CHAPTER 3

Linear Maps

So far our attention has focused on vector spaces. No one gets ex-
cited about vector spaces. The interesting part of linear algebra is the
subject to which we now turn—linear maps.

Let’s review our standing assumptions:

Recall that F denotes R or C.
Recall also that V is a vector space over F.

In this chapter we will frequently need another vector space in ad-
dition to V. We will call this additional vector space W:

Let’s agree that for the rest of this chapter
W will denote a vector space over F.
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Some mathematicians
use the term linear
transformation, which
means the same as
linear map.

Definitions and Examples

A linear map from V to W is a function T: V — W with the following
properties:
additivity
T(u+v)=Tu+Tv forall u,v eV,

homogeneity
T(av) =a(Tv) foralla eFandallv e V.

Note that for linear maps we often use the notation Tv as well as the
more standard functional notation T (v).

The set of all linear maps from V to W is denoted L(V,W). Let’s
look at some examples of linear maps. Make sure you verify that each
of the functions defined below is indeed a linear map:

zero
In addition to its other uses, we let the symbol 0 denote the func-
tion that takes each element of some vector space to the additive
identity of another vector space. To be specific, 0 € L(V,W) is
defined by
Oov =0.

Note that the 0 on the left side of the equation above is a function
from V to W, whereas the 0 on the right side is the additive iden-
tity in W. As usual, the context should allow you to distinguish
between the many uses of the symbol O.

identity
The identity map, denoted I, is the function on some vector space
that takes each element to itself. To be specific, I € L(V,V) is
defined by
Iv=wv,

differentiation
Define T € L(P(R),P(R)) by

Tp=p'.

The assertion that this function is a linear map is another way of
stating a basic result about differentiation: (f+g)' = f'+g  and
(af) = af’ whenever f,g are differentiable and a is a constant.
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integration
Define T € L(P(R),R) by

1
Tp = Jo p(x)dx.

The assertion that this function is linear is another way of stating
a basic result about integration: the integral of the sum of two
functions equals the sum of the integrals, and the integral of a
constant times a function equals the constant times the integral
of the function.

multiplication by x?2

Define T € L(P(R),P(R)) by Though linear maps are
. pervasive throughout
(Tp)(x) = x°p(x) mathematics, they are
for x € R. 1.10t ats* ubiquitous as
imagined by some
backward shift confused students who
Recall that F* denotes the vector space of all sequences of ele-  seem to think that cos
ments of F. Define T € £L(F®,F®) by is a linear map from R
to R when they write
T(x1,X2,X3,...) = (xX2,X3,...). “identities” such as
cos2x = 2cosx and
from F" to F™ cos(x + y) =
Define T € £(R3,R?) by COS X + COS V.

T(x,y,z)=2x -y +3z,7x +5y — 62).

More generally, let m and n be positive integers, let a; € F for
j=1,...,mand k = 1,...,n, and define T € L(F",F™) by

T(x1,...,Xn) = (@11X1+" - - +A10Xny-- -, Am1X1+" * *+AmnXn).

Later we will see that every linear map from F" to F™ is of this
form.

Suppose (v1,...,vy)isabasisof Vand T: V — Wislinear. Ifv € V,
then we can write v in the form

v=a1Vy+:-+anVvn.

The linearity of T implies that
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Tv=a1Tvi+ - - +anTvy.

In particular, the values of Tvy,..., Tv, determine the values of T on
arbitrary vectors in V.

Linear maps can be constructed that take on arbitrary values on a
basis. Specifically, given a basis (vi,...,v,) of V and any choice of
vectors wy,..., Wy € W, we can construct a linear map T: V — W such
that Tv; = w; for j = 1,...,n. There is no choice of how to do this—we
must define T by

T(alvl + -+ anV‘n) = alwl + -+ aan,

where aq,...,a, are arbitrary elements of F. Because (v1,...,Vv,) is a
basis of V, the equation above does indeed define a function T from V
to W. You should verify that the function T defined above is linear and
that Tv; =wjforj=1,...,n.

Now we will make £(V, W) into a vector space by defining addition
and scalar multiplication on it. For S, T € L£L(V,W), define a function
S+ T e L(V,W) in the usual manner of adding functions:

S+THv=Sv+Tv

for v € V. You should verify that S + T is indeed a linear map from V
to W whenever S, T € L(V,W). Fora € Fand T € L(V,W), define a
function aT € L(V,W) in the usual manner of multiplying a function
by a scalar:

(aT)v =a(Tv)

forv € V. You should verify that aT is indeed a linear map from V to W
whenever a € F and T € L(V,W). With the operations we have just
defined, £(V, W) becomes a vector space (as you should verify). Note
that the additive identity of £(V,W) is the zero linear map defined
earlier in this section.

