
Maxima by Example: Ch.4: Solving Equations ∗

Edwin L. Woollett

January 29, 2009

Contents
4 Solving Equations 3

4.1 One Equation or Expression: Symbolic Solution or Roots . 3
4.1.1 The Maxima Function solve . 3
4.1.2 solve with Expressions or Functions & the multiplicities List . 4
4.1.3 General Quadratic Equation or Function . 5
4.1.4 Checking Solutions with subst or ev and a �Do Loop� . 6
4.1.5 The One Argument Form of solve . 7
4.1.6 Using disp, display, and print . 7
4.1.7 Checking Solutions using map . 8
4.1.8 Psuedo-PostFix Code: %% . 9
4.1.9 Using an Expression Rather than a Function with Solve . 9
4.1.10 Escape Speed from the Earth . 11
4.1.11 Cubic Equation or Expression . 14
4.1.12 Trigonometric Equation or Expression . 14
4.1.13 Equation or Expression Containing Logarithmic Functions . 15

4.2 One Equation Numerical Solutions: allroots, realroots, �nd root . 16
4.2.1 Comparison of realroots with allroots . 17
4.2.2 Intersection Points of Two Polynomials . 18
4.2.3 Transcendental Equations and Roots: �nd root . 21
4.2.4 �nd root: Quote that Function! . 23
4.2.5 newton . 26

4.3 Two or More Equations: Symbolic and Numerical Solutions . 28
4.3.1 Numerical or Symbolic Linear Equations with solve or linsolve 28
4.3.2 Matrix Methods for Linear Equation Sets: linsolve by lu . 29
4.3.3 Symbolic Linear Equation Solutions: Matrix Methods . 30
4.3.4 Multiple Solutions from Multiple Right Hand Sides . 31
4.3.5 Three Linear Equation Example . 32
4.3.6 Surpressing rat Messages: ratprint . 34
4.3.7 Non-Linear Polynomial Equations . 35
4.3.8 General Sets of Nonlinear Equations: eliminate, mnewton . 37
4.3.9 Intersections of Two Circles: implicit plot . 37
4.3.10 Using Draw for Implicit Plots . 38
4.3.11 Another Example . 39
4.3.12 Error Messages and Do It Yourself Mnewton . 42
4.3.13 Automated Code for mymnewton . 45

∗This version uses Maxima 5.17.1. This is a live document. Check http://www.csulb.edu/�woollett/ for the latest
version of these notes. Send comments and suggestions to woollett@charter.net

1

COPYING AND DISTRIBUTION POLICY

This document is part of a series of notes titled �Maxima by Example� and is made available
via the author's webpage http://www.csulb.edu/�woollett/ to aid new users of the Maxima com-
puter algebra system.

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.
You may make copies of this document and distribute them to others as long as you charge no more than the
costs of printing.

These notes (with some modi�cations) will be published in book form eventually via Lulu.com in an ar-
rangement which will continue to allow unlimited free download of the pdf �les as well as the option of ordering
a low cost paperbound version of these notes.

2

4 Solving Equations
Maxima has several functions which can be used for solving sets of algebraic equations and for �nding the
roots of an expression. These are described in the Maxima manual, Sec. 21, and listed under �Contents� under
�Equations�.

This chapter gives examples of the following Maxima functions:

• solve solves a system of simultaneous linear or nonlinear polynomial equations for the speci�ed vari-
able(s) and returns a list of the solutions.

• linsolve solves a system of simultaneous linear equations for the speci�ed variables and returns a list of
the solutions.

• �nd root uses a combination of binary search and Newton-Raphson methods for univariate functions
and will �nd a root when provided with an interval containing at least one root.

• allroots �nds all the real and complex roots of a real univariate polynomial.

• realroots �nds all of the real roots of a univariate polynomial within a speci�ed tolerance.

• eliminate eliminates variables from a set of equations or expressions.

• linsolve by lu solves a system of linear algebraic equations by the matrix method known as �LU decom-
position�, and provides a Maxima method to work with a set of linear equations in terms of the matrix of
coef�cients.

• newton, naive univariate Newton-Raphson, and mnewton, multivariate Newton-Raphson, can deal with
nonlinear function(s).

We also encourage the use of two dimensional plots to approximately locate solutions.

This chapter does not yet include �Solving Recurrence Relations�, and �Solving One Hundred Equations�.

4.1 One Equation or Expression: Symbolic Solution or Roots
4.1.1 The Maxima Function solve
Maxima's ability to solve equations is limited, but progress is being made in this area. The Maxima man-
ual has an extensive entry for the important function solve, which you can view in Maxima with the input
? solve (no semicolon) followed by (Enter), or the equivalent command: describe(solve)$. The in-
put example(solve)$ will show you the manual examples without the manual syntax material. We will
present some examples of the use of solve and not try to cover �everything�.
solve tries to �nd exact solutions. If solve(f(x),x) cannot �nd an exact solution, solve tries to return a
simpli�ed version of the original problem. Sometimes the �simpli�ed� version can be useful:

(%i1) f(x);
(%o1) f(x)
(%i2) solve(f(x)�2-1 , x);
(%o2) [f(x) = - 1, f(x) = 1]

Since Maxima's idea of what is �simpler� may not agree with your own, often the returned version is of no use.

3

The Maxima manual solve syntax discussion relevant to solving one equation is:

Function: solve(expr, x)
Function: solve(expr)
Solves the algebraic equation expr for the variable x and returns a list of solution equations in x. If expr
is not an equation, the equation expr = 0 is assumed in its place. x may be a function (e.g. f(x)), or
other non-atomic expression except a sum or product. x may be omitted if expr contains only one variable.
expr may be a rational expression, and may contain trigonometric functions, exponentials, etc.
breakup if false will cause solve to express the solutions of cubic or quartic equations as single
expressions rather than as made up of several common subexpressions which is the default.
multiplicities will be set to a list of the multiplicities of the individual solutions returned by solve,
realroots, or allroots.
Try apropos (solve) for the switches which affect solve. describe may then by used on the
individual switch names if their purpose is not clear.

It is important to recognise that the �rst argument to solve is either an equation such as f(x) = g(x) (or
h(x) = 0), or simply h(x); in the latter case, solve understands that you mean the equation h(x) = 0,
and the problem is to �nd the �roots� of h(x), ie., values of x such that the equation h(x) = 0 is satis�ed.

Here we follow the manual suggestion about using apropos and describe:

(%i1) apropos(solve);
(%o1) [solve, solvedecomposes, solveexplicit, solvefactors, solvenullwarn,

solveradcan, solvetrigwarn, solve_inconsistent_error]
(%i2) describe(solveradcan)$
-- Option variable: solveradcan

Default value: `false'

When `solveradcan' is `true', `solve' calls `radcan' which makes
`solve' slower but will allow certain problems containing
exponentials and logarithms to be solved.

(%i3) describe(solvetrigwarn)$
-- Option variable: solvetrigwarn

Default value: `true'

When `solvetrigwarn' is `true', `solve' may print a message saying
that it is using inverse trigonometric functions to solve the
equation, and thereby losing solutions.

4.1.2 solve with Expressions or Functions & the multiplicities List
Let's start with a simple example where the expected answers are obvious and check the behavior of solve. In
particular we want to check solve's behavior with both an expression and a function (de�ned via :=). We also
want to check how the system list multiplicities is created and maintained. We include the use of realroots
and allroots in this comparison, even though we will not have to use these latter two functions for a while.

(%i1) multiplicities;
(%o1) not_set_yet
(%i2) ex1 : x�2 - 2*x + 1;

2
(%o2) x - 2 x + 1

4

(%i3) factor(ex1);
2

(%o3) (x - 1)
(%i4) g(x) := x�2 - 2*x + 1$
(%i5) g(y);

2
(%o5) y - 2 y + 1
(%i6) solve(ex1);
(%o6) [x = 1]
(%i7) multiplicities;
(%o7) [2]
(%i8) solve(g(y));
(%o8) [y = 1]
(%i9) multiplicities;
(%o9) [2]
(%i10) realroots(ex1);
(%o10) [x = 1]
(%i11) multiplicities;
(%o11) [2]
(%i12) allroots(ex1);
(%o12) [x = 1.0, x = 1.0]
(%i13) multiplicities;
(%o13) [2]

We see that we can use either an expression or a function with solve, and you can check that this also applies
to realroots and allroots. It is not clear from our use of allroots above how allroots affects multiplicities,
although, as we will see later, the manual does not assert any connection, and we would not expect there to be a
connection because allroots returns multiple roots explicitly in %o12. Just to make sure, let's restart Maxima
and use only allroots:

(%i1) multiplicities;
(%o1) not_set_yet
(%i2) allroots(x�2 - 2*x + 1);
(%o2) [x = 1.0, x = 1.0]
(%i3) multiplicities;
(%o3) not_set_yet

As we expected, allroots does not affect multiplicities; only solve and realroots set its value.

4.1.3 General Quadratic Equation or Function
To get our feet wet, lets turn on the machinery with a general quadratic equation or expression. There are
some differences if you employ an expression rather than a function de�ned with :=. Each method has some
advantages and some disadvantages. Let's �rst use the function argument, rather than an expression argument.
We will later show how the calculation is different if an expression is used. We will step through the process of
verifying the solutions and end up with a �do loop� which will check all the solutions. We will use a function
f(x) which depends parametrically on (a,b,c) as the �rst argument to solve, and �rst see what happens if
we don't identify the unknown: how smart is Maxima??

(%i1) f(x) := a*x�2 + b*x + c$

5

(%i2) f(y);
2

(%o2) a y + b y + c
(%i3) sol : solve(f(x));
More unknowns than equations - `solve'
Unknowns given :
[a, x, b, c]
Equations given:

2
[a x + b x + c]
-- an error. To debug this try debugmode(true);

We see that Maxima cannot read our mind! We must tell Maxima which of the four symbols is to be considered
the �unknown�. From Maxima's point of view (actually the point of view of the person who wrote the code),
one equation cannot determine four unknowns, so we must supply the information about which of the four
variables is to be considered the unknown.

(%i4) sol : solve(f(x),x);
2 2

sqrt(b - 4 a c) + b sqrt(b - 4 a c) - b
(%o4) [x = - --------------------, x = --------------------]

2 a 2 a

We see that solve returns the expected list of two possible symbolic solutions.

4.1.4 Checking Solutions with subst or ev and a �Do Loop�
Let's check the �rst solution:

(%i5) s1 : sol[1];
2

sqrt(b - 4 a c) + b
(%o5) x = - --------------------

2 a

Now we can use the subst(x = x1, f(x)) form of the subst function syntax.

(%i6) r1 : subst(s1, f(x));
2 2 2

(sqrt(b - 4 a c) + b) b (sqrt(b - 4 a c) + b)
(%o6) ----------------------- - ------------------------ + c

4 a 2 a
(%i7) expand(r1);
(%o7) 0

Now that we understand what steps lead to the desired �0�, we automate the process using a do loop:

(%i8) for i:1 thru 2 do disp(expand(subst(sol[i], f(x))))$
0
0

For each of the two solutions (for x) found by Maxima, the given expression evaluates to zero, verifying the
roots of the expression.

6

Since the result (here) of using ev(f(x), sol[i]) is the same as using subst(sol[i], f(x)),
we can use ev instead:

(%i9) for i:1 thru 2 do disp(expand(ev(f(x), sol[i])))$
0
0

4.1.5 The One Argument Form of solve
The simple one-argument form of solve can be used if all but one of the symbols in the expression is already
�bound�.

(%i10) solve(3*x -2);
2

(%o10) [x = -]
3

(%i11) (a:1, b:2, c:3)$
(%i12) [a,b,c];
(%o12) [1, 2, 3]
(%i13) solve(a*x�2 + b*x + c);
(%o13) [x = - sqrt(2) %i - 1, x = sqrt(2) %i - 1]
(%i14) [a,b,c] : [4,5,6];
(%o14) [4, 5, 6]
(%i15) solve(a*x�2 + b*x + c);

sqrt(71) %i + 5 sqrt(71) %i - 5
(%o15) [x = - ---------------, x = ---------------]

8 8
(%i16) [a,b,c] : [4,5,6];
(%o16) [4, 5, 6]

4.1.6 Using disp, display, and print
We have seen above examples of using disp, which can be used to print out the values of symbols or text, and
display, which can be used to print out the name of the symbol and its value in the form of an equation:
�x = value�.
Here is the do loop check of the roots of the quadratic found above using print instead of disp.
However, we need to be careful, because we are using a function f(x) rather than an expression. We have just
assigned the values of a, b, and c, and we want f(x) to have arbitrary values of these parameters.

