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bining Euclid’s informal writings with his own extensive proofs in the timeless
Disquistiones Arithmeticae.

2.2 Divisibility

When an integer is divided by a second integer(= 0), the quotient may or may
not be an integer. For instance, 36/6 = 6 is an integer, while 18/7 = 2.5 is not.
This observation leads to the following definition.

Definition 2.2.1. If a and b are integers, we say that b is divisible by a(= 0)
if there exists an integer c such that b = ac. Also, we say that a is a divisor or
factor of b, denoted by a|b. If a does not divides b, then we write a � b.

Example 2.2.1. 10 is divisible by 5 because there exist an integer 2 such that
10 = 5 × 2. We say 5|10.

Proposition 2.2.1. For any integers a, b, c, d the following statements are true:

1. a|0, 1|a, a|a.

2. a|b ⇒ ca|cb,∀c ∈ Z.

3. a|b and b|c ⇒ a|c.

4. a|b and b|a ⇒ a = ±b.

5. a|b and a|c ⇒ a|(bx + cy) for arbitrary integers x and y.

Proof. 1. Obvious.

2. Here,

a|b ⇒ b = da for some integer d,

⇒ cb = d(ca)

⇒ ca|cb.

3. Here, a|b ⇒ b = aq and c|d ⇒ d = cp for some integers p and q. Therefore
c = a(pq). Hence bd = ac(pq). Therefore ac|bd, as pq is an integer.

4. Here, a|b ⇒ b = ap for some integer p. Also, b|c ⇒ c = bq for some integer
q. Therefore c = bq = a(pq). Therefore a|c.

5. Here, a|b ⇒ b = ap for some integer p. Therefore b = bpq. Also, b|a ⇒ a =
bq for some integer q implies pq = 1. As p, q are integers either, p = q = 1
or p = q = −1. Therefore a = ±b.

�

�



Theory of Divisibility 17

6. Here, a|b ⇒ b = ap for some integer p and Here, a|c ⇒ b = aq for some
integer q. Therefore bx + cy = apx + aqy = a(px + qy). Now, px + qy ∈ Z
as p, q, x, y ∈ Z. Therefore a|(bx + cy).

Theorem 2.2.1. The Division Algorithm: Given any two integers a and b, with
b > 0 there exists unique integers q and r such that a = bq + r with 0 ≤ r < b.

Proof. Let a and b be two fixed integers with b = 0. Let A = {n ∈ N|n =
a − by, y ∈ Z}. Our claim is A = φ. For this there are two possibilities viz:

1. If a ≥ 0, then a− b(0) = a ≥ 0. So a− by is non–negative for y = 0(a ≥ 0).

2. If a < 0, then −a > 0. Since, b is a positive integer, we must have b ≥ 1.
Multiplying the inequality by a positive quantity gives, (−a)b ≥ (−a)
implies a−ab ≥ 0. So a−by is non–negative for y = a(< 0). Hence A = φ.

Since, A ⊂ N, by well ordering principle A has a least element say r. Since,
s ∈ A, therefore, r = a − by for some y = q. Thus we found integers r and q

such that r = a− bq or a = r+ bq. Since, r ∈ A, therefore r ≥ 0. Next our claim
is r < b. On the contrary, if we assume r ≥ b, then 0 ≤ r − b = (a − bq) − b =
a − b(q + 1) < r, which leads to a contradiction as r is the least in A. Hence
r < b. Thus we found two integers q and r such that a = bq + r with 0 ≤ r < b.

The last part of the proof deals with the uniqueness of q and r with the
above properties. If possible, let there be two pair of integers r1 , q1 and r2 , q2

satisfying
r1 + bq1 = a = r2 + bq2 (2.2.1)

with
0 ≤ r1 ≤ b and 0 ≤ r2 . (2.2.2)

We need to prove r1 = r2 and q1 = q2 .
If r1 ≤ r2 , then 2.2.1 shows

b(q1 − q2) = r2 − r1 . (2.2.3)

Since by hypothesis, b > 0, r2 ≥ r1 , therefore q1 − q2 must be a non negative
integer. Hence r2 − r1 must be one of 0, b, 2b, 3b, . . .. But 0 ≤ r2 ≤ r1 ≤ b

implies r2 − r1 = 0. Hence by 2.2.3 and the preceeding equation together with
the hypothesis b > 0, we have q1 = q2 . Similarly, taking r1 ≥ r2 , proves the
uniqueness of q and r.

�
�

�



18 Number Theory and its Applications

For another proof we give explicit formulae for the quotient and remainder
in terms of the greatest integer function, which will be done in the consequent
chapter of the book.

Remark 2.2.1. 1. When b � a, r satisfies strong inequality 0 < r < b.

2. Here q and r called quotient and remainder.

3. bq is largest multiple of b which does not exceed a.

Example 2.2.2. Suppose we are dividing 51 by 5 then, 51 = 5 × 10 + 1. Com-
paring with the theorem we get, a = 51, b = 5, q = 10, r = 1.Here q = 10 is the
quotient and r = 1 is remainder.

Corollary 2.2.1. If a, b be two integers with b > 0, then there exists integers Q
and R such that a = bQ ± R, 0 ≤ R <

b

2 .

Proof. From Division algorithm we have, for any two integers a and b with b > 0,
there exists unique integers q and r such that

a = bq + r, 0 ≤ r < b (2.2.4)

We now consider three following cases: Case(i): Let r < b
2 and taking q = Q

and r = R in equation (2.2.4), we have

a = bQ + R, 0 ≤ R <
b

2
Case(ii): Let r > b

2 , then from equation(2.2.4)

a = bq + r

= b(q + 1) + (r − b)

= b(q + 1) − (b − r).

Taking q+1 = Q and b−r = R, we have a = bQ−R where R = b−r < b− b
2 = b

2 .
Therefore a = bQ − R, 0 ≤ R < b

2 . Now combining case (i) and (ii) we have,

a = bQ ± R, 0 ≤ R <
b

2
Case(iii): Let r = b

2 , then from equation(2.2.4)

a = bQ + R, where q = Q and r = R = b

2
Again from the equation(2.2.4) we have,

a = bq + r = b(q + 1) − (b − r) = bQ + R

where q + 1 = Q and −(b − r) = R that is R = −b + b
2 = − b

2 . Which shows
that Q and R is not unique in this case thus case(iii) is not possible.
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Remark 2.2.2. (i) Here in the above proof Q R

R = b
2 . In this case that is for R = b

2 , R is called minimal remainder or the
absolutely least remainder of a with respect to b.
(ii) When r < b

2 , the minimal remainder is R = r.
(iii) When r > b

2 , the minimal remainder is R = r − b.

Here we have done an illustration of the concept minimal remainder by an
example. Let us choose a = 51 and b = 6 then 51 = 6 × 8 + 3(of the form
a = bQ + R, Q = 8, R = 3). Also we can write 51 = 6 × 9 − 3(of the form
a = bQ − R, Q = 9, R = 3). Thus Q and R are not unique as R = b

2 = 3.
Which is case (iii) of above corollary.
Now if we choose a = 50 and b = 6 then 50 = 6 × 8 + 2. Thus in this case
r = 2 < b

2 = 3 and the minimal remainder is R = 2. Which is case (i) of above
corollary.
Now if we choose a = 52 and b = 6 then 52 = 6 × 8 + 4. Thus in this case
r = 4 > b

2 = 3 and the minimal remainder is R = r − b = 4 − 6 = −2. Which is
case (ii) of above corollary.