Usually it makes no sense to multiply together two elements of a
vector space, but for some pairs of linear maps a useful product exists.
We will need a third vector space, so suppose U is a vector space over F.
IfT e L£(U,V)and S € L(V,W), then we define ST € L(U,W) by

(ST)(v) = S(Tv)

for v € U. In other words, ST is just the usual composition S o T of two
functions, but when both functions are linear, most mathematicians
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write ST instead of S o T. You should verify that ST is indeed a linear
map from U to W whenever T € L(U,V) and S € L(V,W). Note that
ST is defined only when T maps into the domain of S. We often call
ST the product of S and T. You should verify that it has most of the
usual properties expected of a product:

associativity
(Th T») T3 = T, (T>T3) whenever T;, T», and T3 are linear maps such
that the products make sense (meaning that T3 must map into the
domain of T, and T> must map into the domain of T7).

identity
TI =T and IT = T whenever T € L(V,W) (note that in the first
equation I is the identity map on V, and in the second equation I
is the identity map on W).

distributive properties
(51 4+ 82)T = $1T + $2T and S(T, + T2) = STy + ST> whenever
T,T,T, € L(U,V)and S, 81,5, € L(V,W).

Multiplication of linear maps is not commutative. In other words, it
is not necessarily true that ST = TS, even if both sides of the equation
make sense. For example, if T € L(P(R),P(R)) is the differentiation
map defined earlier in this section and S € L(P(R),P(R)) is the mul-
tiplication by x? map defined earlier in this section, then

((ST)p)(x) = x’p'(x) but ((TS)p)(x) = x*p’(x) + 2xp(x).

In other words, multiplying by x? and then differentiating is not the
same as differentiating and then multiplying by x?.

Null Spaces and Ranges

For T € L(V,W), the null space of T, denoted null T, is the subset
of V consisting of those vectors that T maps to O:

nullT ={veV:Tv =0}

Let’s look at a few examples from the previous section. In the dif-
ferentiation example, we defined T € L(P(R),P(R)) by Tp = p’. The

Some mathematicians
use the term kernel
instead of null space.
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only functions whose derivative equals the zero function are the con-
stant functions, so in this case the null space of T equals the set of
constant functions.

In the multiplication by x? example, we defined T € L(P(R),P(R))
by (Tp)(x) = x2p(x). The only polynomial p such that x2p(x) = 0
for all x € R is the 0 polynomial. Thus in this case we have

null T = {0}.
In the backward shift example, we defined T € L(F*,F®) by
T(Xl,Xz,Xg,. )= (Xz,X3, vl ).

Clearly T (x1, x2,x3,...) equals 0 if and only if x>, x3,... are all 0. Thus
in this case we have

nll T = {(a,0,0,...):a € F}.

The next proposition shows that the null space of any linear map is
a subspace of the domain. In particular, O is in the null space of every
linear map.

3.1 Proposition: If T € £L(V,W), thennull T is a subspace of V.

PROOF: Suppose T € L(V,W). By additivity, we have
T(0)=T(0+0)=T(0)+ T(0),

which implies that T(0) = 0. Thus 0 e null T.
If u,v € null T, then

Tu+v)=Tu+Tv=0+0=0,

and hence u + v € null T. Thus null T is closed under addition.
If u enullT and a € F, then

T(au) =aTu =a0 =0,

and hence au € null T. Thus null T is closed under scalar multiplica-
tion.

We have shown that null T contains 0 and is closed under addition
and scalar multiplication. Thus null T is a subspace of V. ]
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A linear map T:V — W is called injective if whenever u,v € V
and Tu = Tv, we have u = v. The next proposition says that we
can check whether a linear map is injective by checking whether 0 is
the only vector that gets mapped to 0. As a simple application of this
proposition, we see that of the three linear maps whose null spaces we
computed earlier in this section (differentiation, multiplication by x2,
and backward shift), only multiplication by x? is injective.

3.2 Proposition: Let T € L(V,W). Then T is injective if and only
if null T = {0}.

PROOF: First suppose that T is injective. We want to prove that
null T = {0}. We already know that {0} Cc null T (by 3.1). To prove the
inclusion in the other direction, suppose v € null T. Then

T(v)=0=T(0).

Because T is injective, the equation above implies that v = 0. Thus
null T = {0}, as desired.

To prove the implication in the other direction, now suppose that
null T = {0}. We want to prove that T is injective. To do this, suppose
u,v e Vand Tu = Tv. Then

O=Tu-Tv =T(u-v).

Thus u — v is in null T, which equals {0}. Hence u — v = 0, which
implies that u = v. Hence T is injective, as desired. ]

For T € L(V,W), the range of T, denoted range T, is the subset of
W consisting of those vectors that are of the form Tv for some v € V:

rangeT = {Tv:v € V}.

For example, if T € L(P(R),P(R)) is the differentiation map defined by
Tp = p’, thenrange T = P(R) because for every polynomial g € P(R)
there exists a polynomial p € P(R) such that p’ = q.

As another example, if T € L(P(R),P(R)) is the linear map of
multiplication by x? defined by (Tp)(x) = x?p(x), then the range
of T is the set of polynomials of the form a>x? + - - - + aux™, where
az,...,am € R.

The next proposition shows that the range of any linear map is a
subspace of the target space.