(%i17) [a,b,c];
(%o17) [4, 5, 6]
(%i18) f(x);

2
(%o18) 4 x + 5 x + 6
(%i19) kill(a,b,c);
(%o19) done
(%i20) [a,b,c];
(%o20) [a, b, c]
(%i21) f(x);

2
(%o21) a x + b x + c

7

(%i22) sol;
2 2

sqrt(b - 4 a c) + b sqrt(b - 4 a c) - b
(%o22) [x = - --------------------, x = --------------------]

2 a 2 a
(%i23) for i:1 thru 2 do print("expr = ", expand(subst(sol[i],f(x))))$
expr = 0
expr = 0

Here we use disp to display a title for the do loop:

(%i24) (disp("check roots"), for i thru 2 do
print("expr = ", expand(subst(sol[i],f(x)))))$

check roots

expr = 0
expr = 0

The only tricky thing about this kind of code is getting the parentheses to balance. Note that that expand(...) is
inside print, so the syntax used is do print(...), ie., a �one job do �. The outside parentheses allow the syntax
(job1, job2). Note also that the default start of the do loop index is �1�, so we can use an abbreviated
syntax that does not have the i:1 beginning.

4.1.7 Checking Solutions using map
One advantage of using a function f(x) de�ned via := as the �rst argument to solve is that it is fairly easy
to check the roots by using the map function. We want to use the syntax map(f, solnlist}, where
solnlist is a list of the roots (not a list of replacement rules). To get the solution list we can again use map
with the syntax map(rhs, sol}.

(%i25) solnlist : map(rhs, sol);
2 2

sqrt(b - 4 a c) + b sqrt(b - 4 a c) - b
(%o25) [- --------------------, --------------------]

2 a 2 a
(%i26) map(f, solnlist);

2 2 2
(sqrt(b - 4 a c) + b) b (sqrt(b - 4 a c) + b)

(%o26) [----------------------- - ------------------------ + c,
4 a 2 a

2 2 2
(sqrt(b - 4 a c) - b) b (sqrt(b - 4 a c) - b)
----------------------- + ------------------------ + c]

4 a 2 a
(%i27) expand(%);
(%o27) [0, 0]
(%i28) expand(map(f, map(rhs, sol)));
(%o28) [0, 0]

The last input %i27 shows a compact method which avoids having to name the �solnlist� and which also
avoids having to look at the intermediate output. When you see someone's example written in a compact form
like this, you should realize that the �someone� probably tried out the progression of steps one step at a time
(just like we did) to see the correct route, and once the path to the result has been found, reduced the result to

8

the minimum number of steps and names. Often, one does not know in advance which progression of steps
will succeed, and one must experiment before �nding the �true path�. You should �take apart� the compact
code, by reading from the inside out (ie., from right to left), and also try getting the result one step at a time to
get comfortable with the method and notation being used.

4.1.8 Psuedo-PostFix Code: %%
An alternative �psuedo-post�x� (ppf) notation can be used which allows one to read the line from left to right,
following the logical succession of procedures being used. Although this ppf notation costs more in keystrokes
(an extra pair of outside parentheses, extra commas, and entry of double percent signs %%), the resulting code is
usually easier for beginners to follow, and it is easier to mentally balance parentheses as well. As an example,
the previous double map check of the roots can be carried out as:

(%i29) (map(rhs,sol), map(f,%%), expand(%%));
(%o29) [0, 0]

Note the beginning and ending parentheses for the whole �line� of input, with the syntax:
(job1, job2(%%), job3(%%),...). The system variable %% has the manual description (in part):

System variable: %%
In compound statements, namely block, lambda, or (s_1, ..., s_n), %% is the value of the previ-
ous statement.

4.1.9 Using an Expression Rather than a Function with Solve
Let's rework the general quadratic equation solution, including the checks of the solutions, using an expression
ex rather than a function f(x) de�ned using :=.

(%i1) ex : a*x�2 + b*x + c$
(%i2) sol : solve(ex, x);

2 2
sqrt(b - 4 a c) + b sqrt(b - 4 a c) - b

(%o2) [x = - --------------------, x = --------------------]
2 a 2 a

(%i3) s1 : sol[1];
2

sqrt(b - 4 a c) + b
(%o3) x = - --------------------

2 a
(%i4) r1 : subst(s1, ex);

2 2 2
(sqrt(b - 4 a c) + b) b (sqrt(b - 4 a c) + b)

(%o4) ----------------------- - ------------------------ + c
4 a 2 a

(%i5) expand(r1);
(%o5) 0
(%i6) for i:1 thru 2 do disp(expand(subst(sol[i], ex)))$

0
0

(We could have also used ev instead of subst.)

9

Thus far, the methods have been similar. If we now bind the values of (a,b,c), as we did in the middle
of our solutions using f(x), what is the difference?

(%i7) [a,b,c] : [1,2,3]$
(%i8) [a,b,c];
(%o8) [1, 2, 3]
(%i9) ex;

2
(%o9) a x + b x + c

We see that the symbol ex remains bound to the same general expression. The symbol ex retains its original
binding. We can make use of the values given to (a,b,c) with the expression ex by using two single quotes,
which forces an extra evaluation of the expression ex by the Maxima engine, and which then makes use of the
extra information about (a,b,c).

(%i10) ''ex;
2

(%o10) x + 2 x + 3
(%i11) ex;

2
(%o11) a x + b x + c

Forcing the extra evaluation in %10 does not change the binding of ex. Now let's try to check the solutions
using map, as we did before. To use map we need a function, rather than an expression to map on a solution
list. Let's try to de�ne such a function f(x) using the expression ex.

(%i12) f(x);
(%o12) f(x)
(%i13) f(x) := ex;
(%o13) f(x) := ex
(%i14) f(y);

2
(%o14) a x + b x + c
(%i15) f(x) := ''ex;

2
(%o15) f(x) := a x + b x + c
(%i16) f(y);

2
(%o16) y + 2 y + 3
(%i17) kill(a,b,c);
(%o17) done
(%i18) f(y);

2
(%o18) a y + b y + c
(%i19) solnlist : map(rhs,sol);

2 2
sqrt(b - 4 a c) + b sqrt(b - 4 a c) - b

(%o19) [- --------------------, --------------------]
2 a 2 a

10

(%i20) map(f,solnlist);
2 2 2

(sqrt(b - 4 a c) + b) b (sqrt(b - 4 a c) + b)
(%o20) [----------------------- - ------------------------ + c,

4 a 2 a
2 2 2

(sqrt(b - 4 a c) - b) b (sqrt(b - 4 a c) - b)
----------------------- + ------------------------ + c]

4 a 2 a
(%i21) expand(%);
(%o21) [0, 0]

Output %14 showed that the syntax f(x) := ex did not succeed in de�ning the function we need. The input
f(x) := ''ex suceeded in getting a true function of x, but now the function f(x) automatically makes
use of the current binding of (a,b,c), so we had to kill those values to get a function with arbitrary values
of (a,b,c). Having the function in hand, we again used the map function twice to check the solutions. Now
that we have discovered the �true path�, we can restart Maxima and present the method as:

(%i1) ex : a*x�2 + b*x + c$
(%i2) sol : solve(ex, x);

2 2
sqrt(b - 4 a c) + b sqrt(b - 4 a c) - b

(%o2) [x = - --------------------, x = --------------------]
2 a 2 a

(%i3) f(x) := ''ex$
(%i4) expand (map(f, map(rhs, sol)));
(%o4) [0, 0]

We can also use the (generally safer) syntax define(f(x),ex); to obtain a true function of x:

(%i5) define(f(x),ex);
2

(%o5) f(x) := a x + b x + c
(%i6) f(y);

2
(%o6) a y + b y + c
(%i7) expand (map(f, map(rhs, sol)));
(%o7) [0, 0]

We can also use the unnamed, anonymous function lambda to avoid introducing needless names, like �f�:

(%i8) expand(map(lambda([x],''ex), map(rhs,sol)));
(%o8) [0, 0]

4.1.10 Escape Speed from the Earth

In this section we solve a physics problem which involves a simple quadratic equation. It is so simple that �do-
ing it� on paper is faster than doing it with Maxima. In fact, once you understand the plan of the calculation,
you can come up with the �nal formula for the escape speed in your head. However, we will present practical
details of setup and evaluation which can be used with more messy problems, when you might want to use
Maxima.

Let's use conservation of mechanical energy (kinetic plus potential) to �rst calculate the initial radial speed
a rocket must have near the surface of the earth to achieve a �nal required radial speed far from the earth (far

11

enough away so we can neglect earth's gravitational pull).
Let the mass of the rocket be m, the mass of the earth be M, the radius of the earth be R, a general radial distance
from the center of the earth be r >= R, a general radial rocket speed be v, the maximum speed of the rocket
near the surface of the earth be v0, and the �nal radial speed of the rocket (as r becomes in�nite) be vf.

At a general distance r from the center of the earth the rocket has kinetic energy ke = m*v�2/2, and
gravitational energy pe = -G*M*m/r, where G is the gravitational constant:
(G = 6.673 10�(-11) newton*meter�2/kg�2).

(%i1) energy : m*v�2/2 - G*M*m/r;
2

m v m G M
(%o1) ---- - -----

2 r

The initial energy e0 corresponds to the energy the rocket has achieved at the moment of maximum radial
speed: this will occur at a radius r slightly larger than the radius of the earth R, but negligible error to the
required �lift-off speed� v0 will be made by ignoring this difference in radius. (You can justify this as a
good approximation by getting the answer when including this small difference, and comparing the percent
difference in the answers.)

(%i2) e0 : energy,v=v0,r=R;
2

m v0 m G M
(%o2) ----- - -----

2 R

As the rocket �rises�, r becomes larger, and the magnitude of the gravitational energy becomes smaller. The
��nal� energy efinal will be the energy when the gravitational energy is so small that we can ignore it; in
practice this will occur when the magnitude of the gravitational energy is much smaller than the magnitude of
the inital gravitational energy. The radial outward speed of the rocket then remains a constant value vf.

(%i3) efinal : limit(energy,r,inf),v=vf;
2

m vf
(%o3) -----

2

If we neglect the loss of mechanical energy due to friction in leaving the earth's atmosphere, and also neglect
other tiny effects like the gravitational interaction between the moon and the rocket, the sun and the rocket,
etc, then we can approximately say that the total mechanical energy (as we have de�ned it) of the rocket is a
constant, once chemical energy used to increase the rocket's speed is no longer a factor (which occurs at the
moment of maximum radial speed).
We can then get one equation by approximately equating the mechanical energy of the rocket just after achiev-
ing maximum speed to the mechanical energy of the rocket when r is so large that we can ignore the instanta-
neous gravitational energy contribution.

(%i4) v0soln : solve(efinal = e0,v0);
2 G M 2 2 G M 2

(%o4) [v0 = - sqrt(----- + vf), v0 = sqrt(----- + vf)]
R R

12

(%i5) v0soln : v0soln[2];
2 G M 2

(%o5) v0 = sqrt(----- + vf)
R

(%i6) v0;
(%o6) v0
(%i7) v0 : rhs(v0soln);

2 G M 2
(%o7) sqrt(----- + vf)

R

This provides the required �lift-off� speed near the surface of the earth to achieve a given �nal radial speed vf.
We now want to �nd the �escape speed�, the minimum value of the lift-off speed which will allow the rocket
to escape the gravitational pull of the earth. Any rocket which has a radial speed when r is effectively in�nite
will succeed in escaping, no matter how small that radial speed is. The limiting initial speed is then gotten by
taking the limit of v0 as vf goes to zero.

(%i8) vescape : ev(v0, vf = 0);
G M

(%o8) sqrt(2) sqrt(---)
R

Uing the mass of the earth, M = 5.974 10�(24) kg, and the radius of the earth,
R = 6.378 10�(6) meters, we get an escape speed 11,181 m/s = 11.18 km/s.

