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6.2 The Sum and Number of Divisors

In mathematics, function has an important role to play with different topics.
For advance study of number theory we have some important aspects related
to functions. Any function whose domain is the set of integers are called the
number theoretic function or arithmetic functions. The range set may be other
than positive integers also. We will start our discussions with the sum and
number of divisors.

Definition 6.2.1. Given a positive integer n, τ(n) is defined as total number
of positive divisors of n.

For an example if we choose n = 12, then τ(12) = 6 as the divisors are
1, 2, 3, 4, 5, 6, 12. In the following table we have shown few integers and their
corresponding number of divisors.

n 2 3 4 5 6 7 8 9 10
τ(n) 2 2 3 2 4 2 4 3 4

Definition 6.2.2. Given a positive integer n, σ(n) is defined as the sum of their
divisors.

For example if we choose n = 12, then σ(12) = 1+2+3+4+5+6+12 = 28.
In the following table we have shown few integers and their corresponding sum
of divisors.

n 2 3 4 5 6 7 8 9 10
σ(n) 3 4 7 6 12 8 15 13 18

Before going for further discussions we are going to interpret the symbol
∑
d|n

f(d)

which means ‘Sum of values of f(d) as d runs over all positive divisors of n’.
This sum is denoted as F (n) and defined as F (n) =

∑
d|n

f(d). If n is prime

then τ(n) = 2 and σ(n) = n + 1. The converse is also true is justified with
the given example:

∑
d|20

f(d) = f(1) + f(2) + f(4) + f(5) + f(10) + f(20) ı.e.

τ(n) =
∑
d|n

1, σ(n) =
∑
d|n

d, therefore, τ(10) =
∑
d|10

1 = 1 + 1 + 1 + 1 + 1 = 4 and

σ(10) =
∑
d|10

d = 1 + 2 + 5 + 10 = 18. Those are already shown in the above two

given tables.
The first theorem of the chapter aims to find the positive divisors of a positive

integer where the prime factorisation of that positive integer is already known.
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Theorem 6.2.1. If n = pt1
1 pt2

2 · · · ptr
r
is the prime factorization of n > 1,

then the positive divisors of n are precisely, those integers d of the form d =
p

b1
1 p

b1
1 · · · pbr

1 , where 0 ≤ b
i

≤ t
i
(i = 1, 2, 3, . . . r) and vice–versa.

Proof. If d = 1, then b1 = b2 = · · · = b
r

= 0 and d = n, then b1 = t1 , . . . , br
= t

r
.

Let n = dd′ where d, d′ > 1 holds. Then they can be expressed as product of
primes where d = q1q2q3 . . . qs

, d′ = r1r2r3 . . . ru
considering q

i
, r

j
as primes.

Hence pt1
1 pt2

2 · · · ptr
r

= q1q2q3 . . . qs
r1r2r3 . . . ru

. By uniqueness of primes some of
q

i
is same as p

j
so collecting them we have, d = q1q2q3 . . . qs

= pb1
1 · · · pbr

1 where
b

i
= 0 is possible.
Conversely, every number d = pb1

1 pb1
1 · · · pbr

1 turns out to be the divisor of n.
Then we have, n = pt1

1 pt2
2 · · · ptr

r
= (pb1

1 pb2
2 · · · pbr

r
)(pt1 −b1

1 pt2 −b2
2 · · · ptr −br

r
) = dd′

where d′ = pt1 −b1
1 pt2 −b2

2 · · · ptr −br
r

and t
i

− b
i

≥ 0 for all i, then d′ > 0 and d|n.
The next theorem deals with the formula for both the number theoretic func-

tions τ(n) and σ(n). The previous two tables on these two functions illustrate,
if the integer n is prime then τ(n) = 2 and σ(n) = n+ 1. In particular if n = pα

where p is prime then the divisors of pα are 1, p, p2 · · · pα thus τ(pα) = α+1 and

σ(pα) = 1 + p + p2 + · · · + pα = pα+1 − 1
p − 1 . Thus the general formula for these

two functions are as follows.

Theorem 6.2.2. If n = pt1
1 pt2

2 · · · ptr
r
is prime factorization of r > 1 then the

followings are true.

1. τ(n) = (t1 + 1)(t2 + 1)(t3 + 1) . . . (t
r

+ 1).

2. σ(n) = p
t1+1
1 − 1
p1 − 1

p
t2+1
2 − 1
p2 − 1 · · · p

tr+1
r

− 1
p

r
− 1 .

Proof. 1. According to the above theorem, the positive divisors of n are pre-
cisely those integers d = pb1

1 pb1
1 · · · pbr

1 where 0 ≤ b
i

≤ t
i

holds. So there
are t1 + 1 choices for b1 , (t2 + 1) choices for b2 and continuing we have
t

r
+ 1 choices for b

r
. Therefore total number of positive divisors are

(t1 + 1)(t2 + 1)(t3 + 1) . . . (t
r

+ 1). Hence τ(n) = (t1 + 1)(t2 + 1)(t3 +
1) · · · (t

r + 1) =
∑

1≤j≤r

(tj + 1).

2. In order to evaluate σ(n) we consider the product, (1 + p1 + p21 + p31 +
. . . pt1

1 )(1 + p22 + p32 + . . . pt2
2 ) · · · (1 + p

r
+ p2

r
+ . . . ptr

r
) where each term in
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brackets are positive divisor of each prime factorisation of n. Therefore

σ(n) = (1 + p1 + p21 + p31 + . . . pt1
1 )(1 + p22 + p32 + . . . pt2

2 ) · · · (1 + p
r

+ p2
r

+ . . . ptr
r

)

= p
t1+1
1 − 1
p1 − 1

p
t2+1
2 − 1
p2 − 1 · · · p

tr+1
r

− 1
pr − 1

=
∏

1≤i≤r

p
t

i
+1

i − 1
p

i
− 1 .

We illustrate this with an example.

Example 6.2.1. Let n = 150 = 2×3×52 then τ(150) = (1+1)(1+1)(2+1) = 12

and σ(150) = 22 − 1
2 − 1

32 − 1
3 − 1

53 − 1
5 − 1 = 372.

Now the following definition deals with a special property of number theoretic
functions known to be multiplicative property:

Definition 6.2.3. A number theoretic function f is said to be multiplicative if,
for positive integers m and n, f(mn) = f(m)f(n) where gcd(m,n) = 1.

Remark 6.2.1. The function f(n) = 1, ∀ n ∈ Z is multiplicative because
f(mn) = 1, f(m) = 1 & f(n) = 1, so that f(mn) = f(m)f(n). Similarly,
the identity function g(n) = n, ∀ n ∈ Z is multiplicative, since g(mn) =
mn = g(m)g(n). Observe that multiplicative functions f and g with the property
f(mn) = f(m)f(n) and g(mn) = g(m)g(n) for all pairs of integers m and n,
whether or not gcd(m,n) = 1, is said to be completely multiplicative functions.

Now we are at the stage to discuss the multiplicative property of τ and σ.

Theorem 6.2.3. The functions τ and σ are both multiplicative.

Proof. Let m and n be two relatively prime integers both greater than 1, for if
any one of them is 1 then the result is trivial. So our primal assumption is both
m,n > 1. Let m = pt1

1 pt2
2 · · · ptr

r
and n = qj1

1 qj2
2 · · · qjs

s
be prime factorisation

of m and n respectively where no pi = qr because gcd(m,n) = 1 and if any
of pi’s same as any of qr’s then this leads to a contradiction(Why!). Therefore
mn = pt1

1 pt1
1 pt2

2 · · · ptr
r
qj1

1 qj2
2 · · · qjs

s
and

τ(mn) = [(t1 + 1)(t2 + 1) · · · (t
r

+ 1)][(j1 + 1)(j2 + 1) · · · (j
s

+ 1)]

= τ(m)τ(n)

σ(mn) =
∏

1≤i≤r

p
t

i
+1

i − 1
p

i
− 1

∏
1≤j≤s

qjs+1
i

− 1
q

s
− 1

= σ(m)σ(n).
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We will continue our study on multiplicative functions of positive divisors for
products of relatively prime integers. Next lemma is the first step on this study.

Lemma 6.2.1. If gcd(m,n) = 1, then the set of positive divisors of mn consists
of all products d1d2 where d1 |m and d2 |n and gcd(d1 , d2) = 1.