Many mathematicians
use the term
one-to-one, which
means the same as
injective.

Some mathematicians
use the word image,
which means the same
as range.
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Many mathematicians
use the term onto,
which means the same
as surjective.

3.3  Proposition: If T € L(V,W), thenrange T is a subspace of W.

PROOF: Suppose T € L(V,W). Then T(0) = 0 (by 3.1), which im-
plies that O € range T.

If wi, wy € range T, then there exist vq,v» € V such that Tv; = w;
and Tv, = w». Thus

T(vi+v2) =Tvi +Tve =W + Wy,

and hence wy +w> € range T. Thusrange T is closed under addition.
If w € range T and a € F, then there exists v € V such that Tv = w.
Thus

T(av) =aTv = aw,

and hence aw € range T. Thus range T is closed under scalar multipli-
cation.

We have shown that range T contains 0 and is closed under addition
and scalar multiplication. Thus range T is a subspace of W. ]

A linear map T:V — W is called surjective if its range equals W.
For example, the differentiation map T € L(P(R),P(R)) defined by
Tp = p’ is surjective because its range equals 7(R). As another exam-
ple, the linear map T € L(P(R),P(R)) defined by (Tp)(x) = x°p(x) is
not surjective because its range does not equal P(R). As a final exam-
ple, you should verify that the backward shift T € L(F®,F*) defined
by

T(x1,X2,X3,...) = (X2,X3,...)

is surjective.

Whether a linear map is surjective can depend upon what we are
thinking of as the target space. For example, fix a positive integer m.
The differentiation map T € L(?y(R), P, (R)) defined by Tp = p’
is not surjective because the polynomial x™ is not in the range of T.
However, the differentiation map T € L(P,,,(R), Py -1(R)) defined by
Tp = p’ is surjective because its range equals 2,1 (R), which is now
the target space.

The next theorem, which is the key result in this chapter, states that
the dimension of the null space plus the dimension of the range of a
linear map on a finite-dimensional vector space equals the dimension
of the domain.
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3.4 Theorem: If V is finite dimensional and T € L(V,W), then
range T is a finite-dimensional subspace of W and

dimV = dimnull T + dimrange T.

PROOF: Suppose that V is a finite-dimensional vector space and
T e L(V,W). Let (U1,...,uUy) beabasis of null T; thus dimnull T = m.
The linearly independent list (u1,...,u;) can be extended to a ba-
sis (U1,..., Um, W1,...,Wy) Of V (by 2.12). Thus dimV = m + n,
and to complete the proof, we need only show that range T is finite
dimensional and dimrangeT = n. We will do this by proving that
(Twy,..., Twy) is a basis of range T.

Letv € V. Because (uy,...,Um,W1,..., Wy) Spans V, we can write

V=aiur+ - +amum +biwi + - - - + bywy,

where the a’s and b’s are in F. Applying T to both sides of this equation,
we get
Tv = b1Twy + - - - + b, Twy,

where the terms of the form Tu; disappeared because each u; € null T..

The last equation implies that (T'wy,..., Twy) spans range T. In par-
ticular, range T is finite dimensional.

To show that (Twy,..., Twy) is linearly independent, suppose that
Cc1,...,cn € Fand

ciTwy+ -+ +cpTwy, =0.

Then

T(ciwy + -+ -+ cpwy) =0,
and hence

CIW1 + -+ CpyWn €nullT.
Because (uU1,...,Uy) sSpans null T, we can write

WL+ -+ CyWp =diur + -+ - + dmUm,

where the d’s are in F. This equation implies that all the ¢’s (and d’s)
are O (because (U1,..., Um,W1,..., Wy) is linearly independent). Thus
(Twy,..., Twy) is linearly independent and hence is a basis for range T,
as desired. [ ]
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Now we can show that no linear map from a finite-dimensional vec-
tor space to a “smaller” vector space can be injective, where “smaller”
is measured by dimension.

3.5 Corollary: If V and W are finite-dimensional vector spaces such
that dimV > dim W, then no linear map from V to W is injective.

PROOF: Suppose V and W are finite-dimensional vector spaces such
that dimV > dimW. Let T € L(V,W). Then

dimnull T = dimV — dimrange T
> dimV — dim W
> 0,

where the equality above comes from 3.4. We have just shown that
dimnullT > 0. This means that null T must contain vectors other
than 0. Thus T is not injective (by 3.2). ]

The next corollary, which is in some sense dual to the previous corol-
lary, shows that no linear map from a finite-dimensional vector space
to a “bigger” vector space can be surjective, where “bigger” is measured
by dimension.

3.6 Corollary: If V and W are finite-dimensional vector spaces such
that dimV < dim W, then no linear map from V to W is surjective.

