
Chapter 6

Graphs

6.1 Graphs

In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a
graph. Many situations in the applications of discrete mathematics may be modeled by the use
of a graph, and many algorithms have their most natural description in terms of graphs. It is for
this reason that graphs are important to the computer scientist. Graph theory is an ideal subject
for developing a deeper understanding of proof by induction because induction, especially strong
induction, seems to enter into the majority of proofs in graph theory.

Exercise 6.1-1 In Figure 6.1, you see a stylized map of some cities in the eastern United
States (Boston, New York, Pittsburgh, Cincinnati, Chicago, Memphis, New Orleans,
Atlanta, Washington DC, and Miami). A company has major offices with data pro-
cessing centers in each of these cities, and as its operations have grown, it has leased
dedicated communication lines between certain pairs of these cities to allow for effi-
cient communication among the computer systems in the various cities. Each grey
dot in the figure stands for a data center, and each line in the figure stands for a
dedicated communication link. What is the minimum number of links that could be
used in sending a message from B (Boston) to NO (New Orleans)? Give a route with
this number of links.

Exercise 6.1-2 Which city or cities has or have the most communication links emanating
from them?

Exercise 6.1-3 What is the total number of communication links in the figure?

The picture in Figure 6.1 is a drawing of what we call a “graph”. A graph consists of a set
of vertices and a set of edges with the property that each edge has two (not necessarily different)
vertices associated with it and called its endpoints. We say the edge joins the endpoints, and
we say two endpoints are adjacent if they are joined by an edge. When a vertex is an endpoint
of an edge, we say the edge and the vertex are incident. Several more examples of graphs are
given in Figure 6.2. To draw a graph, we draw a point (in our case a grey circle) in the plane
for each vertex, and then for each edge we draw a (possibly curved) line between the points that
correspond to the endpoints of the edge. The only vertices that may be touched by the line
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Figure 6.1: A stylized map of some eastern US cities.

B

NY

W

A

MI

NO

ME

CI

P

CH

representing an edge are the endpoints of the edge. Notice that in graph (d) of Figure 6.2 we
have three edges joining the vertices marked 1 and 2 and two edges joining the vertices marked 2
and 3. We also have one edge that joins the vertex marked 6 to itself. This edge has two identical
endpoints. The graph in Figure 6.1 and the first three graphs in Figure 6.2 are called simple
graphs. A simple graph is one that has at most one edge joining each pair of distinct vertices, and
no edges joining a vertex to itself.1 You’ll note in Figure 6.2 that we sometimes label the vertices
of the graph and we sometimes don’t. We label the vertices when we want to give them meaning,

1The terminology of graph theory has not yet been standardized, because it is a relatively young subject. The
terminology we are using here is the most popular terminology in computer science, but some graph theorists
would reserve the word graph for what we have just called a simple graph and would use the word multigraph for
what we called a graph.

Figure 6.2: Some examples of graphs
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as in Figure 6.1 or when we know we will want to refer to them as in graph (d) of Figure 6.2.
We say that graph (d) in Figure 6.2 has a “loop” at vertex 6 and multiple edges joining vertices
1 and 2 and vertices 2 and 3. More precisely, an edge that joins a vertex to itself is called a loop
and we say we have multiple edges between vertices x and y if there is more than one edge joining
x and y. If there is an edge from vertex x to vertex y in a simple graph, we denote it by {x, y}.
Thus {P, W} denotes the edge between Pittsburgh and Washington in Figure 6.1 Sometimes it
will be helpful to have a symbol to stand for a graph. We use the phrase “Let G = (V, E)” as a
shorthand for “Let G stand for a graph with vertex set V and edge set E.”

The drawings in parts (b) and (c) of Figure 6.2 are different drawings of the same graph. The
graph consists of five vertices and one edge between each pair of distinct vertices. It is called
the complete graph on five vertices and is denoted by K5. In general, a complete graph on n
vertices is a graph with n vertices that has an edge between each two of the vertices. We use
Kn to stand for a complete graph on n vertices. These two drawings are intended to illustrate
that there are many different ways we can draw a given graph. The two drawings illustrate two
different ideas. Drawing (b) illustrates the fact that each vertex is adjacent to each other vertex
and suggests that there is a high degree of symmetry. Drawing (c) illustrates the fact that it is
possible to draw the graph so that only one pair of edges crosses; other than that the only places
where edges come together are at their endpoints. In fact, it is impossible to draw K5 so that no
edges cross, a fact that we shall explain later in this chapter.

In Exercise 6.1-1 the links referred to are edges of the graph and the cities are the vertices of
the graph. It is possible to get from the vertex for Boston to the vertex for New Orleans by using
three communication links, namely the edge from Boston to Chicago, the edge from Chicago to
Memphis, and the edge from Memphis to New Orleans. A path in a graph is an alternating
sequence of vertices and edges such that

• it starts and ends with a vertex, and

• each edge joins the vertex before it in the sequence to the vertex after it in the sequence.2

If a is the first vertex in the path and b is the last vertex in the path, then we say the path is a path
from a to b. Thus the path we found from Boston to New Orleans is B{B, CH}CH{CH, ME}, ME{ME, NO}NO.
Because the graph is simple, we can also use the shorter notation B, CH, ME, NO to describe
the same path, because there is exactly one edge between successive vertices in this list. The
length of a path is the number of edges it has, so our path from Boston to New Orleans has length
3. The length of a shortest path between two vertices in a graph is called the distance between
them. Thus the distance from Boston to New Orleans in the graph of Figure 6.1 is three. By
inspecting the map we see that there is no shorter path from Boston to New Orleans. Notice
that no vertex or edge is repeated on our path from Boston to New Orleans. A path is called a
simple path if it has no repeated vertices or edges.3

The degree of a vertex

In Exercise 6.1-2, the city with the most communication links is Atlanta (A). We say the vertex
A has “degree” 6 because 6 edges emanate from it. More generally the degree of a vertex in a

2Again, the terminology we are using here is the most popular terminology in computer science, but what we
just defined as a path would be called a walk by most graph theorists.

3Most graph theorists reserve the word path for what we are calling a simple path, but again we are using the
language most popular in computer science.
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graph is the number of times it is incident with edges of the graph; that is, the degree of a vertex
x is the number of edges from x to other vertices plus twice the number of loops at vertex x. In
graph (d) of Figure 6.2 vertex 2 has degree 5, and vertex 6 has degree 4. In a graph like the one
in Figure 6.1, it is somewhat difficult to count the edges just because you can forget which ones
you’ve counted and which ones you haven’t.

Exercise 6.1-4 Is there a relationship between the number of edges in a graph and the
degrees of the vertices? If so, find it. Hint: computing degrees of vertices and
number of edges in some relatively small examples of graphs should help you discover
a formula. To find one proof, imagine a wild west movie in which the villain is hiding
under the front porch of a cabin. A posse rides up and is talking to the owner of the
cabin, and the bad guy can just barely look out from underneath the porch and count
the horses hoofs. If he counts the hooves accurately, what can he do to figure out the
number of horses, and thus presumably the size of the posse?

In Exercise 6.1-4, examples such as those in Figure 6.2 convince us that the sum of the degrees
of the vertices is twice the number of edges. How can we prove this? One way is to count the
total number of incidences between vertices and edges (similar to counting the horses hooves in
the hint). Each edge has exactly two incidences, so the total number of incidences is twice the
number of edges. But the degree of a vertex is the number of incidences it has, so the sum of the
degrees of the vertices is also the total number of of incidences. Therefore the sum of the degrees
of the vertices of a graph is twice the number of edges. Thus to compute the number of edges of
a graph, we can sum the degrees of the vertices and divide by two. (In the case of the hint, the
horses correspond to edges and the hooves to endpoints.) There is another proof of this result
that uses induction.

Theorem 6.1 Suppose a graph has a finite number of edges. Then the sum of the degrees of the
vertices is twice the number of edges.

Proof: We induct on the number of edges of the graph. If a graph has no edges, then each
vertex has degree zero and the sum of the degrees is zero, which is twice the number of edges.
Now suppose e > 0 and the theorem is true whenever a graph has fewer than e edges. Let G be
a graph with e edges and let ε be an edge of G.4 Let G′ be the graph (on the same vertex set
as G) we get by deleting ε from the edge set E of G. Then G has e − 1 edges, and so by our
inductive hypothesis, the sum of the degrees of the vertices of G′ is twice e − 1. Now there are
two possible cases. Either e was a loop, in which case one vertex of G′ has degree two less in
G′ than it has in G. Otherwise e has two distinct endpoints, in which case exactly two vertices
of G′ have degree one less than their degree in G. Thus in both cases the sum of the degrees of
the vertices in G′ is two less than the sum of the degrees of the vertices in G, so the sum of the
degrees of the vertices in G is (2e − 2) + 2 = 2e. Thus the truth of the theorem for graphs with
e− 1 edges implies the truth of the theorem for graphs with e edges. Therefore, by the principle
of mathematical induction, the theorem is true for a graph with any finite number of edges.

There are a couple instructive points in the proof of the theorem. First, since it wasn’t clear
from the outset whether we would need to use strong or weak induction, we made the inductive

4Since it is very handy to have e stand for the number of edges of a graph, we will use Greek letters such as
epsilon (ε) to stand for edges of a graph. It is also handy to use v to stand for the number of vertices of a graph,
so we use other letters near the end of the alphabet, such as w, x, y,and z to stand for vertices.
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hypothesis we would normally make for strong induction. However in the course of the proof, we
saw that we only needed to use weak induction, so that is how we wrote our conclusion. This is
not a mistake, because we used our inductive hypothesis correctly. We just didn’t need to use it
for every possible value it covered.

