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10.

11.

12.

13.

14.

15.

Prove that if T € L(V) and j is a positive integer such that
Jj <dimV, then T has an invariant subspace whose dimension
equals j — 1 or j.

Prove that there does not exist an operator T € £(R7) such that
T2 + T +1 is nilpotent.

Give an example of an operator T € £(C7) such that T2 + T + 1
is nilpotent.

Suppose V is areal vector spaceand T € L(V). Suppose &, 8 € R
are such that «? < 4. Prove that

null(T? + «T + Bk
has even dimension for every positive integer k.

Suppose V is areal vector spaceand T € L(V). Suppose , B € R
are such that «® < 48 and T2 + «T + BI is nilpotent. Prove that
dimV is even and

(T% + &T + BN)4™V/2 = 0.

Prove thatif T € £(R3) and 5, 7 are eigenvalues of T, then T has
no eigenpairs.

Suppose V is a real vector space with dimV =nand T € L(V)
is such that
null 7%°2 # null T .

Prove that T has at most two distinct eigenvalues and that T has
no eigenpairs.

Suppose V is a vector space with dimension 2 and T € L(V).

Prove that if
a c
b d

is the matrix of T with respect to some basis of V, then the char-
acteristic polynomial of T equals (z — a)(z —d) — bc.

Suppose V is areal inner-product space and S € £(V) is an isom-
etry. Prove that if («x, B) is an eigenpair of S, then 8 = 1.

You do not need to find
the eigenvalues of T to
do this exercise. As
usual unless otherwise
specified, here V may
be a real or complex
vector space.



CHAPTER 10

Trace and Determinant

Throughout this book our emphasis has been on linear maps and op-
erators rather than on matrices. In this chapter we pay more attention
to matrices as we define and discuss traces and determinants. Deter-
minants appear only at the end of this book because we replaced their
usual applications in linear algebra (the definition of the characteris-
tic polynomial and the proof that operators on complex vector spaces
have eigenvalues) with more natural techniques. The book concludes
with an explanation of the important role played by determinants in
the theory of volume and integration.

Recall that F denotes R or C.
Also, V is a finite-dimensional, nonzero vector space over F.
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Some mathematicians
use the terms
nonsingular, which
means the same as
invertible, and
singular, which means
the same as
noninvertible.

Change of Basis

The matrix of an operator T € L£(V) depends on a choice of basis
of V. Two different bases of V may give different matrices of T. In this
section we will learn how these matrices are related. This information
will help us find formulas for the trace and determinant of T later in
this chapter.

With respect to any basis of V, the identity operator I € £(V) has a
diagonal matrix

1 0

0 1
This matrix is called the identity matrix and is denoted I. Note that we
use the symbol I to denote the identity operator (on all vector spaces)
and the identity matrix (of all possible sizes). You should always be

able to tell from the context which particular meaning of I is intended.
For example, consider the equation

M) =1;

on the left side I denotes the identity operator and on the right side I
denotes the identity matrix.

If A is a square matrix (with entries in F, as usual) with the same
size as I, then Al = IA = A, as you should verify. A square matrix A
is called invertible if there is a square matrix B of the same size such
that AB = BA = I, and we call B an inverse of A. To prove that A has
at most one inverse, suppose B and B’ are inverses of A. Then

B =BI =B(AB") = (BA)B' =IB' =B,

and hence B = B’, as desired. Because an inverse is unique, we can use
the notation A~! to denote the inverse of A (if A is invertible). In other
words, if A is invertible, then A~ is the unique matrix of the same size
such that AA™! = A71A =1

Recall that when discussing linear maps from one vector space to
another in Chapter 3, we defined the matrix of a linear map with respect
to two bases—one basis for the first vector space and another basis for
the second vector space. When we study operators, which are linear
maps from a vector space to itself, we almost always use the same basis
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for both vector spaces (after all, the two vector spaces in question are
equal). Thus we usually refer to the matrix of an operator with respect
to a basis, meaning that we are using one basis in two capacities. The
next proposition is one of the rare cases where we need to use two
different bases even though we have an operator from a vector space
to itself.

Let’s review how matrix multiplication interacts with multiplication
of linear maps. Suppose that along with V we have two other finite-
dimensional vector spaces, say U and W. Let (u1,...,up) be a basis
of U, let (vi,...,v,) be a basis of V, and let (wq,...,w;,) be a basis
of WIfTe L(U,V)and S € L(V,W), then ST € L(U,W) and

10.1 M(ST, (Ur,...,up), (Wi,...,Ww)) =
M(S, Vi, V), (Wi, oo, W) ) M(T, (U, .., Up), (V.. ., V).

The equation above holds because we defined matrix multiplication to
make it true—see 3.11 and the material following it.

The following proposition deals with the matrix of the identity op-
erator when we use two different bases. Note that the k™ column of
M(I, (Uuy,...,Un), (V1,...,vy)) consists of the scalars needed to write
Uy as a linear combination of the v’s. As an example of the proposi-
tion below, consider the bases ((4,2),(5,3)) and ((1,0), (0,1)) of F.
Obviously

M(1,((4,2),(5,3)),((1,0),(0,1))) = [ g ; ]

The inverse of the matrix above is [ 3_/12 ‘52/ 2 ], as you should verify. Thus
the proposition below implies that

3/2 -=5/2
M(1,((1,0),0,1)), ((4,2),(5,3))) =[ B ]
10.2 Proposition: If (ui,...,uy) and (vi,...,vy) are bases of V,
then M(I, (u1,...,Un), (V1,...,vy)) Iis invertible and

M, Uty Un)y Vi, V) = M, (Ve Vi), (U ey Un)).