Proof. Let us assume m,n > 1 and m = pt1
1 pt2

2 · · · ptr
r

and n = qj1
1 qj2

2 · · · qjs
s

be
their respective prime factorization. Therefore

mn = pt1
1 pt2

2 · · · ptr
r
qj1

1 qj1
1 qj2

2 · · · qjs
s
.

Hence any positive divisors d of mn represented in the form

d = pa1
1 pa2

2 · · · par
r
qb1

1 qb1
1 qb2

2 · · · qbs
s
,

where, 0 ≤ ai
≤ t

i
and 0 ≤ b

i
≤ j

i
then d = d1d2 where d1 = pa1

1 pa2
2 · · · par

r

where d1 |m and d2 = qb1
1 qb1

1 qb2
2 · · · qbs

s
where d2 |n and gcd(d1 , d2) = 1, as p

i
= q

j

because m and n are relatively prime.

Before proceeding further we will illustrate the idea of a positive divisor
by means of an example. Let m = 4 and n = 5. Also F (n) =

∑
d|n

f(d) is

defined earlier in this section. Here we choose f as an arithmetic function.
In this example we will show F (20) = F (4)F (5). Now the divisors of 20 are
1, 2, 4, 5, 10, 20, therefore F (20) = f(1) + f(2) + f(4) + f(5) + f(10) + f(20).
Also the divisors of 4 are 1, 2, 4 and of 5 are 1, 5. Thus we have,

F (20) = f(1) + f(2) + f(4) + f(5) + f(10) + f(20)

= f(1 · 1) + f(1 · 2) + f(1 · 4) + f(1 · 5) + f(2 · 5) + f(4 · 5)

= f(1)f(1) + f(1)f(2) + f(1)f(4) + f(1)f(5) + f(2)f(5) + f(4)f(5)

= (f(1) + f(2) + f(4))(f(1) + f(5))

= F (4)F (5)

This shows the arithmetic function F is multiplicative. Now the theorem is as
follows,

Theorem 6.2.4. If f is a multiplicative function and F is defined by F (n) =∑
d|n

f(d) then F is also multiplicative.

�
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Proof. Let m,n

F (mn) =
∑

d|mn

f(d) =
∑

d1 |m,d2 |n
f(d1d2),

where gcd(d1 , d2) = 1 and f is multiplicative, then we have f(d1d2) = f(d1)f(d2).
Therefore

F (mn) =
∑

d1 |m,d2 |n
f(d1)f(d2) =

⎛⎝∑
d1 |m

f(d1)

⎞⎠⎛⎝∑
d2 |n

f(d2)

⎞⎠ = F (m)F (n).

This proves the fact that F is multiplicative.

6.3 Worked out Exercises

Problem 6.3.1. Prove that there are infinitely many pairs of integers m and n

with σ(m2) = σ(n2).

Solution 6.3.1. There are infinitely many integers k such that gcd(k, 10) = 1.
Let us consider m = 5k, n = 4k. This implies there exist infinitely many such
m,n. Suppose k is prime with k = 2, 5. Now m2 = 52k2 and n2 = 42k2 = 24k2.
Theorem 6.2.2 yields

σ(m2) = 53 − 1
5 − 1 · k

3 − 1
k − 1 = 31

(
k3 − 1
k − 1

)
.

σ(n2) = 25 − 1
2 − 1 · k

3 − 1
k − 1 = 31

(
k3 − 1
k − 1

)
.

Thus there are infinitely many pairs of integers m and n with σ(m2) = σ(n2).

Problem 6.3.2. If n is a square-free integer, prove that τ(n) = 2s, where s is
the number of prime divisors of n.

Solution 6.3.2. Since n is square-free, therefore n = p1p2 · · · pr where each
p

i
= p

j
= for i = j. From Theorem 6.2.2, we obtain

τ(n) = (k1 + 1)(k2 + 1) · · · (k
s

+ 1), with k
i

= 1 for all i.

Thus τ(n) = (1 + 1)(1 + 1) · · · (1 + 1) = 2 · 2 · · · 2 = 2s as there are s terms

Problem 6.3.3. Prove that the following statements are equivalent:

1. τ(n) is an odd integer.

are relatively prime integer then

�

� � �



Arithmetic Functions 119

2. n is a perfect square.

Solution 6.3.3. 1⇒2:Suppose (1) holds. Let n = p
k1
1 p

k2
2 · · · pks

s
. Then using

Theorem 6.2.2, we have τ(n) = (k1 +1)(k2 +1) · · · (k
s
+1). Note that each k

i
+1

is odd, so k
i
is even. Hence k

i
= 2j

i
implies

n = p2j1
1 p2j2

2 · · · p2js
s

= (pj1
1 pj2

1 · · · pjs
s

)2,

which proves n is a perfect-square.
2⇒1:Suppose (2) holds. Then n = a2 for some a = p

k1
1 p

k2
2 · · · pks

s
, which

implies
n = p2k1

1 p2k2
2 · · · p2ks

s
.

Therefore τ(n) = (2k1 + 1)(2k2 + 1) · · · (2k
s

+ 1). Since each of 2k
i

+ 1 is odd,
therefore τ(n) is odd.

Problem 6.3.4. For any positive integer z, prove
∑
d|z

1
d

= σ(z)
z
.

Solution 6.3.4. Note that d is a divisor of z if and only if z

d
is a divisor of

z(Why!). Therefore the set of divisors of z are given by {d1 , d2 , . . . , ds
}, which

further can be expressed as
{

z

d1

,
z

d2

, . . . ,
z

ds

}
. Thus

σ(z) = d1 + d2 + . . . + ds = z

d1

+ z

d2

+ . . . + z

ds

= z

(
1
d1

+ 1
d2

+ . . . + 1
ds

)
,

implies
σ(z)
z

= 1
d1

+ 1
d2

+ . . . + 1
d

s

=
∑
d|z

1
d
.

Problem 6.3.5. If z = qt1
1 qt2

2 · · · qts
s
is the prime factorization of z > 1, then

prove that

1 >
z

σ(z) >

(
1 − 1

q1

)(
1 − 1

q2

)
· · ·

(
1 − 1

q
s

)
.

Solution 6.3.5. Since the divisors of z include 1 and z, therefore

σ(z) ≥ z + 1 > z ⇒ z

σ(z) < 1.

By virtue of Theorem 6.2.2, we obtain

σ(z) = q
t1+1
1 − 1
q1 − 1

q
t2+1
2 − 1
q2 − 1 · · · q

ts+1
s

− 1
qs − 1 .
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Therefore

z

σ(z) =
q

t1
1 q

t2
2 · · · qts

s

(qt1 +1
1 −1)(qt2 +1

2 −1)···(qts +1
s

−1)
(q1 −1)(q2 −1)···(qs −1)

=
(qt1

1 q
t2
2 · · · qts

s
)(q1 − 1)(q2 − 1) · · · (qs − 1)

(qt1+1
1 − 1)(qt2+1

2 − 1) · · · (qts+1
s

− 1)

= (q1 − 1)(q2 − 1) · · · (qs − 1)
(qt1 +1

1 −1)(qt2 +1
2 −1)···(qts +1

s
−1)

q
t1
1 q

t2
2 ···qts

s

= (q1 − 1)(q2 − 1) · · · (q
s

− 1)(
q1 − 1

q
t1
1

)(
q2 − 1

q
t2
2

)
· · ·

(
q

s
− 1

qts
s

) . (6.3.1)

But
q

i > qi − 1
q

t
i

i

⇒ 1
qi − 1

q
t

i
i

>
1
qi

.

Thus (6.3.1) yields,

z

σ(z) = (q1 − 1)(q2 − 1) · · · (q
s

− 1)(
q1 − 1

q
t1
1

)(
q2 − 1

q
t2
2

)
· · ·

(
q

s − 1
qts

s

)
>

(q1 − 1)(q2 − 1) · · · (q
s

− 1)
q1q2 · · · q

s

=
(

1 − 1
q1

)(
1 − 1

q2

)
· · ·

(
1 − 1

qs

)
.

Hence
1 >

z

σ(z) >

(
1 − 1

q1

)(
1 − 1

q2

)
· · ·

(
1 − 1

qs

)
.

Problem 6.3.6. Prove if z > 1 is a composite number, then σ(z) > z +
√
z.