Second, instead of saying that we would take a graph with e − 1 edges and add an edge to
get a graph with e edges, we said that we would take a graph with e edges and remove an edge
to get a graph with e− 1 edges. This is because we need to prove that the result holds for every
graph with e edges. By using the second approach we avoided the need to say that “every graph
with e edges may be built up from a graph with e − 1 edges by adding an edge,” because in the
second approach we started with an arbitrary graph on e edges. In the first approach, we would
have proved that the theorem was true for all graphs that could be built from an e−1 edge graph
by adding an edge, and we would have had to explicitly say that every graph with e edges could
be built in this way.

In Exercise 3 the sum of the degrees of the vertices is (working from left to right)

2 + 4 + 5 + 6 + 5 + 2 + 5 + 4 + 2 = 40,

and so the graph has 20 edges.

Connectivity

All of the examples we have seen so far have a property that is not common to all graphs, namely
that there is a path from every vertex to every other vertex.

Exercise 6.1-5 The company with the computer network in Figure 6.1 needs to reduce
its expenses. It is currently leasing each of the communication lines shown in the
Figure. Since it can send information from one city to another through one or more
intermediate cities, it decides to only lease the minimum number of communication
lines it needs to be able to send a message from any city to any other city by using
any number of intermediate cities. What is the minimum number of lines it needs to
lease? Give two examples of subsets of the edge set with this number of edges that
will allow communication between any two cities and two examples of a subset of the
edge set with this number of edges that will not allow communication between any
two cities.

Some experimentation with the graph convinces us that if we keep eight or fewer edges, there
is no way we can communicate among the cities (we will explain this more precisely later on),
but that there are quite a few sets of nine edges that suffice for communication among all the
cities. In Figure 6.3 we show two sets of nine edges each that allow us to communicate among all
the cities and two sets of nine edges that do not allow us to communicate among all the cities.

Notice that in graphs (a) and (b) it is possible to get from any vertex to any other vertex
by a path. A graph is called connected there is a path between each two vertices of the graph.
Notice that in graph (c) it is not possible to find a path from Atlanta to Boston, for example,
and in graph (d) it is not possible to find a path from Miami to any of the other vertices. Thus
these graphs are not connected; we call them disconnected. In graph (d) we say that Miami is
an isolated vertex.
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Figure 6.3: Selecting nine edges from the stylized map of some eastern US cities.
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We say two vertices are connected if there is a path between them, so a graph is connected
if each two of its vertices are connected. Thus in Graph (c) the vertices for Boston and New
Orleans are connected. The relationship of being connected is an equivalence relation (in the
sense of Section 1.4). To show this we would have to show that this relationship divides the set
of vertices up into mutually exclusive classes; that is, that it partitions the vertices of the graph.
The class containing Boston, for example is all vertices connected to Boston. If two vertices are
in that set, they both have paths to Boston, so there is a path between them using Boston as an
intermediate vertex. If a vertex x is in the set containing Boston and another vertex y is not, then
they cannot be connected or else the path from y to x and then on to Boston would connect y to
Boston, which would mean y was in the class containing Boston after all. Thus the relation of
being connected partitions the vertex set of the graph into disjoint classes, so it is an equivalence
relation. Though we made this argument with respect to the vertex Boston in the specific case
of graph (c) of Figure 6.3, it is a perfectly general argument that applies to arbitrary vertices
in arbitrary graphs. We call the equivalence relation of “being connected to” the connectivity
relation. There can be no edge of a graph between two vertices in different equivalence classes of
the connectivity relation because then everything in one class would be connected to everything
in the other class, so the two classes would have to be the same. Thus we also end up with a
partition of the edges into disjoint sets. If a graph has edge set E, and C is an equivalence class of
the connectivity relation, then we use E(C) to denote the set of edges whose endpoints are both
in C. Since no edge connects vertices in different equivalence classes, each edge must be in some
set E(C). The graph consisting of an equivalence class C of the connectivity relation together
with the edges E(C) is called a connected component of our original graph. From now on our
emphasis will be on connected components rather than on equivalence classes of the connectivity
relation. Notice that graphs (c) and (d) of Figure 6.3 each have two connected components. In
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graph (c) the vertex sets of the connected components are {NO, ME, CH, CI, P, NY, B} and
{A, W, MI}. In graph (d) the connected components are {NO, ME, CH, B, NY, P, CI, W, A}
and {MI}. Two other examples of graphs with multiple connected components are shown in
Figure 6.4.

Figure 6.4: A simple graph G with three connected components and a graph H with four con-
nected components.

G H

Cycles

In graphs (c) and (d) of Figure 6.3 we see a feature that we don’t see in graphs (a) and (b),
namely a path that leads from a vertex back to itself. A path that starts and ends at the same
vertex is called a closed path. A closed path with at least one edge is called a cycle if, except for
the last vertex, all of its vertices are different. The closed paths we see in graphs (c) and (d) of
Figure 6.3 are cycles. Not only do we say that {NO, ME, CH, B, NY, P, CI, W, A, NO} is a cycle
in in graph (d) of Figure 6.3, but we also say it is a cycle in the graph of Figure 6.1. The way we
distinguish between these situations is to say the cycle {NO, ME, CH, B, NY, P, CI, W, A, NO}
is an induced cycle in Figure 6.3 but not in Figure 6.1. More generally, a graph H is called a
subgraph of the graph G if all the vertices and edges of H are vertices and edges of G. We call H
an induced subgraph of G if every vertex of H is a vertex of G, and every edge of G connecting
vertices of H is an edge of H. Thus the first graph of Figure 6.4 has an induced K4 and an
induced cycle on three vertices.

We don’t normally distinguish which point on a cycle really is the starting point; for example
we consider the cycle {A, W, MI, A} to be the same as the cycle {W, MI, A, W}. Notice that
there are cycles with one edge and cycles with two edges in the second graph of Figure 6.4. We
call a graph G a cycle on n vertices or an n-cycle and denote it by Cn if it has a cycle that
contains all the vertices and edges of G and a path on n vertices and denote it by Pn if it has a
path that contains all the vertices and edges of G. Thus drawing (a) of Figure 6.2 is a drawing
of C4. The second graph of Figure 6.4 has an induced P3 and an induced C2 as subgraphs.

Trees

The graphs in parts (a) and (b) of Figure 6.3 are called trees. We have redrawn them slightly in
Figure 6.5 so that you can see why they are called trees. We’ve said these two graphs are called
trees, but we haven’t given a definition of trees. In the examples in Figure 6.3, the graphs we
have called trees are connected and have no cycles.

Definition 6.1 A connected graph with no cycles is called a tree.
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Figure 6.5: A visual explanation of the name tree.
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Other Properties of Trees

In coming to our definition of a tree, we left out a lot of other properties of trees we could have
discovered by a further analysis of Figure 6.3

Exercise 6.1-6 Given two vertices in a tree, how many distinct simple paths can we find
between the two vertices?

Exercise 6.1-7 Is it possible to delete an edge from a tree and have it remain connected?

Exercise 6.1-8 If G = (V, E) is a graph and we add an edge that joins vertices of V , what
can happen to the number of connected components?

Exercise 6.1-9 How many edges does a tree with v vertices have?

Exercise 6.1-10 Does every tree have a vertex of degree 1? If the answer is yes, explain
why. If the answer is no, try to find additional conditions that will guarantee that a
tree satisfying these conditions has a vertex of degree 1.

For Exercise 6.1-6, suppose we had two distinct paths from a vertex x to a vertex y. They
begin with the same vertex x and might have some more edges in common as in Figure 6.6. Let
w be the last vertex after (or including) x the paths share before they become different. The
paths must come together again at y, but they might come together earlier. Let z be the first
vertex the paths have in common after w. Then there are two paths from w to z that have only
w and z in common. Taking one of these paths from w to z and the other from z to w gives us a
cycle, and so the graph is not a tree. We have shown that if a graph has two distinct paths from
x to y, then it is not a tree. By contrapositive inference, then, if a graph is a tree, it does not
have two distinct paths between two vertices x and y. We state this result as a theorem.

Theorem 6.2 There is exactly one path between each two vertices in a tree.
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Figure 6.6: A graph with multiple paths from x to y.
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Proof: By the definition of a tree, there is at least one path between each two vertices. By
our argument above, there is at most one path between each two vertices. Thus there is exactly
one path.

For Exercise 6.1-7, note that if ε is an edge from x to y, then x, ε, y is the unique path from
x to y in the tree. Suppose we delete ε from the edge set of the tree. If there were still a path
from x to y in the resulting graph, it would also be a path from x to y in the tree, which would
contradict Theorem 6.2. Thus the only possibility is that there is no path between x and y in
the resulting graph, so it is not connected and is therefore not a tree.

For Exercise 6.1-8, if the endpoints are in the same connected component, then the number
of connected components won’t change. If the endpoints of the edge are in different connected
components, then the number of connected components can go down by one. Since an edge has
two endpoints, it is impossible for the number of connected components to go down by more than
one when we add an edge. This paragraph and the previous one lead us to the following useful
lemma.

Lemma 6.3 Removing one edge from the edge set of a tree gives a graph with two connected
components, each of which is a tree.

Proof: Suppose as before the lemma that ε is an edge from x to y. We have seen that the
graph G we get by deleting ε from the edge set of the tree is not connected, so it has at least two
connected components. But adding the edge back in can only reduce the number of connected
compponents by one. Therefore G has exactly two connected components. Since neither has any
cycles, both are trees.

In Exercise 6.1-9, our trees with ten vertices had nine edges. If we draw a tree on two vertices
it will have one edge; if we draw a tree on three vertices it will have two edges. There are two
different looking trees on four vertices as shown in Figure 6.7, and each has three edges. On the

Figure 6.7: Two trees on four vertices.