(%i09) ev(vescape, [G=6.673e-11,M=5.974e24,R=6.378e6]);
(%o09) 7905.892670345354 sqrt(2)
(%i10) float(%);
(%o10) 11180.62063706845

We have rounded the answer to four signi�cant �gures, since that is the accuracy of the Earth data and gravita-
tional constant we have used.
If we need to use a set of physical or numerical constants throughout a session, we can de�ne a list of �equali-
ties�, say clist, and use as follows:

(%i11) clist : [G=6.673e-11,M=5.974e24,R=6.378e6];
(%o11) [G = 6.6729999999999999E-11, M = 5.9740000000000004E+24, R = 6378000.0]
(%i12) ev(vescape, clist, float);
(%o12) 11180.62063706845

Note that adding the option variable �oat as a switch (equivalent to float:true), gets the sqrt(2) in
�oating point.

Looking at all those digits is unnecessary; set fpprintprec to something reasonable (this only affects the
numbers presented on the screen, not the accuracy of the calculation):

(%i13) fpprintprec:8$
(%i14) ev(vescape, clist, float);
(%o14) 11180.621
(%i15) clist;
(%o15) [G = 6.673E-11, M = 5.974E+24, R = 6378000.0]

13

4.1.11 Cubic Equation or Expression
Here is an example of using solve to �solve� a cubic equation, or, in the alternative language, �nd the roots
of a cubic expression. After checking the roots via the map function, we assign the values of the roots to the
symbols(x1,x2,x3). The cubic expression we choose is especially simple, with no arbitrary parameters, so
we can use the one argument form of solve.

(%i1) ex : x�3 + x�2 + x$
(%i2) sol : solve(ex);

sqrt(3) %i + 1 sqrt(3) %i - 1
(%o2) [x = - --------------, x = --------------, x = 0]

2 2
(%i3) define(f(x), ex)$
(%i4) expand (map(f, map(rhs, sol)));
(%o4) [0, 0, 0]
(%i5) [x1,x2,x3] : map(rhs,sol);

sqrt(3) %i + 1 sqrt(3) %i - 1
(%o5) [- --------------, --------------, 0]

2 2
(%i6) x1;

sqrt(3) %i + 1
(%o6) - --------------

2

4.1.12 Trigonometric Equation or Expression
Here is an exact solution using solve:

(%i1) [fpprintprec:8,display2d:false]$
(%i2) ex : sin(x)�2 -2*sin(x) -3$
(%i3) sol : solve(ex);
`solve' is using arc-trig functions to get a solution.
Some solutions will be lost.
(%o3) [x = asin(3),x = -%pi/2]
(%i4) define(f(x), ex)$
(%i5) expand (map(f, map(rhs, sol)));
(%o5) [0,0]
(%i6) numroots : float(map(rhs, sol));
(%o6) [1.5707963-1.7627472*%i,-1.5707963]

The �rst solution returned is the angle (in radians) whose sin is 3. For real x, sin(x) lies in the range
-1 <= sin(x) <= 1 . Thus we have found one real root. But we have been warned that some solutions
will be lost. Because the given expression is a polynomial in sin(x), we can use realroots:

(%i7) rr : realroots(ex);
(%o7) [sin(x) = -1,sin(x) = 3]

However, by �realroots�, realroots means that the numbers [-1,3] are real!

14

We can of course take the output of realroots and let solve go to work.

(%i8) map(solve, rr);
`solve' is using arc-trig functions to get a solution.
Some solutions will be lost.

`solve' is using arc-trig functions to get a solution.
Some solutions will be lost.
(%o8) [[x = -%pi/2],[x = asin(3)]]

We know that the numerical value of the expression ex3 repeats when x is replaced by x + 2*%pi, so
there are an in�nite number of real roots, related to −π/2 by adding or subtracting 2nπ, where n is an integer.

We can make a simple plot of our expression to see the periodic behavior and the approximate location of
the real roots.

-4

-2

 0

 2

 4

-6 -4 -2 0 2 4 6

x

0.0
sin(x)2-2*sin(x)-3

Figure 1: plot of ex3

We used the plot2d code:

(%i18) plot2d([0.0,ex3],[x,-6,6],[y,-5,5])$

4.1.13 Equation or Expression Containing Logarithmic Functions
Here is an example submitted to the Maxima mailing list and a method of solution provided by Maxima
developer Stavros Macrakis. The problem is to �nd the roots of the following expression ex:

(%i1) [fpprintprec:8,display2d:false,ratprint:false]$
(%i2) ex : log(0.25*(2*x+5)) - 0.5*log(5*x - 5)$

We �rst try solve, with the option variable solveradcan set equal to true. Remember that the syntax
func, optvar; is equivalent to func, optvar:true;.

(%i3) sol : solve(ex,x),solveradcan;
(%o3) [log((2*x+5)/4) = log(5*x-5)/2]

15

We see that solve tried to �nd a �simpler� form which it returned in %o2. The Maxima function fullratsimp
has the manual description

Function: fullratsimp(expr)
fullratsimp repeatedly applies ratsimp followed by non-rational simpli�cation to an expression until
no further change occurs, and returns the result.
When non-rational expressions are involved, one call to ratsimp followed as is usual by non-rational
(�general�) simpli�cation may not be suf�cient to return a simpli�ed result. Sometimes, more than one such
call may be necessary. fullratsimp makes this process convenient.

The effect of fullratsimp in our case results in the decimals being replaced by exact fractions.

(%i4) ex : fullratsimp(ex);
(%o4) (2*log((2*x+5)/4)-log(5*x-5))/2

The logarithms can be combined using the Maxima function logcontract. This function was discussed in
Chapter 2, Sect. 2.3.5. A partial description is:

Function: logcontract(expr)
Recursively scans the expression expr, transforming subexpressions of the form
a1*log(b1) + a2*log(b2) + c into log(ratsimp(b1�a1 * b2�a2)) + c

(%i1) 2*(a*log(x) + 2*a*log(y))$
(%i2) logcontract(%);

2 4
(%o2) a log(x y)

Here is the application to our problem:

(%i5) ex : logcontract(ex);
(%o5) -log((80*x-80)/(4*x�2+20*x+25))/2

Having combined the logarithms, we try out solve on this expression:

(%i6) sol : solve(ex);
(%o6) [x = -(2*sqrt(30)-15)/2,x = (2*sqrt(30)+15)/2]

We have a successful exact solution, but solve (in its present incarnation) needed some help. We now use the
map method to check the roots.

(%i7) define(f(x), ex)$
(%i8) expand(map(f, map(rhs,sol)));
(%o8) [0,0]

4.2 One Equation Numerical Solutions: allroots, realroots, �nd root
We have already tried out the Maxima functions realroots and allroots. The most important restriction for
both of these numerical methods is that the expression or equation be a polynomial, as the manual explains:

� Function: realroots(eqn, bound)
� Function: realroots(expr)
� Function: realroots(eqn)
Computes rational approximations of the real roots of the polynomial expr or polynomial equation eqn of
one variable, to within a tolerance of bound. Coef�cients of expr or eqn must be literal numbers; symbol
constants such as %pi are rejected.
realroots assigns the multiplicities of the roots it �nds to the global variable multiplicities.

16

realroots constructs a Sturm sequence to bracket each root, and then applies bisection to re�ne the
approximations. All coef�cients are converted to rational equivalents before searching for roots, and com-
putations are carried out by exact rational arithmetic. Even if some coef�cients are �oating-point numbers,
the results are rational (unless coerced to �oats by the float or numer �ags).
When bound is less than 1, all integer roots are found exactly. When bound is unspeci�ed, it is assumed
equal to the global variable rootsepsilon (default: 10�(-7)).
When the global variable programmode is true (default: true), realroots returns a list of the form
[x = <x_1>, x = <x_2>, ...]. When programmode is false, realroots creates interme-
diate expression labels %t1, %t2, ..., assigns the results to them, and returns the list of labels.

Here are the startup values of the option variables just mentioned:

(%i1) fpprintprec:8$
(%i2) [multiplicities,rootsepsilon,programmode];
(%o2) [not_set_yet, 1.0E-7, true]

The function allroots also accepts only polynomials, and �nds numerical approximations to both real and
complex roots:

Function: allroots(expr)
Function: allroots(eqn)
Computes numerical approximations of the real and complex roots of the polynomial expr or polynomial
equation eqn of one variable.
The �ag polyfactor when true causes allroots to factor the polynomial over the real numbers
if the polynomial is real, or over the complex numbers, if the polynomial is complex (default setting of
polyfactor is false).
allroots may give inaccurate results in case of multiple roots.
If the polynomial is real, allroots (%i*p))may yield more accurate approximations than allroots(p),
as allroots invokes a different algorithm in that case.
allroots rejects non-polynomials. It requires that the numerator after rat'ing should be a polynomial, and
it requires that the denominator be at most a complex number. As a result of this, allroots will always
return an equivalent (but factored) expression, if polyfactor is true.

Here we test the default value of polyfactor:

(%i3) polyfactor;
(%o3) false

4.2.1 Comparison of realroots with allroots
Let's �nd the real and complex roots of a �fth order polynomial which solve cannot �solve�, doesn't factor,
and use both realroots and allroots.

(%i4) ex : x�5 + x�4 -4*x�3 +2*x�2 -3*x -7$
(%i5) define(fex(x), ex)$

We �rst use realroots to �nd the three real roots of the given polynomial, and substitute the roots back into the
expression to see how close to zero we get.

(%i6) rr : float(map(rhs, realroots(ex,1e-20)));
(%o6) [- 2.7446324, - 0.880858, 1.7964505]
(%i7) frr : map(fex, rr);
(%o7) [0.0, - 4.4408921E-16, 0.0]

17

Next we �nd numerical approximations to the three real roots and the two (complex-conjugate) roots of the
given polynomial, using allroots(ex) and substitute the obtained roots back into the expression to see how
close to zero we get.

(%i8) ar1 : map(rhs, allroots(ex));
(%o8) [1.1999598 %i + 0.41452, 0.41452 - 1.1999598 %i, - 0.880858, 1.7964505,

- 2.7446324]
(%i9) far1 : expand(map(fex, ar1));
(%o9) [1.12132525E-14 %i + 4.4408921E-16, 4.4408921E-16 - 1.12132525E-14 %i,

- 1.13242749E-14, 2.48689958E-14, - 2.84217094E-14]

Finally, we repeat the process for the syntax allroots(%i* ex).

(%i10) ar2 : map(rhs, allroots(%i*ex));
(%o10) [1.1999598 %i + 0.41452, - 3.60716392E-17 %i - 0.880858,
0.41452 - 1.1999598 %i, 6.20555942E-15 %i + 1.7964505,
- 6.54444294E-16 %i - 2.7446324]
(%i11) far2 : expand(map(fex, ar2));
(%o11) [1.55431223E-15 %i - 1.77635684E-15, 5.61204464E-16 %i - 4.4408921E-16,
1.61204383E-13 %i + 2.26041408E-13, 2.52718112E-13 %i - 1.91846539E-13,
- 6.32553289E-14 %i - 3.97903932E-13]
(%i12) far2 - far1;
(%o12) [- 9.65894031E-15 %i - 2.22044605E-15,
1.1774457E-14 %i - 8.8817842E-16, 1.61204383E-13 %i + 2.37365683E-13,
2.52718112E-13 %i - 2.16715534E-13, - 6.32553289E-14 %i - 3.69482223E-13]

The three real roots of the given �fth order polynomial are found more accurately by realroots than by either
version of allroots. We see that the three real roots of this �fth order polynomial are found more accurately by
the syntax allroots(expr) (which was used to get ar1), than by the syntax allroots(%i*expr), used to get
ar2. We also see that the syntax allroots(%i*expr) introduced a tiny complex piece to the dominant real
part. The two extra complex roots found by the �rst syntax (ar1) are the complex conjugate of each other. The
two extra complex roots found by the alternative syntax (ar2) are also the complex conjugate of each other to
within the default arithmetic accuracy being used.

4.2.2 Intersection Points of Two Polynomials
Where do the two curves h(x) = x3 − 8 x2 + 19 x − 12 and k(x) = 1

2
x2 − x − 1

8
intersect? We want

approximate numerical values. We can plot the two functions together and use the cursor to read off the values
of x for which the curves cross, and we can also �nd the roots numerically. We �rst de�ne the curves as
expressions depending on x, then de�ne the difference of the expressions (rx) to work with using allroots �rst
to see if all the (three) roots are real, and then using realroots just for fun, and then checking the solutions.
If we are just going to compare the results with a plot, we don't need any great accuracy, so we will use the
default realroots precision.