Theorem 2.2.2. Prove that every integer is of the form,

1. 3k or 3k ± 1.

2. 4k or 4k ± 1 or 4k ± 2.

3. 5k or 5k ± 1 or 5k ± 2.

4. 6k or 6k ± 1 or 6k ± 2 or 6k ± 3.

Proof. From the above corollary any integer a is of the form

a = bk ± r where b, k, r ∈ Z and 0 ≤ |r| ≤ b

2 . (2.2.5)

1. When b = 3, we get from 2.2.5 a = 3k ± r where 0 ≤ |r| ≤ 3
2 = 1.5.

Therefore r = 0,±1.

2. When b = 4 we get from 2.2.5, a = 4k ± r, 0 ≤ |r| ≤ 4
2 = 2, ı.e. r =

0,±1,±2. Therefore a = 4k, 4k ± 1, 4k ± 2.

3. Rests treated as exercises.

and are unique except when
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2.3 Worked out Exercises

Problem 2.3.1. For any two integers a and b with b > 0, there exists unique
integers q1 and r1 such that a = bq1 + cr1 where 0 ≤ r1 <

b

2 , c = ±1.

Solution 2.3.1. By division algorithm we have a = bq + cr, 0 ≤ r < b.

Case I r <
b

2 , take q1 = q, c = 1, r1 = r. Therefore a = bq1 + cr1 , 0 ≤ r1 <

b
2 , c = ±1.

Case II r > b
2 , therefore 0 < b−r < b

2 take q1 = q0 +1, r1 = b−r and c2 = −1,
therefore, a = bq1 + cr1 where 0 ≤ r1 < b

2 , c = −1.

Case III r = b
2 then q1 = q, c = 1, r1 = r. Therefore a = bq1 +cr1 , r1 = b

2 , c = 1
and if q1 = q + 1, r1 = b − r and c = −1. Therefore a = b(q + 1) − (b −
r) = bq1 + cr1 ,

b

2 = r, c = −1. In this case q1 and r1 is not unique, so
a = bq1 + cr1 , 0 ≤ r1 < b

2 , c = ±1.

Problem 2.3.2. Show that every square integer is of the form 5k or 5k ± 1 for
some k ∈ Z.

Solution 2.3.2. Note that every integer is of the form 5p, 5p±1, 5p±2 for some
p ∈ Z. Square of these numbers are of the form:

(5p)2 = 5 × 5p2 = 5k,where k = 5p2 is a positive integer

(5p ± 1)2 = 25p2 ± 10p + 1 = 5(5p2 ± 2p) + 1 = 5k + 1,where k = 5p2 ± 2p + 1 ∈ Z
(5p ± 2)2 = 25p2 ± 20p + 4

= 5(5p2 ± 4p + 1) − 1

= 5k − 1,where k = 5p2 ± 4p + 1 ∈ Z.

Problem 2.3.3. Show that cube of any integer is of the form 9p, 9p + 1, 9p +
8(or 9p, 9p ± 1).
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Solution 2.3.3. Here,

(3m)3 = 27m3 = 9p, where p = 3m3 ∈ Z
(3m + 1)3 = 27m3 + 27m2 + 9m + 1

= 9(3m3 + 3m2 + m) + 1

= 9p + 1, where p = 3m3 + 3m2 + m ∈ Z
(3m − 1)3 = 27m3 − 27m2 + 9m − 9 + 8

= 9(3m3 − 3m2 + m − 1) + 8

= 9p + 8, where p = 3m3 − 3m2 + m − 1 ∈ Z
Also, (3m − 1)3 = 9(3m3 − 3m2 + m) − 1

= 9p − 1, where p = 3m3 − 3m2 + m ∈ Z.

Problem 2.3.4. Prove that the expression a(a2 + 2)
3 is an integer for a ≥ 1.

Solution 2.3.4. Applying Division Algorithm, any integer a can be expressed
in the form 3q, 3q + 1, 3q + 2. Taking a = 3q we obtain a(a2+2)

3 = q(9q2 + 2), an
integer. Similarly putting a = 3q+1 and a = 3q+2 we obtain (3q+1)(3q2+2q+1)
and (3q + 2)(3q2 + 4q + 2) respectively, both of which are integers. Hence the
result is proved.

Problem 2.3.5. Show that one of every three consecutive integer is divisible by
3.

Solution 2.3.5. Let a, a + 1, a + 2 be any three consecutive integers, then a is
of the form 3p, 3p + 1, 3p − 1 where p ∈ Z. If a = 3p, then a is divisible by 3. If
a = 3p + 1, then a + 2 = 3p + 3 = 3(p + 1) is divisible by 3. If a = 3p − 1, then
a + 1 = 3p + 1 − 1 = 3p is divisible by 3.

Problem 2.3.6. Find the minimal remainder of 416 with respect to (i) 37 (ii)
42.

Solution 2.3.6. (i) Here a = 416, b = 37. Therefore 416 = 37 × 11 + 9(Why!).
Therefore the minimal remainder is R = 9.

(ii) Left to the reader.

Problem 2.3.7. Show that an+1 − (a − 1)n − a is divisible by (a − 1)2, a being
an integer.
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Solution 2.3.7. Since a ∈ Z, we have

an+1 − (a − 1)n − a = a(an − 1) − (a − 1)n
= a(a − 1{a(an−1+ · · · + 1 ) − n})

= ( a − 1){(an + an−1+ · · · + a) − n}
= ( a − 1)2{(an−1+ an−2+ · · · + 1 ) + ( an−2+ · · · + 1 ) + · · · + 1 }.

The given expression is divisible by (a − 1)2.

Problem 2.3.8. If both a and b are odd positive integers then a4 + b4 − 2 is
divisible by 8.

Solution 2.3.8. Let a = 2n1 + 1 and b = 2n2 + 1 be the odd positive integers,
where n1 , n2 are positive integers. Thus we have,

(2n1 + 1)4 + (2n2 + 1)4 − 2

= (2n1)4 + 4 · (2n1)3 + 6 · (2n1)2 + 4 · (2n1) + 1 + (2n2)4 + 4 · (2n2)3 + 6 · (2n2)2

+ 4 · (2n2) + 1 − 2

= 16(n41 + n42 ) + 16(n31 + n32) + 24(n21 + n22 ) + 8(n1 + n2)

= 8[2(n41 + n42 ) + 2(n31 + n32 ) + 3(n21 + n22 ) + (n1 + n2)].

Problem 2.3.9. Show that the product of two integers of the form 4n + 1 is
again of this form, while the product of two integers of the form 4n+ 3 is of the
form 4k + 1.

Solution 2.3.9. Product of two integers of the form 4n + 1 gives us (4n +
1)(4m+ 1) = 4(4mn+m+n) + 1 = 4k + 1, k ∈ Z. Similarly (4n+ 3)(4m+ 3) =
4(4mn + 3m + 3n + 2) + 1 = 4k + 1, k ∈ Z.
Problem 2.3.10. Show that the square of every odd integer is of the form 8k+1.

Solution 2.3.10. Let a be an odd integer. Then n = 2s+ 1, s being an integer.
Now, a2 = 4s(s + 1) + 1. If s is even, then s = 2m,m being an integer. Hence

a2 = 8m(2m + 1) + 1 = 8k + 1, k = 2m + 1 ∈ Z.

If s is odd, then s = 2m + 1. It follows,

a2 = 8(2m + 1)(m + 1) + 1 = 8k + 1, k = (2m + 1)(m + 1) ∈ Z.