(a) (b)

basis of these examples we conjecture that a tree on n vertices has n − 1 edges. One approach
to proving this is to try to use induction. To do so, we have to see how to build up every tree
from smaller trees or how to take a tree and break it into smaller ones. Then in either case we
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have to figure out how use the truth of our conjecture for the smaller trees to imply its truth for
the larger trees. A mistake that people often make at this stage is to assume that every tree can
be built from smaller ones by adding a vertex of degree 1. While that is true for finite trees with
more than one vertex (which is the point of Exercise 6.1-10), we haven’t proved it yet, so we can’t
yet use it in proofs of other theorems. Another approach to using induction is to ask whether
there is a natural way to break a tree into two smaller trees. There is: we just showed in Lemma
6.3 that if you remove an edge ε from the edge set of a tree, you get two connected components
that are trees. We may assume inductively that the number of edges of each of these trees is one
less than its number of vertices. Thus if the graph with these two connected components has v
vertices, then it has v − 2 edges. Adding ε back in gives us a graph with v − 1 edges, so except
for the fact that we have not done a base case, we have proved the following theorem.

Theorem 6.4 For all integers v ≥ 1, a tree with v vertices has v − 1 edges.

Proof: If a tree has one vertex, it can have no edges, for any edge would have to connect that
vertex to itself and would thus give a cycle. A tree with two or more vertices must have an edge
in order to be connected. We have shown before the statement of the theorem how to use the
deletion of an edge to complete an inductive proof that a tree with v vertices has v − 1 edges,
and so for all v ≥ 1, a tree with v vertices has v − 1 edges.

Finally, for Exercise 6.1-10 we can now give a contrapositive argument to show that a finite
tree with more than one vertex has a vertex of degree one. Suppose instead that G is a graph
that is connected and all vertices of G have degree two or more. Then the sum of the degrees of
the vertices is at least 2v, and so by Theorem 6.1 the number of edges is at least v. Therefore
by Theorem 6.4 G is not a tree. Then by contrapositive inference, if T is a tree, then T must
have at least one vertex of degree one. This corollary to Theorem 6.4 is so useful that we state
it formally.

Corollary 6.5 A finite tree with more than one vertex has at least one vertex of degree one.

Important Concepts, Formulas, and Theorems

1. Graph. A graph consists of a set of vertices and a set of edges with the property that each
edge has two (not necessarily different) vertices associated with it and called its endpoints.

2. Edge; Adjacent. We say an edge in a graph joins its endpoints, and we say two endpoints
are adjacent if they are joined by an edge.

3. Incident. When a vertex is an endpoint of an edge, we say the edge and the vertex are
incident.

4. Drawing of a Graph. To draw a graph, we draw a point in the plane for each vertex, and
then for each edge we draw a (possibly curved) line between the points that correspond to
the endpoints of the edge. Lines that correspond to edges may only touch the vertices that
are their endpoints.

5. Simple Graph. A simple graph is one that has at most one edge joining each pair of distinct
vertices, and no edges joining a vertex to itself.
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6. Length, Distance. The length of a path is the number of edges. The distance between two
vertices in a graph is the length of a shortest path between them.

7. Loop; Multiple Edges. An edge that joins a vertex to itself is called a loop and we say we
have multiple edges between vertices x and y if there is more than one edge joining x and y.

8. Notation for a Graph. We use the phrase “Let G = (V, E)” as a shorthand for “Let G
stand for a graph with vertex set V and edge set E.”

9. Notation for Edges. In a simple graph we use the notation {x, y} for an edge from x to y.
In any graph, when we want to use a letter to denote an edge we use a Greek letter like ε
so that we can save e to stand for the number of edges of the graph.

10. Complete Graph on n vertices. A complete graph on n vertices is a graph with n vertices
that has an edge between each two of the vertices. We use Kn to stand for a complete
graph on n vertices.

11. Path. We call an alternating sequence of vertices and edges in a graph a path if it starts and
ends with a vertex, and each edge joins the vertex before it in the sequence to the vertex
after it in the sequence.

12. Simple Path. A path is called a simple path if it has no repeated vertices or edges.

13. Degree of a Vertex. The degree of a vertex in a graph is the number of times it is incident
with edges of the graph; that is, the degree of a vertex x is the number of edges from x to
other vertices plus twice the number of loops at vertex x.

14. Sum of Degrees of Vertices. The sum of the degrees of the vertices in a graph with a finite
number of edges is twice the number of edges.

15. Connected. A graph is called connected if there is a path between each two vertices of the
graph. We say two vertices are connected if there is a path between them, so a graph is
connected if each two of its vertices are connected. The relationship of being connected is
an equivalence relation on the vertices of a graph.

16. Connected Component. If C is a subset of the vertex set of a graph, we use E(C) to
stand for the set of all edges both of whose endpoints are in C. The graph consisting of an
equivalence class C of the connectivity relation together with the edges E(C) is called a
connected component of our original graph.

17. Closed Path. A path that starts and ends at the same vertex is called a closed path.

18. Cycle. A closed path with at least one edge is called a cycle if, except for the last vertex,
all of its vertices are different.

19. Tree. A connected graph with no cycles is called a tree.

20. Important Properties of Trees.

(a) There is a unique path between each two vertices in a tree.

(b) A tree on v vertices has v − 1 edges.

(c) Every finite tree with at least two vertices has a vertex of degree one.
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Problems

1. Find the shortest path you can from vertex 1 to vertex 5 in Figure 6.8.

Figure 6.8: A graph.
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2. Find the longest simple path you can from vertex 1 to vertex 5 in Figure 6.8.

3. Find the vertex of largest degree in Figure 6.8. What is it’s degree?

Figure 6.9: A graph with a number of connected components.

4. How many connected components does the graph in Figure 6.9 have?

5. Find all induced cycles in the graph of Figure 6.9.

6. What is the size of the largest induced Kn in Figure 6.9?

7. Find the largest induced Kn (in words, the largest complete subgraph) you can in Fig-
ure 6.8.

8. Find the size of the largest induced Pn in the graph in Figure 6.9.

9. A graph with no cycles is called a forest. Show that if a forest has v vertices, e edges, and
c connected components, then v = e + c.

10. What can you say about a five vertex simple graph in which every vertex has degree four?

11. Find a drawing of K6 in which only three pairs of edges cross.

12. Either prove true or find a counter-example. A graph is a tree if there is one and only one
simple path between each pair of vertices.

13. Is there some number m such that if a graph with v vertices is connected and has m edges,
then it is a tree? If so, what is m in terms of v?



6.1. GRAPHS 275

14. Is there some number m such that a graph on n vertices is a tree if and only if it has m
edges and has no cycles.

15. Suppose that a graph G is connected, but for each edge, deleting that edge leaves a discon-
nected graph. What can you say about G? Prove it.

16. Show that each tree with four vertices can be drawn with one of the two drawings in
Figure 6.7.

17. Draw the minimum number of drawings of trees you can so that each tree with five vertices
has one of those drawings. Explain why you have drawn all possible trees.

18. Draw the minimum number of drawings of trees you can so that each tree with six vertices
is represented by exactly one of those drawings. Explaining why you have drawn all possible
drawings is optional.

19. Find the longest induced cycle you can in Figure 6.8.
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6.2 Spanning Trees and Rooted Trees

Spanning Trees

We introduced trees with the example of choosing a minimum-sized set of edges that would
connect all the vertices in the graph of Figure 6.1. That led us to discuss trees. In fact the kinds
of trees that solve our original problem have a special name. A tree whose edge set is a subset of
the edge set of the graph G is called a spanning tree of G if the tree has exactly the same vertex
set as G. Thus the graphs (a) and (b) of Figure 6.3 are spanning trees of the graph of Figure
6.1.

Exercise 6.2-1 Does every connected graph have a spanning tree? Either give a proof or
a counter-example.

Exercise 6.2-2 Give an algorithm that determines whether a graph has a spanning tree,
finds such a tree if it exists, and takes time bounded above by a polynomial in v and
e, where v is the number of vertices, and e is the number of edges.

For Exercise 6.2-1, if the graph has no cycles but is connected, it is a tree, and thus is its own
spanning tree. This makes a good base step for a proof by induction on the number of cycles of
the graph that every connected graph has a spanning tree. Let c > 0 and suppose inductively that
when a connected graph has fewer than c cycles, then the graph has a spanning tree. Suppose that
G is a graph with c cycles. Choose a cycle of G and choose an edge of that cycle. Deleting that
edge (but not its endpoints) reduces the number of cycles by at least one, and so our inductive
hypothesis implies that the resulting graph has a spanning tree. But then that spanning tree
is also a spanning tree of G. Therefore by the principle of mathematical induction, every finite
connected graph has a spanning tree. We have proved the following theorem.

Theorem 6.6 Each finite connected graph has a spanning tree.

Proof: The proof is given before the statement of the theorem.

In Exercise 6.2-2, we want an algorithm for determining whether a graph has a spanning tree.
One natural approach would be to convert the inductive proof of Theorem 6.6 into a recursive
algorithm. Doing it in the obvious way, however, would mean that we would have to search for
cycles in our graph. A natural way to look for a cycle is to look at each subset of the vertex set
and see if that subset is a cycle of the graph. Since there are 2v subsets of the vertex set, we
could not guarantee that an algorithm that works in this way would find a spanning tree in time
which is big Oh of a polynomial in v and e. In an algorithms course you will learn a much faster
(and much more sophisticated) way to implement this approach. We will use another approach,
describing a quite general algorithm which we can then specialize in several different ways for
different purposes.