Solution 6.3.6. Since

σ(z) = 1 + d1 + d2 + . . . + d
s

+ z,

its suffices to show that

d1 + d2 + . . . + d
s
>

√
z.

Since z is composite, there exists d
i
(for some i) such that 1 < d

i
< z and

d
i
|z. Therefore z

d
i
|z and d

i
< z together implies 1 < z

d
i
and 1 < d

i
⇒ 1

d
i
< 1 ⇒

z
d

i
< z. Therefore

1 <
z

di

< z.

Now two cases may arise:
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Case(i) If di > z, then clearly 1 + di > z. So

σ(z) = 1 + d1 + d2 + . . . + d
s

+ z > z +
√
z.

Case(ii) If d
i

≤ √
z, then

1√
z

≤ 1
di

⇒ √
z = z√

z
≤ z

di

.

Let d
j

= z

d
i

. Then d
j
|z implies d

j
≥ √

z. Therefore 1 + d
j

+ z > z +
√
z.

Hence from σ(z) = 1 + d1 + d2 + . . . + d
s

+ z, it follows σ(z) > z +
√
z.

Thus combining the above cases the assertion follows.

Problem 6.3.7. For any integer k > 1, show that

1. there exist infinitely many integers n for which τ(n) = k,

2. but at most finitely many n with σ(n) = k.

Solution 6.3.7. 1. Let p be any prime and n = pk−1. Then τ(n) = k(How!).
Since there are infinitely many primes, therefore there are infinitely many
n satisfying n = pk−1 and τ(n) = k.

2. Using Problem (6.3.5), we have σ(n) > n, ∀n. If σ(n) = k, for any k, then
k serves as an upper bound to n. In fact, for any n ≥ k, σ(n) > k(How!).
Hence there are at most k(> 1) integers such that σ(n) ≤ k.

Problem 6.3.8. If pair of successive odd integers q and q + 2 that are both
primes, called twin primes. For these q and q+ 2 prove that σ(q+ 2) = σ(q) + 2.

Solution 6.3.8. The only divisors for any prime q are 1 and q itself. Therefore
σ(q) = q + 1. Thus σ(q + 2) = q + 3 and σ(q) + 2 = q + 3. Thus q and q + 2
together implies σ(q + 2) = σ(q) + 2.

Problem 6.3.9. Let f and g be multiplicative functions that are not identically
zero and have the property that f(pk) = g(pk) for each prime p and k ≥ 1. Prove
that f = g.

Solution 6.3.9. Let n > 1 be an arbitrary integer with prime factorization given
by n = qt1

1 qt2
2 · · · qts

s
. Then

f(n) = f(qt1
1 qt2

2 · · · qts
s

)

= f(qt1
1 )f(qt2

2 ) · · · f(qts
s

)

= g(qt1
1 )g(qt2

2 ) · · · g(qts
s

)

= g(qt1
1 qt2

2 · · · qts
s

)

= g(n).

√ √
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In particular, if n = 1 then f(1) = g(1) = 1. Hence combining all f = g holds.

Problem 6.3.10. For any integer z > 1, prove that there exist integers z1 and
z2 for which τ(z1) + τ(z2) = z.

Solution 6.3.10. If z is prime, then τ(z) = 2. Since tau(1) = 1, taking z1 =
z2 = 1 gives τ(z1) + τ(z2) = τ(z).

If z is composite, let z = q
t1
1 q

t2
2 · · · qts

s
be its prime factorization. Then at

least one of t
i ≥ 2. Let q

t
j

j be that factor. Therefore

τ(z) = (t1 + 1)(t2 + 1) · · · (t
j

+ 1) · · · (t
s

+ 1)

= t
j
(t1 + 1)(t2 + 1) · · · (t

s
+ 1) + (t1 + 1)(t2 + 1) · · · (t

s
+ 1).

Let z1 = qt1
1 qt2

2 · · · qt
j−1

j · · · qts
s
and z2 = z

q
t

j
j

= qt1
1 qt2

2 · · · qts
s
, where q

i
= q

j
.

Hence

τ(z1) = (t1 + 1)(t2 + 1) · · · (t
j

− 1 + 1) · · · (t
s

+ 1)

= t
j
(t1 + 1)(t2 + 1) · · · (t

s
+ 1).

τ(z2) = (t1 + 1)(t2 + 1) · · · (t
s

+ 1).

Combining we obtain, τ(z1) + τ(z2) = τ(z).

Problem 6.3.11. For any integer z ≥ 1, prove that
∑

d|z τ(d)3 =
(∑

d|z τ(d)
)2.

Solution 6.3.11. Since τ(z) is a multiplicative function, therefore [τ(mn)]3 =
[τ(m)τ(z)]3 = [τ(m)]3[τ(z)]3. This shows τ(z)3 is a multiplicative function.
Hence by virtue of Theorem 6.2.4, F (z) =

∑
d|z

τ(d)3 is multiplicative. More-

over, the multiplicative property of G(z) =
∑

d|z τ(d) implies H(z) = G(z)2 is
multiplicative(Why!).

Let z = q
t1
1 q

t2
2 · · · qts

s
be its prime factorization. Since F and H both are

multiplicative, for z = qt, F (z) = H(z) holds. By similar reasoning, the relation
F (z) = H(z) holds true for z = qt1

1 qt2
2 · · · qts

s
. Therefore considering z = qt and

applying Theorem 6.2.1, all the divisors of z are given by 1, q, q2, . . . , qt. Thus

�
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∑
d|qt

τ(d)3 = τ(1)3 + τ(q)3 + . . . + τ(qt)3

= 1 + (1 + 1)3 + (2 + 1)3 + . . . + (t + 1)3

= 1 + 23 + 33 + . . . + (t + 1)3

=
[

(t + 1)(t + 2)
2

]2
.(∑

d|qt

τ(d)
)2 = [τ(1) + τ(q) + . . . + τ(qt)]2

= [1 + (1 + 1) + (2 + 1) + . . . + (t + 1)]2

=
[

(t + 1)(t + 2)
2

]2
.

Hence
∑
d|qt

τ(d)3 =
(∑

d|qt

τ(d)
)2
, so F (z) = H(z) for z = qt.

Problem 6.3.12. Given z ≥ 1, let σs
(z) denote the sum of the sth powers of

the positive divisors of z; that is, σ
s
(z) =

∑
d|z

ds. Prove that

σ
s
(z) =

(
q

s(t1+1)
1 − 1
qs

1 − 1

)(
q

s(t2+1)
2 − 1
qs

2 − 1

)
· · ·

(
qs(t1+1)

r
− 1

qs
r

− 1

)
,

z = qt1
1 qt2

2 · · · qtr
r
being the prime factorization of z.

Solution 6.3.12. By virtue of Theorem 6.2.1, all divisors of z are of the form

qa1
1 qa2

2 . . . qar
r

, 0 ≤ a
i

≤ t
i
.

Therefore all the sth powers of the divisors of z are of the form

qa1 s
1 qa2 s

2 . . . qar s
r

.

Let us consider the product of sums

(1 + qs
1 + q2s

1 + qt1 s
1 ) . . . (1 + qs

r
+ q2s

r
+ qtr s

r
).

Each positive divisor to the sth power occurs only once as a term in the expansion
of the product. Therefore

σs
(z) = (1 + qs

1 + q2s
1 + qt1 s

1 ) . . . (1 + qs
r

+ q2s
r

+ qtr s
r

).
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Applying the formulae for the sum of the finite geometric series,

(1 + qs
i

+ q2s
i

+ qt1 s
i

) =
(
q

s(t
i+1)

i − 1
qs

i
− 1

)
,

⇒ σs(z) =
(
q

s(t1+1)
1 − 1
qs

1 − 1

)(
q

s(t2+1)
2 − 1
qs

2 − 1

)
· · ·

(
qs(t1+1)

r
− 1

qs
r

− 1

)
.

Problem 6.3.13. For any positive integer z, show that

∑
d|z

σ(d) =
∑
d|z

z

d
τ(d).