PROOF: Suppose V and W are finite-dimensional vector spaces such
thatdimV <dimW. Let T € L(V,W). Then

dimrange T = dimV — dimnull T
<dimV
< dimWw,

where the equality above comes from 3.4. We have just shown that
dimrange T < dim W. This means that range T cannot equal W. Thus
T is not surjective. u

The last two corollaries have important consequences in the theory
of linear equations. To see this, fix positive integers m and n, and let
ajxkc€Fforj=1,...,mandk =1,...,n. Define T: F" — F™ by
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n n
T(X1,..0yXn) = (D Q1kXky ey D, AmkXk)-
k=1 k=1
Now consider the equation Tx = 0 (where x € F" and the 0 here is
the additive identity in F, namely, the list of length m consisting of
all 0’s). Letting x = (x1,...,Xyn), we can rewrite the equation Tx = 0
as a system of homogeneous equations:

n

Z arxxx =0
k=1

M=

aAmxXk = 0.

k=1

We think of the a’s as known; we are interested in solutions for the
variables x1,...,x5,. Thus we have m equations and »n variables. Obvi-
ously x; = - - - = x,, = 0 is a solution; the key question here is whether
any other solutions exist. In other words, we want to know if null T is
strictly bigger than {0}. This happens precisely when T is not injective
(by 3.2). From 3.5 we see that T is not injective if n > m. Conclusion:
a homogeneous system of linear equations in which there are more
variables than equations must have nonzero solutions.

With T as in the previous paragraph, now consider the equation
Tx = c, where ¢ = (¢1,...,cm) € F™. We can rewrite the equation
Tx = c as a system of inhomogeneous equations:

n

z apkXk =Ci
k=1

n

z Am,kXk = Cm-

k=1
As before, we think of the a’s as known. The key question here is
whether for every choice of the constant terms ci,...,c, € F, there
exists at least one solution for the variables x1, ..., xy,. In other words,
we want to know whether range T equals F™. From 3.6 we see that T
is not surjective if n < m. Conclusion: an inhomogeneous system of
linear equations in which there are more equations than variables has
no solution for some choice of the constant terms.

Homogeneous, in this
context, means that the
constant term on the
right side of each
equation equals 0.

These results about
homogeneous systems
with more variables
than equations and
inhomogeneous
systems with more
equations than
variables are often
proved using Gaussian
elimination. The
abstract approach
taken here leads to
cleaner proofs.



48

CHAPTER 3. Linear Maps

The Matrix of a Linear Map

We have seen that if (v1,...,vy) isabasisof Vand T:V — W is
linear, then the values of Tvi,...,Tv, determine the values of T on
arbitrary vectors in V. In this section we will see how matrices are used
as an efficient method of recording the values of the Tv;’s in terms of
a basis of W.

Let m and n denote positive integers. An m-by-n matrix is a rect-
angular array with m rows and n columns that looks like this:

ai, e ailn
3.7

am,I P am’n

Note that the first index refers to the row number and the second in-
dex refers to the column number. Thus a3 refers to the entry in the
third row, second column of the matrix above. We will usually consider
matrices whose entries are elements of F.

Let T € L(V,W). Suppose that (v1,...,Vvy) is a basis of V and
(W1,...,Wy) is a basis of W. For each k = 1,...,n, we can write Tv
uniquely as a linear combination of the w’s:

3.8 Tvy = aikwi + -+ admkWm,

where a;x € F for j = 1,...,m. The scalars a; completely determine
the linear map T because a linear map is determined by its values on
a basis. The m-by-n matrix 3.7 formed by the a’s is called the matrix
of T with respect to the bases (v1,...,vy) and (wy, ..., Wy,); we denote
it by

M(T, (Vv1,...,vn), (W1, ...,Wm)).

If the bases (vq1,...,v,) and (wy,...,Wy,,) are clear from the context
(for example, if only one set of bases is in sight), we write just M(T)
instead of M(T, (V1,...,Vn), (W1,...,Wm)).

As an aid to remembering how M (T) is constructed from T, you
might write the basis vectors vi,...,v;, for the domain across the top
and the basis vectors wi,..., Wy, for the target space along the left, as
follows:
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Vi - Vk - Vn
w1 alk
W Am,k

Note that in the matrix above only the k™™ column is displayed (and thus
the second index of each displayed a is k). The k™ column of M(T)
consists of the scalars needed to write TV as a linear combination of
the w’s. Thus the picture above should remind you that Tvy is retrieved
from the matrix M(T) by multiplying each entry in the k™ column by
the corresponding w from the left column, and then adding up the
resulting vectors.

If T is a linear map from F" to F™, then unless stated otherwise you
should assume that the bases in question are the standard ones (where
the k'™ basis vector is 1 in the k' slot and 0 in all the other slots). If
you think of elements of F™ as columns of 1 numbers, then you can
think of the k™ column of M(T) as T applied to the k™ basis vector.
For example, if T € £(F?,F3) is defined by

T(x,y)=(x+3y,2x+5y,7x +9y),

then T(1,0) = (1,2,7) and T(0,1) = (3,5,9), so the matrix of T (with
respect to the standard bases) is the 3-by-2 matrix

1 3
2 5
7 9

Suppose we have bases (vi,...,v,) of V and (wq,..., W) of W.
Thus for each linear map from V to W, we can talk about its matrix
(with respect to these bases, of course). Is the matrix of the sum of two
linear maps equal to the sum of the matrices of the two maps?