The idea of the algorithm is to build up, one vertex at a time, a tree that is a subgraph (not
necessarily an induced subgraph) of the graph G = (V, E). (A subgraph of G that is a tree is
called a subtree of G.) We start with some vertex, say x0. If there are no edges leaving the vertex
and the graph has more than one vertex, we know the graph is not connected and we therefore
don’t have a spanning tree. Otherwise, we can choose an edge ε1 that connects x0 to another
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vertex x1. Thus {x0, x1} is the vertex set of a subtree of G. Now if there are no edges that
connect some vertex in the set {x0, x1} to a vertex not in that set, then {x0, x1} is a connected
component of G. In this case, either G is not connected and has no spanning tree, or it just has
two vertices and we have a spanning tree. However if there is an edge that connects some vertex
in the set {x0, x1} to a vertex not in that set, we can use this edge to continue building a tree.
This suggests an inductive approach to building up the vertex set S of a subtree of our graph
one vertex at a time. For the base case of the algorithm, we let S = {x0}. For the inductive step,
given S, we choose an edge ε that leads from a vertex in S to a vertex in V − S (provided such
an edge exists) and add it to the edge set E′ of the subtree. If no such edge exists, we stop. If
V = S when we stop then E′ is the edge set of a spanning tree. (We can prove inductively that
E′ is the edge set of a tree on S, because adding a vertex of degree one to a tree gives a tree.) If
V �= S when we stop, G is not connected and does not have a spanning tree.

To describe the algorithm a bit more precisely, we give pseudocode.

Spantree(V ,E)
// Assume that V is an array that lists the vertex set of the graph.
// Assume that E is an array with |V | entries, and entry i of E is the set of
// edges incident with the vertex in position i of V .
(1) i = 0;
(2) Choose a vertex x0 in V .
(3) S = {x0}
(4) While there is an edge from a vertex in S to a vertex not in S
(5) i=i+1
(6) Choose an edge εi from a vertex y in S to a vertex xi not in S
(7) S = S ∪ {xi}
(8) E′ = E′ ∪ εi

(9) If i = |V | − 1
(10) return E′

(11) Else
(12) Print "The graph is not connected."

The way in which the vertex xi and the edge εi are chosen was deliberately left vague because
there are several different ways to specify xi and εi that accomplish several different purposes.
However, with some natural assumptions, we can still give a big Oh bound on how long the
algorithm takes. Presumably we will need to consider at most all v vertices of the graph in order
to choose xi, and so assuming we decide whether or not to use a vertex in constant time, this
step of the algorithm will take O(v) time. Presumably we will need to consider at most all e
edges of our graph in order to choose εi, and so assuming we decide whether or not to use an
edge in constant time, this step of the algorithm takes at most O(e) time. Given the generality
of the condition of the while loop that begins in line 4, determining whether that condition is
true might also take O(e) time. Since we repeat the While loop at most v times, all executions
of the While loop should take at most O(ve) time. Since line 9 requires us to compute |V |, it
takes O(v) steps, and all the other lines take constant time. Thus, with the assumptions we have
made, the algorithm takes O(ve + v + e) = O(ve) time.
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Breadth First Search

Notice that algorithm Spantree will continue as long as a vertex in S is connected to a vertex
not in S. Thus when it stops, S will be the vertex set of a connected component of the graph
and E′ will be the edge set of a spanning tree of this connected component. This suggests that
one use that we might make of algorithm Spantree is to find connected components of graphs.
If we want the connected component containing a specific vertex x, then we make this choice of
x0 in Line 2. Suppose this is our goal for the algorithm, and suppose that we also want to make
the algorithm run as quickly as possible. We could guarantee a faster running time if we could
arrange our choice of εi so that we examined each edge no more than some constant number of
times between the start and the end of the algorithm. One way to achieve this is to first use all
edges incident with x0 as εis, then consider all edges incident with x1, using them as εi if we can,
and so on.

We can describe this process inductively. We begin by choosing a vertex x0 and putting
vertex x0 in S and (except for loops or multiple edges) all edges incident with x0 in E′. As we
put edges into E′, we number them, starting with ε1. This creates a list ε1, ε2, . . . of edges. When
we add edge εi to the tree, one of its two vertices is not yet numbered. We number it as xi. Then
given vertices 0 through i, all of whose incident edges we have examined and either accepted
or (permanently) rejected as a member of E′ (or more symbolically, as an εj), we examine the
edges leaving vertex i + 1. For each of these edges that is incident with a vertex not already in
S, we add the edge and that vertex to the tree, numbering the edges and vertices as described
above. Otherwise we reject that edge. Eventually we reach a point where we have examined all
the edges leaving all the vertices in S, and we stop.

To give a pseudocode description of the algorithm, we assume that we are given an array V
that contains the names of the vertices. There are a number of ways to keep track of the edge
set of a graph in a computer. One way is to give a list, called an adjacency list, for each vertex
listing all vertices adjacent to it. In the case of multiple edges, we list each adjacency as many
times as there are edges that give the adjacency. In our pseudocode we implement the idea of
an adjacency list with the array E that gives in position i a list of all locations in the array V of
vertices adjacent in G to vertex V [i].

In our pseudocode we also use an array “Edge” to list the edges of the set we called E′ in
algorithm Spantree, an array “Vertex” to list the positions in V of the vertices in the set S in the
algorithm Spantree, an array “Vertexname” to keep track of the names of the vertices we add to
the set S, and an array “Intree” to keep track of whether the vertex in position i of V is in S.
Because we want our pseudocode to be easily translatable into a computer language, we avoid
subscripts, and use x to stand for the place in the array V that holds the name of the vertex
where we are to start the search, i.e. the vertex x0.

BFSpantree(x,V ,E)
// Assume that V is an array with v entries, the names of the vertices,
// and that x is the location in V of the name of the vertex with which we want
// to start the tree.
// Assume that E is an array with v entries, each a list of the positions
// in V of the names of vertices adjacent to the corresponding entry of V .
(1) i = 0 ; k = 0 ; Intree[x] = 1; Vertex[0] = x; Vertexname[0] = V [x]
(2) While i <= k
(3) i = i + 1
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(4) For each j in the list E[Vertex[i]]
(5) If Intree[j] �= 1
(6) k = k + 1
(7) Edge[k] = {V [Vertex[i]], V [j]}
(8) Intree[j] = 1
(9) Vertex[k] = j
(10) Vertexname[k] = V [j].
(11) Print "Connected component"
(12) return Vertexname[0 : k]
(13) print "Spanning tree edges of connected component"
(14) return Edge[1 : k]

Notice that the pseudocode allows us to deal with loops and multiple edges through the test
whether vertex j is in the tree in Line 5. However the primary purpose of this line is to make
sure that we do not examine edges that point from vertex i back to a vertex that is already in
the tree.

This algorithm requires that we execute the “For” loop that starts in Line 4 once for each
edge incident with vertex i. The “While” loop that starts in Line 2 is executed at most once
for each vertex. Thus we execute the “For” loop at most twice for each edge, and carry out the
other steps of the “While” loop at most once for each vertex, so that the time to carry out this
algorithm is O(V + E).

The algorithm carries out what is known as a “breadth first search”5 of the graph centered at
V [x]. The reason for the phrase “breadth first” is because each time we start to work on a new
vertex, we examine all its edges (thus exploring the graph broadly at this point) before going on
to another vertex. As a result, we first add all vertices at distance 1 from V [x] to S, then all
vertices at distance 2 and so on. When we choose a vertex V [Vertex[k]] to put into the set S
in Line 9, we are effectively labelling it as vertex k. We call k the breadth first number of the
vertex V [j] and denote it as BFN(V [j])6. The breadth first number of a vertex arises twice in
the breadth first search algorithm. The breadth first search number of a vertex is assigned to
that vertex when it is added to the tree, and (see Problem 7) is the number of vertices that have
been previously added. But it then determines when a vertex of the tree is used to add other
vertices to the tree: the vertices are taken in order of their breadth first number for the purpose
of examining all incident edges to see which ones allow us to add new vertices, and thus new
edges, to the tree.

This leads us to one more description of breadth first search. We create a breadth first search
tree centered at x0 in the following way. We put the vertex x0 in the tree and give it breadth first
number zero. Then we process the vertices in the tree in the order of their breadth first number
as follows: We consider each edge leaving the vertex. If it is incident with a vertex z not in the
tree, we put the edge into the edge set of the tree, we put z into the vertex set of the tree, and
we assign z a breadth first number one more than that of the vertex most recently added to the
tree. We continue in this way until all vertices in the tree have been processed.

We can use the idea of breadth first number to make our remark about the distances of
vertices from x0 more precise.

5This terminology is due to Robert Tarjan who introduced the idea in his PhD thesis.
6In words, we say that the breadth first number of a vertex is k if it is the kth vertex added to a breadth-first

search tree, counting the initial vertex x as the zeroth vertex added to the tree
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Lemma 6.7 After a breadth first search of a graph G centered at V [x], if d(V [x], V [z]) >
d(V [x], V [y]), then BFN(V [z]) >BFN(V [y]).