(%i1) fpprintprec : 8$
(%i2) hx : x�3 - 8*x�2 + 19*x - 12$
(%i3) kx : x�2/2 -x -1/8$
(%i4) rx : hx - kx;

2
3 17 x 95

(%o4) x - ----- + 20 x - --
2 8

18

(%i5) factor(rx);
3 2

8 x - 68 x + 160 x - 95
(%o5) -------------------------

8
(%i6) define(fr(x), rx)$
(%i7) allroots(rx);
(%o7) [x = 0.904363, x = 2.6608754, x = 4.9347613]
(%i8) rr : float(realroots(rx));
(%o8) [x = 0.904363, x = 2.6608754, x = 4.9347613]
(%i9) rr : map(rhs, rr);
(%o9) [0.904363, 2.6608754, 4.9347613]
(%i10) map(fr, rr);
(%o10) [2.04101367E-8, - 8.4406409E-8, 5.30320676E-8]

We see that the numerical solutions are �zeros� of the cubic function to within the numerical accuracy realroots
is using. Just out of curiosity, what about exact solutions of this cubic polynomial? Use of solve will generate a
complicated looking expression involving roots and %i. Let's set display2d to false so the output doesn't take
up so much room on the screen.
(%i11) display2d : false$
(%i12) sx : solve(rx);
(%o12) [x = (-sqrt(3)*%i/2-1/2)*(3�-(3/2)*sqrt(16585)*%i/16+151/432)�(1/3)

+49*(sqrt(3)*%i/2-1/2)/(36*(3�-(3/2)*sqrt(16585)*%i/16+151/432)
�(1/3))+17/6,

etc, etc]
(%i13) sx1 : map(rhs, sx);
(%o13) [(-sqrt(3)*%i/2-1/2)*(3�-(3/2)*sqrt(16585)*%i/16+151/432)�(1/3)

+49*(sqrt(3)*%i/2-1/2)/(36*(3�-(3/2)*sqrt(16585)*%i/16+151/432)
�(1/3))+17/6,

etc, etc]

The list sx1 holds the exact roots of the cubic polynomial which solve found. We see that the form returned
has explicit factors of %i. We already know that the roots of this polynomial are purely real. How can we get
the exact roots into a form where it is �obvious� that the roots are real? The Maxima expert Alexey Beshenov
(via the Maxima mailing list) suggested using rectform, followed by trigsimp. Using rectform gets rid of the
factors of %i, and trigsimp does some trig simpli�cation.
(%i14) sx2 : rectform(sx1);
(%o14) [49*(3*sqrt(3)*sin(atan(432*3�-(3/2)*sqrt(16585)/(151*16))/3)/7

-3*cos(atan(432*3�-(3/2)*sqrt(16585)/(151*16))/3)/7)/36
+7*sqrt(3)*sin(atan(432*3�-(3/2)*sqrt(16585)/(151*16))/3)/12
+%i*(-7*sin(atan(432*3�-(3/2)*sqrt(16585)/(151*16))/3)/12
+49*(3*sin(atan(432*3�-(3/2)*sqrt(16585)/(151*16))/3)/7
+3*sqrt(3)*cos(atan(432*3�-(3/2)*sqrt(16585)/(151*16))/3)/7)/36

-7*sqrt(3)*cos(atan(432*3�-(3/2)*sqrt(16585)/(151*16))/3)/12)
-7*cos(atan(432*3�-(3/2)*sqrt(16585)/(151*16))/3)/12+17/6,
etc,etc]

(%i15) sx3 : trigsimp(sx2);
(%o15) [(7*sqrt(3)*sin(atan(9*sqrt(16585)/(151*sqrt(3)))/3)

-7*cos(atan(9*sqrt(16585)/(151*sqrt(3)))/3)+17)/6,
-(7*sqrt(3)*sin(atan(9*sqrt(16585)/(151*sqrt(3)))/3)
+7*cos(atan(9*sqrt(16585)/(151*sqrt(3)))/3)-17)/6,

(14*cos(atan(9*sqrt(16585)/(151*sqrt(3)))/3)+17)/6]

19

The quantity sx3 is a list of the �simpli�ed� exact roots of the cubic. Using �oat we ask for the numerical
values:

(%i16) sx4 : float(sx3);
(%o16) [2.6608754,0.904363,4.9347613]

We see that the numerical values agree, although the order of the roots is different. Next we enquire whether
or not the �exact roots�, when substituted back into the cubic, result in �exact zeroes�. Mapping the cubic onto
the list of roots doesn't automatically simplify to a list of three zeroes, as we would like, although applying
�oat suggests the analytic roots are correct. The combination
trigsimp(expand([fr(root1), fr(root2), fr(root3)])) still does not provide the alge-
braic and trig simpli�cation needed, but we �nally get [0.0, 0.0, 0.0] when applying �oat.

(%i17) float(map(fr, sx3));
(%o17) [-3.55271368E-15,1.88737914E-15,-1.42108547E-14]
(%i18) float(expand(map(fr, sx3)));
(%o18) [6.66133815E-16,-2.44249065E-15,0.0]
(%i19) float(trigsimp(expand(map(fr, sx3))));
(%o19) [0.0,0.0,0.0]

Let's next plot the three functions, using the expressions hx, kx, and rx (the difference).

-15

-10

-5

 0

 5

 10

 0 1 2 3 4 5

x

hx
kx

rx=hx - kx

Figure 2: Intersection Points are Zeroes of rx

Here is code you can use to make something close to the above plot.

(%i20) plot2d([hx,kx,rx],[x,0,5],
[style, [lines,2,1], [lines,2,2], [lines,2,0]],

[legend, "hx", "kx", "rx=hx - rx"],
[gnuplot_preamble, " set xzeroaxis lw 2 "])$

When you place the cursor over the places on the x axis where the expression rx is zero, you can read off the
coordinates in the lower left corner of the plot window. The x coordinate (the �rst) is the desired root.

20

4.2.3 Transcendental Equations and Roots: �nd root

A transcendental equation is an equation containing a transcendental function. Examples of such equations are
x = ex and x = sin(x). The logarithm and the exponential function are examples of transcendental functions.
We will include the trigonometric functions, i.e., sine, cosine, tangent, cotangent, secant, and cosecant in this
category of functions. (A function which is not transcendental is said to be algebraic. Examples of algebraic
functions are rational functions and the square root function.)

To �nd the roots of transcendental expressions, for example, we can �rst make a plot of the expression, and
then use �nd root knowing roughly where �nd root should start looking. The Maxima manual provides a lot
of details, beginning with:

Function: �nd root(expr, x, a, b)
Function: �nd root(f, a, b)
Option variable: �nd root error
Option variable: �nd root abs
Option variable: �nd root rel
Finds a root of the expression expr or the function f over the closed interval [a, b]. The expression
expr may be an equation, in which case find_root seeks a root of lhs(expr) - rhs(expr).
Given that Maxima can evaluate expr or f over [a, b] and that expr or f is continuous, find_root
is guaranteed to �nd the root, or one of the roots if there is more than one.

Let's �nd a root of the equation x = cos(x) . If we make a simple plot of the function x− cos(x), we see that
there is one root somewhere between x = 0 and x = 1.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1

 plot of x - cos(x)

Figure 3: Plot of x - cos(x)

We can use either an expression or function as the entry to the �rst slot of �nd root. I �nd that the most
common mistake I make with �nd root is to leave out the underline between ��nd� and �root�, in which case,
I simply get back the unevaluated ��ndroot(ex, x, 0, 1)�, since Maxima has no knowledge of ��ndroot� (unless
I create a homemade function with that name).

21

We can make a plot, �nd the root in a variety of ways using �nd root, and verify the accuracy of the root
as follows:

(%i1) fpprintprec:8$
(%i2) plot2d(x - cos(x), [x, 0, 1],

[style, [lines, 4, 1]],
[xlabel," plot of x - cos(x) "],

[gnuplot_preamble, "set nokey; set xzeroaxis lw 2 "])$
(%i3) find_root(x - cos(x),x, 0, 1);
(%o3) 0.739085
(%i4) ex : x - cos(x)$
(%i5) [find_root(ex, x, 0, 1),find_root(ex, 0, 1)];
(%o5) [0.739085, 0.739085]
(%i6) define(f(x), ex)$
(%i7) [find_root(f(x), x, 0, 1), find_root(f(x), 0, 1),

find_root(f, 0, 1), find_root(f, x, 0, 1)];
(%o7) [0.739085, 0.739085, 0.739085, 0.739085]
(%i8) ev(ex, x = first(%));
(%o8) 0.0

As a second example, we will �nd the roots of the function

f(x) = cos(x/π) e−(x/4)2 − sin(x3/2)− 5/4

Here is the plot of f(x).

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0 1 2 3 4 5

 plot of f(x)

Figure 4: Plot of f(x)

This plot shows roots near the points [x = 2.53, x = 2.97].

22

Here is our session making a plot and using �nd root:

(%i1) fpprintprec:8$
(%i2) f(x):= cos(x/%pi)*exp(-(x/4)�2) - sin(x�(3/2)) - 5/4$

(%i3) plot2d(f(x),[x,0,5],
[style, [lines,4,1]],
[xlabel," plot of f(x) "],[ylabel," "],

[gnuplot_preamble, "set nokey; set xzeroaxis lw 2 "])$
(%i4) [find_root(f,2.5,2.6), find_root(f, x, 2.5, 2.6),

find_root(f(x),x,2.5,2.6), find_root(f(y),y,2.5,2.6)];
(%o4) [2.5410501, 2.5410501, 2.5410501, 2.5410501]
(%i5) [x1 : find_root(f,2.5,2.6),x2 : find_root(f, 2.9, 3.0)];
(%o5) [2.5410501, 2.9746034]
(%i6) float(map(f, [x1,x2]));
(%o6) [3.33066907E-16, 2.77555756E-16]

We see that the numerical accuracy of �nd root using default behavior is the normal accuracy of Maxima
arithmetic.

4.2.4 �nd root: Quote that Function!
The Maxima function �nd root is an unusual function. The source code which governs the behavior of
�nd root has been purposely designed to allow uses like the following:

(%i1) fpprintprec:8$
(%i2) find_root(diff(cos(2*x)*sin(3*x)/(1+x�2),x), x, 0, 0.5);
(%o2) 0.321455

�nd root evaluates the derivative and parks the resulting expression in the code function �fr(x)�,say, to be used
to probe where the function changes sign, as the code executes a bisection search for a root in the range called
for. The code �rst checks that the sign of the function fr(x) has opposite signs at the end points of the given
range. Next the code makes small steps in one direction, checking at each step if a sign change has occurred.
As soon as a sign change has occurred, the code backs up one step, cuts the size of the step in half, say, and
starts stepping again, looking for that sign change again. This is a brute force method which will �nd that
root if there is one in the given interval. Of course the user can always evaluate the derivative and submit the
resulting expression to �nd root to �nd the same answer, as in:

(%i3) ex : trigsimp(diff(cos(2*x)*sin(3*x)/(1+x�2),x));
2

(%o3) - (((2 x + 2) sin(2 x) + 2 x cos(2 x)) sin(3 x)
2 4 2

+ (- 3 x - 3) cos(2 x) cos(3 x))/(x + 2 x + 1)
(%i4) plot2d([0.0,ex],[x,-3,3])$
(%i5) find_root(ex,x,0,0.5);
(%o5) 0.321455

23

If we assign the delayed derivative to an expression ex1, we can then use an argument ev(ex1,diff) to
�nd root as in:

(%i6) ex1 : 'diff(cos(2*x)*sin(3*x)/(1+x�2),x);
d cos(2 x) sin(3 x)

(%o6) -- (-----------------)
dx 2

x + 1
(%i7) find_root(ev(ex1,diff),x,0,0.5);
(%o7) 0.321455

If we assign the delayed derivative to a function g(x), and assign ev(g(x),diff) to another function k(x),
we can use �nd root as in:

(%i8) g(x) := 'diff(cos(2*x)*sin(3*x)/(1+x�2),x);
d cos(2 x) sin(3 x)

(%o8) g(x) := -- (-----------------)
dx 2

1 + x
(%i9) k(x) := ev(g(x),diff);
(%o9) k(x) := ev(g(x), diff)
(%i10) find_root(k(x),x,0,0.5);
(%o10) 0.321455

or just use the syntax:

(%i11) find_root(ev(g(x),diff),x,0,0.5);
(%o11) 0.321455

However, the following syntax which leaves out the variable name produces an error message:

(%i12) find_root(k, 0, 0.5);
Non-variable 2nd argument to diff:
0.0
#0: g(x=0.0)
#1: k(x=0.0)
-- an error. To debug this try debugmode(true);

In the above cases we want �nd root to use the default initial evaluation of the �rst slot argument before
going to work looking for the root.