Right now this question does not make sense because, though we
have defined the sum of two linear maps, we have not defined the sum
of two matrices. Fortunately the obvious definition of the sum of two
matrices has the right properties. Specifically, we define addition of

matrices of the same size by adding corresponding entries in the ma-
trices:

With respect to any
choice of bases, the
matrix of the 0 linear
map (the linear map
that takes every vector
to 0) consists of all 0’s.
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ain .. Am bl,l bl,n
+
am‘l " am,n bm,l P bm,n
ay + b1,1 P aAin + bl,n
am,]_ + bm’]_ s am‘n + bm’n

You should verify that with this definition of matrix addition,
3.9 M(T +8) =M(T) + M(S)

whenever T,S € L(V,W).

Still assuming that we have some bases in mind, is the matrix of a
scalar times a linear map equal to the scalar times the matrix of the
linear map? Again the question does not make sense because we have
not defined scalar multiplication on matrices. Fortunately the obvious
definition again has the right properties. Specifically, we define the
product of a scalar and a matrix by multiplying each entry in the matrix
by the scalar:

ailr .. Ain cay1 ... Cdin

aAm1 - Amn cami ... CaAmn

You should verify that with this definition of scalar multiplication on
matrices,

3.10 M(cT) = cM(T)

wheneverc e Fand T € L(V,W).

Because addition and scalar multiplication have now been defined
for matrices, you should not be surprised that a vector space is about
to appear. We need only a bit of notation so that this new vector space
has a name. The set of all m-by-n matrices with entries in F is denoted
by Mat(m, n,F). You should verify that with addition and scalar mul-
tiplication defined as above, Mat(m,n,F) is a vector space. Note that
the additive identity in Mat(m, n,F) is the m-by-n matrix all of whose
entries equal 0.

Suppose (vq,...,Vvy) is abasis of V and (wq,..., Wy, ) is abasis of W.
Suppose also that we have another vector space U and that (ug,..., up)



The Matrix of a Linear Map 51
is a basis of U. Consider linear maps S: U — V and T: V — W. The
composition TS is a linear map from U to W. How can M(TS) be
computed from M(T) and M(S)? The nicest solution to this question
would be to have the following pretty relationship:

3.11 M(TS) = M(T)M(S).
So far, however, the right side of this equation does not make sense
because we have not yet defined the product of two matrices. We will
choose a definition of matrix multiplication that forces the equation
above to hold. Let’s see how to do this.
Let
an aAin bl,l . bl,p
M(T) = and M(S) = :
am,1 Amm buna bn,p
For k € {1,...,p}, we have
n
TSur =T( Z br,kvr)
r=1
n
= Z by Tvy
r=1
n m
= Z by k Z AjrWj
r=1 j=1
m n
= Z ( Z aj,rbr,k)wj-
j=1 r=1
Thus M(TS) is the m-by-p matrix whose entry in row j, column k
equals X', aj by k.
Now it’s clear how to define matrix multiplication so that 3.11 holds.  You probably learned

Namely, if A is an m-by-n matrix with entries a; and B is an n-by-p
matrix with entries bj, then AB is defined to be the m-by-p matrix
whose entry in row j, column k, equals

n
z aj,ybr_k.
r=1

In other words, the entry in row j, column k, of AB is computed by
taking row j of A and column k of B, multiplying together correspond-
ing entries, and then summing. Note that we define the product of two

this definition of matrix
multiplication in an
earlier course, although
you may not have seen
this motivation for it.
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You should find an
example to show that
matrix multiplication is
not commutative. In
other words, AB is not
necessarily equal to BA,
even when both are
defined.

matrices only when the number of columns of the first matrix equals
the number of rows of the second matrix.

As an example of matrix multiplication, here we multiply together
a 3-by-2 matrix and a 2-by-4 matrix, obtaining a 3-by-4 matrix:

1 2 10 7 4 1
3 4 [gig—Bl]= 26 19 12 5
5 6 42 31 20 9
Suppose (v1,...,Vvy)isabasisof V. If v € V, then there exist unique
scalars bq,..., b, such that
3.12 v =bivi+---+byvy.

The matrix of v, denoted M (v), is the n-by-1 matrix defined by

b,
3.13 M(v) = :

by
Usually the basis is obvious from the context, but when the basis needs
to be displayed explicitly use the notation M (v, (vy,...,V,)) instead
of M(v).

For example, the matrix of a vector x € F" with respect to the stan-
dard basis is obtained by writing the coordinates of x as the entries in
an n-by-1 matrix. In other words, if x = (x1,...,x,) € F", then

X1
M(x) =
Xn

The next proposition shows how the notions of the matrix of a linear
map, the matrix of a vector, and matrix multiplication fit together. In
this proposition M (Tv) is the matrix of the vector Tv with respect to
the basis (wyq, ..., w,,) and M(v) is the matrix of the vector v with re-

spect to the basis (v1,...,Vvy), whereas M(T) is the matrix of the linear
map T with respect to the bases (vy,...,vy) and (w1, ..., Wy).

