 =640 = —1 (mod 641),

and the result follows.

First of all, it is clear that Fy = 22° +1 = 17 = 7 (mod 10). Therefore,
it is enough to show that if F, = 7 (mod 10) for a certain k£ > 2, then
Fy11 =7 (mod 10). Indeed, we have by the induction hypothesis that

N 2
Fepr=2"" +1= (2?) +1

_—:((22k+1)—1)2+15(7—1)2+1:3757 (mod 10),

as required.

We proceed by contradiction in assuming that 2* divides an integer m €
E\ {2}, in which case m = 2¥r for a certain integer r > 1, implying that
2k+1 is in the set E, which contradicts the minimal choice of 2*.

For the second part of the problem, assume that the given sum is an
integer M. The smallest common multiple of the elements of E must be
of the form 2*¥m, where m is an odd number. Multiplying the sum by
m2k—1, we obtain

n
1
m2k—1 § — =m2F 1M,
=17

But when the left-hand side is expanded, one of the n terms is equal to
m/2 while all the others are integers, which yields a contradiction since
m is odd.
We have

25n —1= (25)71 1= (25 _ 1)(25(n—1) + 25(77,—2) 4ot 25 + 1),

which implies that the number 2°™ — 1 is divisible by 31 for any positive
integer n. Hence, p = 31 will serve our purpose.
We have M, =3, My =7, M3 = 31, My = 211, M5 = 2311, which are all
prime numbers, while Mg = 59509 and M7 = 1997 - 277 are composite.
REMARK: Using the MAPLE program
> for k from 8 to 10 do print(
> M(k) = ifactor(product(ithprime(i), i=1..k)+1)) od;
we obtain Mg = 347-27953, Mg = 317-703763 and M;y = 331-571-34231.
As of 2006, we still don’t know if the sequence { M} } contains infinitely
many prime numbers; with the help of a computer, we can nevertheless
easily establish that the only values of £ < 1000 for which Mj is a prime
number are: 1, 2, 3, 4, 5, 11, 75, 171, 172, 384, 457, 616 and 643.
Any prime number dividing pips---pr + 1 is distinct from any of the
primes p1,p2, ..., pr; hence, it follows that

Pr+1 Sp1p2- - pr+ 1,
and using an induction argument, we obtain that
Prp1 <220.220 .92 02 1] <97

which proves the result.
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(200) Let z > 3. Choose r € N such that

(1) e <x<e

We easily observe that such a choice of r is unique. The left inequality
of (1), the fact that m(x) is a nondecreasing function and the relation
p, <2277 allow us to write

(2) (@) > (e ) > w2 ) > w(p) =7
The right inequality of (1) guarantees that
3) r > loglog x.

Combining (2) and (3), we obtain the required inequality.
(201) Assume that there is only a finite number of prime numbers of the form
4n + 3. Denote them by

G <qg<...<q

and consider the number
(%) N=4qq g — 1 =4(q1q2- - - qx — 1) + 3,

which is clearly of the form 4n + 3. If N is prime, then we have found
a prime number of the form 4n + 3 larger then gi, thereby yielding a
contradiction. If N is composite, then N cannot be the product of only
prime numbers of the form 4n+1 (since N would then also be of the form
4n+1). Therefore there exists a prime number g of the form 4n + 3 which
divides N. If q is equal to one of the g¢;’s, that would mean, in light of
relation (x), that g|1, again a contradiction. Hence, ¢ > ¢x and the result
is proved.

(202) Assume that there is only a finite number of prime numbers of the form
6n + 5. Denote them by

G <q<...<gg

and consider the number
(*) N =6q1q2---q —1=6(q1q2"--qx — 1) +5,

which is surely of the form 6n + 5. If N is prime, then we have found
a prime number of the form 6n + 5 larger than gi, thereby yielding a
contradiction. If N is composite, then N cannot be the product of only
prime numbers of the form 6n + 1 (since N would also be of the form
6n+1). Therefore there exists a prime number q of the form 6n + 5 which
divides N. If q is equal to one of the g¢;’s, that would mean, in light of (x),
that ¢|1, again a contradiction. Hence, q¢ > gx and the result is proved.
(203) It is enough to consider the polynomial

f@)=(z—pi)(x—p2)---(z—pr) + 1,

where p; stands for the k-th prime number.
(204) The answer is NO. Consider such a number N with 2k + 1 digits, k£ > 2.
We first notice that, for each integer k > 1,

(14102 +--- 4+ 10%)(102 — 1) = (1022 — 1) = (105! — 1)(10**! 4 1).
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Hence,

(105+1 — 1)(10%+1 +1)
9-11 '
Since k > 1, both factors on the right-hand side, after dividing by 99,
have two factors larger than 1, so that the number N is composite. On
the other hand, in the particular case k = 1, we find the prime number
101.
(205) Let G, = 22" + 5. First of all, Gg = 2! + 5 = 7, which is prime. We will
show that all the other G,,’s, that is those with n > 1, are divisible by
3. To do so, it is enough to prove that 22" =1 (mod 3). But this is true
since

1+10%+ - 4+ 10% =

n n—1 n— n—
22" = (22)> =4 =1"" =1 (mod 3).