Proof: We will prove this in a way that mirrors our algorithm. We shall show by induction
that for each nonnegative k, all vertices of distance k from x0 are added to the spanning tree
(that is, assigned a breadth first number and put into the set S) after all vertices of distance
k − 1 and before any vertices of distance k + 1. When k = 1 this follows because S starts as the
set V [x] and all vertices adjacent to V [x] are next added to the tree before any other vertices.
Now assume that n > 1 and all vertices of distance n from V [x] are added to the tree after all
vertices of distance n − 1 from V [x] and before any vertices of distance n + 1. Suppose some
vertex of distance n added to the tree has breadth first number m. Then when i reaches m in
Line 3 of our pseudocode we examine edges leaving vertex V [Vertex[m]] in the “For loop.” Since,
by the inductive hypothesis, all vertices of distance n− 1 or less from V [x] are added to the tree
before vertex V [Vertex[m]], when we examine vertices V [j] adjacent to vertex V [Vertex[m]], we
will have Intree[j] = 1 for these vertices. Since each vertex of distance n from V [x] is adjacent to
some vertex V [z] of distance n− 1 from V [x], and BFN[V [z]] < m (by the inductive hypothesis),
any vertex of distance n from V [x] and adjacent to vertex V [Vertex[m]] will have Intree[j] = 1.
Since any vertex adjacent to vertex V [Vertex[m]] is of distance at most n + 1 from V [x], every
vertex we add to the tree from vertex V [Vertex[m]] will have distance n + 1 from the tree. Thus
every vertex added to the tree from a vertex of distance n from V [x] will have distance n + 1
from V [x]. Further, all vertices of distance n + 1 are adjacent to some vertex of distance n from
V [x], so each vertex of distance n + 1 is added to the tree from a vertex of distance n. Note that
no vertices of distance n + 2 from vertex V [x] are added to the tree from vertices of distance n
from vertex V [x]. Note also that all vertices of distance n+1 are added to the tree from vertices
of distance n from vertex V [x]. Therefore all vertices with distance n+1 from V [x] are added to
the tree after all edges of distance n from V [x] and before any edges of distance n + 2 from V [x].
Therefore by the principle of mathematical induction, for every positive integer k, all vertices
of distance k from V [x] are added to the tree before any vertices of distance k + 1 from vertex
V [x] and after all vertices of distance k − 1 from vertex V [x]. Therefore since the breadth first
number of a vertex is the number of the stage of the algorithm in which it was added to the tree,
if d(V [x], V [z]) > d(V [x], V [y]), then BFN(V [z]) >BFN(V [y]).

Although we introduced breadth first search for the purpose of having an algorithm that
quickly determines a spanning tree of a graph or a spanning tree of the connected component of
a graph containing a given vertex, the algorithm does more for us.

Exercise 6.2-3 How does the distance from V [x] to V [y] in a breadth first search centered
at V [x] in a graph G relate to the distance from V [x] to V [y] in G?

In fact the unique path from V [x] to V [y] in a breadth first search spanning tree of a graph G
is a shortest path in G, so the distance from V [x] to another vertex in G is the same as their
distance in a breadth first search spanning tree centered at V [x]. This makes it easy to compute
the distance between a vertex V [x] and all other vertices in a graph.

Theorem 6.8 The unique path from V [x] in a breadth first search spanning tree centered at the
vertex V [x] of a graph G to a vertex V [y] is a shortest path from V [x] to V [y] in G.

Proof: We prove the theorem by induction on the distance from V [x] to V [y]. Fix a breadth
first search tree of G centered at V [x]. If the distance is 0, then the single vertex V [x] is a shortest
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path from V [x] to V [x] in G and the unique path in the tree. Assume that k > 0 and that when
distance from V [x] to V [y] is less than k, the path from V [x] to V [y] in the tree is a shortest
path from V [x] to V [y] in G. Now suppose that the distance from V [x] to V [y] is k. Suppose
that a shortest path from V [x] to V [y] has V [z] and V [y] as its last two vertices. Suppose that
the unique path from V [x] to V [y] in the tree has V [z′] and V [y] as its last two vertices. Then
BFN(V [z′]) < BFN(V [z]), because otherwise we would have added V [y] to the tree from vertex
V [z]. Then by the contrapositive of Lemma 6.7, the distance from V [x] to V [z′] is less than or
equal to that from V [x] to V [z]. But then by the inductive hypothesis, the distance from V [x]
to V [z′] is the length of the unique path in the tree, and by our previous comment is less than or
equal to the distance from V [x] to V [z]. However then the length of the unique path from V [x]
to V [y] in the tree is no more than the distance from V [x] to V [y], so the two are equal. By the
principle of mathematical induction, the distance from V [x] to V [y] is the length of the unique
path in the tree for every vertex y of the graph.

Rooted Trees

A breadth first search spanning tree of a graph is not simply a tree, but a tree with a selected
vertex, namely V [x]. It is one example of what we call a rooted tree. A rooted tree consists of
a tree with a selected vertex, called a root, in the tree. Another kind of rooted tree you have
likely seen is a binary search tree. It is fascinating how much additional structure is provided to
a tree when we select a vertex and call it a root. In Figure 6.10 we show a tree with a chosen
vertex and the result of redrawing the tree in a more standard way. The standard way computer
scientists draw rooted trees is with the root at the top and all the edges sloping down, as you
might expect to see with a family tree.

Figure 6.10: Two different views of the same rooted tree.
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We adopt the language of family trees—ancestor, descendant, parent, and child—to describe
rooted trees in general. In Figure 6.10, we say that vertex j is a child of vertex i, and a descendant
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of vertex r as well as a descendant of vertices f and i. We say vertex f is an ancestor of vertex
i. Vertex r is the parent of vertices a, b, c, and f . Each of those four vertices is a child of vertex
r. Vertex r is an ancestor of all the other vertices in the tree. In general, in a rooted tree with
root r, a vertex x is an ancestor of a vertex y, and vertex y is a descendant of vertex x if x and y
are different and x is on the unique path from the root to y. Vertex x is a parent of vertex y and
y is a child of vertex x in a rooted tree if x is the unique vertex adjacent to y on the unique path
from r to y. A vertex can have only one parent, but many ancestors. A vertex with no children
is called a leaf vertex or an external vertex; other vertices are called internal vertices.

Exercise 6.2-4 Prove that a vertex in a rooted tree can have at most one parent. Does
every vertex in a rooted tree have a parent?

In Exercise 6.2-4, suppose x is not the root. Then, because there is a unique path between a
vertex x and the root of a rooted tree and there is a unique vertex on that path adjacent to x,
each vertex other than the root has a unique parent. The root, however, has no parent.

Exercise 6.2-5 A binary tree is a special kind of rooted tree that has some additional
structure that makes it tremendously useful as a data structure. In order to describe
the idea of a binary tree it is useful to think of a tree with no vertices, which we call
the null tree or empty tree. Then we can recursively describe a binary tree as

• an empty tree (a tree with no vertices), or

• a structure T consisting of a root vertex, a binary tree called the left subtree of
the root and a binary tree called the right subtree of the root. If the left or right
subtree is nonempty, its root node is joined by an edge to the root of T .

Then a single vertex is a binary tree with an empty right subtree and an empty left
subtree. A rooted tree with two vertices can occur in two ways as a binary tree, either
with a root and a left subtree consisting of one vertex or as a root and a right subtree
consisting of one vertex. Draw all binary trees on four vertices in which the root node
has an empty right child. Draw all binary trees on four vertices in which the root has
a nonempty left child and a nonempty right child.

Exercise 6.2-6 A binary tree is a full binary tree if each vertex has either two nonempty
children or two empty children (a vertex with two empty children is called a leaf.)
Are there any full binary trees on an even number of vertices? Prove that what you
say is correct.

For Exercise 6.2-5 we have five binary trees shown in Figure 6.11 for the first question. Then

Figure 6.11: The four-vertex binary trees whose root has an empty right child.
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Figure 6.12: The four-vertex binary trees whose root has both a left and a right child.

in Figure 6.12 we have four more trees as the answer to the second question.

For Exercise 6.2-6, it is possible to have a full binary tree with zero vertices, so there is one
such binary tree. But, if a full binary tree is not empty, it must have an odd number of vertices.
We can prove this inductively. A full binary tree with 1 vertex has an odd number of vertices.
Now suppose inductively that n > 1 and any full binary tree with fewer than n vertices has
an odd number of vertices. For a full binary tree with n > 1 vertices, the root must have two
nonempty children. Thus removing the root gives us two binary trees, rooted at the children of
the original root, each with fewer than n vertices. By the definition of full, each of the subtrees
rooted in the two children must be full binary tree. The number of vertices of the original tree
is one more than the total number of vertices of these two trees. This is a sum of three odd
numbers, so it must be odd. Thus, by the principle of mathematical induction, if a full binary
tree is not empty, it must have odd number of vertices.

The definition we gave of a binary tree was an inductive one, because the inductive definition
makes it easy for us to prove things about binary trees. We remove the root, apply the inductive
hypothesis to the binary tree or trees that result, and then use that information to prove our
result for the original tree. We could have defined a binary tree as a special kind of rooted tree,
such that

• each vertex has at most two children,

• each child is specified to be a left or right child, and

• a vertex has at most one of each kind of child.

While it works, this definition is less convenient than the inductive definition.

There is a similar inductive definition of a rooted tree. Since we have already defined rooted
trees, we will call the object we are defining an r-tree. The recursive definition states that an
r-tree is either a single vertex, called a root, or a graph consisting of a vertex called a root and
a set of disjoint r-trees, each of which has its root attached by an edge to the original root. We
can then prove as a theorem that a graph is an r-tree if and only if it is a rooted tree. Sometimes
inductive proofs for rooted trees are easier if we use the method of removing the root and applying
the inductive hypothesis to the rooted trees that result, as we did for binary trees in our solution
of Exercise 6.2-6.

Important Concepts, Formulas, and Theorems

1. Spanning Tree. A tree whose edge set is a subset of the edge set of the graph G is called a
spanning tree of G if the tree has exactly the same vertex set as G.
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2. Breadth First Search. We create a breadth first search tree centered at x0 in the following
way. We put the vertex x0 in the tree and give it breadth first number zero. Then we
process the vertices in the tree in the order of their breadth first number as follows: We
consider each edge leaving the vertex. If it is incident with a vertex z not in the tree, we
put the edge into the edge set of the tree, we put z into the vertex set of the tree, and we
assign z a breadth first number one more than that of the vertex most recently added to
the tree. We continue in this way until all vertices in the tree have been processed.