3.14 Proposition: Suppose T € L(V,W) and (v1,...,Vyn) is a basis
of V and (wy,..., W) Is a basis of W. Then

M(Tv) = M(T)M(v)

for everyv € V.
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PROOF: Let
al . aAin
3.15 M(T) =
am,l e am’n
This means, we recall, that
m
3.16 Tvi= > ajxw;
j=1

for each k. Let v be an arbitrary vector in V, which we can write in the
form 3.12. Thus M(v) is given by 3.13. Now

Tv = b1Tvi +-- -+ byTvy

m m
= bl z ajiw; +---+ bn z ajnW;j
Jj=1 J=1

Mz

(ajibr + -+ +ajnbn)wj,

Jj=1

where the first equality comes from 3.12 and the second equality comes
from 3.16. The last equation shows that M(T+v), the m-by-1 matrix of
the vector Tv with respect to the basis (wy,...,wy,), is given by the
equation
aiiby + -+ +ainby
M(Tv) = :
am,lbl R am,nbn

This formula, along with the formulas 3.15 and 3.13 and the definition
of matrix multiplication, shows that M(Tv) = M(T)M(v). [

Invertibility

Alinear map T € L(V, W) is called invertible if there exists a linear
map S € L(W,V) such that ST equals the identity map on V and TS
equals the identity map on W. A linear map S € L(W,V) satisfying
ST =1and TS = I is called an inverse of T (note that the first I is the
identity map on V and the second I is the identity map on W).

If S and S’ are inverses of T, then
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S=SI=8(TS")=(ST)S' =1S" =S,

so S = S’. In other words, if T is invertible, then it has a unique
inverse, which we denote by T-!. Rephrasing all this once more, if
T € L£L(V,W) is invertible, then T~! is the unique element of £(W,V)
such that T~!'T = I and TT~! = I. The following proposition charac-
terizes the invertible linear maps.

3.17 Proposition: A linear map is invertible if and only if it is injec-
tive and surjective.

PROOF: Suppose T € L(V,W). We need to show that T is invertible
if and only if it is injective and surjective.

First suppose that T is invertible. To show that T is injective, sup-
pose that u,v € Vand Tu = Tv. Then

u=T"YTu) =T HTv) =,

so u = v. Hence T is injective.

We are still assuming that T is invertible. Now we want to prove
that T is surjective. To do this, let w € W. Then w = T(T~'w), which
shows that w is in the range of T. Thus range T = W, and hence T is
surjective, completing this direction of the proof.

Now suppose that T is injective and surjective. We want to prove
that T is invertible. For each w € W, define Sw to be the unique ele-
ment of V such that T(Sw) = w (the existence and uniqueness of such
an element follow from the surjectivity and injectivity of T). Clearly
TS equals the identity map on W. To prove that ST equals the identity
map on V,let v € V. Then

T(STv) =(TS)(Tv) =1(Tv) =Tv.

This equation implies that STv = v (because T is injective), and thus
ST equals the identity map on V. To complete the proof, we need to
show that S is linear. To do this, let w;, w» € W. Then

T(Swy +Swy) =T(Swy) + T(Swa) = w1 + wo.

Thus Sw; + Sw» is the unique element of V that T maps to wi +w». By
the definition of S, this implies that S(w; + w2) = Sw; + Swy. Hence
S satisfies the additive property required for linearity. The proof of
homogeneity is similar. Specifically, if w € W and a € F, then
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T(aSw) =aT(Sw) = aw.

Thus aSw is the unique element of V that T maps to aw. By the
definition of S, this implies that S(aw) = aSw. Hence S is linear, as
desired. [ ]

Two vector spaces are called isomorphic if there is an invertible
linear map from one vector space onto the other one. As abstract vector
spaces, two isomorphic spaces have the same properties. From this
viewpoint, you can think of an invertible linear map as a relabeling of
the elements of a vector space.

If two vector spaces are isomorphic and one of them is finite dimen-
sional, then so is the other one. To see this, suppose that V and W
are isomorphic and that T € L£(V,W) is an invertible linear map. If V
is finite dimensional, then so is W (by 3.4). The same reasoning, with
T replaced with T~! € £(W,V), shows that if W is finite dimensional,
then so is V. Actually much more is true, as the following theorem
shows.

3.18 Theorem: Two finite-dimensional vector spaces are isomorphic
if and only if they have the same dimension.

PROOF: First suppose V and W are isomorphic finite-dimensional
vector spaces. Thus there exists an invertible linear map T from V
onto W. Because T is invertible, we have null T = {0} and range T = W.
Thus dimnull T = 0 and dimrange T = dim W. The formula

dimV = dimnull T + dimrange T

(see 3.4) thus becomes the equation dimV = dim W, completing the
proof in one direction.