Solution 6.3.13. Let H(n) =
∑
d|z

z

d
τ(d). Then

G(mn) =
∑

d|mn

mn

d
τ(d)

=
∑

d1 |m,d2 |n

mn

d1d2

τ(d1d2)

=
∑

d1 |m,d2 |n

mn

d1d2

τ(d1)τ(d2)

=
∑

d1 |m,d2 |n

m

d1

τ(d1) n

d2

τ(d2), since τ(d) is multiplicative

=
( ∑

d1 |m,d2 |n

m

d1

τ(d1)
)( ∑

d1 |m,d2 |n

n

d2

τ(d2)
)

= G(m)G(n).

Hence G is a multiplicative function. Using multiplicative property of σ(d) the
function F (n) =

∑
d|z σ(d) is multiplicative.

Next let z = q
t1
1 q

t2
2 · · · qts

s
be its prime factorization. To prove

F (z) = F (qt1
1 qt2

2 · · · qts
s

)

= F (qt1
1 )F (qt2

2 ) · · ·F (qts
s

)

= G(qt1
1 )G(qt2

2 ) · · ·G(qts
s

)

= G(qt1
1 qt2

2 · · · qts
s

)

= G(z),
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its suffices to show F (qt) = G(qt). Now

F (qt) =
∑
d|qt

σ(d)

= q0 + (q0 + q1) + . . . + (q0 + q1 + . . . + qs)

= (t + 1)q0 + tq1 + . . . + (1)qt

= (1)qt + · · · + tq1 + (t + 1). (6.3.2)

G(qt) =
∑
d|qt

qt

d
τ(d)

= qt

q0
τ(q0) + qt

q1
τ(q1) + . . . + qt

qt
τ(qt)

= (1)qt + 2qt−1 + . . . + tq + (t + 1)

= F (qt), by (6.3.2).

Problem 6.3.14. For any integer z ≥ 1, prove that τ(z) ≤ 2
√
z.

Solution 6.3.14. If d|z, then either d ≤ √
z or z

d
≤ √

z. For if d >
√
z or

z

d
>

√
z, then

d · z
d

= z >
√
z
√
z = z,

a contradiction. Let d1 , d2 , . . . , dt be the divisors of z where d1 < d2 < . . . < dt .
Clearly, d1 = 1, d

t
= z. Now d

i
|z ⇒ z|d

i
and so z|d

i
must be one of d

i
. pairing

the divisors in such a way that d
i
d

j
= z, where d

j
= z|d

i
. So either d

i
≤ d

j
or

d
i

≥ d
j
.

Case(i) t is even: Then we have t
2 unique pairs {d

i
, d

j
}(d

i
= d

j
) such that

d
i
d

j
= z. Let us arrange every pair in such a way that d

i
< d

j
. Let d

t′ be

the largest of the di
. Since there are t

2 unique pairs, it must be t

2 ≤ d
t′ .

But τ(z) = t and from above d
t′ ≤ √

z. Thus,

τ(z)
2 ≤ √

z ⇒ τ(z) ≤ 2
√
z.

Case(ii) t is odd: Then we have t − 1
2 unique pairs {d

i
, d

j
}(d

i
= d

j
) such that

d
idj = z and one pair {dr , dr } where drdr = z. Let us arrange every
unique pair in such a way that di < dj . Let dt′ be the largest of the di .
Now if d

r
< d

t′ , considering the pair {d
j
, d

t′ } and applying the definition
of d

t′ , we obtain
d

t′ < d
j
, and d

t′dj
= z.

�

�
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Hence dr < dj ⇒ drdr < drdj ⇒ z < z, a contradiction. Hence dr > d
t′ .

But d2
r

= z ⇒ d
r

=
√
z. As in Case(i),

t − 1
2 ≤ d

t′ and t = τ(z).

Therefore
τ(z) − 1

2 ≤ d
t′ < dr =

√
z,

which further implies

τ(z) − 1
2 ≤ √

z, τ(z) − 1 < 2
√
z ⇒ τ(z) ≤ 2

√
z.

Hence τ(z) ≤ 2
√
z for both even and odd cases.

Problem 6.3.15. Find the form of all positive integers n satisfying τ(n) = 10.
What is the smallest positive integer for which this is true?

Solution 6.3.15. Let n = q
t1
1 q

t2
2 · · · qts

s
be the prime factorization of n. Then

τ(n) = (t1 + 1)(t2 + 1) . . . (ts + 1). If τ(n) = 10, then the possibilities are 10 and
5 × 2. This implies t1 + 1 = 10 or (t1 + 1)(t2 + 1) = 5 × 2. Thus n = q91 or
n = q41q2 where q1, q2 are distinct primes.

The smallest of such integers would be 29 or 24 × 3 or 34 × 2. Then the
smallest among them is 24 × 3 = 48.

6.4 Mobiüs μ-function

In this article, we will discuss an important arithmetic function called Mobiüs μ-
function with some of its properties.

Definition 6.4.1. For a positive integer n, define μ by the rules

μ(n) =

⎧⎪⎨⎪⎩
1 if n = 1;
0 if p2|n for some prime p;
(−1)r if n = p1p2 · · · p

r
, where p

i
’s are distinct primes.

For example we see that μ(2) = −1, μ(3) = −1, μ(4) = 0. Thus if we choose
n = 15 = 3 × 5 then μ(15) = μ(3 · 5) = (−1)2 = 1. Now in the next theorem we
are going to discuss the multiplicative property on Mobiöus μ function.

Theorem 6.4.1. The function μ is a multiplicative function.
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Proof. Its suffices to show that for any two relatively prime integers m and
n, μ(mn) = μ(m)μ(n). This is trivial for m = n = 1. Now if we choose
either p2|n or p2|m then p2|mn. Therefore μ(mn) = 0 = μ(m)μ(n). This
case is also trivial. Now we assume m,n to be square-free integers. Then
m = p1p2 · · · p

a
, n = q1q2 · · · q

b
where p

i
and q

j
are all distinct, then μ(mn) =

μ(p1p2 · · · paq1q2 · · · q
b
) = (−1)a+b = (−1)a(−1)b = μ(m)μ(n). This proves that

μ is a multiplicative function.

Now from the above theorem we can see that both m and n are divisors of
mn. A natural question arises how this function behaves with divisors of any
integers. If n = 1 then the only divisor is d = 1 therefore

∑
d|1

μ(d) = μ(1) = 1.

So we have to discuss the divisors for those n > 1 and for that we need to apply
the formula F (n) =

∑
d|n

μ(d) which has already been discussed in the first section

of this chapter. Our next theorem illustrates the clarification of this discussion.

Theorem 6.4.2. For each positive integer

n ≥ 1,
∑
d|n

μ(d) =
{

1, if n = 1;
0, if n > 1.

where d is positive divisors of n.

Proof. The assertion is obvious if n = 1, then
∑
d|n

μ(d) = μ(1) = 1. We proceed

by mathematical induction on the number of different prime factors of n when
n > 1 and if n = pα, then∑

d|pα

μ(d) = μ(1) + μ(p) + . . . + μ(pα) = 1 + (−1) = 0.

Since μ is multiplicative, using Theorem 6.2.4, F is also so. Thus if

n = pα1
1 pα2

2 pα3
3 · · · pαr

r
,

then ∑
d|n

μ(d) =
∑

d|pα1
1

μ(d)
∑

d|pα2
2

μ(d) · · ·
∑

d|pαr
r

μ(d) = 0.

To illustrate the above theorem let us consider n = 12, the divisors of 12 are
1, 2, 4, 3, 6 and 12. Thus the required sum is,
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d|12

μ(d) = μ(1) + μ(2) + μ(3) + μ(4) + μ(6) + μ(12)

= 1 + (−1) + (−1) + 0 + (−1)2 + 0 = 0.

In mathematics, the classic Mobiüs inversion formula was introduced into
number theory on 1832 by August Ferdinand Mobiüs, stated as follows:

Theorem 6.4.3. Mobiüs Inversion Formulae: Let F and f be two number theo-
retic functions related by the formulae F (n) =

∑
d|n

f(d) and, f(n) =
∑
d|n

μ(d)F (n/d)

for every n. If either of them is true then they satisfy both the formulae.

Proof. Let us first choose that F (n) =
∑
d|n

f(d), then

∑
d|n

μ(d)F (n|d) =
∑

dd′=n

μ(d)F (d′), since integer d′ is the quotient when d|n

=
∑

dd′=n

μ(d)
∑
e|d′

f(e), since F (n) =
∑
d|n

f(d) for each n

=
∑

dek=n

μ(d)f(e), as integer k is the quotient when e|d′

=
∑

ek′=n

f(e)
∑
d|k′

μ(d), taking integer k′ = dh for some integer h.