The important thing to stress is that the �nd root source code, by default, is designed to evaluate the �rst
slot expression before beginning the checking of the sign of the resulting function (after evaluation) at the end
points and proceeding with the bisection search. If the user wants to use (for some reason) a function f(x) in
the �rst slot of �nd root and wishes to prevent the initial evaluation of the �rst slot expression, the user should
use the syntax '(f(x)) for the �rst slot entry, rather than f(x). However, the code is loosely written so
that most of the time you can get correct results without using the single quote syntax '(f(x)). All of the
following examples give the correct answer for this simple function.

(%i13) f(x) := x - cos(x)$
(%i14) [find_root(f, 0, 1), find_root('f, 0, 1),

find_root('(f), 0, 1), find_root(f(x), x, 0, 1),
find_root('(f(x)), 'x, 0, 1),find_root('(f(x)), x, 0, 1),
find_root('f(x), x, 0, 1)];

(%o14) [0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085]

24

However, one can arrive at specialized homemade functions which require the strict syntax (a quoted func-
tion entry in the �rst slot) to behave correctly. Suppose we need to �nd the numerical roots of a function de�ned
by an integral. The following is a toy model which uses such a function in a case where we know the answer
ahead of time. Instead of directly looking for the roots of the function f(x) = (x2 − 5), we look for the roots
of the function

∫ x√
5
2 y d y.

(%i1) fpprintprec : 8$
(%i2) ex : integrate(2*'y,'y,sqrt(5),x);

2
x 5

(%o2) 2 (-- - -)
2 2

(%i3) ex : expand(ex);
2

(%o3) x - 5
(%i4) define(f(x), ex);

2
(%o4) f(x) := x - 5
(%i5) solve(ex);
(%o5) [x = - sqrt(5), x = sqrt(5)]
(%i6) rr : float(map(rhs,%));
(%o6) [- 2.236068, 2.236068]
(%i7) map(f,rr);
(%o7) [8.8817842E-16, 8.8817842E-16]
(%i8) find_root(f,0,4);
(%o8) 2.236068

Let's concentrate on �nding the root 2.23606797749979 using the indirect route. De�ne a function g(x)
in terms of integrate:
(%i9) g(x) := block([numer,keepfloat,y],

numer:true,keepfloat:true,
integrate(2*y,y,sqrt(5),x))$

(%i10) map(g, [1,2,3]);
(%o10) [- 4.0, - 1.0, 4.0]
(%i11) map(f, [1,2,3]);
(%o11) [- 4, - 1, 4]
(%i12) [find_root(g, 1, 4), find_root(g(x),x,1,4),

find_root('(g(x)),'x,1,4), find_root('g(x),x,1,4)];
(%o12) [2.236068, 2.236068, 2.236068, 2.236068]

We see that we have no problems with getting the function g(x) to �work� with �nd root. However, if
we replace integrate with quad qags, we �nd problems. First let's show the numerical integration routine
quad qags at work by itself:
(%i13) quad_qags(2*'y,'y,sqrt(5),2);
(%o13) [- 1.0, 1.11076513E-14, 21, 0]
(%i14) g(2.0);
(%o14) - 1.0

The quad qags function returns a list of four items, the �rst being the numerical value of the integral, the second
being an estimate of the error of the answer calculated, the third being the number of function evaluations
required, and the last an error code. The returned error code 0 means no problems were encountered, and we
will write a function which ignores the error code returned, although in �real life� we would always want to
report an error code value which was not 0.

25

Here we de�ne h(x) which employs the function quad qags to carry out the numerical itegration.

(%i15) h(x) := block([numer,keepfloat,y,qlist],
numer:true,keepfloat:true,
qlist : quad_qags(2*y,y,sqrt(5),x),
qlist[1])$

(%i16) map(h,[1,2,3]);
(%o16) [- 4.0, - 1.0, 4.0]
(%i17) map(g,[1,2,3]);
(%o17) [- 4.0, - 1.0, 4.0]

The function h(x) does the same job as g(x), but uses quad qags instead of integrate. Now let's use h(x) in
the Maxima function �nd root.

(%i18) find_root(h(x),x,1,4);
function has same sign at endpoints
[f(1.0) = - 5.0, f(4.0) = - 5.0]
-- an error. To debug this try debugmode(true);

We see that the syntax find_root(h(x),x,1,4) produced an error due to the way �nd root evaluates
the �rst slot. Somehow �nd root assigned -5.0 to the internal function fr(x) used to look for the root, and in
the �rst steps of that root location, checking for a difference in sign of fr(x) and the range end points, found the
value -5.0 at both ends. In effect, the code was working on the problem find_root(-5.0, x, 1, 4).

The following methods succeed.

(%i19) [find_root(h, 1, 4),find_root('(h(x)),'x,1,4),
find_root('(h(x)),x,1,4),find_root('h(x),x,1,4)];

(%o19) [2.236068, 2.236068, 2.236068, 2.236068]

4.2.5 newton
The Maxima function newton can also be used for numerical solutions of a single equation. The Maxima
manual describes the syntax as:

Function: newton(expr, x, x_0, eps)
Returns an approximate solution of expr = 0 by Newton's method, considering expr to be a function of
one variable, x. The search begins with x = x_0 and proceeds until abs(expr) < eps (with expr
evaluated at the current value of x).
newton allows unde�ned variables to appear in expr, so long as the termination test abs(expr) < eps
evaluates to true or false. Thus it is not necessary that expr evaluate to a number.
load(newton1) loads this function.

The two examples in the manual are instructive:

(%i1) fpprintprec:8$
(%i2) load (newton1);
(%o2) C:/PROGRA�1/MAXIMA�3.0/share/maxima/5.14.0/share/numeric/newton1.mac
(%i3) newton (cos (u), u, 1, 1/100);
(%o3) 1.5706753
(%i4) ev (cos (u), u = %);
(%o4) 1.21049633E-4
(%i5) assume (a > 0);
(%o5) [a > 0]

26

(%i6) newton (x�2 - a�2, x, a/2, a�2/100);
(%o6) 1.0003049 a
(%i7) ev (x�2 - a�2, x = %);

2
(%o7) 6.09849048E-4 a

Of course both of these examples are found exactly by solve:

(%i8) solve(cos(x));
`solve' is using arc-trig functions to get a solution.
Some solutions will be lost.

%pi
(%o8) [x = ---]

2
(%i9) float(%);
(%o9) [x = 1.5707963]
(%i10) solve(x�2 - a�2,x);
(%o10) [x = - a, x = a]

I �nd the source code (Windows XP) in the folder
c:\Program Files\Maxima-5.14.0\share\maxima\5.14.0\share\numeric. Here is the
code in the �le newton1.mac:

newton(exp,var,x0,eps):=
block([xn,s,numer],
numer:true,
s:diff(exp,var),
xn:x0,
loop,
if abs(subst(xn,var,exp))<eps then return(xn),
xn:xn-subst(xn,var,exp)/subst(xn,var,s),

go(loop)
)$

We see that the code implements the Newton-Raphson algorithm. Given a function f(x) and an initial guess
xg which can be assigned to, say, xi, a closer approximation to the value of x for which f(x) = 0 is generated
by

xi+1 = xi − f(xi)

f ′(xi)
.

The method depends on being able to evaluate the derivative of f(x) which appears in the denominator.
Steven Koonin's (edited) comments (Computational Physics: Fortran Version, Steven E. Koonin and Dawn
Meredith, WestView Press, 1998, Ch. 1, Sec.3) are cautionary:

When the function f(x) is badly behaved near its root (e.g., there is an in�ection point near the root) or when
there are several roots, the �automatic� Newton-Raphson method can fail to converge at all or converge to
the wrong answer if the initial guess for the root is poor.

27

4.3 Two or More Equations: Symbolic and Numerical Solutions
For sets of equations, we can use solve with the syntax:

Function: solve([eqn_1, ..., eqn_n], [x_1, ..., x_n])
solve ([eqn_1, ..., eqn_n], [x_1, ..., x_n]) solves a system of simultaneous (linear
or non-linear) polynomial equations by calling linsolve or algsys and returns a list of the solution
lists in the variables. In the case of linsolve this list would contain a single list of solutions. This form
of solve takes two lists as arguments. The �rst list represents the equations to be solved; the second list
is a list of the unknowns to be determined. If the total number of variables in the equations is equal to the
number of equations, the second argument-list may be omitted.

4.3.1 Numerical or Symbolic Linear Equations with solve or linsolve

The Maxima functions solve, linsolve, and linsolve by lu can be used for linear equations.

Linear equations containing symbolic coef�cients can be �solved� by solve and linsolve. For example the
pair of equations

ax + by = c, dx + ey = f

. Here we solve for the values of (x,y) which simultaneously satisfy these two equations and check the
solutions.

(%i1) eqns : [a*x + b*y = c, d*x + e*y = f];
(%o1) [b y + a x = c, e y + d x = f]
(%i2) solve(eqns,[x,y]);

c e - b f c d - a f
(%o2) [[x = - ---------, y = ---------]]

b d - a e b d - a e
(%i3) soln : linsolve(eqns,[x,y]);

c e - b f c d - a f
(%o3) [x = - ---------, y = ---------]

b d - a e b d - a e
(%i4) (ev(eqns, soln), ratexpand(%%));
(%o4) [c = c, f = f]

Note the presence of the determinant of the �coef�cient matrix� in the denominator of the solutions.

A simple numerical (rather than symbolic) two equation example:

(%i1) eqns : [3*x-y=4,x+y=2];
(%o1) [3 x - y = 4, y + x = 2]
(%i2) solns : solve(eqns,[x,y]);

3 1
(%o2) [[x = -, y = -]]

2 2
(%i3) soln : solns[1];

3 1
(%o3) [x = -, y = -]

2 2
(%i4) for i thru 2 do disp(ev(eqns[i],soln))$

4 = 4
2 = 2

28

Using linsolve instead returns a list, rather than a list of a list.

(%i5) linsolve(eqns,[x,y]);
3 1

(%o5) [x = -, y = -]
2 2

4.3.2 Matrix Methods for Linear Equation Sets: linsolve by lu

The present version (5.14) of the Maxima manual does not have an index entry for the function linsolve by lu.
These notes include only the simplest of many interesting examples described in two mailing list responses by
the creator of the linear algebra package, Barton Willis (Dept. of Mathematics, Univ. Nebraska at Kearney),
dated Oct. 27, 2007 and Nov. 21, 2007.

If we re-cast the two equation problem we have just been solving in the form of a matrix equation
A . xcol = bcol, we need to construct the square matrix A so that matrix multiplication by the column
vector xcol results in a column vector whose rows contain the left hand sides of the equations. The column
vector bcol rows hold the right hand sides of the equations. Our notation below (as xycol and xylist)
is only natural for a two equation problem (ie., a 2 x 2 matrix): you can invent your own notation to suit your
problem.

If the argument of the function matrix is a simple list, the result is a row vector (a special case of a matrix
object). We can then take the transpose of the row matrix to obtain a column matrix, such as xcol below.
A direct de�nition of a two element column matrix is matrix([x],[y]), which is probably faster than
transpose(matrix([x,y])). To reduce the amount of space taken up by the default matrix output, we
can set display2d:false.