To prove the other direction, suppose V and W are finite-dimen-
sional vector spaces with the same dimension. Let (vq,...,Vvy) be a
basis of V and (wy,...,w;) be a basis of W. Let T be the linear map
from V to W defined by

Taivi+ - --+apvy) =a1wi+ -+ + anpWn.

Then T is surjective because (wy,...,wy) spans W, and T is injective
because (wq,..., W) islinearly independent. Because T is injective and

The Greek word isos
means equal; the Greek
word morph means
shape. Thus
isomorphic literally
means equal shape.
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Because every
finite-dimensional
vector space is
isomorphic to some F",
why bother with
abstract vector spaces?
To answer this
question, note that an
investigation of F"
would soon lead to
vector spaces that do
not equal F". For
example, we would
encounter the null
space and range of
linear maps, the set of
matrices Mat(n,n,F),
and the polynomials
P, (F). Though each of
these vector spaces is
isomorphic to some
F™, thinking of them
that way often adds
complexity but no new
insight.

surjective, it is invertible (see 3.17), and hence V and W are isomorphic,
as desired. [

The last theorem implies that every finite-dimensional vector space
isisomorphic to some F". Specifically, if V is a finite-dimensional vector
space and dimV = n, then V and F" are isomorphic.

If (vi1,...,vy) is abasis of V and (wy,...,w,,) is a basis of W, then
foreach T € £(V,W), we have a matrix M(T) € Mat(m, n,F). In other
words, once bases have been fixed for V and W, M becomes a function
from L£(V,W) to Mat(m, n,F). Notice that 3.9 and 3.10 show that M is
a linear map. This linear map is actually invertible, as we now show.

3.19 Proposition: Suppose that (vi,...,Vvy) is a basis of V and
(W1,---, W) is a basis of W. Then M is an invertible linear map be-
tween L(V,W) and Mat(m,n,F).

PROOF: We have already noted that M is linear, so we need only
prove that M is injective and surjective (by 3.17). Both are easy. Let’s
begin with injectivity. If T € L£L(V,W) and M(T) = 0, then Tvy = 0
for k = 1,...,n. Because (vi,...,Vy) is a basis of V, this implies that
T = 0. Thus M is injective (by 3.2).

To prove that M is surjective, let

all ain

Am,1 Am,n

be a matrix in Mat(m, n,F). Let T be the linear map from V to W such
that

m
Tvi= > ajxw,
j=1
for k = 1,...,n. Obviously M(T) equals A, and so the range of M
equals Mat(m, n,F), as desired. [

An obvious basis of Mat(m, n,F) consists of those m-by-n matrices
that have 0 in all entries except for a 1 in one entry. There are mn such
matrices, so the dimension of Mat(m, n,F) equals mn.

Now we can determine the dimension of the vector space of linear
maps from one finite-dimensional vector space to another.
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3.20 Proposition: If V and W are finite dimensional, then L(V,W)
is finite dimensional and

dim £L(V, W) = (dimV)(dim W).

PROOF: This follows from the equation dimMat(m,n,F) = mn,
3.18, and 3.19. n

A linear map from a vector space to itself is called an operator. If
we want to specify the vector space, we say that alinearmap T:V — V
is an operator on V. Because we are so often interested in linear maps
from a vector space into itself, we use the notation £(V) to denote the
set of all operators on V. In other words, £L(V) = L(V,V).

Recall from 3.17 that a linear map is invertible if it is injective and
surjective. For a linear map of a vector space into itself, you might
wonder whether injectivity alone, or surjectivity alone, is enough to
imply invertibility. On infinite-dimensional vector spaces neither con-
dition alone implies invertibility. We can see this from some examples
we have already considered. The multiplication by x? operator (from
P(R) to itself) is injective but not surjective. The backward shift (from
F* to itself) is surjective but not injective. In view of these examples,
the next theorem is remarkable—it states that for maps from a finite-
dimensional vector space to itself, either injectivity or surjectivity alone
implies the other condition.

3.21 Theorem: Suppose V is finite dimensional. If T € L(V), then
the following are equivalent:
(@) T is invertible;
(b) T is injective;
(c) T is surjective.
PROOF: Suppose T € L(V). Clearly (a) implies (b).

Now suppose (b) holds, so that T is injective. Thus nullT = {0}
(by 3.2). From 3.4 we have

dimrange T = dimV — dimnull T
=dimV,

which implies that range T equals V (see Exercise 11 in Chapter 2). Thus
T is surjective. Hence (b) implies (c).

The deepest and most
important parts of
linear algebra, as well
as most of the rest of
this book, deal with
operators.
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Now suppose (c) holds, so that T is surjective. Thus rangeT = V.
From 3.4 we have

dimnull T = dimV — dimrange T
= 0,

which implies that null T equals {0}. Thus T is injective (by 3.2), and
so T is invertible (we already knew that T was surjective). Hence (c)
implies (a), completing the proof. [
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Exercises

Show that every linear map from a one-dimensional vector space
to itself is multiplication by some scalar. More precisely, prove
thatif dimV =1 and T € L(V,V), then there exists a € F such
that Tv = av forallv € V.