PrOOF: In 10.1, replace U and W with V, replace w; with u;, and
replace S and T with I, getting
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I = M(I’ (VI" .. ,'Vn); (uls---yu’n))jvl(I, (ull"'lun)! (Vl,.. . ,'Vn))-
Now interchange the roles of the ©’s and v’s, getting
I = M(I’ (ul;---,un)a (VIJ---JVT’[))M(I, (Vli---!vn)l (uli' .. ;un))-

These two equations give the desired result. [ ]

Now we can see how the matrix of T changes when we change
bases.

10.3 Theorem: SupposeT € L(V). Let (u1,...,Uuy) and (vy,...,vy)
be bases of V. Let A = M(I, (uy,...,un), (vV1,...,vn)). Then

10.4 M(T, (U1,...,un)) = A XM(T, (v,...,vn))A.

ProOOF: In10.1, replace U and W with V, replace w; with v, replace
T with I, and replace S with T, getting

10.5 M(T, (U1, -, Un), V1, .o, Vi) = M(T, (v1,...,Vn))A.

Again use 10.1, this time replacing U and W with V, replacing w;
with uj, and replacing S with I, getting

M(T, (Ur,y...,un)) = A XM(T, (U, ..oy Un), (V1. Vi),

where we have used 10.2. Substituting 10.5 into the equation above
gives 10.4, completing the proof. [ ]

Trace

Let’s examine the characteristic polynomial more closely than we
did in the last two chapters. If V is an n-dimensional complex vector
space and T € L(V), then the characteristic polynomial of T equals

(z—=A1)...(z2—-Ap),

where Ay, ..., A, are the eigenvalues of T, repeated according to multi-
plicity. Expanding the polynomial above, we can write the characteristic
polynomial of T in the form

10.6 ZP— A4+ A2 (CD)M(ALLL AR,
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If V is an n-dimensional real vector space and T € £(V), then the
characteristic polynomial of T equals

(X = A1) ... (X = Am) (X% + 01X + B1) ... (X% + aux + Bum),

where Aq,..., A, are the eigenvalues of T and («x1, B1),..., (&, Bm) are
the eigenpairs of T, each repeated according to multiplicity. Expanding
the polynomial above, we can write the characteristic polynomial of T
in the form

10.7 X" —Ar+ -+ A -1 — - — &)X+
+ (_1)m()\1AmB1ﬁM)

In this section we will study the coefficient of z"~! (usually denoted
x"~1 when we are dealing with a real vector space) in the characteristic
polynomial. In the next section we will study the constant term in the
characteristic polynomial.

For T € £(V), the negative of the coefficient of z"~! (or x™~! for real
vector spaces) in the characteristic polynomial of T is called the trace
of T, denoted trace T. If V is a complex vector space, then 10.6 shows
that trace T equals the sum of the eigenvalues of T, counting multiplic-
ity. If V is a real vector space, then 10.7 shows that trace T equals the
sum of the eigenvalues of T minus the sum of the first coordinates of
the eigenpairs of T, each repeated according to multiplicity.

For example, suppose T € £(C3) is the operator whose matrix is

3 -1 -2
10.8 3 2 -3
1 2 0

Then the eigenvalues of T are 1, 2 + 3i, and 2 — 3i, each with multi-
plicity 1, as you can verify. Computing the sum of the eigenvalues, we
have traceT =1 + (2 + 3i) + (2 — 3i); in other words, trace T = 5.

As another example, suppose T € £(R3) is the operator whose ma-
trix is also given by 10.8 (note that in the previous paragraph we were
working on a complex vector space; now we are working on a real vec-
tor space). Then 1 is the only eigenvalue of T (it has multiplicity 1)
and (—4,13) is the only eigenpair of T (it has multiplicity 1), as you
should have verified in the last chapter (see page 205). Computing the
sum of the eigenvalues minus the sum of the first coordinates of the
eigenpairs, we have trace T = 1 — (—4); in other words, trace T = 5.

Here m or M might
equal 0.

Recall that a pair («, B)
of real numbers is an
eigenpair of T if

o? < 4B and

T? + «T + BI is not
injective.

Note that trace T
depends only on T and
not on a basis of V
because the
characteristic
polynomial of T does
not depend on a choice
of basis.
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You should carefully
review 9.9 to
understand the
relationship between
eigenpairs and
characteristic
polynomials of 2-by-2
blocks.

The reason that the operators in the two previous examples have
the same trace will become clear after we find a formula (valid on both
complex and real vector spaces) for computing the trace of an operator
from its matrix.

Most of the rest of this section is devoted to discovering how to cal-
culate trace T from the matrix of T (with respect to an arbitrary basis).
Let’s start with the easiest situation. Suppose V is a complex vector
space, T € L(V), and we choose a basis of V with respect to which
T has an upper-triangular matrix A. Then the eigenvalues of T are
precisely the diagonal entries of A, repeated according to multiplicity
(see 8.10). Thus trace T equals the sum of the diagonal entries of A.
The same formula works for the operator T € £(F?) whose matrix is
given by 10.8 and whose trace equals 5. Could such a simple formula
be true in general?

We begin our investigation by considering T € £(V) where V is a
real vector space. Choose a basis of V with respect to which T has a
block upper-triangular matrix M(T), where each block on the diagonal
is a 1-by-1 matrix containing an eigenvalue of T or a 2-by-2 block with
no eigenvalues (see 9.4 and 9.9). Each entry in a 1-by-1 block on the
diagonal of M(T) is an eigenvalue of T and thus makes a contribution
to trace T. If M(T) has any 2-by-2 blocks on the diagonal, consider a

typical one
a c
b d |’

The characteristic polynomial of this 2-by-2 matrixis (x—a) (x—d)—bc,
which equals
x2—(a+d)x + (ad - bc).