3. Breadth first number. The breadth first number of a vertex in a breadth first search tree
is the number of vertices that were already in the tree when the vertex was added to the
vertex set of the tree.

4. Breadth first search and distances. The distance from a vertex y to a vertex x may be
computed by doing a breadth first search centered at x and then computing the distance
from y to x in the breadth first search tree. In particular, the path from x to y in a breadth
first search tree of G centered at x is a shortest path from x to y in G.

5. Rooted tree. A rooted tree consists of a tree with a selected vertex, called a root, in the tree.

6. Ancestor, Descendant. In a rooted tree with root r, a vertex x is an ancestor of a vertex
y, and vertex y is a descendant of vertex x if x and y are different and x is on the unique
path from the root to y.

7. Parent, Child. In a rooted tree with root r, vertex x is a parent of vertex y and y is a child
of vertex x in if x is the unique vertex adjacent to y on the unique path from r to y.

8. Leaf (External) Vertex. A vertex with no children in a rooted tree is called a leaf vertex or
an external vertex.

9. Internal Vertex. A vertex of a rooted tree that is not a leaf vertex is called an internal
vertex.

10. Binary Tree. We recursively describe a binary tree as

• an empty tree (a tree with no vertices), or

• a structure T consisting of a root vertex, a binary tree called the left subtree of the
root and a binary tree called the right subtree of the root. If the left or right subtree
is nonempty, its root node is joined by an edge to the root of T .

11. Full Binary Tree. A binary tree is a full binary tree if each vertex has either two nonempty
children or two empty children.

12. Recursive Definition of a Rooted Tree. The recursive definition of a rooted tree states that
it is either a single vertex, called a root, or a graph consisting of a vertex called a root and
a set of disjoint rooted trees, each of which has its root attached by an edge to the original
root.
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Figure 6.13: A graph.
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Problems

1. Find all spanning trees (list their edge sets) of the graph in Figure 6.13.

2. Show that a finite graph is connected if and only if it has a spanning tree.

3. Draw all rooted trees on 5 vertices. The order and the place in which you write the vertices
down on the page is unimportant. If you would like to label the vertices (as we did in the
graph in Figure 6.10), that is fine, but don’t give two different ways of labelling or drawing
the same tree.

4. Draw all rooted trees on 6 vertices with four leaf vertices. If you would like to label the
vertices (as we did in the graph in Figure 6.10), that is fine, but don’t give two different
ways of labelling or drawing the same tree.

5. Find a tree with more than one vertex that has the property that all the rooted trees you
get by picking different vertices as roots are different as rooted trees. (Two rooted trees are
the same (isomorphic), if they each have one vertex or if you can label them so that they
have the same (labelled) root and the same (labelled) subtrees.)

6. Create a breadth first search tree centered at vertex 12 for the graph in Figure 6.8 and use
it to compute the distance of each vertex from vertex 12. Give the breadth first number
for each vertex.

7. It may seem clear to some people that the breadth first number of a vertex is the number
of vertices previously added to the tree. However the breadth first number was not actually
defined in this way. Give a proof that the breadth first number of a vertex is the number
of vertices previously added to the tree.

8. A(left, right) child of a vertex in a binary tree is the root of a (left, right) subtree of that
vertex. A binary tree is a full binary tree if each vertex has either two nonempty children
or two empty children (a vertex with two empty children is called a leaf.) Draw all full
binary trees on seven vertices.

9. The depth of a node in a rooted tree is defined to be the number of edges on the (unique)
path to the root. A binary tree is complete if it is full (see Problem 8) and all its leaves
have the same depth. How many vertices does a complete binary tree of depth 1 have?
Depth 2? Depth d? (Proof required for depth d.)

10. The height of a rooted or binary tree with one vertex is 0; otherwise it is 1 plus the maximum
of the heights of its subtrees. Based on Exercise 6.2-9, what is the minimum height of any
binary tree on n vertices? (Please prove this.)
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11. A binary tree is complete if it is full and all its leaves have the same depth (see Exercise
6.2-8 and Exercise 6.2-9). A vertex that is not a leaf vertex is called an internal vertex.
What is the relationship between the number I of internal vertices and the number L of
leaf vertices in a complete binary tree. A full binary tree? (Proof please.)

12. The internal path length of a binary tree is the sum, taken over all internal (see Exercise
6.2-11) vertices of the tree, of the depth of the vertex. The external path length of a binary
tree is the sum, taken over all leaf vertices of the tree, of the depth of the vertex. Show
that in a full binary tree with n internal vertices, internal path length i and external path
length e, we have e = i + 2n.

13. Prove that a graph is an r-tree, as defined at the end of the section if and only if it is a
rooted tree.

14. Use the inductive definition of a rooted tree (r-tree) given at the end of the section to prove
once again that a rooted tree with n vertices has n − 1 edges if n ≥ 1.

15. In Figure 6.14 we have added numbers to the edges of the graph of Figure 6.1 to give
what is usually called a weighted graph—the name for a graph with numbers, often called
weights associated with its edges. We use w(ε) to stand for the weight of the edge ε. These
numbers represent the lease fees in thousands of dollars for the communication lines the
edges represent. Since the company is choosing a spanning tree from the graph to save
money, it is natural that it would want to choose the spanning tree with minimum total
cost. To be precise, a minimum spanning tree in a weighted graph is a spanning tree of the
graph such that the sum of the weights on the edges of the spanning tree is a minimum
among all spanning trees of the graph.

Figure 6.14: A stylized map of some eastern US cities.

B

NY

W

A

MI

NO

ME

CI

P

CH

8
6

6

4

7

6

6
5

4

6
4

5

7

9
11

3

5
5

6 7

Give an algorithm to select a spanning tree of minimum total weight from a weighted graph
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and apply it to find a minimum spanning tree of the weighted graph in Figure 6.14. Show
that your algorithm works and analyze how much time it takes.
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6.3 Eulerian and Hamiltonian Paths and Tours

Eulerian Tours and Trails

Exercise 6.3-1 In an article generally acknowledged to be one of the origins of the graph
theory 7 Leonhard Euler (pronounced Oiler) described a geographic problem that
he offered as an elementary example of what he called “the geometry of position.”
The problem, known as the “Königsberg Bridge Problem,” concerns the town of
Königsberg in Prussia (now Kaliningrad in Russia), which is shown in a schematic
map (circa 1700) in Figure 6.15. Euler tells us that the citizens amused themselves

Figure 6.15: A schematic map of Königsberg
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by trying to find a walk through town that crossed each of the seven bridges once and
only once (and, hopefully, ended where it started). Is such a walk possible?

In Exercise 6.3-1, such a walk will enter a land mass on a bridge and leave it on a different bridge,
so except for the starting and ending point, the walk requires two new bridges each time it enters
and leaves a land mass. Thus each of these land masses must be at the end of an even number
of bridges. However, as we see from Figure 6.15 each land mass is at the end of an odd number
of bridges. Therefore no such walk is possible.

We can represent the map in Exercise 6.3-1 more compactly with the graph in Figure 6.16.
In graph theoretic terminology Euler’s question asks whether there is a path, starting and ending

Figure 6.16: A graph to replace the schematic map of Königsberg
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7Reprinted in Graph Theory 1736-1936 by Biggs, Lloyd and Wilson (Clarendon, 1976)
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at the same vertex, that uses each edge exactly once.

Exercise 6.3-2 Determine whether the graph in Figure 6.1 has a closed path that includes
each edge of the graph exactly once, and find one if it does.

Exercise 6.3-3 Find the strongest condition you can that has to be satisfied by a graph
that has a path, starting and ending at the same place, that includes each vertex at
least once and each edge once and only once. Such a path is known as an Eulerian
Tour or Eulerian Circuit.

Exercise 6.3-4 Find the strongest condition you can that has to be satisfied by a graph
that has a path, starting and ending at different places, that includes each vertex at
least once and each edge once and only once. Such a path is known as an Eulerian
Trail

Exercise 6.3-5 Determine whether the graph in Figure 6.1 has an Eulerain Trail and find
one if it does.

The graph in Figure 6.1 cannot have a closed path that includes each edge exactly once
because if the initial vertex of the path were P , then the number of edges incident with P would
have to be one at the beginning of the path, plus two for each time P appears before the end
of the path, plus one more for the time P would appear at the end of the path, so the degree
of P would have to be even. But if P were not the initial vertex of a closed path including all
the edges, each time we entered P on one edge, we would have to leave it on a second edge, so
the number of edges incident with P would have to be even. Thus in Exercise 6.3-2 there is no
closed path that includes each edge exactly once.

Notice that, just as we argued for a walk through Königsberg, in any graph with an Eulerian
Circuit, each vertex except for the starting-finishing one will be paired with two new edges (those
preceding and following it on the path) each time it appears on the path. Therefore each of these
vertices is incident with an even number of edges. Further, the starting vertex is incident with
one edge at the beginning of the path and is incident with a different edge at the end of the path.
Each other time it occurs, it will be paired with two edges. Thus this vertex is incident with an
even number of edges as well. Therefore a natural condition a graph must satisfy if it has an
Eulerian Tour is that each vertex has even degree. But Exercise 6.3-3 asked us for the strongest
condition we could find that a graph with an Eulerian Tour would satisfy. How do we know
whether this is as strong a condition as we could devise? In fact it isn’t, the graph in Figure 6.17
clearly has no Eulerian Tour because it is disconnected, but every vertex has even degree.

Figure 6.17: This graph has no Eulerian Tour, even though each vertex has even degree.