Give an example of a function f: R? — R such that
flav) =af(v)
for all a € R and all v € R? but f is not linear.

Suppose that V is finite dimensional. Prove that any linear map
on a subspace of V can be extended to a linear map on V. In
other words, show that if U is a subspace of Vand S € L(U,W),
then there exists T € L(V,W) such that Tu = Su for all u € U.

Suppose that T is a linear map from V to F. Prove thatif u € V
is not in null T, then

V=nullT & {au:a € F}.

Suppose that T € L(V, W) is injective and (Vvq,...,Vy) is linearly
independent in V. Prove that (Tvy,..., Tv,) is linearly indepen-
dent in W.

Prove thatif Sy,..., S, are injective linear maps such that ;... S,
makes sense, then S; ...S), is injective.

Prove that if (vy,...,vy) spans V and T € L(V,W) is surjective,
then (Tvy,...,Tvy,) spans W.

Suppose that V is finite dimensional and that T € L(V,W). Prove
that there exists a subspace U of V such that U nnull T = {0}
and rangeT = {Tu:u € U}.

Prove that if T is a linear map from F* to F? such that
null T = {(x1,x2,x3,Xx4) € F* 1 x1 = 5x7 and x3 = 7x4},

then T is surjective.

Exercise 2 shows that
homogeneity alone is
not enough to imply
that a function is a
linear map. Additivity
alone is also not
enough to imply that a
function is a linear
map, although the
proof of this involves
advanced tools that are
beyond the scope of
this book.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

Prove that there does not exist a linear map from F> to F2 whose
null space equals

{(x1,x2,x3,X4,x5) € F°: x1 = 3x2 and x3 = x4 = Xs}.

Prove that if there exists a linear map on V whose null space and
range are both finite dimensional, then V is finite dimensional.

Suppose that V and W are both finite dimensional. Prove that
there exists a surjective linear map from V onto W if and only if
dimW < dimV.

Suppose that V and W are finite dimensional and that U is a
subspace of V. Prove that there exists T € L£(V,W) such that
nullT = U if and only if dimU = dimV — dim W.

Suppose that W is finite dimensional and T € L(V,W). Prove
that T is injective if and only if there exists § € L(W,V) such
that ST is the identity map on V.

Suppose that V is finite dimensional and T € L(V,W). Prove
that T is surjective if and only if there exists § € £L(W,V) such
that TS is the identity map on W.

Suppose that U and V are finite-dimensional vector spaces and
that S € L(V,W), T € L(U,V). Prove that

dimnull ST < dimnull S + dimnull T.

Prove that the distributive property holds for matrix addition
and matrix multiplication. In other words, suppose A, B, and C
are matrices whose sizes are such that A(B + C) makes sense.
Prove that AB + AC makes sense and that A(B+ C) = AB + AC.

Prove that matrix multiplication is associative. In other words,
suppose A, B, and C are matrices whose sizes are such that
(AB)C makes sense. Prove that A(BC) makes sense and that
(AB)C = A(BC).
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19.

20.

21.

22.

23.

24.

25.

Suppose T € L(F™,F™) and that

aln aA1n
M(T) = : : ,

am,I e am’n
where we are using the standard bases. Prove that
T(x1,...,xn) = (@1aX1+" - ~+Ad1nXn, .-, Am1 X1+ - - +AmnXn)

for every (x1,...,x5) € F.

Suppose (v1,...,Vvy) is a basis of V. Prove that the function
T:V — Mat(n,1,F) defined by

Tv = M(v)

is an invertible linear map of V onto Mat(n, 1,F); here M(v) is
the matrix of v € V with respect to the basis (v1,...,v,).

Prove that every linear map from Mat(n, 1,F) to Mat(m, 1,F) is
given by a matrix multiplication. In other words, prove that if
T € L(Mat(n,1,F),Mat(m, 1,F)), then there exists an m-by-n
matrix A such that TB = AB for every B € Mat(n, 1,F).

Suppose that V is finite dimensional and S, T € L(V). Prove that
ST is invertible if and only if both § and T are invertible.

Suppose that V is finite dimensional and S, T € L£(V). Prove that
ST=Iifandonlyif TS = 1.

Suppose that V is finite dimensional and T € £(V). Prove that
T is a scalar multiple of the identity if and only if ST = TS for
every S € L(V).

Prove that if V is finite dimensional with dimV > 1, then the set
of noninvertible operators on V is not a subspace of £(V).

This exercise shows
that T has the form
promised on page 39.

11:45 am, Jan 11, 2005
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26.

Suppose n is a positive integer and a;; € F for i,j = 1,...,n.
Prove that the following are equivalent:

(a) The trivial solution x; = - - - = x;; = 0 is the only solution
to the homogeneous system of equations

n
Z ay kXk = 0
k=1

M=

anikXk = 0.
k

Il
—

(b)  Forevery cy,...,cn €F, there exists a solution to the sys-
tem of equations

n

> arkxk =1
k=1

n
z An kXk = Cn-
k=1

Note that here we have the same number of equations as vari-
ables.