Thus (—a — d,ad — bc) is an eigenpair of T. The negative of the first
coordinate of this eigenpair, namely, a + d, is the contribution of this
block to trace T. Note that a + d is the sum of the entries on the di-
agonal of this block. Thus for any basis of V with respect to which
the matrix of T has the block upper-triangular form required by 9.4
and 9.9, trace T equals the sum of the entries on the diagonal.

At this point you should suspect that trace T equals the sum of
the diagonal entries of the matrix of T with respect to an arbitrary
basis. Remarkably, this turns out to be true. To prove it, let’s de-
fine the trace of a square matrix A, denoted trace A, to be the sum
of the diagonal entries. With this notation, we want to prove that
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traceT = trace M(T, (v1,...,Vyn)), where (v1,...,vy,) is an arbitrary
basis of V. We already know this is true if (vy,...,Vv5) is a basis with
respect to which T has an upper-triangular matrix (if V is complex) or
an appropriate block upper-triangular matrix (if V is real). We will need
the following proposition to prove our trace formula for an arbitrary
basis.

10.9 Proposition: If A and B are square matrices of the same size,
then
trace(AB) = trace(BA).
PROOF: Suppose
ai,lr --- Ain bl,l bl,n
A=| Lo B=
anl --- Ann bn,l P bn,n
The j™ term on the diagonal of AB equals
n
Z aj,khk,j.
k=1
Thus

n
trace(AB) = z aj,kbk,j

bk,jaj,k

Il
M= M: II

k‘h term on the diagonal of BA

k

=1r ace(BA)

as desired. (]
Now we can prove that the sum of the diagonal entries of the matrix

of an operator is independent of the basis with respect to which the
matrix is computed.

10.10 Corollary: SupposeT € L(V). If (u1,...,uy) and (V1,...,Vy)
are bases of V, then

trace M(T, (uq,...,uy)) = trace M(T, (v1,...,Vn)).
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The third equality here
depends on the
associative property of
matrix multiplication.

PROOF: Suppose (uq,...,Uy) and (vy,...,Vv,) are bases of V. Let
A=M(I,(u,...,uy), (v1,...,vy)). Then

trace M(T, (U1,...,Uy)) = trace(A‘l(j\/l(T, (vl,...,vn))A))
= trace((ﬁ\/l(T, (vl,...,vn))A)A‘l)
= trace M(T, (v1,...,Vn)),

where the first equality follows from 10.3 and the second equality fol-
lows from 10.9. The third equality completes the proof. (]

The theorem below states that the trace of an operator equals the
sum of the diagonal entries of the matrix of the operator. This theorem
does not specify a basis because, by the corollary above, the sum of
the diagonal entries of the matrix of an operator is the same for every
choice of basis.

10.11 Theorem: If T € L(V), then trace T = trace M(T).

PROOF: Let T € L(V). As noted above, trace M(T) is independent
of which basis of V we choose (by 10.10). Thus to show that

trace T = trace M(T)

for every basis of V, we need only show that the equation above holds
for some basis of V. We already did this (on page 218), choosing a basis
of V with respect to which M(T') is an upper-triangular matrix (if V is a
complex vector space) or an appropriate block upper-triangular matrix
(if V is a real vector space). [

If we know the matrix of an operator on a complex vector space, the
theorem above allows us to find the sum of all the eigenvalues without
finding any of the eigenvalues. For example, consider the operator
on C°> whose matrix is

0 0 0 0 -3
1 00 0 6
01 0 0 O
0 01 0 O
0 001 O
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No one knows an exact formula for any of the eigenvalues of this op-
erator. However, we do know that the sum of the eigenvalues equals 0
because the sum of the diagonal entries of the matrix above equals 0.

The theorem above also allows us easily to prove some useful prop-
erties about traces of operators by shifting to the language of traces
of matrices, where certain properties have already been proved or are
obvious. We carry out this procedure in the next corollary.

10.12 Corollary: If S, T € L(V), then

trace(ST) = trace(TS) and trace(S + T) = traceS + traceT.

PROOF: Suppose S, T € L(V). Choose any basis of V. Then

trace(ST) = trace M(ST)
= trace(M(S)M(T))
= trace(M(T)M(S))
= trace M(TS)
= trace(TS),

where the first and last equalities come from 10.11 and the middle
equality comes from 10.9. This completes the proof of the first asser-
tion in the corollary.

To prove the second assertion in the corollary, note that

trace(S + T) = traceM(S + T)
= trace(M(S) + M(T))
= trace M(S) + trace M(T)
= traceS + traceT,

where again the first and last equalities come from 10.11; the third
equality is obvious from the definition of the trace of a matrix. This
completes the proof of the second assertion in the corollary. [

The techniques we have developed have the following curious corol-
lary. The generalization of this result to infinite-dimensional vector
spaces has important consequences in quantum theory.
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The statement of this
corollary does not
involve traces, though
the short proof uses
traces. Whenever
something like this
happens in
mathematics, we can be
sure that a good
definition Iurks in the
background.

Note that det T
depends only on T and
not on a basis of V
because the
characteristic
polynomial of T does
not depend on a choice
of basis.

10.13 Corollary: There do not exist operators S,T € L(V) such that
ST-TS =1.

PROOF: Suppose S, T € L(V). Then

trace(ST — TS) = trace(ST) — trace(TS)
= O’

where the second equality comes from 10.12. Clearly the trace of I
equals dimV, which is not 0. Because ST — TS and I have different
traces, they cannot be equal. ]

Determinant of an Operator

For T € £(V), we define the determinant of T, denoted det T, to
be (—1)4mV times the constant term in the characteristic polynomial
of T. The motivation for the factor (—1)4™V in this definition comes
from 10.6.