Now if k′ = 1, then using the Theorem 6.4.2 we have,
∑
d|k′

μ(d) = 1. Therefore∑
d|n

μ(d)F (n|d) = f(n).

Conversely let, f(n) =
∑
d|n

μ(d)F (n/d) holds. Then,

∑
d|n

f(d) =
∑
d|n

(∑
d′|d

μ(d)F
(

d

d′

))
=

∑
d′pq=n

μ(d′)F (p), Since d = d′p, n = qd = d′pq for some integer p and q

=
∑

ph′=n

F (p)
∑
d′|h′

μ(d′) where, h′ = d′q for some integer h′.

Now again applying Theorem 6.4.2 we have,
∑

d′|h′ μ(d′) = 1 if h′ = 1 holds.
Therefore

∑
d|n

f(d) = F (n).
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Before going to the last result of this section we see from Theorem 6.2.4 that
if f(n) is multiplicative then F (n) is also multiplicative for each integer n. Now
the question arises, is the converse assertion also true. The following theorem
illustrates the answer of it.

Theorem 6.4.4. If F is a multiplicative function and F (n) =
∑
s|n

f(s) then f

is also multiplicative for any integer n and positive divisor s.

Proof. Let m,n be relatively prime positive integers then any divisor s of mn

can be uniquely written as s = s1s2 where s1 |m and s2 |n where gcd(s1 , s2) = 1.
Now by inversion formulae we have,

f(mn) =
∑
s|mn

μ(s)F
(
mn

s

)
=

∑
s1 |m,s2 |n

μ(s1s2)F
(

mn

s1s2

)

=

⎛⎝∑
s1 |m

μ(s1)F
(
m

s1

)⎞⎠⎛⎝∑
s2 |n

μ(s2)F
(

n

s2

)⎞⎠
= f(m)f(n) (Why!).

This proves the theorem.

6.5 Worked out Exercises

Problem 6.5.1. Suppose a function Λ is defined by

Λ(n) =
{

ln p, if n = pk, where p is a prime and k ≥ 1;
0, otherwise.

Prove that Λ(n) =
∑

d/n μ

(
n
d

)
ln d = −∑

d/n μ(d) ln d.

Solution 6.5.1. Let n = pk. Then∑
d/n

μ

(
n

d

)
ln d = μ(pk) ln 1+μ(pk−1) ln p+. . .+. . .+μ(pk−i) ln pi+. . .+μ(p0) ln pk.

Case(i) If k = 1, then
∑

d/n μ

(
n
d

)
ln d = ln p(Verify!).

Case(ii) If k > 1, then μ(pk−i) = 0 except for i = 1, 2. Then the sum is same
as k = 1.
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Hence
∑

d/n μ n
d ln d = ln p = Λ(n). Next

∑
d/n

μ(d) ln d = μ(p0) ln 1 + μ(p1) ln p1 + . . . + . . . + μ(pi) ln pi + . . . + μ(pk) ln pk.

For k > 1, μ(pk) = 0 implies
∑

d/n μ(d) ln d = − ln p for all k. Hence∑
d/n

μ(d) ln d = −Λ(n).

Remark 6.5.1. The function Λ in the Problem 6.5.1 is known as Mangoldt
function.

Problem 6.5.2. Let n = pk1
1 pk2

2 · · · pks
s
be the prime factorization of the integer

n > 1. If f is a multiplicative function that is not identically zero, prove that∑
d/n

μ(d)f(d) = (1 − f(p1))(1 − f(p2)) · · · (1 − f(ps)).

Solution 6.5.2. Since μ and f is multiplicative, therefore μf is also so(Why!).
By virtue of Theorem 6.2.4, F (n) =

∑
d/n μ(d)f(d) is multiplicative. Consider,

F (pk) =
∑
d/pk

μ(d)f(d)

= μ(1)f(1) + μ(p)f(p) + · · · + μ(pk)f(pk)

= μ(1)f(1) + μ(p)f(p)(Why!)

= 1f(1) + (−1)f(p)

= f(1) − f(p).

Since for a multiplicative function not identically zero, therefore f(1) = 1 implies
F (pk) = 1 − f(p). Thus∑

d/n

μ(d)f(d) = (1 − f(p1))(1 − f(p2)) · · · (1 − f(p
s
)).

Problem 6.5.3. Let S(n) denote the number of square-free divisors of n. Prove
that

S(n) =
∑
d/n

|μ(d)| = 2ω(n),

where ω(n) is the number of distinct prime divisors of n.

Solution 6.5.3. Consider,

( )
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|μ(n)| =
⎪⎨⎪⎩

1, if n = 1;
0, if p2|n, p being prime ;
1, if n = p1p2 · · · ps , pi being distinct.

Let gcd(m,n) = 1. Then |μ(1)| = 1. If m = 1, then |μ(mn)| = |μ(n)| =
|μ(m)||μ(n)|. If p2|m, then p2|mn implies |μ(mn)| = 0 and |μ(m)| = 0. Hence
|μ(mn)| = |μ(m)μ(n)|. Assume, bothm,n are square-free. Letm = p1p2 · · · p

s
, n =

q1q2 · · · q
r
with p

i
= q

j
as gcd(m,n) = 1. Clearly, |μ(m)| = |μ(n)| = |μ(mn)| =

1. Hence, |μ(mn)| = |μ(m)||μ(n)|. This shows |μ(n)| is multiplicative. Using
Theorem (6.2.4), S(n) =

∑
d/n |μ(n)| is also so.

Now, consider n = pk. The divisors of n are 1, p, p2, . . . , pk. Therefore

S(n) =
∑
d/n

|μ(n)| = 2.

The number of square-free divisors of pk is 2 and is defined by
∑

d/n |μ(n)|.
Given that, n = p

k1
1 p

k2
2 · · · pks

s
. From Theorem 6.2.1, all the square divisors of

n are represented by n = pa1
1 pa2

2 · · · pas
s
, 0 ≤ aj ≤ 1. Here the number of square-

free divisors of pi is 2, which are 1 & pi . It is true for all i = 1, 2, 3, . . . , s.
Hence the total number of square-free integers is 2s = 2ω(n), where ω(n) is the
number of distinct prime divisors of n. Therefore

S(n) = S(pk1
1 pk2

2 · · · pks
s

)

= S(pk1
1 )S(pk2

2 ) · · ·S(pks
s

)

=
( ∑

d/p
k1
1

|μ(pk1
1 )|

)
· · ·

( ∑
d/p

k1
1

|μ(pks
s

)|
)

= 2s = 2ω(n).

Problem 6.5.4. The Liouville λ function defined as

λ(z) =
{

(−1)t1+t2+...+ts , if z = pt1
1 pt2

2 · · · pts
s
, z > 1;

1, if z = 1.

1. Prove that λ is multiplicative.

2. For some positive integer z, prove that

∑
d/z

λ(d) =
{

1, if z = k2 for some integer k;
0, Otherwise.

Solution 6.5.4. 1. Let us consider two positive integers z and k with gcd(z, k) =
1, where z = p

t1
1 p

t2
2 · · · pts

s
, k = q

v1
1 q

v2
2 · · · qvr

r
.

⎧

�
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Now zk = p
t1
1 p

t2
2 · · · pts

s
q

v1
1 q

v2
2 · · · qvr

r
, pi = qj . Hence

λ(zk) = (−1)t1+t2+...+ts+v1+v2+...+vr

= (−1)t1+t2+...+ts · (−1)v1+v2+...+vr

= λ(z)λ(k).

This shows that λ(z) is multiplicative function.

2. Let F (z) =
∑

d/z λ(d). Then by Theorem 6.2.4, F is multiplicative. Let
z = pt. Then,

F (z) = λ(1) + λ(p) + λ(p2) + . . . + λ(pt)

= 1 + (−1) + (−1)2 + (−1)3 + . . . + (−1)t−1 + (−1)t.

Now, two cases may arise:

Case(i) t is even: Then z = p2ω, t = 2ω for some positive integer ω.
Therefore, taking m = pω, we obtain z = m2. Also, F (z) = 1.