(%i6) m : matrix([3,-1],[1,1]);
[3 - 1]

(%o6) []
[1 1]

(%i7) display2d:false$
(%i8) m;
(%o8) matrix([3,-1],[1,1])
(%i9) xcol : matrix([x],[y]);
(%o9) matrix([x],[y])
(%i10) m . xcol;
(%o10) matrix([3*x-y],[y+x])

The period allows non-commutative multiplication of matrices. The linear algebra package function lin-
solve by lu allows us to specify the column vector bcol as a simple list:

(%i11) b : [4,2];
(%o11) [4,2]
(%i12) linsolve_by_lu(m,b);
(%o12) [matrix([3/2],[1/2]),false]
(%i13) xycol : first(%);
(%o13) matrix([3/2],[1/2])
(%i14) m . xycol - b;
(%o14) matrix([0],[0])
(%i15) xylist : makelist(xycol[i,1],i,1,length(xycol));
(%o15) [3/2,1/2]
(%i16) xyrules : map("=",[x,y],xylist);
(%o16) [x = 3/2,y = 1/2]

29

The matrix argument needs to be a square matrix. The output of linsolve by lu is a list: the �rst element is the
solution column vector which for this two dimensional problem we have called xycol.

We check the solution in input %i14. The output %o14 is a column vector each of whose elements is zero;
such a column vector is ordinarily replaced by the number 0.

One should always check solutions when using computer algebra software, since the are occasional bugs in
the algorithms used. The second list element returned by linsolve by lu is false, which should always be the
value returned when the calculation uses non-�oating point numbers as we have here. If �oating point numbers
are used, the second element should be either false or a lower bound to the �matrix condition number�. (We
show an example later.) We have shown how to convert the returned xycol matrix object into an ordinary list,
and how to then construct a list of replacement rules (as would be returned by linsolve) which could then be
used for other purposes. The use of makelist is the recommended way to use parts of matrix objects in lists.
However, here is a simple method which avoids makelist:
(%i17) flatten(args(xycol));
(%o17) [3/2,1/2]

but makelist should normally be the weapon of choice, since the method is foolproof and can be extended to
many exotic ways of using the various elements of a matrix.

The Maxima function linsolve by lu allows the second argument to be either a list (as in the example
above) or a column matrix, as we show here.
(%i18) bcol : matrix([4],[2])$
(%i19) linsolve_by_lu(m,bcol);
(%o19) [matrix([3/2],[1/2]),false]
(%i20) m . first(%) - bcol;
(%o20) matrix([0],[0])

4.3.3 Symbolic Linear Equation Solutions: Matrix Methods

Here we use linsolve by lu for the pair of equations
ax + by = c, dx + ey = f,

seeking the values of (x,y) which simultaneously satisfy these two equations and checking the solutions.
(%i1) display2d:false$
(%i2) m : matrix([a,b], [d,e])$
(%i3) bcol : matrix([c], [f])$
(%i4) ls : linsolve_by_lu(m,bcol);
(%o4) [matrix([(c-b*(f-c*d/a)/(e-b*d/a))/a],[(f-c*d/a)/(e-b*d/a)]),false]
(%i5) xycol : ratsimp(first(ls));
(%o5) matrix([-(b*f-c*e)/(a*e-b*d)],[(a*f-c*d)/(a*e-b*d)])
(%i6) (m . xycol - bcol, ratsimp(%%));
(%o6) matrix([0],[0])
(%i7) (display2d:true,xycol);

[b f - c e]
[- ---------]
[a e - b d]

(%o7) []
[a f - c d]
[---------]
[a e - b d]

(%i8) determinant(m);
(%o8) a e - b d

30

We see the value of the determinant of the �coef�cient matrix� m in the denominator of the solution.

4.3.4 Multiple Solutions from Multiple Right Hand Sides
Next we show how one can solve for multiple solutions (with one call to linsolve by lu) corresponding to a
number of different �right hand sides�. We will turn back on the default matrix display, and re-de�ne the �rst
(right hand side) column vector as b1col, and the corresponding solution x1col.

(%i21) display2d:true$
(%i22) b1col : matrix([4], [2]);

[4]
(%o22) []

[2]
(%i23) x1col : first(linsolve_by_lu(m,b1col));

[3]
[-]
[2]

(%o23) []
[1]
[-]
[2]

(%i24) b2col : matrix([3], [1]);
[3]

(%o24) []
[1]

(%i25) x2col : first(linsolve_by_lu(m, b2col));
[1]

(%o25) []
[0]

(%i26) bmat : matrix([4,3], [2,1]);
[4 3]

(%o26) []
[2 1]

(%i27) linsolve_by_lu(m, bmat);
[3]
[- 1]
[2]

(%o27) [[], false]
[1]
[- 0]
[2]

(%i28) xsolns : first(%);
[3]
[- 1]
[2]

(%o28) []
[1]
[- 0]
[2]

31

(%i29) m . xsolns - bmat;
[0 0]

(%o29) []
[0 0]

(%i30) x1col : col(xsolns,1);
[3]
[-]
[2]

(%o30) []
[1]
[-]
[2]

(%i31) x2col : col(xsolns,2);
[1]

(%o31) []
[0]

In input %i26 we de�ne the 2 x 2 matrix bmat whose �rst column is b1col and whose second column
is b2col. Using bmat as the second argument to linsolve by lu results in a return list whose �rst element
(what we call xsolns) is a 2 x 2 matrix whose �rst column is x1col (the solution vector corresponding
to b1col) and whose second column is x2col (the solution vector corresonding to b2col). In input %i29
we check both solutions simultaneously. The result is a matrix with every element equal to zero, which would
ordinarily be replaced by the number 0. In input %i30 we extract x1col using the col function.

4.3.5 Three Linear Equation Example
We next consider a simple three linear equation example. Although solve does not require the list [x,y,z]
in this problem, if you leave it out, the solution list returned will be in an order determined by the peculiarities
of the code, rather than by you. By including the variable list as [x,y,z], you are forcing the output list to
be in the same order.

(%i1) eqns : [2*x - 3*y + 4*z = 2, 3*x - 2*y + z = 0,
x + y - z = 1]$

(%i2) display2d:false$
(%i3) solns : solve(eqns,[x,y,z]);
(%o3) [[x = 7/10,y = 9/5,z = 3/2]]
(%i4) soln : solns[1];
(%o4) [x = 7/10,y = 9/5,z = 3/2]
(%i5) for i thru 3 do disp(ev(eqns[i],soln))$
2 = 2
0 = 0
1 = 1

The Maxima function linsolve has the same syntax as solve (for a set of equations) but you cannot leave out
the list of unknowns.

(%i6) linsolve(eqns,[x,y,z]);
(%o6) [x = 7/10,y = 9/5,z = 3/2]

Notice that linsolve returns a list, while solve returns a list of lists.

32

Next we use linsolve by lu on this three equation problem. Using the laws of matrix multiplication, we
�reverse engineer� the 3× 3 matrix m and the three element column vector bcol which provide an equivalent
problem in matrix form.

(%i7) m : matrix([2,-3,4],[3,-2,1],[1,1,-1])$
(%i8) xcol : matrix([x],[y],[z])$
(%i9) m . xcol;
(%o9) matrix([4*z-3*y+2*x],[z-2*y+3*x],[-z+y+x])
(%i10) bcol : matrix([2],[0],[1])$
(%i11) linsolve_by_lu(m,bcol);
(%o11) [matrix([7/10],[9/5],[3/2]),false]
(%i12) xyzcol : first(%);
(%o12) matrix([7/10],[9/5],[3/2])
(%i13) m . xyzcol - bcol;
(%o13) matrix([0],[0],[0])
(%i14) xyzlist : makelist(xyzcol[i,1],i,1,length(xyzcol));
(%o14) [7/10,9/5,3/2]
(%i15) xyzrules : map("=",[x,y,z],xyzlist);
(%o15) [x = 7/10,y = 9/5,z = 3/2]

Both linsolve and solve can handle an �equation list� which is actually an �expression list� in which it is
understood that the required equations are generated by setting each expression to zero.

(%i16) exs : [2*x - 3*y + 4*z - 2, 3*x - 2*y + z ,
x + y - z - 1];

(%o16) [4 z - 3 y + 2 x - 2, z - 2 y + 3 x, - z + y + x - 1]
(%i17) linsolve(exs,[x,y,z]);

7 9 3
(%o17) [x = --, y = -, z = -]

10 5 2
(%i18) solve(exs);

3 9 7
(%o18) [[z = -, y = -, x = --]]

2 5 10

The Maxima manual presents a linear equation example in which there is an unde�ned parameter �a�.

(%i1) eqns : [x + z = y,2*a*x - y = 2*a�2,y - 2*z = 2]$
(%i2) solns : linsolve(eqns,[x,y,z]);
(%o2) [x = a + 1, y = 2 a, z = a - 1]
(%i3) solve(eqns,[x,y,z]);
(%o3) [[x = a + 1, y = 2 a, z = a - 1]]
(%i4) for i thru 3 do (

e: expand(ev(eqns[i],solns)),disp(lhs(e) - rhs(e)))$
0
0
0

(%i5) e;
(%o5) 2 = 2
(%i6) [kill(e),e];
(%o6) [done, e]

The code in input %i4 binds an equation to the symbol e which can be removed with kill.

33

We can avoid introducing a global binding to a symbol by using %%, which allows use of the previous result
inside a piece of code.

(%i7) for i thru 3 do (
expand(ev(eqns[i],solns)),disp(lhs(%%) - rhs(%%)))$

0
0
0

Note the syntax used here: do (job1, job2) .
Let's try out linsolve by lu on this three linear (in the unknowns (x,y,z)) equation problem which

involves the unbound parameter a.

(%i8) display2d:false$
(%i9) m : matrix([1,-1,1],[2*a,-1,0],[0,1,-2])$
(%i10) xcol : matrix([x],[y],[z])$
(%i11) m . xcol;
(%o11) matrix([z-y+x],[2*a*x-y],[y-2*z])
(%i12) bcol : matrix([0],[2*a�2], [2])$
(%i13) soln : linsolve_by_lu(m,bcol)$
(%i14) xyzcol : (first(soln), ratsimp(%%));
(%o14) matrix([a+1],[2*a],[a-1])
(%i15) ratsimp(m . xyzcol - bcol);
(%o15) matrix([0],[0],[0])

In input %i15 we check the solution, and the result is a three element column vector, all of whose elements are
zero. Such a column matrix is ordinarily replaced by the number 0.

4.3.6 Surpressing rat Messages: ratprint
If we start with two linear equations with decimal coef�cients, solve (and the other methods) converts the deci-
mals to ratios of integers, and tries to �nd an exact solution. You can avoid seeing all the rational replacements
done by setting the option variable ratprint to false. Despite the assertion, in the manual section on rat, that

keepfloat if true prevents �oating point numbers from being converted to rational numbers.

setting keep�oat to true here does not stop solve from converting decimal numbers to ratios of integers.

(%i1) [keepfloat,ratprint];
(%o1) [false, true]
(%i2) display2d:false$
(%i3) fpprintprec:8$
(%i4) eqns : [0.2*x + 0.3*y = 3.3,0.1*x - 0.8*y = 6.6]$
(%i5) solns : solve(eqns, [x,y]);
`rat' replaced -3.3 by -33/10 = -3.3
`rat' replaced 0.2 by 1/5 = 0.2
`rat' replaced 0.3 by 3/10 = 0.3
`rat' replaced -6.6 by -33/5 = -6.6
`rat' replaced 0.1 by 1/10 = 0.1
`rat' replaced -0.8 by -4/5 = -0.8
(%o5) [[x = 462/19,y = -99/19]]
(%i6) linsolve(eqns,[x,y]);
`rat' replaced -3.3 by -33/10 = -3.3

34

`rat' replaced 0.2 by 1/5 = 0.2
`rat' replaced 0.3 by 3/10 = 0.3
`rat' replaced -6.6 by -33/5 = -6.6
`rat' replaced 0.1 by 1/10 = 0.1
`rat' replaced -0.8 by -4/5 = -0.8
(%o6) [x = 462/19,y = -99/19]
(%i7) m : matrix([0.2,0.3],[0.1,-0.8])$
(%i8) bcol : matrix([3.3], [6.6])$
(%i9) linsolve_by_lu(m,bcol);
`rat' replaced 0.2 by 1/5 = 0.2
`rat' replaced 0.2 by 1/5 = 0.2
`rat' replaced 0.2 by 1/5 = 0.2
`rat' replaced 0.95 by 19/20 = 0.95
(%o9) [matrix([24.315789],[-5.2105263]),false]
(%i10) ratprint:false$
(%i11) solns : solve(eqns, [x,y]);
(%o11) [[x = 462/19,y = -99/19]]
(%i12) linsolve(eqns,[x,y]);
(%o12) [x = 462/19,y = -99/19]
(%i13) linsolve_by_lu(m,bcol);
(%o13) [matrix([24.315789],[-5.2105263]),false]
(%i14) float(solns);
(%o14) [[x = 24.315789,y = -5.2105263]]

Matrix methods for sets of linear equations can be solved using IEEE double �oats (as well as �big �oats�) by
including an optional �method� speci�cation 'floatfield after the input column vector (or matrix of input
column vectors).