Problem 2.3.11. Let m be a positive integer. We define

T (m) =
{

m
2 , if m is even;
3m+1

2 , if m is odd.



Theory of Divisibility 23

We, then form the sequence obtained by iterating T ;m,T (m), T (T (m)), T (T (T
(m))), . . . . For instance, starting withm = 7 we have 7, 11, 17, 26, 13, 20, 10, 5, 8, 4,

1, 2, well-known conjecture, sometimes called the Collatz conjecture,
the sequence obtained by iterating T always reaches the integer 1 no
positive integer m begins the sequence.

Show that the sequence obtained by iterating T starting with m = 2k−1

3 ,
where k is an even positive integer, k > 1, always reaches the integer 1.

Solution 2.3.11. If 3m is odd, then so is m. So T (m) = 3m+1
2 = 22k

2 = 22k−1.
Since T (m) is a power of 2, the exponent will decrease down to 1 with repeated
iterations of T .

Problem 2.3.12. Show that if a is an integer, then 3 divides a3 − a.

Solution 2.3.12. Here a3−a = a(a−1)(a+1). Applying division Algorithm we
have a = 3k, a = 3k+1 or a = 3k+2, k being an integer. If a = 3k and a = 3k+
1, then 3|a and 3|(a− 1) respectively. Finally, if a = 3k+ 2 i.e. a+ 1 = 3(k+ 1),
then 3|(a + 1). Combining, it shows 3|a(a − 1)(a + 1) = a3 − a.

2.4 Greatest Common Divisor

If c and d be two arbitrary integers, not simultaneously zero, then the set of
common divisors of c and d is a finite set of integers, always containing the
integers +1 and −1(hence, their set of common divisors is non-null). Now every
integer divides zero, so that if c = d = 0, then every integer serves as a common
divisor of c and d. In this case, the set of common divisors of c and d turns to
be infinite. In this article, we are interested on the greatest integer among the
common divisors of two integers.

Definition 2.4.1. The greatest common divisor of two integers c and d, that
are not both zero, is the greatest integer which divides both c and d.

In other words, the above definition can be formulated as

Definition 2.4.2. If c and d be two arbitrary integers, not simultaneously zero,
the greatest common divisor of c and d is the common divisor e satisfying the
following:

1. e|a and e|b.

2. If f |a and f |b then e ≥ f .

The greatest common divisor of c and d is written as (c, d) or gcd(c, d).
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Example 2.4.1. The common divisors of 20 and 80 are ± ,± ,± ,± ,± and±
20. Hence gcd(20, 80) = 20. Similarly, looking at sets of common divisors, we
find that (12, 18) = 6, (50, 5) = 5, (19, 24) = 1, (0, 56) = 56, (−8,−16) = 8, and
(−19, 361) = 19.

We can also define the greatest common divisor of more than two integers.

Definition 2.4.3. Let c1 , c2 , . . . , cn
be integers, that are not all zero. The great-

est common divisor of these integers is the greatest integer which is a com-
mon divisor of all of the integers in the set. The greatest common divisor of
c1 , c2 , . . . , cn

is denoted by (c1 , c2 , . . . , cn
) or gcd(c1 , c2 , . . . , cn

).

Example 2.4.2. We see that (12, 18, 30) = 6 and (10, 15, 25) = 5.

The following proposition can be used to find the greatest common divisor
of a set of more than two integers.

Proposition 2.4.1. If c1 , c2 , . . . , cn
are integers, not simultaneously zero, then

gcd(c1 , c2 , . . . , cn
) = gcd

(
c1 , c2 , . . . , (cn−1 , cn

)
)
.

Before proceeding for proof, let us explain the proposition with an example:
To find the greatest common divisor of the three integers 105, 140, and 350, we
see that gcd(105, 140, 350) = gcd

(
105, (140, 350)

)
= gcd(105, 70) = 35.

Proof. In particular, a common divisor of the n integers c1 , c2 , . . . , cn
is a divisor

of c
n−1 and c

n
and therefore, a divisor of (c

n−1 , cn
). Also, any common divisor

of the n− 2 integers c1 , c2 , . . . , cn−2 and (c
n−1 , cn

), must be a common divisor of
all n integers, for if it divides (c

n−1 , cn
), it must divide both c

n−1 and c
n
. Since

the set of n integers and the set of the first n − 2 integers together with the
greatest common divisor of the last two integers have exactly the same divisors,
their greatest common divisors are equal.

Next we are particularly interested in pair of integers sharing no common
divisors other than 1. Such pair of integers are said to be relatively prime or
coprime.

Definition 2.4.4. The integers c and d, not simultaneously zero, are said to be
relatively prime(or coprime) if c and d have greatest common divisor (a, b) = 1.

Example 2.4.3. Since, gcd(12, 13) = 1 therefore 12, 13 are relatively prime.

We can also define the relatively prime of more than two integers.

1 2 4 5 10
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Definition 2.4.5. We say that the integers c1 , c2 , . . . , cn are mutually relatively
prime(or coprime) if gcd(c1 , c2 , . . . , cn

) = 1. These integers are called pairwise
relatively prime if for each pair of integers c

i
, c

j
from the set, gcd(c

i
, c

j
) = 1,

i.e., if each pair of integers from the set is relatively prime.

If integers are pairwise relatively prime, they must be mutually relatively
prime(Verify!). However, the converse fails is shown from the following example:

Example 2.4.4. Consider the integers 15, 21, and 35. Since (35, 55, 77) =
(35, (55, 77)) = (35, 11) = 1, we see that the three integers are mutually rela-
tively prime. However, they are not pairwise relatively prime, because (35, 55) =
5, (35, 77) = 7 and (55, 77) = 11.

Remark 2.4.1. Since the divisors of −a are the same as the divisors of a, it
follows that gcd(a, b) = (|a|, |b|) (where |a| denotes the absolute value of a which
equals a if a > 0, equals −a if a < 0) and equals 0 if a = 0. Hence we can
restrict our attention to greatest common divisors of pairs of positive integers.

We will show that the greatest common divisor of the integers c and d, not
simultaneously zero, can be written as a sum of multiples of c and d. To phrase
this more lucidly, we use the following definition:

Definition 2.4.6. If c and d are integers, then a linear combination of c and d

is a sum of the form mc + nd, where both m and n are integers.

The following theorem relates definition 2.4.6 and greatest common divisors.

Theorem 2.4.1. The greatest common divisor of the integers c and d, not
simultaneously zero, is the least positive integer that is a linear combination of c
and d.(In other words, given integers c and d, not both of which are zero, there
exist integers m,n such that gcd(c, d) = mc + nd.)

Before proceeding for the proof, let us illustrate the theorem succinctly with
an example:

Example 2.4.5. Consider the case in which c = 4 and d = 12. Here, the set S
becomes S = {4(−2) + 12 · 1, 4(−1) + 12 · 1, 4 · 0 + 152 · 1, . . .} = {4, 8, 12, . . .}.
Here 4 is the smallest integer in S, whence 4 = gcd(4, 12).

Proof. Let e be the least positive integer such that e = ma + nb holds, m,n

being integers.(Using the well-ordering property, there exist such least positive
integer, also at least one of two linear combinations 1 · c+0 ·d and (−1) · c+0 · b,
where c = 0 is positive, do exist).�
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Claim(i) e|c and e|d.

Claim(ii) e = gcd(c, d).