Case(ii) t is odd: Then we have F (z) = F (pt) = 0. Let n = p
t1
1 p

t2
2 · · · pts

s
.

Since F is multiplicative, therefore F (n) = F (pt1
1 )F (pt2

2 ) · · ·F (pts
s

).
If z = k2 for some integer k, then all the ti ’s are even. So F (pt

i
i ) = 1

and consequently, F (z) = 1. Again, if any of the t
i
is odd, then

F (pt
i

i ) = 0. So F (z) = 0.

Problem 6.5.5. For every integer z ≥ 3, prove that
∑z

t=1 μ(t!) = 1.

Solution 6.5.5. Here μ(4) = 0(Why!). If n ≥ 4, then z! would contain 4 as
a factor. Since μ is multiplicative, therefore for z ≥ 4, μ(z!) = 0. So, only
case need to consider is z = 3. Now μ(1) = 1, μ(2) = −1 = μ(3) implies∑3

t=1 μ(t!) = 1 + (−1) + 1 = 1.

6.6 Greatest Integer Function

In this section we are going to discuss a special type of arithmetic function called
greatest integer function. The domain of definition of this function is the set
of real numbers and the range set is the set of integers. This function is very
much useful for calculating continued fractions. The definition of the function
as follows.

Definition 6.6.1. For an arbitrary real number x, the largest integer less than
or equal to x and denoted by [x] is called the greatest integer function.

�
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For an example we have [2.2] = 2 and [−2.2] = −3. Here for every real
number x, there is a unique real number θ such that x = [x] + θ, 0 ≤ θ < 1,
where θ is the fractional part of x. This θ sometimes denoted as {x} such that
x = [x]+{x}, ∀x ∈ R. Actually the greatest integer function for any real number
x follows the inequality x− 1 < [x] ≤ x. In our next proposition we have shown
division algorithm using this inequality.

Proposition 6.6.1. For any x ∈ R, prove division algorithm by the inequality
x − 1 < [x] ≤ x.

Proof. Let q =
[

m
n

]
and r = m−n

[
m
n

]
, clearly m = nq+r and we will show that

the remainder satisfies the above inequality. As m

n
∈ R then

(
m
n

)−1 <
[

m
n

] ≤ m
n .

Now multiplying by −n the above inequality and changing the order of inequality
we have, −m ≤ −n

[
m
n

]
< n − m. Adding m we get, 0 ≤ m − n

[
m
n

]
< n ⇒

0 ≤ r < n. We are to show this q and r are unique. Let us assume that
they are not unique then m = nq1 + r1 = nq2 + r2 for q1 , q2 are quotients and
0 ≤ r1 , r2 < n where r1 , r2 are remainders. Now subtracting these two equations
we have, 0 = n(q1 − q2) + (r1 − r2) thus (r2 − r1) = n((q1 − q2)) which implies
n|(r1 − r2) but this is possible only if r1 − r2 = 0. Therefore r1 = r2 and q1 − q2 ,
which shows that q is unique quotient and r is unique remainder.

Now we will discuss few properties related to this greatest integer function.

Proposition 6.6.2. For any x, y ∈ R and m ∈ Z, the greatest integer function
satisfies following properties:

(i) [x + m] = [x] + m

(ii) [x] + [−x] =
{

0, if x ∈ Z;
−1, if x ∈ R \ Z.

(iii) [x] + [y] ≤ [x + y]

(iv)
[ x

m

]
=

[
[x]
m

]
.

Proof. Let x = n + θ for n ∈ Z, 0 ≤ θ < 1,

(i) Here, x + m = (n + m) + θ where m + n ∈ Z, 0 ≤ θ < 1. Thus

[x + m] = n + m = [x] + m.

(ii) Here,

−x =
{

−n − θ, 0 ≥ −θ > −1;
(−n − 1) + (1 − θ), 0 < 1 − θ ≤ 1.
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Therefore

[−x] =
{

−(1 + n), if 1 − θ = 1;
−n, if 1 − θ = 1.

This proves that

[x] + [−x] =
{

−1, if x /∈ Z;
0, if x ∈ Z.

(iii) Let y = r + θ′, r ∈ Z, 0 ≤ θ′ < 1. Therefore

x + y = (n + r) + (θ + θ′), 0 ≤ (θ + θ′) < 2.

Thus we have,

[x + y] =
{

n + r, if 0 ≤ θ + θ′ < 1;
n + r + 1, if θ + θ′ ≥ 1.

Hence
[x] + [y] = n + r ≤ [x + y].

(iv) Now let x

m
= z + θ̃, z ∈ Z and 0 ≤ θ̃ < 1. Then we have

x = mz + mθ̃, mz ∈ Z and 0 ≤ mθ̃ < m.

Therefore [
[x]
m

]
= [z] = z as x ∈ Z.

Hence [
[x]
m

]
=

[ x

m

]
.

Now we are going to the application part of this greatest integer function.
For that we choose an integer 7 whose factorial is 7! = 1·2·3·4·5·6·7 = 24 ·32 ·5·7.
Here we can see that the highest power of 2 which divides 7! is 4. We can find
the exponent of any prime which occurs in prime factorization of any factorial
of an integer by greatest integer function using the next theorem.

Theorem 6.6.1. If p is a prime then,
∞∑

k=1

[
n

pk

]
is the exponent of p appearing

in the prime factorization of n!.

�
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Proof. If p > n then p does not appear in the prime factorization of n!. Thus
we have p ≤ n. Among the first n positive integers those who are divisible by

p are p, 2p, 3p · · ·
[
n

p

]
p. Thus there exists exactly

[
n

p

]
multiples of p occuring

in the product of n!. Among those integers p, 2p, 3p · · ·
[
n

p

]
p there are

[
n

p2

]
integers which are again divisible by p2 and they are p2, 2p2, 3p2 · · ·

[
n

p2

]
p2.

After continuing these steps finitely many times we get the total number of

times p divides n! is
∞∑

k=1

[
n

pk

]
.

Now we will illustrate this theorem by means of an example.

Example 6.6.1. Let us take n = 10 and p = 2 then there are
[

10
2

]
= 5 integers

which are divisible by p = 2 and they are 2, 4, 6, 8, 10. Among those integers

there are
[

10
22

]
= 2 integers which are divisible by 4 and they are 4, 8. Now

among these two integers there are
[

10
23

]
= 1 integers which are divisible by

8 and it is 8 itself.Therefore the total number is
[

10
2

]
+
[

10
22

]
+
[

10
23

]
= 8.Now

10! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 = 28 · 34 · 52 · 7. So the highest power of 2 is 8.

In our next two results we are going to find some common well known facts
of mathematics by using the last theorem.

Theorem 6.6.2. If n and r are positive integers with 1 ≤ r < n, then the

binomial coefficient
(
n

r

)
= n!

r!(n − r)! is an integer.

Proof. For proving
(
n

r

)
= n!

r!(n − r)! is an integer we are only to show n! is

divisible by r!(n − r)!. Now from the Theorem 6.6.1 we have the exponent of

highest power of prime p that divides n! is
∞∑

i=1

[
n

pi

]
and the highest power of

prime p that divides n!
r!(n − r)! is

∞∑
i=1

[
r

pi

]
+

∞∑
i=1

[
(n − r)

pi

]
. Again from the

Proposition 6.6.2(iii) we have [a + b] ≥ [a] + [b] for any two integers a, b. Then
we have, [

n

pi

]
≥
[
r

pi

]
+
[

(n − r)
pi

]
.

Taking the summation we get,
∞∑

i=1

[
n

pi

]
≥

∞∑
i=1

[
r

pi

]
+

∞∑
i=1

[
(n − r)

pi

]
.
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From the above inequality it follows that p occurs in the numerator of n

r!(n − r)!
at least as many times in the denominator. As p is arbitrary so r!(n − r)! must
divide n!. Thus n!

r!(n − r)! is an integer.

Corollary 6.6.1. For any positive integer r, the product of r consecutive inte-
gers is divisible by r!.

Proof. Here we can assume the product of r consecutive integers as n(n −
1) · · · (n− r + 1) where n is largest. Here n(n − 1) · · · (n− r + 1) = n!

r!(n − r)! =(
n!

r!(n − r)!

)
× r! and from the Theorem 6.6.2 we know that n!

r!(n − r)! is an

integer.This proves the assertion of this corollary.