Clearly, we could have obtained the same result if instead of 5 we would
have used a number of the form 3k+ 2, except that in this case, one should
first check whether 2 + 3k + 2 = 3k + 4 is prime or not.

(206) The answer is NO. Indeed, the next gap in the list is 14; it occurs when
DPry1 — Pr = 127 — 113 = 14, while the first gaps of 10 and 12 occur
respectively when p,41 —p, = 149—-139 = 10 and p,4+1 —p, = 211-199 =
12.

(207) Let S be this series; then

1 1 1 1 1 1 1
5= ) Telms)

p p
1 1 1 > 1
zp:zﬂl—% zz,:p(p—l) nzz:zn(n—l)

In fact, the exact value of S is 0.773156669. .. .
(208) We have successively

M ) SE R ),
n=1

where we used the fact that 3, u(d) =0if r > 1 and 1 if r = 1.
(209) The result is immediate for 2 < n < 6. On the other hand, since

> 1=[\/%]—[\/ﬂ+12\/2_n—1—\/ﬁ+1=(\/§—1)\/ﬁ>1,

n<m2<2n

for n > 6, the result follows for each integer n > 2.

(210) Assume the contrary, that is that n3 = p+m?>. We then have n®—m?3 = p,
which implies that (n—m)(n?+mn+m?) = p and therefore that n—m = 1
and n? +mn + m2 = p. This shows that n? + n(n — 1) + (n — 1)% = p,
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that is 3n? — 3n + 1 = p, which contradicts the fact that 3n? — 3n + 1 is
composite.

The prime numbers p < 10000 of the indicated form are 2, 5, 17, 37, 101,
197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101
and 8837. Given n > 1, we have n =0, 1,2,3,4,5,6,7,8,9 (mod 10), in
which case n? = 0,1,4,9,6,5,6,9,4,1 (mod 10) and therefore n? + 1 =
1,2,5,0,7,6,7,0,5,2 (mod 10). Since the numbers n? + 1, congruent to
0, 2, 6 or 5 modulo 10, are composite, we are left with the numbers n
for which n2 + 1 = 1,7 (mod 10). Finally, since the numbers n = 4,6
(mod 10) are such that n?2 + 1 = 7 (mod 10) while only the numbers
n =0 (mod 10) are such that n? +1 =1 (mod 10), this explains why the
digit 7 seems to appear twice as often.

This follows from the fact that, from Theorem 27, we have

S PR P | PR Pl

p<n p<n p<n

where we used the fact that

LR T _1(1+1+1+ )_ 1

p P P p p P p—1
Every positive integer n > 6 can be written as n = 6k, n = 6k + 1,
n=6k+2 n=06k+3, n=06k+4orn=6k+ 5, in which case the
corresponding values of n? + 2 are respectively multiples of 2, multiples
of 3, multiples of 2, of the form 6K + 5, multiples of 2 and multiples of 3.
It follows that only those n = 6k + 3 (with n? + 2 = 6K + 5) are possible
candidates for ensuring that n? + 2 is prime, thus the result.
Let N +1 be one of these numbers. If ¢ is prime, then i|N +¢ and N 41 is
composite. While if 4 is not prime, then i is divisible by a prime number
po < 1 < p, in which case pg|N + i and N + ¢ is composite.
We write n as

n=apl0* + ar_110" 1 + -+ + a210% + @110 + ay,

where k > 2 and where the a;’s are integers satisfying 0 < a; < 9, ax #
0. Part (a) is trivial. To prove (b), it is enough to observe that, since
4|10’ = 5727 for each integer j > 2, it follows that 4|a; 10+ ao if and only
if 4|n. To prove (c), it is enough to observe that, since 8|10 = 57 - 27 for
each integer j > 3, it follows that 8/a2100+ @110+ ap < 8|n. Therefore it
becomes clear that one can generalize this result as follows: Ifn > 1 is an
integer having at least k digits, then 2|n if and only if the number made
up of the last k digits of n is divisible by 2.