To fulfill Claim(i), applying Division Algorithm, we have c = eq+r with 0 ≤ r <

e. Now combining e = ma + nb and c = eq + r, we obtain r = (l − qm)c − qnd.
This shows that the integer r is a linear combination of c and d. Since 0 ≤ r < e,
and e is the least positive linear combination of c and d, we conclude that r = 0,
and hence e|a. In a similar manner, we can show that e|d.

For Claim(ii), all we need to show is that any common divisor f of c and d

must divide e. Since e = ma + nb, if f |c and f |d, proves f |e. This completes
the proof.

Remark 2.4.2. The foregoing argument is just an “existence” proof and does
not provide a practical method for finding the values of m and n.

The following theorem illustrates the relation between relatively prime inte-
gers and linear combinations(of relatively prime integers).

Theorem 2.4.2. Let c and d integers, not simultaneously zero. Then c and d are
relatively prime if and only if there exist integers m and n such that 1 = mc+nd.

Proof. If c and d are relatively prime then gcd(c, d) = 1. By virtue of Theorem
2.4.1, there exist integers m and n satisfying 1 = mc+nd. In context of converse
part, assume that 1 = mc+nd for some choice of m and n, and that e = gcd(c, d).
Because e|c and e|d, Proposition 2.2.1 yields e|(mc + nd), or e|1 implies e =
1(Why!), and the desired conclusion follows.

It is true, without adding an extra condition, that a|c and b|c together does
not imply ab|c. For instance, 6|12 and 3|12, but 6·3 � 12. Of course, if gcd(6, 3) =
1, then this situation would not arise. This brings us to Corollary the following
corollary:

Corollary 2.4.1. If c|e and d|e, with gcd(c, d) = 1, then cd|e.

Proof. As c|e and d|e, there exist integers m and n satisfying e = mc+nd. Now
the relation gcd(c, d) = 1 implies 1 = ck + dl for some choice of integers k and l.
Multiplying the last equation by e, we obtain e = e · 1 = e(ck + dl) = eck + edl.
The appropriate substitutions on the right-hand side allows e = c(ds)k+d(cr)l =
cd(sk + rl) implies cd|e.

The following few propositions address some properties of greatest common
divisors.
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Proposition 2.4.2. Let a, b and c be integers with gcd(a, b) = d. Then

1. gcd
(
a

d
,
b

d

)
= 1.

2. gcd(a + cb, b) = gcd(a, b).

3. gcd(ma,mb) = md (m > 0).

Proof. 1. Here a, b are integers with gcd(a, b) = d. Our claim is a

d
,
b

d
have no

common positive divisors other than 1. Assume that e is a positive integer
such that e|a

d
and e| b

d
. Then, there are integers k1 and k2 with a

d
= k1e

and b

d
= k2e, satisfying a = dek1 and b = dek2 . Hence de is a common

divisor of a and b. Hence e = 1(Why!). Consequently, gcd
(
a

d
,
b

d

)
= 1.

2. Here a, b and c be integers with gcd(a, b) = d. Its suffices to show that
the common divisors of a, b are exactly the same as the common divisors
of a+ cb, b ⇒ gcd(a+ cb, b) = gcd(a, b). Let e be a common divisor of a, b.
Then e|(a + cb)(Why!), such that e is a common divisor of a + cb, b. If f
is a common divisor of a + cb, b we see that f |((a + cb) − cb

)
= a(Why!),

showing f is a common divisor of a, b. Hence gcd(a + cb, b) = gcd(a, b).

3. Since d = gcd(a, b) then ∃ integers x and y such that d = xa + yb(by
Theorem 2.4.1). Then we have,

m(xa + yb) = md

⇒ x(ma) + y(mb) = md

As m > 0 then from the above equation we can assert that gcd(ma,mb) =
m gcd(a, b) = md.

Proposition 2.4.3. Prove that gcd(a, c) = 1 if and only if gcd(c − a, c).

Proof. Every common divisor d of a and c is also a common divisor of c − a

and a. Conversely, every common divisor d of c − a and a is also a common
divisor of c − a + a = c and a. Therefore the greatest common divisor of a and
c is the same as the greatest common divisor of c − a and a. So in general,
gcd(a, c) = gcd(c − a, c) = 1.

Proposition 2.4.4. Let a, b and c be integers with gcd(a, b) = 1. Then

1. If gcd(a, c) = 1, then gcd(a, bc) = 1.
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2. If gcd(a, b) = 1, and c|a, then gcd(b, c) = 1.

3. If c
∣∣(a + b), then gcd(a, c) = gcd(b, c) = 1.

4. If d|ac, and d|bc, then d|c.

Proof. 1. Since gcd(a, b) = 1, and gcd(a, c) = 1, therefore ∃ x, y, u, v ∈ Z

such that 1 = ax + by = au + cv.

∴ 1 = (ax + by)(au + cv),

= a(axy + byu + axu) + bcyu,

= ak1 + bck2 , k1 = axy + byu + axu, k2 = yu.

Hence gcd(a, bc) = 1.

2. left to the reader.

3. Since gcd(a, b) = 1, ∃ u, v ∈ Z such that au+bv = 1. Also, c
∣∣(a+b) ⇒ ∃ m

such that cn = a + b ⇒ cn − b = a.

∴ (cn − b)u + bv = 1,

cnu − bu + bv = 1,

cnu − b(u − v) = 1 ⇒ gcd(c, b) = 1.

Similarly, gcd(c, a) = 1.

4. left to the reader.

Our next theorem seems simple, but is of fundamental importance.

Theorem 2.4.3. Euclid’s Lemma: If a|bc, with gcd(a, b) = 1, then a|c.

Proof. By virtue of Theorem 2.4.2, writing 1 = am + bn, where m and n are
integers. Multiplication of this equation by c produces c = 1 · c = (am + bn)c =
acm + bcn. Because a|ac and a|bc, it follows that a|(acm + bcn), which can be
recast as a|c.

Remark 2.4.3. The condition gcd(a, b) = 1 is necessary is evident from the
following example: 12|9 · 8, but 12 � 9 and 12 � 8.

Theorem 2.4.4. Let c, d be integers, not both zero. For a positive integer e,
e = gcd(c, d) if and only if

1. e|c and e|d.
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2. Whenever f |c and f |d, then f |e.
Proof. Hint: Use Theorem 2.4.1.

Simple application of the last theorem leads to the following proposition.

Proposition 2.4.5. Let a, b and c be integers with gcd(a, b) = 1, then gcd(ac, b) =
gcd(c, b).

Proof. Let gcd(c, b) = d. Its suffices to show that d|ab and secondly if k|ac and
k|b then k|d. Since d|c, ∃ n such that dn = c so (dn)a = ca ⇒ d|ca.

Next, ∃ u, v ∈ Z such that d = au + cv. Since k|b, then ∃ n such that
kn = b. Hence d = cu + knv. Since gcd(a, b) = 1 ∃ p, q such that ap + bq = 1 ⇒
apc + bqc = c.

∴ d = (apc + bqc)x + kny,

= axpc + bqcx + kny.

But, k|ac ⇒ ∃ r such that kr = ac.

∴ d = krpx + knqcx + kny,

= k(rpx + nqcx + ny) ⇒ k|d.
Hence using Theorem 2.4.4 we obtain the desired result.

Remark 2.4.4. The Theorem 2.4.4 sometimes serves as a definition of gcd(c, d).
The advantage of using it as a definition is that order relationship is not involved.
Thus, it may be used in algebraic systems having no order relation.