If V is a complex vector space, then det T equals the product of
the eigenvalues of T, counting multiplicity; this follows immediately
from 10.6. Recall that if V is a complex vector space, then there is
a basis of V with respect to which T has an upper-triangular matrix
(see 5.13); thus det T equals the product of the diagonal entries of this
matrix (see 8.10).

If V is a real vector space, then detT equals the product of the
eigenvalues of T times the product of the second coordinates of the
eigenpairs of T, each repeated according to multiplicity—this follows
from 10.7 and the observation that m = dimV — 2M (in the notation
of 10.7), and hence (-1)™ = (—1)dmV,

For example, suppose T € £(C3) is the operator whose matrix is
given by 10.8. As we noted in the last section, the eigenvalues of T are
1, 2 + 3i, and 2 — 3i, each with multiplicity 1. Computing the product
of the eigenvalues, we have det T = (1) (2 + 3i)(2 — 3i); in other words,
detT =13.

As another example, suppose T € £(R3) is the operator whose ma-
trix is also given by 10.8 (note that in the previous paragraph we were
working on a complex vector space; now we are working on a real vec-
tor space). Then, as we noted earlier, 1 is the only eigenvalue of T (it
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has multiplicity 1) and (—4, 13) is the only eigenpair of T (it has multi-
plicity 1). Computing the product of the eigenvalues times the product
of the second coordinates of the eigenpairs, we have detT = (1)(13);
in other words, det T = 13.

The reason that the operators in the two previous examples have the
same determinant will become clear after we find a formula (valid on
both complex and real vector spaces) for computing the determinant
of an operator from its matrix.

In this section, we will prove some simple but important properties
of determinants. In the next section, we will discover how to calculate
det T from the matrix of T (with respect to an arbitrary basis). We begin
with a crucial result that has an easy proof with our approach.

10.14 Proposition: An operator is invertible if and only if its deter-
minant is nonzero.

PROOF: First suppose V is a complex vector space and T € L(V).
The operator T is invertible if and only if O is not an eigenvalue of T.
Clearly this happens if and only if the product of the eigenvalues of T
is not 0. Thus T is invertible if and only if det T # 0, as desired.

Now suppose V is a real vector space and T € L£(V). Again, T is
invertible if and only if 0 is not an eigenvalue of T. Using the notation
of 10.7, we have

10.15 detT =Ay...AnB1-..Bum,

where the A’s are the eigenvalues of T and the §’s are the second coor-
dinates of the eigenpairs of T, each repeated according to multiplicity.
For each eigenpair («;j, B;), we have «;? < 4B;. In particular, each f;
is positive. This implies (see 10.15) that Ay...A, # 0 if and only if
detT # 0. Thus T is invertible if and only if det T # 0, as desired. =

If T € £(V) and A,z € F, then A is an eigenvalue of T if and only if
z — A is an eigenvalue of zI — T. This follows from

—(T—-Al)=(zI-T) - (z-A)I.

Raising both sides of this equation to the dim V power and then taking
null spaces of both sides shows that the multiplicity of A as an eigen-
value of T equals the multiplicity of z — A as an eigenvalue of zI — T.
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Real vector spaces are
harder to deal with
than complex vector
spaces. The first time
you read this chapter,
you may want to
concentrate on the
basic ideas by
considering only
complex vector spaces
and ignoring the
special procedures
needed to deal with
real vector spaces.

The next lemma gives the analogous result for eigenpairs. We will use
this lemma to show that the characteristic polynomial can be expressed
as a certain determinant.

10.16 Lemma: Suppose V is a real vector space, T € L(V), and
«, B, x € R with o® < 4B. Then («, B) is an eigenpair of T if and only
if (=2x — &, x? + ax + B) is an eigenpair of xI — T. Furthermore, these
eigenpairs have the same multiplicities.

PROOF: First we need to check that (—2x — &, x2 + ox + B) satisfies
the inequality required of an eigenpair. We have

(—2x — )% = 4x?% + dax + &°
< 4x° +4ax + 48
=4(x*+ ax + p).

Thus (-2x — &, x? + ax + B) satisfies the required inequality.
Now

T? +&T + Bl = (xI - T)> — 2x + &) (xI = T) + (x* + ox + B)I,

as you should verify. Thus (&, §) is an eigenpair of T if and only if
(—2x — o, x% + ax + B) is an eigenpair of xI — T. Furthermore, raising
both sides of the equation above to the dimV power and then taking
null spaces of both sides shows that the multiplicities are equal. ]

Most textbooks take the theorem below as the definition of the char-
acteristic polynomial. Texts using that approach must spend consider-
ably more time developing the theory of determinants before they get
to interesting linear algebra.

10.17 Theorem: Suppose T € L(V). Then the characteristic poly-
nomial of T equals det(zI — T).

PROOF: First suppose V is a complex vector space. Let Aj,..., A,
denote the eigenvalues of T, repeated according to multiplicity. Thus
for z € C, the eigenvalues of zI — T are z — Ay,...,Zz — Ay, repeated
according to multiplicity. The determinant of zI — T is the product of
these eigenvalues. In other words,

det(zI = T) =(z—=2A1)...(z = An).
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The right side of the equation above is, by definition, the characteristic
polynomial of T, completing the proof when V is a complex vector
space.

Now suppose V is a real vector space. Let Ay,...,A; denote the
eigenvalues of T and let (xy, B1),..., (0, Bym) denote the eigenpairs
of T, each repeated according to multiplicity. Thus for x € R, the
eigenvalues of xI—T are x —Ay,...,Xx—Ay and, by 10.16, the eigenpairs
of xI — T are

(=2x — &1, X% + 01X + B1)y .-y (—2X — Xpr, X2 + X + Bur),
each repeated according to multiplicity. Hence
det(xI —T) = (x —A1) ... (X = Am) (X% + 01 x + B1) .. (X° + ot X + Bu)-

The right side of the equation above is, by definition, the characteristic
polynomial of T, completing the proof when V is a real vector space. m

Determinant of a Matrix

Most of this section is devoted to discovering how to calculate det T
from the matrix of T (with respect to an arbitrary basis). Let’s start with
the easiest situation. Suppose V is a complex vector space, T € L(V),
and we choose a basis of V with respect to which T has an upper-
triangular matrix. Then, as we noted in the last section, det T equals
the product of the diagonal entries of this matrix. Could such a simple
formula be true in general?