(Hlawka [19]). Let n > e® and set f(n) = Z 1. It follows that

p|n,p>logn

n> H p > (logn)f™

pln
p>logn
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and therefore that logn > f(n)loglogn; that is f(n) < (logn)/loglogn.
On the other hand, for n sufficiently large, we have

log [1- —— ) > -2
°8 logn/ = logn’
It follows that

0>log P(n) = Z log <1 - %) > f(n)log (1 — lo;n>

pln,p>logn
L, 2
logn = loglogn

>

Hence, lim log P(n) = 0, and the result is proved.
n—oo

(MMAG, April 1992, p. 130). Assume the contrary, that is that each
interval [n?, (n + 1)?] contains less than 1000 prime numbers. We know
that the sum of the reciprocals of the prime numbers diverges. Hence,
according to our hypothesis, we have

1 ad |
p n=

n=1 n2<p<(nt1)2 n2<p<(n+1)2
=1 =1

- Z — (w((n +1)%) - 7T(n2)> < 1000 Z 5 < Foo,
n=1 n=1

a contradiction.

We only need to show that if z < y are any two positive real numbers,
then there exist two prime numbers p and ¢ such that z < p/q < y. It is
obvious that

7(qy)
1 m{qy) — m(qx zwqm( —1).
1) (ay) ~ wlaz) = m(aw) (70
On the other hand, using the Prime Number Theorem, we have
2) lim T _Y

q—oo T(qr) T

It follows from (1) and (2) that lim,_,o(7(qy) — m(gz)) = +oo. This
means that for ¢ sufficiently large, say ¢ = qo, there exists at least one
prime number pg such that gox < pg < qoy, in which case we have

r < Po <Y,
do
as required.

Assume that q; < g2 < ... < g, are prime numbers such that

1 1
— + “ e + —=n
5] qm
for a certain integer n > 1. Then,
1 1 1 7
e — e
q1 q2 dm q2:dm

where r is an integer. In this case, the product ¢ - - - ¢, is divisible by g,
which is impossible.
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We have successively

Xi- X Y-y Yi-Y Yo

n<z < n<z mp<x N < m<z/p
P(n)>vE Va<pse P(n)=p Va<pse P(m)<p Vi<psz P(m)<p
= —_ = —_ + - -
Vaz<plz b Vz<p<lw P Vz<p<lz P p

= zlog2+2R(z) — 2R(Vz) + S(z),

say, where |S(z)| < m(z). Relation (3) then follows from (1) and (2). To
show the last part, it is sufficient to observe that, since log2 = 0.69...,
then if z is sufficiently large,

1 1 2
— 1> - 1=log2+T —-.
. Z >~ Z 0g2+ (:c)>3

n<z n<z

P(n)>Vn P(n)>x

Let p1,p2,...,pr be the prime numbers < /x. Then, all odd integers
< z which are not divisible by p1,pe,...,p, are prime numbers. Conse-
quently, w(z) — 7(\/z) counts the number of prime numbers > /z. But
the number of positive integers < x which are divisible by none of the
primes p1,pa,..., P, is equal to

W e [Fe 2 2] v ]

1<icj<r LPiPj 1<i<j<k<r LPiPiPk

x
2]
pl Y .pr
Indeed, let n be an integer < x which is divisible only by the prime
numbers p1, po, - . ., pr; in this case, the sum is equal to

() o

while if n is not divisible by any of the primes p1,...,p,, then its contri-
bution to the right-hand side is obviously 1.
REMARK: Observe that expression () can also be written as

> oum |3

n|pip2---pr

Let n > 5. From Conjecture A, if n is even, there exist two prime numbers
p and ¢ such that n — 2 = p + q, that is n = p + ¢ + 2; while if n is odd,
there exist two prime numbers p and g such that n — 3 = p + ¢, so that
n = p+ q+ 3. In both cases, Conjecture B follows.

Let n be an even integer > 4. From Conjecture B, there exist three prime
numbers p, g, 7 such that n+2 = p+ g+ r. Since n + 2 is even, it is clear
that one of the three prime numbers p, ¢, must be even, that is equal
to 2. Assume that r = 2. It follows that n = p + ¢, which establishes
Conjecture A.

(This result is attributed to Min4¢; see P. Ribenboim [29]). First of all,
we observe that if n # 4 is not a prime number, then n|(n — 1)!. Indeed,
either n = ab, with 2 < a < b < n — 1, in which case n|(n — 1)!, or
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n = p? # 4, in which case 2 <p<n—1=p? —1 and 2p < p? — 1, which
implies that n|2p? = p - 2p, an expression which divides (n — 1)!.

To prove the stated relation, we analyze separately the cases “j prime”
and “j composite”.