Euclid’s Algorithm

While finding the gcd of two integers (not both 0), we can of course list all the
common divisors and pick the greatest one amongst those. However, if a and
b are very large integers, the process is very much time consuming. However,
there is a far more efficient way of obtaining the gcd. That is known as the
Euclid’s algorithm. This method essentially follows from the division algorithm
for integers.

To prove the Euclidean algorithm, the following lemma will be helpful.

Lemma 2.4.1. If a = qb + r then the gcd(a, b) = gcd(b, r).

Proof. Let d = gcd(a, b) and d1 = gcd(b, r). Then, d|a, d|b implies d|(a − qb)
ı.e, d|r. Thus d is a common divisor of b and r, hence d|d1 . Similarly, d1 |b, d1 |r
implies d1 |(bq + r) ı.e., d1divides both a and b. Then, d1 |d. Thus, d = d1 , as
both d and d1 are positive by our definition of gcd.
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Theorem 2.4.5. Euclid’s Algorithm: Let a and b (a > b) be any two integers
. If r1 is the remainder when a is divided by b, r2 is the remainder when b is
divided by r1, r3 is the remainder when r1 is divided by r2 and so on. Thus
rn+1 = 0, then the last non zero remainder rn is the gcd(a, b).

Proof. Euclid’s algorithm is an efficient way of computing the gcd of two integers
by repeated application of the above lemma. At each step the size of the integers
concerned gets reduced. Suppose we want to find the gcd of two integers a and b,
neither of them being 0. As gcd(a, b) = gcd(a,−b) = gcd(−a, b) = gcd(−a,−b),
we may assume a > b > 0. By performing division algorithm repeatedly, we
obtain

a = bq1 + r1 , 0 ≤ r1 ≤ b.

b = r1q2 + r2 , 0 ≤ r2 ≤ r1 .

r1 = r2q2 + r3 , 0 ≤ r3 ≤ r3 .

... =
...

rn−2 = r
n−1qn

+ r
n
, 0 ≤ r

n
≤ r

n−1 .

r
n−1 = r

n
q

n+1 + r
n+1 , 0 ≤ r

n+1 ≤ r
n
.

As we have a decreasing sequence of non-negative integers b > r1 > r2 > . . . >

r
n
> r

n+1 we must have r
n+1 = 0 for some n. Then, by applying the previous

lemma repeatedly, we find that gcd(a, b) = gcd(r1 , b) = gcd(r2 , r1) = . . . =
gcd(r

n−1 , rn−2) = gcd(r
n
, r

n−1) = r
n
. Thus, the last non-zero remainder r

n
in

the above process gives us the gcd(a, b).

Theorem 2.4.6. If k > 0, then gcd(ka, kb) = k gcd(a, b).

Let us illustrate the statement of the above theorem with an example: gcd(12, 30) =
gcd(3 · 4, 3 · 10) = 3 gcd(4, 10) = 3 gcd(2 · 2, 2 · 5) = 3 · 2 gcd(2, 5) = 6.

Proof. If each of the equations appearing in the Euclidean Algorithm for a and
b is multiplied by k, we obtain

ak = (bk)q1 + r1k, 0 ≤ r1k ≤ bk.

bk = (r1k)q2 + r2k, 0 ≤ r2k ≤ r1k.

r1k = (r2k)q2 + r3k, 0 ≤ r3k ≤ r3k.

... =
...

rn−2k = (r
n−1k)q

n
+ r

n
k, 0 ≤ r

n
k ≤ r

n−1k.

r
n−1k = (r

n
k)q

n+1 + 0.
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But here the Euclidean Algorithm applied to the integers ak and bk, so that their
greatest common divisor is the last nonzero remainder r

n
k; that is, gcd(ka, kb) =

r
n
k = k gcd(a, b).

Based on the above theorem, let us state and prove the following corollary:

Corollary 2.4.2. Its suffices to consider the case k < 0. Then −k = |k| > 0
and

gcd(ka, kb) = gcd(−ka,−kb)

= gcd(|k|a, |k|b)
= |k| gcd(a, b).

2.5 Least Common Multiple

There is a concept parallel to that of the greatest common divisor of two integers,
known as their least common multiple. Prime factorizations can also be used
to find the smallest integer that is a multiple of two positive integers(treated in
later chapters). The problem of finding this integer arises when fractions are
added.

Definition 2.5.1. The least common multiple of two positive integers a and b

is the smallest positive integer that is divisible by a and b, denoted by lcm(a, b)
or [a, b].

The above definition can also be formulated as follows:

Definition 2.5.2. The least common multiple of two nonzero integers a and b

is the positive integer l satisfying the following:

1. a|l and b|l.

2. If a|c and b|c, with c > 0, then l ≤ c.

Example 2.5.1. We have the following least common multiple: lcm(16, 20) =
80, lcm(24, 36) = 72, lcm(4, 20) = 20, and lcm(5, 13) = 65.

Remark 2.5.1. Given nonzero integers a and b, lcm(a, b) always exists and
lcm(a, b) < |ab|(Verify!).

Proposition 2.5.1. For nonzero integers a and b, the following statements are
equivalent(TFAE):

1. gcd(a, b) = |a|.
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2. a∣b.
3. lcm(a, b) = |b|.

Proof. (1)⇒(2): Let (1) holds. Then ∃ n ∈ Z such that b =
∣∣a∣∣n. Now a > 0 ⇒

b = an ⇒ a|b. Again, a < 0 ⇒ |a| = −1 ⇒ b = (−a)n ⇒ b = a(−n) ⇒ a|b. a|b.
Hence (2) holds.

(2)⇒(3): Let (2) holds. Then a
∣∣|b| and clearly b

∣∣|b|. Let c be another common
multiple. Then a

∣∣c and b
∣∣c with c > 0. Now b

∣∣c implies ∃ n ∈ Z such that c = bn

and
∣∣n∣∣ ≥ 1. Thus, |c| = |b||n| ≥ b which further gives |c| ≥ |b| and by definition

|b| = lcm(a, b).
(3)⇒(1): Let (3) holds. Therefore a

∣∣|b| ⇒ |a|∣∣|b|. Let c be another common
multiple. Then ∃ n ∈ Z such that a = cn ⇒ |a| = |c||n|. But |n| ≥ 1 ⇒ |c||n| ≥
|c| ⇒ |a| ≥ |c|.Therefore gcd(a, b) = |a|.

The following theorem filled the gap between greatest common divisor and
least common multiple.

Theorem 2.5.1. If a and b are positive integers, then [a, b] = ab

(a, b) , where [a, b]

and (a, b) are the least common multiple and greatest common divisor of a and
b, respectively.

Proof. Let us begin with taking c = (a, b) and write a = cr, b = cs for integers r

and s. If l = ab

c
, then l = as = rb, making l a (positive) common multiple of a

and b.
Now let d be any positive integer that is a common multiple of a and b, implies

d = au = bv. As we know, there exist integers k and l such that c = ak + bl. As
a result of which,

d

l
= dc

ab
= d(ak + bl)

ab
= d

b
k + d

a
l = vk + ul ⇒ l|c ⇒ l ≤ c.

Hence l = lcm(a, b) and [a, b] = ab

(a, b) .

Remark 2.5.2. The alternate proof of the above theorem can be done using
the prime factorizations of integers a and b (for further details refer to chapter
Prime Numbers).