Unfortunately the determinant is more complicated than the trace.
In particular, det T need not equal the product of the diagonal entries
of M(T) with respect to an arbitrary basis. For example, the operator
on F3 whose matrix equals 10.8 has determinant 13, as we saw in the
last section. However, the product of the diagonal entries of that matrix
equals O.

For each square matrix A, we want to define the determinant of A,
denoted det A, in such a way that det T = det M(T) regardless of which
basis is used to compute M(T). We begin our search for the correct def-
inition of the determinant of a matrix by calculating the determinants
of some special operators.

Let cy,...,cn € F be nonzero scalars and let (vq,...,Vvy,) be a basis
of V. Consider the operator T € L(V) such that M(T, (vi,...,vy))
equals
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Recall that if the
minimal polynomial of
an operator T € L(V)
has degree dimV, then
the characteristic
polynomial of T equals
the minimal polynomial
of T. Computing the
minimal polynomial is
often an efficient
method of finding the
characteristic
polynomial.

0 Cn

10.18 c2 0 :

here all entries of the matrix are 0 except for the upper-right corner
and along the line just below the diagonal. Let’s find the determinant
of T. Note that

(v, Tvy, T?vy, ..., T" 1v)) = (v, c1V2,C1€2V3, ..., C1 o . Ce1Vn).

Thus (vy, Tvy,..., T" 1v;) is linearly independent (the ¢’s are all non-
zero). Hence if p is a nonzero polynomial with degree at most n — 1,
then p(T)vy # 0. In other words, the minimal polynomial of T cannot
have degree less than n. As you should verify, T"v; = ¢1...cnVv; for
each j, and hence T" = c¢;...cyl. Thus z" — ¢; ...c, is the minimal
polynomial of T. Because n = dimV, we see that z" — ¢;...cy is also
the characteristic polynomial of T. Multiplying the constant term of
this polynomial by (—1)", we get

10.19 detT = (-1)" l¢y...cp.

If some c; equals 0, then clearly T is not invertible, so detT = 0 and
the same formula holds. Thus in order to have detT = detM(T), we
will have to make the determinant of 10.18 equal to (=1)"*1c;...cn.
However, we do not yet have enough evidence to make a reasonable
guess about the proper definition of the determinant of an arbitrary
square matrix.

To compute the determinants of a more complicated class of op-
erators, we introduce the notion of permutation. A permutation of
(1,...,n) is a list (mq,...,my) that contains each of the numbers
1,...,n exactly once. The set of all permutations of (1,...,n) is de-
noted permn. For example, (2, 3,...,1,1) € permn. You should think
of an element of permn as a rearrangement of the first n integers.

For simplicity we will work with matrices with complex entries (at
this stage we are providing only motivation—formal proofs will come
later). Let ¢1,...,¢, € C and let (vq,...,Vvy) be a basis of V, which
we are assuming is a complex vector space. Consider a permutation
(p1,...,Pn) € permn that can be obtained as follows: break (1,...,n)
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into lists of consecutive integers and in each list move the first term to
the end of that list. For example, taking n = 9, the permutation

10.20 (2,3,1,5,6,7,4,9,8)

is obtained from (1,2, 3), (4,5,6,7), (8,9) by moving the first term of
each of these lists to the end, producing (2, 3,1), (5,6,7,4), (9, 8), and
then putting these together to form 10.20. Let T € L(V) be the operator
such that

10.21 Tvy = ckVp,
for k = 1,...,n. We want to find a formula for det T. This generalizes
our earlier example because if (p1,..., pn) happens to be the permuta-

tion (2,3,...,n,1), then the operator T whose matrix equals 10.18 is
the same as the operator T defined by 10.21.

With respect to the basis (v1,...,Vvy), the matrix of the operator T
defined by 10.21 is a block diagonal matrix

Ay 0
0 Ap
where each block is a square matrix of the form 10.18. The eigenvalues
of T equal the union of the eigenvalues of A1,..., Ay (see Exercise 3 in
Chapter 9). Recalling that the determinant of an operator on a complex

vector space is the product of the eigenvalues, we see that our definition
of the determinant of a square matrix should force

detA = (detAyp)...(detAy).

However, we already know how to compute the determinant of each A,
which has the same form as 10.18 (of course with a different value of n).
Putting all this together, we see that we should have

detA = (-1)M 1. (=1)y™ ¢, ... ¢y,

where Aj has size nj-by-n ;. The number (—1)"™~! ... (-1)" ! s called
the sign of the permutation (py,..., p»), denoted sign(ps, ..., p»n) (this
is a temporary definition that we will change to an equivalent definition
later, when we define the sign of an arbitrary permutation).
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unnecessarily fancy
term signum, which
means the same

as sign.

To put this into a form that does not depend on the particular per-

mutation (p1,. .., pn), let aj i denote the entry inrow j, column k, of A;
thus
P 0 ifj#pr;
W= e i j = pre
Then
10.22 detA = > (sign(my,...,Mp))Am, 1 ---Am, 0

(my,...,my)Epermn

because each summand is 0 except the one corresponding to the per-
mutation (p1,.--,Pn)-

Consider now an arbitrary matrix A with entry a;x in row j, col-
umn k. Using the paragraph above as motivation, we guess that det A
should be defined by 10.22. This will turn out to be correct. We can
now dispense with the motivation and begin the more formal approach.
First we will need to define the sign of an arbitrary permutation.