If j is prime, then by Wilson’s Theorem, there exists £ € N such that
(= D!+ 1=kj so that

[(j—lj)!+1_ [(j;mﬂ _ [k_ [’“‘ﬂ] k= (k—1)] =1

If j is composite, 7 > 6, then j|(j — 1)! in light of the above observation.
Therefore, there exists an integer k such that (j —1)! = kj. It follows that

oot 2] oo

J J

| |
3 I ! — [3—” = 0, which completes the proof

Finally, if j = 4, we have [ 7

of Minaé’s formula.
(224) (a) We have

A(n) =

™

n
1:(1;"1: 1:[5].

r

IA
2[3

)

It is therefore easy to see that the quotient A(n)/n tends to 1/a as

n — OC.
(b) We have
WEED SIEED SEEEE SERD ST oF
m<n m<n ar<n m<n r<2
a|lm a|lm, ag|lm - la,aglim -
S ENURE
< n a [a’a’o]
"= Ta,ag]

It is therefore easy to see that the quotient A(n)/n tends to 1 — [a—laoj
as n — oo.
(c) Using the inclusion-exclusion principle, we have

n—Am) = Y > 1- Y > 1

1<i<r msn 1<i<j<r m=<n
-7 gm 2;95|m
+ E § 1_“_+(_1)7'+1 E 1
1<i<j<k<r m=sn m<n
23959k |m 9192 -qr|m
n n n
= > |- + )
1<i<r 4 1<i<j<r %95 1<i<j<k<r %959r

e (—1)H [L] ,

q192 - - - qr
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It follows that
A(n) 1[n 1] n
-2k 2R
1<i<r v 1<i<j<r v

Bl ez

1<i<j<k<r q192- - - 4r

But, as n — oo, this last expression tends to

Zl_zl+z v ..

1<<r B 1<ici<r B Gk BT

+(—1)T+1; =— H (1 - l) +1,

q192 - gr i

as required.
(225) We will show that

1 2 =
dA=-<-=dA
dA 3 <3 A
To do so, we prove that
) A(22k+1) . . A(22k) 1
R e -
Indeed,
AQ* = N 1+ Y 1+ Y 14+ >
1§n<2 22£n<23 24§"<25 22k§n<22k+1

_ 1+(23_22)+(25_24)+‘”+(22k+1_22k)
= 1+224244... 4 2%

= 1+4+4%+---+4F = il =3(4’“+1—1).
4-1 3
It follows from this that
. A(22k+1) . l4k+1 1 _ g
koo 22k+1 k—oo 3 24K 3

On the other hand,

A% = Y 1= > 1= > 1:%(4’“-1),

neA neA neA
n<22k n<22k—1 n<22(k—1)+1

which implies that
y A(2%k) m 14—-1 1
im —-—+~ = —— =,
k—o0 22k k—oco 3 4k 3
(226) To each element a; € A, we associate its largest odd divisor d;. It is clear
that all the d;’s are distinct; indeed, if d; = d; for two positive integers
i # j, then a;la; or ajla;, which is possible only if ¢ = j. It follows that
A(2n) < n, since there are no more than n odd numbers < 2n. Hence,
the result.
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To each element a; € A, we associate its largest prime factor g;. Let
B; ={n € N:p(n) > q;}, where p(n) stands for the smallest prime factor
of n. Let also C; = a;B; = {a; - b : b € B;}. The sets C; are disjoint;
indeed, if a;r = a;s (with ¢; < g;), where r € B; and s € Bj, then a;|q;,
which is possible only if ¢ = j. It follows that, for each positive integer k,
we have

k
Y doi<t
i=1
From (a) and (c) of Problem 224, we have
1 1 1
dC;=—dB; = — [] (1—),
a; a; o p
p<a;
so that
(1) i ! 11 (1 1) <1
— a; p) =
=1 " p<q
But from Mertens’ Theorem, we have that

1 1 1
2 1—= > .
@ H < p) > logg; ~ loga;

p<qi

The result then follows by combining (1) and (2).

Part (a) is obvious. To prove (b), first observe that the norm of every
element of E is always > 5. Assume that 3 = (a+bv/—5)(c+dv/—5); taking
the norm, we have 9 = (a? + 5b%)(c? + 5d2). This is however impossible
since both factors on the right-hand side are larger than 5. Hence, 3 is a
prime belonging to E. We easily obtain that 29 = (3 +2v/—5)(3 — 2¢/=5)
and is therefore a composite number in E. Part (c) follows from the fact
that

9=(3+0V=5)-(3+0v=5) = (2+vV=5)(2—V-5).
Since

1 ifneA,

0 otherwise,

A(n) — A(n—-1)= {

we have that

n<zx 2<n<z
neA - -
1 1 A
= > A <__n+1) [](-?1
2<n<z n x