(%i15) linsolve_by_lu(m,bcol, 'floatfield);
(%o15) [matrix([24.315789],[-5.2105263]),8.8815789]

In this example the lower bound of the matrix condition number appears as the second element of the returned
list.

4.3.7 Non-Linear Polynomial Equations
Here is an example of using solve to �nd a pair of exact solutions of a pair of equations, one equation being
linear, the other quadratic. The pair of solutions represent the two intersections of the unit circle with the line
y = −x/3.

(%i1) fpprintprec:8$
(%i2) eqns : [x�2 + y�2 = 1, x + 3*y = 0]$
(%i3) solns : solve(eqns,[x,y]);

3 1
(%o3) [[x = - --------, y = ---------------],

sqrt(10) sqrt(2) sqrt(5)
3 1

[x = --------, y = - ---------------]]
sqrt(10) sqrt(2) sqrt(5)

35

(%i4) solns : rootscontract(solns);
3 1 3 1

(%o4) [[x = - --------, y = --------], [x = --------, y = - --------]]
sqrt(10) sqrt(10) sqrt(10) sqrt(10)

(%i5) for i thru 2 do for j thru 2 do (
ev(eqns[i],solns[j]), disp(lhs(%%)-rhs(%%)))$

0
0
0
0

(%i6) float(solns);
(%o6) [[x = - 0.948683, y = 0.316228], [x = 0.948683, y = - 0.316228]]

The pair of solutions re�ect the symmetry of the given set of equations, which remain invariant under the
transformation x → −y, y → −x.

A set of two nonlinear polynomial equations with four solutions generated by solve is one of the examples
in the Maxima manual. One of the solutions is exact, one is a real inexact solution, and the other two solutions
are inexact complex solutions.

(%i1) fpprintprec:8$
(%i2) eqns : [4*x�2 - y�2 = 12, x*y - x = 2]$
(%i3) solns : solve(eqns, [x,y]);
(%o3) [[x = 2, y = 2], [x = 0.520259 %i - 0.133124,
y = 0.0767838 - 3.6080032 %i], [x = - 0.520259 %i - 0.133124,
y = 3.6080032 %i + 0.0767838], [x = - 1.7337518, y = - 0.153568]]
(%i4) for i thru 2 do for j thru length(solns) do (

expand(ev(eqns[i],solns[j])),
abs(lhs(%%) - rhs(%%)), disp(%%))$

0
2.36036653E-15
2.36036653E-15
1.13954405E-6

0
0.0
0.0

9.38499825E-8

To get real numbers from the complex solutions, we used the abs function, which calculates the absolute value
of a complex number. Note the syntax used to check the solutions: do (job1, job2, job3).

36

4.3.8 General Sets of Nonlinear Equations: eliminate, mnewton

Solving systems of nonlinear equations is much more dif�cult than solving one nonlinear equation. A wider
variety of behavior is possible: determining the existence and number of solutions or even a good starting
guess is more complicated. There is no method which can guarantee convergence to the desired solution. The
computing labor increases rapidly with the number of dimensions of the problem.

4.3.9 Intersections of Two Circles: implicit plot
Given two circles, we seek the intersections points. We �rst write down the de�ning equations of the two
circles, and look visually for points (x,y) which simultaneously lie on each circle. We use implicit plot for
this visual search.
(%i1) [eq1 : x�2 + y�2 = 1,eq2 : (x-2)�2 + (y-2)�2 = 4]$
(%i2) eqns : [eq1,eq2]$
(%i3) load(implicit_plot);
(%o3)

C:/PROGRA�1/MAXIMA�3.0/share/maxima/5.14.0/share/contrib/implicit_plot.lisp
(%i4) implicit_plot(eqns,[x,-6,6],[y,-6,6],[nticks,200],

[gnuplot_preamble, "set zeroaxis"])$

We are not taking enough care with the x and y ranges to make the �circles� circular, but we can use the cursor
to read off approximate intersections points: (x,y) = (0.26,0.98), (0.96,0.30). However, the
de�ning equations are invariant under the symmetry transformation x ↔ y, so the solution pairs must also
respect this symmetry. We next eliminate y between the two equations and use solve to �nd accurate values for
the x's. Since we know that both solutions have positive values for y, we enforce this condition on equation 1.
(%i5) solve(eq1,y);

2 2
(%o5) [y = - sqrt(1 - x), y = sqrt(1 - x)]
(%i6) ysoln : second(%);

2
(%o6) y = sqrt(1 - x)
(%i7) eliminate(eqns,[y]);

2
(%o7) [32 x - 40 x + 9]
(%i8) xex : solve(first(%));

sqrt(7) - 5 sqrt(7) + 5
(%o8) [x = - -----------, x = -----------]

8 8
(%i9) (fpprintprec:8, xex : float(xex));
(%o9) [x = 0.294281, x = 0.955719]
(%i10) [x1soln : first(xex), x2soln : second(xex)]$
(%i11) [ev(%o7,x1soln), ev(%o7,x2soln)];
(%o11) [[- 4.4408921E-16], [0.0]]
(%i12) y1soln : ev(ysoln,x1soln);
(%o12) y = 0.955719
(%i13) y2soln : ev(ysoln,x2soln);
(%o13) y = 0.294281
(%i14) [soln1:[x1soln,y1soln],soln2:[x2soln,y2soln]]$
(%i15) [ev(eqns,soln1), ev(eqns,soln2)];
(%o15) [[1.0 = 1, 4.0 = 4], [1.0 = 1, 4.0 = 4]]
(%i16) [soln1,soln2];
(%o16) [[x = 0.294281, y = 0.955719], [x = 0.955719, y = 0.294281]]

37

We have solutions (%o16) which respect the symmetry of the equations. The solutions have been numerically
checked in input %i15.

-2

-1

 0

 1

 2

 3

 4

-3 -2 -1 0 1 2 3 4 5 6

Intersections of Two Circles

Figure 5: two circles

4.3.10 Using Draw for Implicit Plots
The �gure above was created using the draw package with the following code in a separate work �le �implic-
itplot1.mac�. The code the the �le is

/* file implicitplot1.mac */
/* need load(implicit_plot); to use this code */
disp(" doplot() ")$

doplot() := block([x,y, eq1, eq2, y1:-2, y2:4,r, x1 ,x2],
r : 1.56,
x1 : r*y1,
x2 : r*y2,
eq1 : x�2 + y�2 = 1,

eq2 : (x-2)�2 + (y-2)�2 = 4,
draw2d(

grid = true,
line_type = solid,
line_width = 3,
color = blue,
implicit(eq1, x, x1,x2, y, y1,y2),
color = red,
implicit(eq2, x, x1,x2, y, y1,y2),
color = black,
point_type = filled_circle,
point_size = 2,

38

points([[0.294281,0.955719], [0.955719, 0.294281]]),
title = "Intersections of Two Circles" ,
terminal = 'eps ,

file_name = "c:/work2/mycircle2")
)$

Here is record of use:

(%i1) load(draw);
(%o1) C:/PROGRA�1/MAXIMA�3.0/share/maxima/5.14.0/share/draw/draw.lisp
(%i2) load(implicitplot1);

doplot()

(%o2) c:/work2/implicitplot1.mac
(%i3) doplot();
(%o3) [gr2d(implicit, implicit, points)]

Note that no actual plot was drawn on the screen, since an �eps� �le was created �mycircle2.eps� in my
work folder c:\work2 for use in my latex �le. To use this code to get a �gure on your screen, you would
remove the last two lines: terminal = 'eps , file_name = "c:/work2/mycircle2" and,
very important!, also remove the comma at the end of �two circles�.

4.3.11 Another Example
We next work through Example 6.5.1 (page 149), in �Numerical Methods for Unconstrained Optimization and
Nonlinear Equations� by J. E. Dennis, Jr. and Robert B. Schnabel (Prentice-Hall, 1983).

(%i1) eq1 : x�2 + y�2 = 2;
2 2

(%o1) y + x = 2
(%i2) eq2 : exp(x - 1) + y�3 = 2;

3 x - 1
(%o2) y + %e = 2

We will concentrate on the solution (x,y) = (1,1). We can eliminate y and plot the resulting function of
x to visually locate the x solutions.

(%i3) eliminate([eq1,eq2],[y]);
2 x x + 1 2 6 2 4 2 2 2

(%o3) [%e - 4 %e + %e x - 6 %e x + 12 %e x - 4 %e]
(%i4) ex : first(%);

2 x x + 1 2 6 2 4 2 2 2
(%o4) %e - 4 %e + %e x - 6 %e x + 12 %e x - 4 %e
(%i5) plot2d([0.0,ex],[x,-5,5])$
(%i6) plot2d([0.0,ex],[x,0,2])$
(%i7) x1 : find_root(ex,x,0.5,1.5);
(%o7) 1.0
(%i8) yeqn : ev(eq1,x = x1);

2
(%o8) y + 1.0 = 2
(%i9) solve(yeqn);
`rat' replaced -1.0 by -1/1 = -1.0
(%o9) [y = - 1, y = 1]

39

(%i10) ysol : second(%);
(%o10) y = 1
(%i11) soln1 : [x = x1, ysol];
(%o11) [x = 1.0, y = 1]
(%i12) ev(eq1,soln1);
(%o12) 2.0 = 2
(%i13) ev(eq2,soln1);
(%o13) 2.0 = 2

One solution is then %o11 and the solution has been checked.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-3 -2 -1 0 1 2 3

Y

X

dennis and schnabel example

Figure 6: Dennis and Schnabel Example

Let's try mnewton on this problem. Wikipedia, under �Newton's Method�, has the introduction:

In numerical analysis, Newton's method (also known as the Newton Raphson method or the Newton Fourier
method) is perhaps the best known method for �nding successively better approximations to the zeros (or
roots) of a real valued function. Newton's method can often converge remarkably quickly, especially if
the iteration begins �suf�ciently near� the desired root. Just how near �suf�ciently near� needs to be and
just how quickly �remarkably quickly� can be depends on the problem, as is discussed in detail below.
Unfortunately, far from the desired root, Newton's method can easily lead an unwary user astray, and astray
with little warning. Such users are advised to heed the advice of Press, et. al. (1992), who suggest embedding
Newton's method in a routine that also detects possible convergence failures.
Newton's method can also be used to �nd a minimum or maximum of such a function, by �nding a zero in
the function's �rst derivative, see Newton's method as an optimization algorithm.
The algorithm is �rst in the class of Householder's methods, succeeded by Halley's method.

The Maxima manual entry for mnewton begins:
Function: mnewton(FuncList,VarList,GuessList)
Multiple nonlinear functions solution using the Newton method. FuncList is the list of functions to solve,
VarList is the list of variable names, and GuessList is the list of initial approximations.
The solution is returned in the same format that solve() returns. If the solution isn't found, [] is returned.
This function is controlled by global variables newtonepsilon and newtonmaxiter.

40

Here are the Maxima manual examples of mnewton:

(%i1) load(mnewton);
(%o1) C:/PROGRA�1/MAXIMA�3.0/share/maxima/5.14.0/share/contrib/mnewton.mac
(%i2) mnewton([2*a�a-5],[a],[1]);

(%o2) [[a = 1.70927556786144]]
(%i3) mnewton([2*3�u-v/u-5, u+2�v-4], [u, v], [2, 2]);
(%o3) [[u = 1.066618389595407, v = 1.552564766841786]]
(%i4) mnewton([x1+3*log(x1)-x2�2, 2*x1�2-x1*x2-5*x1+1],

[x1, x2], [5, 5]);
(%o4) [[x1 = 3.756834008012769, x2 = 2.779849592817898]]

In the above examples, mnewton is presented with a list of expressions. Here we use mnewton on the
Dennis and Schnabel problem we solved earlier using eliminate and �nd root. We rewrite the equations as
expressions here.