The point that Figure 6.17 makes is that in order to have an Eulerian Tour, a graph must be
connected as well as having only vertices of even degree. Thus perhaps the strongest condition
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we can find for having an Eulerian Tour is that the graph is connected and every vertex has even
degree. Again, the question comes up “How do we show this condition is as strong as possible,
if indeed it is?” We showed a condition was not as strong as possible by giving an example of
a graph that satisfied the condition but did not have an Eulerian Tour. What if we could show
that no such example is possible, i.e. we could prove that a graph which is connected and in
which every vertex has even degree does have an Eulerian Tour? Then we would have shown our
condition is as strong as possible.

Theorem 6.9 A graph has an Eulerian Tour if and only if it is connected and each vertex has
even degree.

Proof: A graph must be connected to have an Eulerian tour, because there must be a path
that includes each vertex, so each two vertices are joined by a path. Similarly, as explained earlier,
each vertex must have even degree in order for a graph to have an Eulerian Tour. Therefore we
need only show that if a graph is connected and each vertex has even degree, then it has an
Eulerain Tour. We do so with a recursive construction. If G has one vertex and no edges, we
have an Eulerian tour consisting of one vertex and no edges. So suppose G is connected, has at
least one edge, and each vertex of G has even degree. Now, given distinct vertices x0, x1, . . . ,
xi and edges ε1, ε2, . . . , εi such that x0ε1x1 . . . εixi is a path, choose an edge εi+1 from xi to
a vertex xj+1. If xj+1 is x0, stop. Eventually this process must stop because G is finite, and
(since each vertex in G has even degree) when we enter a vertex other than x0, there will be an
edge on which we can leave it. This gives us a closed path C. Delete the edges of this closed
path from the edge set of G. This gives us a graph G′ in which each vertex has even degree,
because we have removed two edges incident with each vertex of the closed path (or else we have
removed a loop). However, G′ need not be connected. Each connected component of G′ is a
connected graph in which each vertex has even degree. Further, each connected component of
G′ contains at least one element xi. (Suppose a connected component C contained no xi. Since
G is connected, for each i, there is a path in G from each vertex in C to each vertex xi. Choose
the shortest such path, and suppose it connects a vertex y in C to xj . Then no edge in the path
can be in the closed path, or else we would have a shorter path from y to a different vertex xi.
Therefore removing the edges of the closed path leaves y connected to xj in C, so that C contains
an xi after all, a contradiction.) We may assume inductively that each connected component has
fewer edges than G, so each connected component has an Eulerian Tour. Now we may begin to
recursively construct an Eulerian Tour of G by starting at xj , and taking an Eulerian Tour of
the connected component containing xj . Then given a sequence xj , x1, . . . , xk such that the
Eulerian tour we have constructed so far includes the vertices xj through xk, the vertices and
edges of the connected components of G′ containing the vertices xk through xk, the edges εj+1

through εk, we add the edge ek+1 and the vertex xk+1 to our tour, and if the vertices and edges of
the connected component of G′ containing xk+1 are not already in our tour, we add an Eulerian
Tour of the connected component of G′ containing xk+1 to our tour. When we add the last edge
and vertex of our closed path to the path we have been constructing, every vertex and edge of the
graph will have to be in the path we have constructed, because every vertex is in some connected
component of G′, and every edge is either an edge of the first closed path or an edge of some
connected component of G′. Therefore if G is connected and each vertex of G has even degree,
then G has an Eulerian Tour.

A graph with an Eulerian Tour is called an Eulerian Graph.
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In Exercise 6.3-4, each vertex other than the initial and final vertices of the walk must have
even degree by the same reasoning we used for Eulerian tours. But the initial vertex must have
odd degree, because the first time we encounter it in our Eulerian Trail it is incident with one
edge in the path, but each succeeding time it is incident with two edges in the path. Similarly
the final vertex must have odd degree. This makes it natural to guess the following theorem.

Theorem 6.10 A graph G has an Eulerian Trail if and only if G is connected and all but two
of the vertices of G have even degree.

Proof: We have already shown that if G has an Eulerian Trail, then all but two vertices of G
have even degree and these two vertices have odd degree.

Now suppose that G is a connected graph in which all but two vertices have even degree.
Suppose the two vertices of odd degree are x and y. Add an edge ε joining x and y to the edge
set of G to get G′. Then G′ has an Eulerian Tour by Theorem 6.9. One of the edges of the tour
is the added edge. We may traverse the tour starting with any vertex and any edge following
that vertex in the tour, so we may begin the tour with either xεy or yεx. By removing the first
vertex and ε from the tour, we get an Eulerian Trail.

By Theorem 6.10, there is no Eulerian Trail in Exercise 6.3-5.

Notice that our proof of Theorem 6.9 gives us a recursive algorithm for constructing a Tour.
Namely, we find a closed walk W starting and ending at a vertex we choose, identify the connected
components of the graph G−W that results from removing the closed walk, and then follow our
closed walk, pausing each time we enter a new connected component of G − W to recursively
construct an Eulerian Tour of the component and traverse it before returning to following our
closed walk. It is possible that the closed walk we remove has only one edge (or in the case of a
simple graph, some very small number of edges), and the number of steps needed for a breadth
first search is Θ(e′), where e′ the number of edges in the graph we are searching. Thus our
construction could take Θ(e) steps, each of which involves examining Θ(e) edges, and therefore
our algorithm takes O(e2) time. (We get a big Oh bound and not a big Theta bound because it
is also possible that the closed walk we find the first time is an Eulerian tour.)

It is an interesting observation on the progress of mathematical reasoning that Euler made a
big deal in his paper of explaining why it is necessary for each land mass to have an even number
of bridges, but seemed to consider the process of constructing the path rather self-evident, as if it
was hardly worth comment. For us, on the other hand, proving that the construction is possible
if each land mass has an even number of bridges (that is, showing that the condition that each
land mass has an even number of bridges is a sufficient condition for the existence of an Eulerian
tour) was a much more significant effort than proving that having an Eulerian tour requires that
each land mass has an even number of bridges. The standards of what is required in order to
back up a mathematical claim have changed over the years.

Hamiltonian Paths and Cycles

A natural question to ask in light of our work on Eulerian tours is whether we can state necessary
and sufficient conditions for a graph to have a closed path that includes each vertex exactly once
(except for the beginning and end). An answer to this question would have the potential to be
quite useful. For example, a salesperson might have to plan a trip through a number of cities
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which are connected by a network of airline routes. Planning the trip so the salesperson would
travel through a city only when stopping there for a sales call would minimize the number of flights
the needed. This question came up in a game, called “around the world,” designed by William
Rowan Hamilton. In this game the vertices of the graph were the vertices of a dodecahedron (a
twelve sided solid in which each side is a pentagon), and the edges were the edges of the solid.
The object was to design a trip that started at one vertex and visited each vertex once and then
returned to the starting vertex along an edge. Hamilton suggested that players could take turns,
one choosing the first five cities on a tour, and the other trying to complete the tour. It is because
of this game that a cycle that includes each vertex of the graph exactly once (thinking of the
first and last vertex of the cycle as the same) is called a Hamiltonian Cycle. A graph is called
Hamiltonian if it has a Hamiltonian cycle.. A Hamiltonian Path is a simple path that includes
each vertex of the graph exactly once. It turns out that nobody yet knows (and as we shall explain
briefly at the end of the section, it may be reasonable to expect that nobody will find) uesful
necessary and sufficient conditions for a graph to have a Hamiltonian Cycle or a Hamiltonian
Path that are significantly easier to verify than trying all permutations of the vertices to see if
taking the vertices in the order of that permutation to see if that order defines a Hamiltonian
Cycle or Path. For this reason this branch of graph theory has evolved into theorems that give
sufficient conditions for a graph to have a Hamiltonian Cycle or Path; that is theorems that say
all graphs of a certain type have Hamiltonian Cycles or Paths, but do not characterize all graphs
that have Hamiltonian Cycles of Paths.

Exercise 6.3-6 Describe all values of n such that a complete graph on n vertices has a
Hamiltonian Path. Describe all values of n such that a complete graph on n vertices
has a Hamiltonian Cycle.

Exercise 6.3-7 Determine whether the graph of Figure 6.1 has a Hamiltonian Cycle or
Path, and determine one if it does.

Exercise 6.3-8 Try to find an interesting condition involving the degrees of the vertices
of a simple graph that guarantees that the graph will have a Hamiltonian cycle.
Does your condition apply to graphs that are not simple? (There is more than one
reasonable answer to this exercise.)

In Exercise 6.3-6, the path consisting of one vertex and no edges is a Hamiltonian path but
not a Hamiltonian cycle in the complete graph on one vertex. (Recall that a path consisting of
one vertex and no edges is not a cycle.) Similarly, the path with one edge in the complete graph
K2 is a Hamiltonian path but not a Hamiltonian cycle, and since K2 has only one edge, there
is no Hamiltonian cycle in the K2. In the complete graph Kn, any permutation of the vertices
is a list of the vertices of a Hamiltonian path, and if n > 3, such a Hamiltonian Path from x1

to xn, followed by the edge from xn to x1 and the vertex x1 is a Hamiltonian Cycle. Thus each
complete graph has a Hamiltonian Path, and each complete graph with more than three vertices
has a Hamiltonian Cycle.

In Exercise 6.3-7, the path with vertices NO, A, MI, W , P , NY , B, CH, CL, and ME is a
Hamiltonian Path, and adding the edge from ME to NO gives a Hamiltonian Cycle.