The sign of a permutation (my,...,my) is defined to be 1 if the
number of pairs of integers (j, k) with 1 < j < k < n such that j ap-
pears after k in the list (mi,...,m;) is even and —1 if the number of
such pairs is odd. In other words, the sign of a permutation equals 1 if
the natural order has been changed an even number of times and equals
—1 if the natural order has been changed an odd number of times. For
example, in the permutation (2,3,...,1,1) the only pairs (j, k) with
Jj < k that appear with changed order are (1,2),(1,3),...,(1,n); be-
cause we have n — 1 such pairs, the sign of this permutation equals
(=1)""1 (note that the same quantity appeared in 10.19).

The permutation (2, 1, 3,4), which is obtained from the permutation
(1,2, 3,4) by interchanging the first two entries, has sign —1. The next
lemma shows that interchanging any two entries of any permutation
changes the sign of the permutation.

10.23 Lemma: Interchanging two entries in a permutation multiplies
the sign of the permutation by —1.

PROOF: Suppose we have two permutations, where the second per-
mutation is obtained from the first by interchanging two entries. If the
two entries that we interchanged were in their natural order in the first
permutation, then they no longer are in the second permutation, and
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vice versa, for a net change (so far) of 1 or —1 (both odd numbers) in
the number of pairs not in their natural order.

Consider each entry between the two interchanged entries. If an in-
termediate entry was originally in the natural order with respect to the
first interchanged entry, then it no longer is, and vice versa. Similarly,
if an intermediate entry was originally in the natural order with respect
to the second interchanged entry, then it no longer is, and vice versa.
Thus the net change for each intermediate entry in the number of pairs
not in their natural order is 2, 0, or —2 (all even numbers).

For all the other entries, there is no change in the number of pairs
not in their natural order. Thus the total net change in the number of
pairs not in their natural order is an odd number. Thus the sign of the
second permutation equals —1 times the sign of the first permutation. m

If A is an n-by-n matrix

ailr --- Ain
10.24 A=| : S
an1 --- Ann

then the determinant of A, denoted det A, is defined by

10.25 detA = > (sign(my,...,mu))am; 1--- Am,.n-

(my,...,myu)Epermn

For example, if A is the 1-by-1 matrix [a,1], then detA = aq,1 be-
cause perm 1 has only one element, namely, (1), which has sign 1. For
a more interesting example, consider a typical 2-by-2 matrix. Clearly
perm 2 has only two elements, namely, (1,2), which has sign 1, and
(2,1), which has sign —1. Thus

ail ap
10.26 det =a1,1az2 —az1ai,2.
azy1 azp

To make sure you understand this process, you should now find the
formula for the determinant of the 3-by-3 matrix

ail a2 a3
a1 dzp azs
as] aspz ass

using just the definition given above (do this even if you already know
the answer).

Our motivation for this
definition comes
from 10.22.

The set perm 3
contains 6 elements. In
general, permn
contains n! elements.
Note that n! rapidly
grows large as n
increases.
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Let’s compute the determinant of an upper-triangular matrix

ain *
A =
0 Ann
The permutation (1, 2,...,7) has sign 1 and thus contributes a term
of a1, ...ann to the sum 10.25 defining det A. Any other permutation
(my,...,my) € permn contains at least one entry m; with m; > j,

which means that a.,;,; = 0 (because A is upper triangular). Thus all
the other terms in the sum 10.25 defining det A make no contribu-
tion. Hence detA = ay,1...ann. In other words, the determinant of an
upper-triangular matrix equals the product of the diagonal entries. In
particular, this means that if V is a complex vector space, T € L(V),
and we choose a basis of V with respect to which M(T) is upper trian-
gular, then det T = det M(T). Our goal is to prove that this holds for
every basis of V, not just bases that give upper-triangular matrices.

Generalizing the computation from the paragraph above, next we
will show that if A is a block upper-triangular matrix

Ay *
A: '._ y
0 Am

where each Aj is a 1-by-1 or 2-by-2 matrix, then
10.27 detA = (detAy)...(detAy).

To prove this, consider an element of permn. If this permutation
moves an index corresponding to a 1-by-1 block on the diagonal any-
place else, then the permutation makes no contribution to the sum
10.25 defining det A (because A is block upper triangular). For a pair
of indices corresponding to a 2-by-2 block on the diagonal, the permu-
tation must either leave these indices fixed or interchange them; oth-
erwise again the permutation makes no contribution to the sum 10.25
defining det A (because A is block upper triangular). These observa-
tions, along with the formula 10.26 for the determinant of a 2-by-2 ma-
trix, lead to 10.27. In particular, if V is a real vector space, T € L(V),
and we choose a basis of V with respect to which M(T) is a block
upper-triangular matrix with 1-by-1 and 2-by-2 blocks on the diagonal
as in 9.9, then det T = det M(T).
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Our goal is to prove that det T = det M(T) for every T € L(V) and
every basis of V. To do this, we will need to develop some proper-
ties of determinants of matrices. The lemma below is the first of the
properties we will need.

10.28 Lemma: Suppose A is a square matrix. If B is the matrix
obtained from A by interchanging two columns, then

detA = — detB.

PROOF: Suppose A is given by 10.24 and B is obtained from A by
interchanging two columns. Think of the sum 10.25 defining det A and
the corresponding sum defining det B. The same products of a’s appear
in both sums, though they correspond to different permutations. The
permutation corresponding to a given product of a’s when computing
detB is obtained by interchanging two entries in the corresponding
permutation when computing det A, thus multiplying the sign of the
permutation by —1 (see 10.23). Hence det A = — detB. [ ]

If T € £(V) and the matrix of T (with respect to some basis) has two
equal columns, then T is not injective and hence detT = 0. Though
this comment makes the next lemma plausible, it cannot be used in the
proof because we do not yet know that det T = det M(T).