Corollary 2.5.1. For any choice of positive integers a and b, [a, b] = ab if and
only if (a, b) = 1.

Proof. Obvious.

∣
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We conclude this section with a simple but interesting proposition.

Proposition 2.5.2. For a and b be two non zero integers. Then

1. gcd(a, b) = lcm(a, b) if and only if a = ±b.

2. If k > 0, then lcm(ka, kb) = k lcm(a, b).

3. If m is any common multiple of a and b, then lcm(a, b)
∣∣m.

Proof. 1. Let us consider gcd(a, b) = lcm(a, b) = d. Now by Theorem 2.5.1
we get d = ab. Since d

∣∣a then ∃x ∈ Z such that dx = a. This implies
d2 = dxb ⇒ d = xb ⇒ b

∣∣d. Thus we have d
∣∣b and d

∣∣b which together
implies d = ±b(by Proposition 2.2.1). By similar arguments we also have
d = ±a. Therefore |d| = |a| = |b| implying a = ±b.

Conversely let d = ±a holds. Then again by Proposition 2.2.1 we can
assert that a

∣∣b and b
∣∣a. This claims that gcd(a, b) = lcm(a, b).

2. To prove this we are to start with gcd(ka, kb) · lcm(ka, kb) = k2|ab|. Then,

k gcd(a, b) · lcm(ka, kb) = k2|ab| [ by Proposition 2.4.2]

⇒ gcd(a, b) · lcm(ka, kb) = k|ab|
⇒ gcd(a, b) · lcm(ka, kb) = k gcd(a, b) · lcm(a, b)

⇒ lcm(ka, kb) = k lcm(a, b).

3. Let us consider l = lcm(a, b) and by division algorithm ∃ integers q and r

such that m = lq + r, 0 ≤ r < l.

If r = 0 then obviously l
∣∣m.

If 0 < r < l then we can write r = m − lq. Since m and l are multiples
of a and b then ∃ integers x, y, u, v such that r = ax − ayq = a(x − yq)
and also r = bu − bvq = b(u − vq). This shows that r is a multiple of a, b
and this contradicts the fact l = lcm(a, b). So r < l is not possible. This
proves our assertion.

2.6 Worked out Exercises

Problem 2.6.1. If a, b, c are integers, then gcd(a, bc) = 1 if and only if gcd(a, b) =
gcd(a, c) = 1.
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Solution 2.6.1. Let gcd(a, b) = gcd(a, c) = 1 holds. Then there exists integers
m1 , n1 ,m2 and n2 satisfying

am1 + bn1 = 1 = am2 + cn2 .

Therefore

am1cn2 + bn1cn2 = cn2 = 1 − am2 ,

⇒ a(m2 + cm1n2) + bc(n1n2) = 1.

As m2 + cm1n2 and n1n2 are integers, therefore gcd(a, bc) = 1.
Conversely, let gcd(a, bc) = 1 holds. We are to show gcd(a, b) = gcd(a, c) =

1. Let gcd(a, b) = 1. Then gcd(a, b) = d implies there exists m,n such that

am + bn = d

⇒ acm + bcn = cd

⇒ a(cm) + b(cn) = cd.

Therefore gcd(a, bc) = cd(= 1), a contradiction. Thus both a, b and a, c are
coprime.

Problem 2.6.2. Prove or disprove: If a|(b + c), then either a|b or a|c.

Solution 2.6.2. Hint: Take a = 3, b = 2, c = 7.

Problem 2.6.3. If a|bc, show that a| gcd(a, b) gcd(a, c).

Solution 2.6.3. Let gcd(a, b) = d1 and gcd(a, c) = d2 . Then ∃ x, y, u, v ∈ Z

such that
d1 = ax + by, & d2 = au + cv.

Also, ∃ n ∈ Z satisfying an = bc. Now,

d1d2 = (ax + by)(au + cv),

= a2xu + acxv + abuy + bcyv,

= a(axu + cxv + buy) + anyv,

= a(axu + cxv + buy + nyv).

∴ a| gcd(a, b) gcd(a, c).

Problem 2.6.4. Prove that if d|n, then (2d − 1)|(2n − 1).

�

�
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Solution 2.6.4. We know that

an − 1 = (a − 1)(an−1 + an−2 + . . . + a + 1),

∴ 2n − 1 = (2 − 1)(2n−1 + 2n−2 + . . . + 2 + 1),

∴ 2d − 1 = (2 − 1)(2d−1 + 2d−2 + . . . + 2 + 1).

Since d|n, ∃ x ∈ Z such that dx = n. Therefore

2n − 1 = 2dx − 1 = (2d)x − 1,

= (2d − 1)(2d(x−1) + 2d(x−2) + . . . + 2d + 1).

∴ (2d − 1)
∣∣(2n − 1).

Problem 2.6.5. Prove that the product of any three consecutive integers is
divisible by 6.

Solution 2.6.5. Here we need to show 6|a(a+1)(a+2), for any arbitrary a ∈ Z.
Let S = a(a + 1)(a + 2). Here 6 = 3 · 2 and gcd(2, 3) = 1. If a is even, then

2|a ⇒ 2|S. And if odd, then 2
∣∣(a + 1) ⇒ 2|S. Let a = 3q + r, q, r ∈ Z. Now

r = 0, 1, 2. For all the values of r, 3|S(verify!). Hence 2|S, 3|S together implies
6|S.

Problem 2.6.6. If a is an odd integer, then 24|a(a2 − 1).

Solution 2.6.6. Let us first prove, a is of the form 8k + 1. Let a = 4q + r.
Therefore r = 0 or 3(Why!). Therefore

a2 = 16q2 + 8q + 1 = 8k + 1, for r = 0

a2 = 16q2 + 24q + 9 = 8k′ + 1, for r = 3.

So a(a2 − 1) = a(8k), for some k. Hence 8
∣∣a(a2 − 1). Therefore 6

∣∣a(a2 − 1) ⇒
3|a(a2 − 1). As gcd(3, 8) = 1, hence 24|a(a2 − 1)(Why!).

Problem 2.6.7. If a is an integer not divisible by 2 or 3, then 24|(a2 + 23).

Solution 2.6.7. Let a = 12q + r, q, r ∈ Z with 0 ≤ r < 12. But here, r =
1, 5, 7, 11(Why!). Now

a2 + 23 = (12q + r)2 + 23,

= 144q2 + 24qr + r2 + 23,

= 24(6q2 + qr) + r2 + 23.
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Now, r = 1 gives r2 + 23 = 24

r = 5 gives r2 + 23 = 48 = 24 · 2

r = 7 gives r2 + 23 = 72 = 24 · 3

r = 11 gives r2 + 23 = 144 = 24 · 6

∴ a2 + 23 = 24(6q2 + qr) + 24 · k, for some k.

Hence 24|(a2 + 23).

Problem 2.6.8. For n ≥ 1, and positive integers a, b, prove that gcd(an, bn) = 1
where gcd(a, b) = 1.

Solution 2.6.8. For n = 1, the statement is obvious. Let us assume the
statement be true for n(> 1) = k i.e. gcd(ak, bk) = 1. Now gcd(ak, bk+1) =
gcd(ak, bk) = 1[refer to the properties of GCD]. Since gcd(a, b) = gcd(b, a) = 1,
then gcd(ak, bk+1) = 1 = gcd(ak+1, bk+1).

Problem 2.6.9. For n ≥ 1, and positive integers a, b, prove that the relation
an|bn implies a|b.