(%i1) fpprintprec:8$
(%i2) load(mnewton);
(%o2) C:/PROGRA�1/MAXIMA�3.0/share/maxima/5.14.0/share/contrib/mnewton.mac
(%i3) exs : [x�2 + y�2 -2, exp(x-1)+y�3-2]$
(%i4) mn(x0,y0) := mnewton(exs,[x,y],[x0,y0])$
(%i5) mn(1.1,0.9);
(%o5) [[x = 1.0, y = 1.0]]
(%i6) mn(1.2,0.8);
(%o6) [[x = 1.0, y = 1.0]]
(%i7) mn(1.3,0.7);
(%o7) [[x = 1.0, y = 1.0]]
(%i8) mn(1.4,0.6);
(%o8) [[x = 1.0, y = 1.0]]
(%i9) mn(1.5,0.5);
(%o9) [[x = - 0.713747, y = 1.2208868]]
(%i10) mn(1.5,0.6);
(%o10) [[x = 1.0, y = 1.0]]
(%i11) mn(1.7,0.6);
(%o11) [[x = 1.0, y = 1.0]]
(%i12) mn(1.9,0.6);
(%o12) [[x = - 0.713747, y = 1.2208868]]
(%i13) mn(1.9,0.7);
(%o13) [[x = 1.0, y = 1.0]]
(%i14) mn(2,0.7);
(%o14) [[x = 1.0, y = 1.0]]
(%i15) mn(0.8,1.1);
(%o15) [[x = 1.0, y = 1.0]]
(%i16) mn(0.5,1.2);
(%o16) [[x = 1.0, y = 1.0]]
(%i17) mn(0.1,1.2);
(%o17) [[x = - 0.713747, y = 1.2208868]]

We have to be �close enough� to �nd the (1,1) root with mnewton. Note that Maxima's function mnewton
can't �nd the desired root starting with (x0,y0) = (2,0.5) as the textbook example does with eventual
success.

41

4.3.12 Error Messages and Do It Yourself Mnewton
Let's explore the Newton Raphson method using an easy example which solve has no trouble with. As a by-
product, we show that mnewton can deal with a list of equations, rather than a list of expressions. After getting
an error message from Maxima's mnewton, we work this same problem �by hand�, using matrix methods. A
good reference is Chapter 5, Nonlinear Equations, of the text �Scienti�c Computing: An Introductory Survey�
(2nd ed.), by Michael T. Heath. (see webpage:
http://www.cse.uiuc.edu/heath/scicomp/pubdata/index.html)

(%i18) eqns : [x+y=3,x�2+y�2=9]$
(%i19) mn(x0,y0) := mnewton(eqns,[x,y],[x0,y0])$
(%i20) solve(eqns,[x,y]);
(%o20) [[x = 3, y = 0], [x = 0, y = 3]]
(%i21) mn(1,2);
(%o21) [[x = 6.37714165E-17, y = 3.0]]
(%i22) mn(-1,4);
(%o22) [[x = 6.37714165E-17, y = 3.0]]
(%i23) mn(-2,5);
(%o23) [[x = 1.13978659E-16, y = 3.0]]
(%i24) mn(0,0);
Maxima encountered a Lisp error:

Error in FUNCALL [or a callee]: Zero divisor.

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.
(%i25) mn(0,1);
(%o25) [[x = 1.13978659E-16, y = 3.0]]
(%i26) mn(2,0);
(%o26) [[x = 3.0, y = 1.41267055E-16]]

The �zero divisor� message from the Maxima code for mnewton probably means that the starting point
(x,y) = (0,0) resulted in an attempted division by 0. To explore what kind of problems can arise, we
implement a naive (ie., a strategy-less) iteration algorithm as presented in Heath's text. We present the al-
gorithm �rst in terms of a 2 × 2 matrix and a two element column vector which are functions of the scalars
(x,y). We then convert the algorithm to a form which works with two element column vectors v and b.
We let the column vector b hold the elements x and y and we seek b such that the equation f(b) = 0,
where f is a column vector which de�nes the problem. If b is an approximate solution of this equation, then
bbetter = b + s, where s is the solution of the matrix equation j(b) . s = -f(b), and the 2 × 2 matrix
j(b) is the jacobian matrix: j[1,1] : diff(f[1,1],x), j[1,2] : diff(f[1,1],y),
and j[2,1] : diff(f[2,1],x), j[2,2] : diff(f[2,1],y).

(%i1) (fpprintprec:8,ratprint:false)$
(%i2) g : matrix([x + y -3],[x�2 + y�2 -9]);

[y + x - 3]
(%o2) []

[2 2]
[y + x - 9]

42

(%i3) gv : ev(g, x=v[1,1], y=v[2,1]);
[v + v - 3]
[2, 1 1, 1]

(%o3) []
[2 2]
[v + v - 9]
[2, 1 1, 1]

(%i4) define(f(v), gv);
[v + v - 3]
[2, 1 1, 1]

(%o4) f(v) := []
[2 2]
[v + v - 9]
[2, 1 1, 1]

(%i5) b : matrix([1],[2]);
[1]

(%o5) []
[2]

(%i6) f(b);
[0]

(%o6) []
[- 4]

(%i7) (r1 : g[1,1], r2 : g[2,1])$
(%i8) h : matrix([diff(r1,x), diff(r1,y)],

[diff(r2,x), diff(r2,y)]);
[1 1]

(%o8) []
[2 x 2 y]

(%i9) hv : ev(h, x=v[1,1], y=v[2,1]);
[1 1]

(%o9) []
[2 v 2 v]
[1, 1 2, 1]

(%i10) define(j(v), hv);
[1 1]

(%o10) j(v) := []
[2 v 2 v]
[1, 1 2, 1]

(%i11) j(b);
[1 1]

(%o11) []
[2 4]

(%i12) ls : linsolve_by_lu(j(b),-f(b));
[- 2]

(%o12) [[], false]
[2]

(%i13) s : first(ls) ;
[- 2]

(%o13) []
[2]

43

(%i14) b : b + s;
[- 1]

(%o14) []
[4]

(%i15) b : b + first(linsolve_by_lu(j(b),-f(b)));
[1]
[- -]
[5]

(%o15) []
[16]
[--]
[5]

(%i16) b : b + first(linsolve_by_lu(j(b),-f(b)));
[1]
[- --]
[85]

(%o16) []
[256]
[---]
[85]

(%i17) b : b + first(linsolve_by_lu(j(b),-f(b)));
[1]
[- -----]
[21845]

(%o17) []
[65536]
[-----]
[21845]

(%i18) b : b + float(first(linsolve_by_lu(j(b),-f(b))));
[- 6.98491931E-10]

(%o18) []
[3.0]

(%i19) f(b);
[0.0]

(%o19) []
[4.19095159E-9]

Starting with the guess (x0,y0) = (1,2), this iteration process has converged to the approximate solu-
tion given by %o18, which we check as an approximate solution in input %i19. Now let's start with the
�dangerous� guess: (x0,y0) = (0,0).
(%i20) b : matrix([0], [0]);

[0]
(%o20) []

[0]
(%i21) f(b);

[- 3]
(%o21) []

[- 9]
(%i22) j(b);

[1 1]
(%o22) []

[0 0]

44

(%i23) ls : linsolve_by_lu(j(b),-f(b));
Division by 0
-- an error. To debug this try debugmode(true);
(%i24) determinant(j(b));
(%o24) 0

Thus, a check of the non-vanishing of the determinant of the jacobian matrix would have kept us out of trouble.

4.3.13 Automated Code for mymnewton
Writing code for an arbitrary number of dimensions is a suggested homework problem. Here we just assume
the problem is two dimensional and assume the variables are called x and y. To check for the �nonvanishing�
of the determinant of the jacobian, we ask if the absolute value is less than some very small number. Here
is the code, written with notepad2 in a �le �mymnewton.mac�, placed in my work directory c:\work2\.
You can download this �le from the author's webpage, and experiment with it. You can reduce the size of
the output on the screen by adding the line �display2d:false,� in the program, or outside the pro-
gram in your work session. If you make changes to this code, add some extra �debug� printouts at �rst like
�display(newval1,newval2)�, or �print(" v1 = ",v1),� to make sure you are on the right
track. Once the program has been �debugged�, you can comment out the debug version in your work �le, copy
the whole code to a new section, remove the debug printouts, and use as your �working version�.

/* working version */
/* file: mymnewton.mac

e. woollett, april, 08 */

disp("working version mymnewton,
assumes two dimensional problem only,
syntax:

mymnewton(exprlist, guesslist, numiter)$

exprlist should have the form: [expr1, expr2],
to find (x,y) such that simultaneously expr1=0,expr2=0,
expr1, expr2 should be explicit functions of x and y,
guesslist should be in the form: [xguess,yguess],
numiter = number of iterations ")$

mymnewton(exprlist, guesslist, numiter) :=

block([numer,ratprint,fpprintprec, small : 1.0e-30 ,
g,x,y,gv,h,hv,b,v,ls,d] , local(f,j),

numer:true, ratprint:false, fpprintprec:8,
/* g = col vec: row 1=expr 1, row 2=expr 2 depends on (x,y) */

g : matrix([exprlist[1]],[exprlist[2]]),
display(g),

gv : ev(g, x=v[1,1], y=v[2,1]),

/* v is generic col vector */

45

define(f(v), gv),

/* h is jacobian matrix associated with col vec g(x,y) */

h : matrix([diff(g[1,1], x), diff(g[1,1], y)],
[diff(g[2,1], x), diff(g[2,1], y)]),

hv : ev(h, x=v[1,1], y=v[2,1]),

define(j(v), hv),

/* b is col vec containing (x,y) values */

b : matrix([guesslist[1]],[guesslist[2]]),

/* start iterations */

for i:0 thru numiter do (

print(" "),
print(" i = ",i," b = ",b," f(b) = ",f(b)),
if (i = 0) then print(" starting values ") else

print(" condition number = ", second(ls)),

/* check jacobian determinant */

d : (determinant(j(b)), float(%%) , abs(%%)),

if (d < small) then (
print(" abs(det(jacobian)) is ", d," program halt "),

return()),

/* using 'floatfield arg gets condition number returned */

ls : linsolve_by_lu(j(b),-f(b), 'floatfield),

/* improved (hopefully) estimates of values of (x,y)
which simultaneously satisfy expr1=0 and expr2=0 */

b : b + first(ls)

) /* end do */

)$ /* end block */

46

and here is a little output from this code:

(%i1) load("mymnewton.mac");
working version mymnewton,
assumes two dimensional problem only,
syntax:
mymnewton(exprlist, guesslist, numiter)$
exprlist should have the form: [expr1, expr2],
to find (x,y) such that simultaneously expr1=0,expr2=0,
expr1, expr2 should be explicit functions of x and y,
guesslist should be in the form: [xguess,yguess],
numiter = number of iterations
(%o1) c:/work2/mymnewton.mac
(%i2) mymnewton([x+y-3, x�2+y�2-9],[1,2], 5)$

[y + x - 3]
g = []

[2 2]
[y + x - 9]

[1] [0]
i = 0 b = [] f(b) = []

[2] [- 4]
starting values

[- 1.0] [0.0]
i = 1 b = [] f(b) = []

[4.0] [8.0]
condition number = 22.5

[- 0.2] [0.0]
i = 2 b = [] f(b) = []

[3.2] [1.28]
condition number = 19.5

[- 0.0117647] [0.0]
i = 3 b = [] f(b) = []

[3.0117647] [0.0708651]
condition number = 10.92

[- 4.57770657E-5] [4.4408921E-16]
i = 4 b = [] f(b) = []

[3.0000458] [2.74666585E-4]
condition number = 7.212872

[- 6.98491837E-10] [0.0]
i = 5 b = [] f(b) = []

[3.0] [4.19095159E-9]
condition number = 7.000824

47

Here is a test of the �dangerous� initial condition case:

(%i3) mymnewton([x+y-3, x�2+y�2-9],[0,0], 5)$
[y + x - 3]

g = []
[2 2]
[y + x - 9]

[0] [- 3]
i = 0 b = [] f(b) = []

[0] [- 9]
starting values
abs(det(jacobian)) is 0.0 program halt

It is left as a homework problem to incorporate a criterion for �nding an �accurate enough� solution without
providing the program a number of iterations, and allowing the program to �hide� the details of the iteration
process, providing the user with an �answer� and an estimate of the likely �error�.

48