10.29 Lemma: If A is a square matrix that has two equal columns,
then det A = 0.

PROOF: Suppose A is a square matrix that has two equal columns.
Interchanging the two equal columns of A gives the original matrix A.
Thus from 10.28 (with B = A), we have det A = — det A, which implies
that det A = 0. [ ]

This section is long, so let’s pause for a paragraph. The symbols *
that appear on the first page of each chapter are decorations intended
to take up space so that the first section of the chapter can start on the
next page. Chapter 1 has one of these symbols, Chapter 2 has two of
them, and so on. The symbols get smaller with each chapter. What you
may not have noticed is that the sum of the areas of the symbols at the
beginning of each chapter is the same for all chapters. For example, the
diameter of each symbol at the beginning of Chapter 10 equals 1/+/10
times the diameter of the symbol in Chapter 1.

An entire book could
be devoted just to
deriving properties of
determinants.
Fortunately we need
only a few of the basic
properties.
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Some texts define the
determinant to be the
function defined on the
square matrices that is
linear as a function of
each column separately
and that satisfies 10.30
and detI = 1. To prove
that such a function
exists and that it is
unique takes a
nontrivial amount of
work.

We need to introduce notation that will allow us to represent a ma-
trix in terms of its columns. If A is an n-by-n matrix

aln e Aln
an‘l P an,n

then we can think of the k™ column of A as an n-by-1 matrix

alk
ay =
Ank
We will write A in the form
[ar ... an ],

with the understanding that a denotes the k™ column of A. With this
notation, note that aj, with two subscripts, denotes an entry of A,
whereas ay, with one subscript, denotes a column of A.

The nextlemma shows that a permutation of the columns of a matrix
changes the determinant by a factor of the sign of the permutation.

10.30 Lemma: Suppose A=[ a; ... ap ]isan n-by-n matrix.
If (mq,...,my) is a permutation, then
det[ am, ... am, 1= (sign(my,...,my))detA.

PROOF: Suppose (mi,...,my) € permn. We can transform the
matrix [ am, ... am, ] into A through a series of steps. In each
step, we interchange two columns and hence multiply the determinant
by —1 (see 10.28). The number of steps needed equals the number
of steps needed to transform the permutation (mg,...,m;) into the
permutation (1,...,7n) by interchanging two entries in each step. The
proof is completed by noting that the number of such steps is even if
(my,...,my) has sign 1, odd if (my,...,m,) has sign —1 (this follows
from 10.23, along with the observation that the permutation (1,...,n)
has sign 1). ]

LetA=[a; ... an ]. Forl < k < n, think of all columns of A
except the k'™ column as fixed. We have
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detA=det[ a1 ... ax ... an ],

and we can think of detA as a function of the k™ column ay. This
function, which takes ay to the determinant above, is a linear map
from the vector space of n-by-1 matrices with entries in F to F. The
linearity follows easily from 10.25, where each term in the sum contains
precisely one entry from the k" column of A.

Now we are ready to prove one of the key properties about determi-
nants of square matrices. This property will enable us to connect the
determinant of an operator with the determinant of its matrix. Note
that this proof is considerably more complicated than the proof of the
corresponding result about the trace (see 10.9).

10.31 Theorem: If A and B are square matrices of the same size,
then
det(AB) = det(BA) = (det A)(det B).

PROOF: LetA=[ a1 ... an ],whereeachayisann-by-1 column
of A. Let
bl,l P bl,n
B = =[ b1 ... byn],
bpi1 ... bun

where each by is an n-by-1 column of B. Let e denote the n-by-1 matrix
that equals 1 in the k™ row and O elsewhere. Note that Aey = ay and
Bey = by. Furthermore, by = 37 _1 by rem.

First we will prove that det(AB) = (detA)(detB). A moment’s
thought about the definition of matrix multiplication shows that AB =
[ Aby ... Ab, ]. Thus

det(AB) = det[ Ab; ... Ab, ]
= det[ A(Z:lnl:l bml,leml) A(Z?nn=1 bmn,nemn) ]
= det[ Z:’ll=l bmlylAeml - zﬁlnzl bmn’nAemn ]
n n
= > > bmi...bmyndet] A, ... Aem, ],
mi=1 muy=1

where the last equality comes from repeated applications of the linear-
ity of det as a function of one column at a time. In the last sum above,

This theorem was first
proved in 1812 by the
French mathematicians
Jacques Binet and
Augustin-Louis Cauchy.



234

CHAPTER 10. Trace and Determinant

Note the similarity of
this proof to the proof
of the analogous result
about the trace

(see 10.10).

all terms in which m; = my for some j # k can be ignored because the
determinant of a matrix with two equal columns is 0 (by 10.29). Thus
instead of summing over all my,...,m, with each m; taking on values
1,...,n, we can sum just over the permutations, where the m;’s have
distinct values. In other words,

det(AB) = > b1 b, ndet] Aew, ... Aew, |
(mq,...,my)Epermn
= > b, 1--bm, n(signimy,...,my)) det A
(my,...,my)Epermn
= (detA) Z (sign(my,...,mpn))bm,1-. - bm,n
(my,...,my) Epermn
= (det A)(detB),

where the second equality comes from 10.30.

In the paragraph above, we proved that det(AB) = (det A)(detB).
Interchanging the roles of A and B, we have det(BA) = (detB)(det A).
The last equation can be rewritten as det(BA) = (det A)(detB), com-
pleting the proof. ]

Now we can prove that the determinant of the matrix of an oper-
ator is independent of the basis with respect to which the matrix is
computed.