Solution 2.6.9. The relation is obvious for n = 1. If possible, let us assume the
relation is true for n = k. Then an|bn implies a|b, which further implies ∃ x, y

such that
bk = xak & b = ay.

∴ xak+1 = abk =
(
b

y

)
bk = bk+1

y
.

∴ xyak+1 = bk+1 ⇒ ak+1|bk+1.

Problem 2.6.10. Prove that if gcd(a, b) = 1, then gcd(a + b, ab) = 1.

Solution 2.6.10. Let c be the common divisor of a+b and ab. Then gcd(a, c) =
gcd(b, c) = 1. Since c

∣∣ab and gcd(c, a) = 1, then by Euclid’s Lemma we have c
∣∣b.

By similar reasoning, c
∣∣a. As c ≤ gcd(a, b) = 1 ⇒ c = 1 ⇒ gcd(a + b, ab) = 1.

Problem 2.6.11. Prove that the greatest common divisor of two positive inte-
gers divides their least common multiple.

Solution 2.6.11. Let a, b > 0. We are to prove gcd(a, b)
∣∣lcm(a, b). We know

that gcd(a, b)lcm(a, b) = ab. Let d = gcd(a, b). Then ∃, m, n such that a =
dn, b = dm.

d · lcm(a, b) = (dn)(dm).

∴ lcm(a, b) = d(nm) ⇒ d
∣∣lcm(a, b) ⇒ gcd(a, b)

∣∣lcm(a, b).
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Problem 2.6.12. If a and b are prime to each other then prove that gcd(a +
b, a2 + b2) = 1 or 2.

Solution 2.6.12. Let gcd(a + b, a2 + b2) = d. Then d
∣∣(a2 + b2) ⇐⇒ d

∣∣(a +
b)(a − b) + 2b2. Since d

∣∣(a + b), ∃ x such that dx = a + b. Let m ∈ Z be such
that

dm = (a+b)(a−b)+2b2 ⇒ dm = dx(a−b)+2b2 ⇒ d[m−x(a−b)] = 2b2 ⇒ d
∣∣2b2.

Now combining the facts d
∣∣(a+b) and gcd(a, b) = 1, we find gcd(b, d) = 1(Why!).

Thus we get d � b, which implies d|2. Therefore d ≤ 2 implies d = 1 or 2.

Problem 2.6.13. Let a, b, c be integers, no two of which are zero, and d =
gcd(a, b, c). Show that d = gcd(gcd(a, b), c) = gcd(a, gcd(b, c)) = gcd(gcd(a, c), b).

Solution 2.6.13. Firstly, we will show d = gcd(gcd(a, b), c). Let f = gcd(a, b)
and g = gcd(f, c). Now g|f ⇒ g|a, g|b. Here g|c ⇒ g ≤ d. Our next task is
to show d|f . Here for some x, y ∈ Z, f = ax + by[refer to Theorem 2.4.1].
Now a = du, b = dv for some u, v ∈ Z. Hence f = dux + dvy ⇒ d|f . Now
d|c ⇒ d|g ⇒ d ≤ g. Hence combining, d = g holds i.e. d = gcd(gcd(a, b), c).
Proceeding as above, we can show that d = gcd(a, gcd(b, c)) = gcd(gcd(a, c), b).
Thus d = gcd(gcd(a, b), c) = gcd(a, gcd(b, c)) = gcd(gcd(a, c), b).

2.7 Linear Diophantine Equations

Before delving deep into the topic, let us start with the following problem:
A person wishes to buy ice cream bar for a get-together at home. After going

to the ice cream parlour he came across with some flavours: one is chocolate bar
costing Rs.126 and another is strawberry bar costing Rs.99. He decided to buy
both combinations with a budget of Rs.2000. Now the problem is; whether there
exist any such combinations of these two flavours? To answer this, let k denote
the number of chocolate bars and l denote the number of strawberry bars, the
person can purchase. Then we must have 126k + 99l = 2000, where both k and
l are nonnegative integers.

Now the need for Diophantine equation get along to find the solutions of a
particular equation, which follow from the set of integers. Diophantine equations
get their name from the ancient Greek mathematician Diophantus, who wrote
extensively on such equations. The type of diophantine equation ak + bl = c,
where a, b and c are integers is called a linear diophantine equations in two
variables. We now develop the theory for solving such equations. The following
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theorem illustrates that when such an equation has solutions, and when there
are solutions, explicitly describes them.

Theorem 2.7.1. Let a, b be positive integers with d = gcd(a, b). If d � c, the
equation ax + by = c has no solutions(in integers). There are infinitely many
solutions(integers) if d|c. Moveover in particular, if x = x0 , y = y0 is a solution
of the equation, then all solutions are given by

x = x0 + b

d
n, y = y0 − a

d
n, n being an integer.

Before proceeding for the proof, first we demonstrate the above theorem for
finding all the integral solutions of the two diophantine equations described at
the beginning of this section. We first consider the equation 126x+ 99y = 2000.
The greatest common divisor of 126 and 99 is gcd(99, 126) = 9. Since 9 � 2000,
we can say no integral solutions exist. Hence no combination of 126 and 99
rupees he can purchase.

Proof. Assume that x and y are integers satisfying ax+by = c. Together d|a and
d|b implies d|c(Why!). Hence if d � c there does not exists any integral solutions.
So we assume that d|c. Then from theorem (2.4.1), for some integers s, t

d = as + bt. (2.7.1)

Since, d|c there exist some integer e such that de = c holds. Multiplying (2.7.1),
we obtain

c = a(se) + b(te).

Hence one particular solution of the equation is given by x = x0 = se, y = y0 =
te.

Now, to prove the remaining part of the theorem suppose x = x0 + b

d
n, y =

y0 − a

d
n, n being an integer. Since,

ax + bl = a

(
x0 + b

d
n

)
+ b

(
y0 − a

d
n

)
= ax0 + bl0 = c,

we see that (x, y) is a solution.
Next our claim is to show every solution of the equation ax+ bl = c must be

of the form described in the theorem. since,

ax0 + bl0 = c,

on subtraction we obtain

a(x − x0) + b(y − y0) = 0 ⇒ a(x − x0) = b(−y + y0). (2.7.2)
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Dividing both sides by d, we see that

a

d
(x − x0) = b

d
(−y + y0).

By virtue of Proposition 2.4.2, we know gcd
(
a

d
,
b

d

)
= 1. Also, using Euclid’s

Lemma it follows a

d
|(y0 − y). Hence there exists an integer n with a

d
n = y0 − y

means y = y0 − a

d
n. Now putting this value of y into the (2.7.2), we find

a(x − x0) = b

(
a

d

)
n implies x = x0+

(
b

d

)
n.

Example 2.7.1. A man wishes to purchase Rs 510 of travelers checks. The
checks are available only in denominations of Rs 20 and Rs 50. How many of
each denomination should he buy?

Answer 2.7.1. Consider the equation 20k + 50l = 510. The greatest common
divisor of 20 and 50 is (20, 50) = 10, and since 10|510, there are infinitely many
integral solutions. Using the Euclidean algorithm, we find that 20(−2)+50 = 10.
Multiplying both sides by 51, we obtain 20(−102) + 50(51) = 510. Hence a
particular solution is given by k0 = −102 and l0 = 51. Theorem 2.7.1 tells
us that all integral solutions are of the form k = −102 + 5n and l = 51 − 2n.
Since we want both k and l to be nonnegative, we must have −102 + 5n > 0
and 51 − 2n > 0; thus, n >

102
5 and n <

51
2 . Since n is an integer, it follows

that n = 21, 22, 23, 24, 25. Hence we have the following 5 solutions: (k, l) =
(3, 9), (8, 7), (13, 5), (18, 3), (23, 1).