In our later part of discussion on greatest integer function we have shown
some valuable relations between this function and other arithmetic functions.
Their relationship comes out as,

Theorem 6.6.3. Let f and F be two arithmetic functions such that F (n) =∑
d|n

f(d) where n is a positive integer. Then for any positive integer N ,
N∑

n=1
F (n) =

N∑
m=1

f(m)
[
N

m

]
.

Proof. We are going to start the theorem by the form of F (n). Taking the

sum over this function we have
N∑

n=1
F (n) =

N∑
n=1

∑
d|n

f(d). Here we are to collect

the terms with equal values of f(d). Since each integer divides itself then the
assertion for a fixed positive integer m ≤ N , the term f(m) appears in

∑
d|n

f(d)

if and only if m is a divisor of n is possible. Now to calculate the number of
terms in the sum

∑
d|n

f(d) in which f(m) occurs as a term, it is sufficient to find

the number of integers from the set {1, 2, · · ·N} which are divisible by m.From

the Theorem 6.6.1 there are exactly
[
N

n

]
of them. Thus for each m such that

1 ≤ m ≤ N , f(m) is a term of the sum
∑
d|n

f(d) for
[
N

n

]
different positive

integers less than or equal to N . Therefore

N∑
n=1

∑
d|n

f(d) =
N∑

m=1
f(m)

[
N

m

]
=

N∑
n=1

F (n)

!
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This proves the theorem.

Our next corollary is the immediate application of this theorem on two arith-
metic functions τ(n) and σ(n).

Corollary 6.6.2. If N is a positive integer then,

N∑
n=1

τ(n) =
N∑

n=1

[
N

n

]
and

N∑
n=1

σ(n) =
N∑

n=1

(
n

[
N

n

])
.

Proof. We know that τ(n) =
∑
d|n

1 and σ(n) =
∑
d|n

d. Now taking F (n) = τ(n)

and f(n) = 1, for all n ∈ N we have from the Theorem 6.6.3
N∑

n=1
τ(n) =

N∑
n=1

[
N

n

]
.

Again taking F (n) = σ(n) and f(n) = n, for all n ∈ N we have from the Theorem

6.6.3
N∑

n=1
σ(n) =

N∑
n=1

(
n

[
N

n

])
.

Now to visualize those two forms of τ(n) and σ(n) we will go through an
example given below.

Exercise 6.6.1. Let us consider N = 4 then,
4∑

n=1
τ(n) = τ(1) + τ(2) + τ(3) +

τ(4) = 1 + 2 + 2 + 3 = 8. Now,

4∑
n=1

[
4
n

]
= [4] + [2]+

[
4
3

]
+ [1] = 4 + 2 + 1 + 1 = 8.

Also,

4∑
n=1

σ(n) = σ(1) + σ(2) + σ(3) + σ(4) = 1 + 3 + 4 + 7 = 15

and
4∑

n=1

(
n

[
4
n

])
= 1[4] + 2[2] + 3

[
4
3

]
+ 4[1] = 4 + 4 + 3 + 4 = 15.

6.7 Worked out Exercises

Problem 6.7.1. Find the highest power of 5 dividing 1000!.

Solution 6.7.1.[
1000

5

]
+
[

1000
52

]
+
[

1000
53

]
+
[

1000
54

]
= 249 ⇒ 5249|1000!.
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Problem 6.7.2. For an integer z ≥ 0, show that z

2 − − z

2 = z.

Solution 6.7.2. By definition, we have the following inequalities:

z

2 − 1 <
[z

2

]
≤ z

2 (6.7.1)

−z

2 − 1 <
[
−z

2

]
≤ −z

2 . (6.7.2)

From equation (6.7.2), we have − [− z
2
]
< z

2 +1. Adding the last inequation with
(6.7.1), we obtain [z

2

]
−

[
−z

2

]
<

z

2 + z

2 + 1 = z + 1 ≤ z. (6.7.3)

Further, from inequation (6.7.2), we have z
2 ≤ − [− z

2
]
. Adding the foregoing

inequation with (6.7.1), we obtain

z ≤
[z

2

]
−

[
−z

2

]
(How!). (6.7.4)

Finally, (6.7.3) and (6.7.4) gives
[

z
2

]
−
[

− z
2

]
= z.

Problem 6.7.3. If z ≥ 1 and q is a prime, then find the exponent of the highest

power of q that divides (2z)!
(z!)2 .

Solution 6.7.3. For any prime q, let s be the highest power of q that divides
(2z)!. If q|z!, let k be the highest power of q such that qk|z!. Thus qs

qk = qs−k.
So s − k is the highest power of q satisfying qs−k

∣∣ (2z)!
(z!) . Also, s − 2k is the

highest power of q satisfying qs−k
∣∣ (2z)!
(z!)2 . By virtue of Theorem 6.6.1, the highest

power of q dividing (2z)! is
∑∞

k=1

[
2z
qk

]
and the highest power of q dividing z! is∑∞

k=1

[
z

qk

]
. Finally, the highest power of q dividing (2z)!

(z!)2 is given by,

∞∑
k=1

[
2z
qk

]
− 2

∞∑
k=1

[
z

qk

]
=

∞∑
k=1

([
2z
qk

]
− 2

[
z

qk

])
.

Problem 6.7.4. Let the positive integer z be written in terms of powers of the
prime q so that we have z = a

k
qk + . . . + a2q

2 + a1q + a0 , where 0 ≤ ai < q.
Find the exponent of the highest power of q appearing in the prime factorization
of z!.

Solution 6.7.4. Before finding the exponent of the highest power of q, let us
state and prove the following lemma viz

[ ] [ ]
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Lemma 6.7.1. For q > 1, z > 1; (q − 1) 1
q + 1

q2 + . . . + 1
qz < 1.

Proof. By principle of mathematical induction we are going to prove the above
lemma. For k = 1, the lemma is trivial(Verify!). Suppose the lemma is true for
z = k. Then

(q − 1)
(

1
q

+ 1
q2

+ . . . + 1
qk

)
< 1.

Therefore

(q − 1)
(

1
q

+ 1
q2

+ . . . + 1
qk

+ 1
qk+1

)
= (q − 1)

(
1
q

+ 1
q2

+ . . . + 1
qk

)
+ q − 1

qk+1

= q

(
1
q

+ . . . + 1
qk

)
− 1

q
− . . . − 1

qk
+ 1

qk
− 1

qk+1 .

By hypothesis q
(
1
q + . . . + 1

qk

)
− 1

q − . . . − 1
qk < 1, therefore

q

(
1
q

+ . . . + 1
qk

)
− 1

q
− . . . − 1

qk
+ 1

qk
− 1

qk+1 < 1 + 1
qk

− 1
qk+1

< 1 − 1
qk+1

< 1.

Hence the lemma is true for z = k + 1.
Using Theorem 6.6.1 the exponent of the highest power of q appearing in the

prime factorization of z! is

∞∑
i=1

[
z

qi

]
=

[
a

k
qk−1 + . . . + a2q + a1 + a0

q

]
+

[
a

k
qk−2 + . . . + a2 + a1

q
+ a0

q2

]
+
...

+

+
[
a

k
+ . . . + . . . + a1

qk−1 + a0

qk

]
+

[
a

k

q
+ . . . + . . . + a1

qk
+ a0

qk+1

]
. (6.7.5)

In equation (6.7.5), all 0 ≤ a
i

≤ q − 1. Note that
[

z
qk

]
q = a

k
q =

[
z

qk−1

]
− a

k−1 .

( )



140 Number Theory and its Applications

Therefore [
z

q1

]
q = z − a0[

z

q2

]
q =

[
z

q

]
− a1

...[
z

qk−1

]
q =

[
z

qk−2

]
− a

k−2[
z

qk

]
q =

[
z

qk−1

]
− a

k−1

0 =
[
z

qk

]
− a

k
.

On adding the left and right column entries, we have([
z

q1

]
+

[
z

q2

]
+ . . . +

[
z

qk−1

]
+

[
z

qk

])
(q − 1) = z − (a0 + a1 + . . . + a

k
).

Hence ∞∑
k=1

[
z

qk

]
= z − (a0 + a1 + . . . + a

k
)

q − 1 .

Problem 6.7.5. Using Problem 6.7.4, find the exponent of highest power of p
dividing (pk − 1)!.