10.32 Corollary: SupposeT € L(V). If (uy,...,uy) and (vi,...,Vy)
are bases of V, then

detM(T, (Uq,...,Uyn)) = det M(T, (v1,...,Vn)).
PROOF: Suppose (uq,...,Uy) and (vy,...,Vvy,) are bases of V. Let

A=M(I,(uU,...,un), (v1,...,v4)). Then

det M(T, (u1,...,un)) = det(AH(M(T, (v1,...,vn))A))
= det((M(T, (v1,...,vn))A)A!)
= detM(T, (V1,...,Vn)),

where the first equality follows from 10.3 and the second equality fol-
lows from 10.31. The third equality completes the proof. ]
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The theorem below states that the determinant of an operator equals
the determinant of the matrix of the operator. This theorem does not
specify a basis because, by the corollary above, the determinant of the
matrix of an operator is the same for every choice of basis.

10.33 Theorem: If T € £(V), thendetT = det M(T).

PROOF: Let T € L(V). As noted above, 10.32 implies that det M(T)
is independent of which basis of V we choose. Thus to show that

detT = detM(T)

for every basis of V, we need only show that the equation above holds
for some basis of V. We already did this (on page 230), choosing a basis
of V with respect to which M(T) is an upper-triangular matrix (if V is a
complex vector space) or an appropriate block upper-triangular matrix
(if V is a real vector space). [

If we know the matrix of an operator on a complex vector space, the
theorem above allows us to find the product of all the eigenvalues with-
out finding any of the eigenvalues. For example, consider the operator
on C°> whose matrix is

00 00 -3
1 00 0 6
01 00 O
0010 O
0001 O

No one knows an exact formula for any of the eigenvalues of this opera-
tor. However, we do know that the product of the eigenvalues equals —3
because the determinant of the matrix above equals —3.

The theorem above also allows us easily to prove some useful prop-
erties about determinants of operators by shifting to the language of
determinants of matrices, where certain properties have already been
proved or are obvious. We carry out this procedure in the next corol-
lary.

10.34 Corollary: If S, T € L(V), then

det(ST) = det(TS) = (detS)(detT).
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PROOF: Suppose S, T € L(V). Choose any basis of V. Then

det(ST) = detM(ST)
= det(M(S)M(T))
= (det M(S)) (det M(T))
= (detS)(detT),

where the first and last equalities come from 10.33 and the third equal-
ity comes from 10.31.

In the paragraph above, we proved that det(ST) = (detS)(detT). In-
terchanging the roles of S and T, we have det(TS) = (det T)(detS). Be-
cause multiplication of elements of F is commutative, the last equation
can be rewritten as det(TS) = (detS)(detT), completing the proof. =

Yolume

We proved the basic results of linear algebra before introducing de-
terminants in this final chapter. Though determinants have value as a
research tool in more advanced subjects, they play little role in basic
linear algebra (when the subject is done right). Determinants do have
one important application in undergraduate mathematics, namely, in
computing certain volumes and integrals. In this final section we will
use the linear algebra we have learned to make clear the connection
between determinants and these applications. Thus we will be dealing
with a part of analysis that uses linear algebra.

We begin with some purely linear algebra results that will be use-
ful when investigating volumes. Recall that an isometry on an inner-
product space is an operator that preserves norms. The next result
shows that every isometry has determinant with absolute value 1.

10.35 Proposition: Suppose that V is an inner-product space. If
S € L£(V) is an isometry, then |detS| = 1.

PROOF: Suppose S € L(V) is an isometry. First consider the case
where V is a complex inner-product space. Then all the eigenvalues of S
have absolute value 1 (by 7.37). Thus the product of the eigenvalues
of S, counting multiplicity, has absolute value one. In other words,
|detS| =1, as desired.
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Now suppose V is a real inner-product space. Then there is an ortho-
normal basis of V with respect to which S has a block diagonal matrix,
where each block on the diagonal is a 1-by-1 matrix containing 1 or —1
or a 2-by-2 matrix of the form

cos® —sind
10.36 [sm@ cos 0 ]

with 0 € (0,77) (see 7.38). Note that the constant term of the charac-
teristic polynomial of each matrix of the form 10.36 equals 1 (because
cos? 0 + sin® @ = 1). Hence the second coordinate of every eigenpair
of S equals 1. Thus the determinant of S is the product of 1’s and —1’s.
In particular, |detS| = 1, as desired. ]

Suppose V is areal inner-product space and S € £(V) is anisometry.
By the proposition above, the determinant of S equals 1 or —1. Note
that

fvev:Sv=—-v}

is the subspace of V consisting of all eigenvectors of S corresponding
to the eigenvalue —1 (or is the subspace {0} if —1 is not an eigenvalue
of §). Thinking geometrically, we could say that this is the subspace
on which S reverses direction. A careful examination of the proof of
the last proposition shows that detS = 1 if this subspace has even
dimension and detS = —1 if this subspace has odd dimension.

A self-adjoint operator on a real inner-product space has no eigen-
pairs (by 7.11). Thus the determinant of a self-adjoint operator on a
real inner-product space equals the product of its eigenvalues, count-
ing multiplicity (of course, this holds for any operator, self-adjoint or
not, on a complex vector space).

Recall that if V is an inner-product space and T € £(V), then T*T
is a positive operator and hence has a unique positive square root, de-
noted /T*T (see 7.27 and 7.28). Because /T *T is positive, all its eigen-
values are nonnegative (again, see 7.27), and hence its determinant is
nonnegative. Thus in the corollary below, taking the absolute value of
det/T*T would be superfluous.

10.37 Corollary: Suppose V is an inner-product space. If T € L(V),
then

|detT| = detvVT*T.