2.8 Worked out Exercises

Problem 2.8.1. Examine the nature of the following Diophantine equations:

1. 14x + 35y = 93.

2. 33x + 14y = 115.

Solution 2.8.1. 1. Here gcd(14, 35) = 7 and 7 � 93, hence not solvable.

2. Here gcd(33, 14) = 1 and 1
∣∣115, hence solvable.

Problem 2.8.2. Determine all solutions, in positive integers, of the following
Diophantine equations:

1. 158x − 57y = 7.
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2. 54x + 21y = 906.

Solution 2.8.2. 1. To find the solution of this equation we need to find the
gcd of 158, 57. Now applying Euclid’s Algorithm, we obtain

158 = 3 · 57 − 13 Again 1 = 3 − 2 = 3 − (5 − 3)

57 = 4 · 13 + 5 = 2 · 3 − 5 = 2(13 − 2 · 5) − 5

13 = 2 · 5 + 3 = 2 · 13 − 5 · 5

5 = 3 · 1 + 2 = 2 · 13 − 5(57 − 4 · 13)

3 = 2 · 1 + 1 = 22 · 13 − 5 · 57

= 22(3 · 57 − 158) − 5 · 57

= 61(57) + (−22) · 158.

Thus, gcd(158, 57) = 1. ∴ 7 = (61 · 7)57 + (−22 · 7)158.

Since gcd(158, 57)|7 = 7 therefore, an integral solution do exist for the
given equation. Hence (x0 , y0) = (−154,−427) is an integral solution.
Hence all integral solutions of the given equation is of the form,

x = −154 + −57
1 n = −154 − 57n > 0 ⇒ n < −2.7 ⇒ n ≤ −3

y = −1510 + −158
1 n = −1510 − 158n > 0 ⇒ n < −2.7 ⇒ n ≤ −3.

2. To find the solution of this equation we need to find the gcd of 54, 21. Now
applying Euclid’s Algorithm, we obtain,

54 = 2 · 21 + 12 Again, 3 = 12 − 9 = 12 − (21 − 12)

21 = 12 · 1 + 9 = 2 · 12 − 21

12 = 9 · 1 + 3 = 2(54 − 2 · 21) − 21

9 = 3 · 3 + 0 = 2 · 54 + (−5) · 21.

Thus, gcd(54, 21) = 3 & 3
∣∣906. ∴ 906 = (302 · 2)54 + (302 · (−5))21.

Since gcd(54, 21)|906 = 302 therefore, an integral solution do exist for
the given equation. Hence (x0 , y0) = (604,−1510) is an integral solution.
Hence all integral solutions of the given equation is of the form,

x = 604 + 21
3 n = 604 + 7n > 0 ⇒ n > −86.3

y = −1510 + −54
3 n = −1510 − 18n > 0 ⇒ n < −83.9.
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Thus, n = −84,−85,−86, which gives (x, y) = (16, 2), (9, 20), (2, 38).

Problem 2.8.3. Determine all solutions of the Diophantine equation 24x +
138y = 18.

Solution 2.8.3. First we need to calculate the gcd of 24 and 138 . Here,

138 = 5 · 24 + 18 Again, 6 = 24 − 18

24 = 18 + 9 = 24 − (138 − 5 · 24)

18 = 3 · 6 + 0 = 6 · 24 − 138

Thus, gcd(24, 138) = 6 & 6
∣∣18. ∴ 18 = (18)54 + (−3)138.

So the integral solution is x0 = 18, y0 = −3. Thus the solution of this equation
is,

x = 18+
(

138
6

)
n = 18 + 23n

y = −3−
(

24
6

)
n = −3 − 4n [n ∈ Z].

Problem 2.8.4. A farmer purchased 100 heads of livestock for a total cost of
Rs.4000. Prices were as follow: sheep, Rs.120 each; hen, Rs.25 each; duck,
Rs.50 each. If the farmer obtained at least one animal of each type how many
had he bought?

Solution 2.8.4. Let us consider the variables x, y and z for sheep, hen and
duck respectively. Then from given hypothesis we have, x + y + z = 100 and
120x + 25y + 50z = 4000, where x, y, z ≥ 1. Then 24x + 5y + 10z = 800 and
24x + 10z + 5(100 − x − z) = 800 holds. Combining last two equations yield
19x + 5z = 300. Hence the solutions are x = 0, z = 60. Therefore

x = 5k, z = 60 − 19k,

y = 40 + 14k, k ∈ Z.
Consequently,

5k ≥ 1 ⇒ k ≥ 1

60 − 19k ≥ 1 ⇒ k ≤ 3

40 + 14k ≥ 1 ⇒ k ≥ −2.

Considering last three inequalities, we get 1 ≤ k ≤ 3 ⇒ k = 1, 2, 3. Therefore
the possibilities are 5 sheep, 54 hens and 41 ducks or 10 sheep, 68 hens and 22
ducks or 15 sheep, 82 hens and 3 ducks.
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2.9 Exercises:

1. Let a, b and c be integers with gcd(a, b) = 1. Then gcd(a2, b2) = 1.

2. Verify that 3a2 − 1 is never a perfect square.

3. For n ≥ 1, establish that the integer n(7n2 + 5) is of the form 6k.

4. For an odd integer n, show that n4 + 4n2 + 11 is of the form 16k.

5. Verify that if an integer is simultaneously a square and a cube (as is the
case with 64 = 82 = 43), then it must be either of the form 7k or 7k + 1.

6. If a
∣∣bc, show that a

∣∣ gcd(a, b) gcd(a, c).

7. Verify the followings:
(a)the product of any four consecutive integers is divisible by 24;
(b)the product of any five consecutive integers is divisible by 120.

8. Prove that the expression (3n)!
(3!)n is an integer for all n ≥ 0.

9. Establish each of the statements below:
(a)If a and b are odd integers, then 8

∣∣(a2 − b2).
(b)If a is an arbitrary integer, then 6

∣∣a(a2 + 11).

10. Assuming that gcd(a, b) = 1, prove that gcd(2a + b, a + 2b) = 1 or 3.

11. Prove that if gcd(a, b) = 1, then gcd(a + b, ab) = 1.

12. Find integers x, y, z satisfying gcd(198, 288, 512) = 198x + 288y + 512z.

13. Use the Euclidean Algorithm to obtain integers x and y satisfying gcd(1769, 2378) =
1769x + 2378y.

14. Examine the nature of the Diophantine equation 14x + 35y = 93.

15. Determine all solutions in the positive integers of 158x − 57y = 7.

16. Determine all solutions in the integers of 221x + 35y = 11.

17. Mr.Sen had gone to a medical shop to buy two medicines: medicine A and
medicine B. By mistake, the chemist had given him the number of medicine
A in place of medicine B and vice versa.Unaware of the fact, Mr.Sen re-
ceived an extra amount Rs.68 from the shop keeper. Considering the price
of each medicine A and medicine B to be Rs.10 and Rs.15 respectively,
find the least number of medicine A, Mr. Sen wanted to purchase.
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18. One hundred packets of dry food are distributed among 100 persons in such
a way that every man, woman and child receives 3 packets, 2 packets, and
half a packet respectively. Find the total number of persons over there?
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