Solution 6.7.5. Hint: Here,

pk − 1 = (p − 1)(pk−1 + pk−2 + . . . + p + 1)

= (p − 1)pk−1 + (p − 1)pk−2 + . . . + (p − 1)p + (p − 1).

Since, p is prime, 0 ≤ p − 1 ≤ p so

a
k−1 = p − 1, a

k−2 = p − 1, . . . , a1 = p − 1, a0 = p − 1.

Take z = pk − 1 and apply the formulae in Problem 6.7.4.

Problem 6.7.6. For any positive integer N , verify the formulae:

N∑
z=1

λ(z)
[
N

z

]
= [

√
N ].

Solution 6.7.6. Let F (z) =
∑
d|z

λ(d), λ being the Liouville function defined in

Problem 6.5.4. Taking help of Theorem 6.6.3, we have
∑N

z=1 F (z) =
∑N

z=1 λ(z)
[

N
z

]
.
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Moreover, by Problem (6.5.4) we have

F (z) =
{

1, if z = m2 for some integer m;
0, Otherwise.

Therefore
N∑

z=1
F (z) monitor the number of perfect squares less than or equal to

N as F assigns a value of 1 to each z that can be expressed as a perfect square.
Thus

N∑
z=1

λ(z)
[
N

z

]
= Number of squares ≤ N.

Next let us consider, [
√
N ] and perfect squares, which are 12, 22, 32, and so on.

For any N = m2, there are exactly m perfect squares(positive integers) less
than or equal to N . Suppose [

√
N ] is not an integer m be the largest integer

satisfying m2 < N . Therefore N < (m + 1)2 ⇒ m <
√
N < m + 1. Since

m =
√
N , therefore

√
N is the number of perfect squares less than or equal to

N . Hence
∑N

z=1 λ(z)
[

N
z

]
= [

√
N ].

Problem 6.7.7. If N is a positive integer, prove that

τ(N) =
N∑

z=1

([
N

z

]
−

[
N − 1

z

])
.

Solution 6.7.7. Applying Corollary 6.6.2, yields
∑N

z=1
[

N
z

]
=

∑N
z=1 τ(z). There-

fore

N∑
z=1

[
N − 1

z

]
=

N−1∑
z=1

[
N − 1

z

]
+

[
N − 1
N

]

=
N−1∑
z=1

τ(z) +
[
N − 1
N

]
.

As N−1
z < 1(∀N > 0), therefore

[
N−1

N

]
= 0. Hence

∑N
z=1

[
N−1

z

]
=

∑N−1
z=1 τ(z).

Therefore
∑N

z=1
([

N
z

] − [
N−1

z

])
=

∑N
z=1 τ(z) − ∑N−1

z=1 τ(z) = τ(N).

Problem 6.7.8. Given a positive integer N , prove:
∑N

z=1 μ(z)
[

N
z

]
= 1.

Solution 6.7.8. Let F (z) =
∑

d|z μ(d). By Theorem 6.4.2, we find

F (z) =
{

1, if z = 1;
0, if z > 1.
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By Theorem 6.6.1, we have

N∑
k=1

F (k) =
N∑

z=1
μ(z)

[
N

z

]
= F (1) + F (2) + . . . + F (N)

= 1.

Hence
∑N

z=1 μ(z)
[

N
z

]
= 1.

Let us illustrate the problem taking N = 6.

6∑
z=1

μ(z)
[

6
z

]
= μ(1)

[
6
1

]
+ μ(2)

[
6
2

]
+ μ(3)

[
6
3

]
+ μ(4)

[
6
4

]
+ μ(5)

[
6
5

]
+ μ(6)

[
6
6

]
= 1 · 6 + (−1) · 3 + (−1) · 2 + 0 · 1 + (−1) · 1 + 1 · 1

= 6 − 3 − 2 + 0 − 1 + 1

= 1.

Problem 6.7.9. Given a positive integer N , prove:
∣∣∣∑N

z=1
μ(z)

z

∣∣∣ ≤ 1.

Solution 6.7.9. From Problem 6.7.8, we obtain

N∑
z=1

μ(z)
[
N

z

]
= 1 ⇒

N−1∑
z=1

μ(z)
[
N

z

]
+ μ(N) = 1.

Dividing by N , we obtain from foregoing equation

μ(N)
N

= 1
N

− 1
N

N−1∑
z=1

μ(z)
[
N

z

]
. (6.7.6)

Again,

N∑
z=1

μ(z)
z

=
N−1∑
z=1

μ(z)
z

+ μ(N)
N

= 1
N

N−1∑
z=1

μ(z)N
z

+ μ(N)
N

. (6.7.7)

(6.7.6) and (6.7.7) yields

N∑
z=1

μ(z)
z

= 1
N

N−1∑
z=1

μ(z)N
z

+ 1
N

− 1
N

N−1∑
z=1

μ(z)
[
N

z

]

= 1
N

N−1∑
z=1

μ(z)
(
N

z
−

[
N

z

])
+ 1

N
.
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Since

|a + b| ≤ |a| + |b|, |a · b| = |a| · |b|, 0 ≤
∣∣∣∣Nz −

[
N

z

]∣∣∣∣ < 1 and
∣∣∣∣ 1
N

∣∣∣∣ = 1
N

,

therefore ∣∣∣∣∣
N∑

z=1

μ(z)
z

∣∣∣∣∣ ≤ 1
N

N−1∑
z=1

|μ(z)|
∣∣∣∣Nz −

[
N

z

]∣∣∣∣ + 1
N

≤ 1
N

N−1∑
z=1

|μ(z)| + 1
N

≤ 1
N

(N − 1) + 1
N

= 1 as |μ(z)| ≤ 1.

Let us illustrate the problem taking N = 6.∣∣∣∣∣
6∑

z=1

μ(z)
z

∣∣∣∣∣ = μ(1)
1 + μ(2)

2 + μ(3)
3 + μ(4)

4 + μ(5)
5 + μ(6)

6

=
∣∣∣∣1 +

(
−1

2

)
+

(
−1

3

)
+ 0

4 +
(

−1
5

)
+ 1

6

∣∣∣∣
=

∣∣∣∣1 +
(

−5
6

)
+

(
−1

5

)
+ 1

6

∣∣∣∣
=

∣∣∣∣1 +
(

−13
15

)∣∣∣∣ = 2
15 < 1.

6.8 Exercises:

1. Show that σ(n) = σ(n + 1) for n = 14, 206, 957.

2. For any positive integer n, prove that σ(n!)
n! ≥ 1 + 1

2 + . . . + 1
n .

3. Given a positive integer k > 1, show that there are infinitely many integers
n for which τ(n) = k, but at most finitely many n with σ(n) = k.

4. Prove that there are no positive integers n satisfying σ(n) = 10.

5. Show that for k ≥ 2, if 2k − 3 is prime, then n = 2k−1(2k − 3) satisfies the
equation σ(n) = 2n + 2.

6. Prove that if f and g are multiplicative functions, then so is their product
fg and quotient f

g (whenever the latter function is defined).

7. For any positive integer n, show that∑
d|z

z

d
σ(d) =

∑
d|z

dτ(d).
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8. Given z ≥ 1, let σs(z) denote the sum of the sth powers of the positive
divisors of z; that is, σ

s
(z) =

∑
d|z

ds. Prove that σs is a multiplicative

function.

9. For each positive integer n, verify that μ(n)μ(n + 1)μ(n + 2)μ(n + 3) = 0.

10. If the integer n > 1 has a prime factorization n = pk1
1 pk2

2 . . . pkr
r , prove the

following
(a)

∑
d|n μ(d)σ(d) = (−1)rp1p2 . . . pr;

(b)
∑

d|n
μ(d)

d = (1 − 1
p1

)(1 − 1
p2

) . . . (1 − 1
pr

).

11. If the integer n > 1 has a prime factorization n = pk1
1 pk2

2 . . . pkr
r , then

establish that
∑

d|n μ(d)λ(d) = 2r.

12. Find the highest power of 7 dividing 2000!.

13. If n ≥ 1 and p is a prime, show that (2n)!
(n!)2 is an even integer.

14. Find an integer n ≥ 1 such that the highest power of 5 contained in n! is
100.

15. Determine the highest power of 3 dividing 80! and the highest power of 7
dividing 2400!.
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