Based on our observation that the complete graph on n vertices has a Hamiltonian Cycle if
n > 2, we might let our condition be that the degree of each vertex is one less than the number
of vertices, but this would be uninteresting since it would simply restate what we already know
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for complete graphs. The reason why we could say that Kn has a Hamiltonian Cycle when n > 3
was that when we entered a vertex, there was always an edge left on which we could leave the
vertex. However the condition that each vertex has degree n − 1 is stronger than we needed,
because until we were at the second-last vertex of the cycle, we had more choices than we needed
for edges on which to leave the vertex. On the other hand, it might seem that even if n were
rather large, the condition that each vertex should have degree n − 2 would not be sufficient to
guarantee a Hamiltonian cycle, because when we got to the second last vertex on the cycle, all
of the n − 2 vertices it is adjacent to might already be on the cycle and different from the first
vertex, so we would not have an edge on which we could leave that vertex. However there is the
possibility that when we had some choices earlier, we might have made a different choice and
thus included this vertex earlier on the cycle, giving us a different set of choices at the second
last vertex. In fact, if n > 3 and each vertex has degree at least n − 2, then we could choose
vertices for a path more or less as we did for the complete graph until we arrived at vertex n− 1
on the path. Then we could complete a Hamiltonian path unless xn−1 was adjacent only to the
first n − 2 vertices on the path. In this last case, the first n − 1 vertices would form a cycle,
because xn−1 would be adjacent to x1. Suppose y was the vertex not yet on the path. Since y
has degree n − 2 and y is not adjacent to xn−1, y would have to be adjacent to the first n − 2
vertices on the path. Then since n > 3, we could take the path x1yx2 . . . xn−1x1 and we would
have a Hamiltonian cycle. Of course unless n were four, we could also insert y between x2 and
x3 (or any xi−1 and xi such that i < n − 1, so we would still have a great deal of flexibility.
To push this kind of reasoning further, we will introduce a new technique that often appears in
graph theory. We will point out our use of the technique after the proof.

Theorem 6.11 (Dirac) If every vertex of a v-vertex simple graph G with at least three vertices
has degree at least v/2, then G has a Hamiltonian cycle.

Proof: Suppose, for the sake of contradiction that there is a graph G1 with no Hamiltonian
Cycle in which each vertex has degree at least v/2. If we add edges joining existing vertices to
G1, each vertex will still have degree at least v/2. If add all possible edges to G1 we will get a
complete graph, and it will have a Hamiltonian cycle. Thus if we continue adding edges to G1,
we will at some point reach a graph that does have a Hamiltonian cycle. Instead, we add edges to
G1 until we reach a graph G2 that has no Hamiltonian cycle but has the property that if we add
any edge to G2, we get a Hamiltonian cycle. We say G2 is maximal with respect to not having
a Hamiltonian cycle. Suppose x and y are not adjacent in G2. Then adding an edge between
x and y to G2 gives a graph with a Hamiltonian cycle, and x and y must be connected by the
added edge in this Hamiltonian cycle. (Otherwise G2 would have a Hamiltonian cycle.) Thus G2

has a Hamiltonian path x1x2 . . . xv that starts at x = x1 and ends at y = xv. Further x and y
are not adjacent.

Before we stated our theorem we considered a case where we had a cycle on f − 1 vertices
and were going to put an extra vertex into it between two adjacent vertices. Now we have a path
on f vertices from x = x1 to y = xf , and we want to convert it to a cycle. If we had that y
is adjacent to some vertex xi on the path while x is adjacent to xi+1, then we could construct
the Hamiltonian cycle x1xi+1xi+2 . . . xfxixi−1 . . . x2x1. But we are assuming our graph does not
have a Hamiltonian cycle. Thus for each xi that x is adjacent to on the path x1x2 . . . xv, y is not
adjacent to xi−1. Since all vertices are on the path, x is adjacent to at least v/2 vertices among
x2 through xv. Thus y is not adjacent to at least v/2 vertices among x1 through xv−1. But there
are only v − 1 vertices, namely x1 through xv−1, vertices y could be adjacent to, since it is not
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adjacent to itself. Thus y is adjacent at most v − 1 − v/2 = v/2 − 1 vertices, a contradiction.
Therefore if each vertex of a simple graph has degree at least v/2, the graph has a Hamiltonian
Cycle. The new tachnique was that of assuming we had a maximal graph (G2) that did not
have our desired property and then using this maximal graph in a proof by contradiction.

Exercise 6.3-9 Suppose v = 2k and consider a graph G consisting of two complete graphs,
one with k vertices, x1, . . . xk and one with k + 1 vertices, xk, . . . x2k. Notice that we
get a graph with exactly 2k vertices, because the two complete graphs have one vertex
in common. How do the degrees of the vertices relate to v? Does the graph you get
have a Hamiltonian cycle? What does this say about whether we can reduce the lower
bound on the degree in Theorem 6.11?

Exercise 6.3-10 In the previous exercise, is there a similar example in the case v = 2k+1?

In Exercise 6.3-9, the vertices that lie in the complete graph with k vertices, with the exception
of xk, have degree k − 1. Since v/2 = k, this graph does not satisfy the hypothesis of Dirac’s
theorem which assumes that every vertex of the graph has degree at least v/2. We show the case
in which k = 3 in Figure 6.18.

Figure 6.18: The vertices of K4 are white or grey; those of K3 are black or grey.

You can see that the graph in Figure 6.18 has no Hamiltonian cycle as follows. If an attempt
at a Hamiltonian cycle begins at a white vertex, after crossing the grey vertex to include the
black ones, it can never return to a white vertex without using the grey one a second time. The
situation is similar if we tried to begin a Hamiltonian cycle at a black vertex. If we try to begin
a Hamiltonian cycle at the grey vertex, we would next have to include all white vertices or all
black vertices in our cycle and would then be stymied because we would have to take our path
through the grey vertex a second time to change colors between white and black. As long as
k ≥ 2, the same argument shows that our graph has no Hamiltonian cycle. Thus the lower bound
of v/2 in Dirac’s theorem is tight; that is, we have a way to construct a graph with minimum
degree v/2 − 1 (when v is even) for which there is no Hamiltonian cycle. If v = 2k + 1 we might
consider two complete graphs of size k + 1, joined at a single vertex. Each vertex other than
the one at which they are joined would have degree k, and we would have k < k + 1/2 = v/2,
so again the minimum degree would be less than v/2. The same kind of argument that we used
with the graph in Figure 6.18 would show that as long as k ≥ 1, we have no Hamiltonian cycle.

If you analyze our proof of Dirac’s theorem, you will see that we really used only a consequence
of the condition that all vertices have degree at least v/2, namely that for any two vertices, the
sum of their degrees is at least n.

Theorem 6.12 (Ore) If G is a v-vertex simple graph with n ≥ 3 such that for each two nonad-
jacent vertices x and y the sum of the degrees of x and y is at least v, then G has a Hamiltonian
cycle.



6.3. EULERIAN AND HAMILTONIAN PATHS AND TOURS 295

Proof: See Problem 13.

NP-Complete Problems

As we began the study of Hamiltonian Cycles, we mentioned that the problem of determining
whether a graph has a Hamiltonian Cycle seems significantly more difficult than the problem
of determining whether a graph has a Eulerian Tour. On the surface these two problems have
significant similarities.

• Both problems whether a graph has a particular property. (Does this graph have a Hamil-
tonian/Eulerian closed path?) The answer is simply yes or no.

• For both problems, there is additional information we can provide that makes it relatively
easy to check a yes answer if there is one. (The additional information is a closed path. We
simply check whether the closed path includes each edge or each vertex exactly once.)

But there is a striking difference between the two problems as well. It is reasonably easy to
find an Eulerian path in a graph that has one (we saw that the time to use the algorithm implicit
in the proof of Theorem 6.9 is O(e2) where e is the number of edges of the graph. However,
nobody knows how to actually find a permutation of the vertices that is a Hamiltonian path
without checking essentially all permutations of the vertices.8 This puts us in an interesting
position. Although if someone gets lucky and guesses a permutation that is a Hamiltonian path,
we can quickly verify the person’s claim to have a Hamiltonian path, but in a graph of reasonably
large size we have no practical method for finding a Hamiltonian path.

This difference is the essential difference between the class P of problems said to be solvable in
polynomial time and the class NP of problems said to be solvable in nondeterministic polynomial
time. We are not going to describe these problem classes in their full generality. A course in formal
languages or perhaps algorithms is a more appropriate place for such a discussion. However in
order to give a sense of the difference between these kinds of problems, we will talk about them
in the context of graph theory. A question about whether a graph has a certain property is called
a graph decision problem. Two examples are the question of whether a graph has an Eulerian
tour and the question of whether a graph has a Hamiltonian cycle.

A graph decision problem has a yes/no answer. A P-algorithm or polynomial time algorithm
for a property takes a graph as input and in time O(nk), where k is a positive integer independent
of the input graph and n is a measure of the amount of information needed to specify the input
graph, it outputs the answer “yes” if and only if the graph does have the property. We say the
algorithm accepts the graph if it answers yes. (Notice we don’t specify what the algorithm does
if the graph does not have the property, except that it doesn’t output yes.) We say a property
of graphs is in the class P if there is a P-algorithm that accepts exactly the graphs with the
property.

An NP-algorithm (non-deterministic polynomial time) for a property takes a graph and O(nj)
additional information, and in time O(nk), where k and j are positive integers independent of

8We say essentially because one can eliminate some permutations immediately; for example if there is no edge
between the first two elements of the permutation, then not only can we ignore the rest of this permutation, but we
may ignore any other permutation that starts in this way. However nobody has managed to find a sub-exponential
time algorithm for solving the Hamiltonian cycle problem.
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the the input graph and n is a measure of the amount of information needed to specify the input
graph, outputs the answer yes if and only if it can use the additional information to determine that
the graph has the property. For example for the property of being Hamiltonian, the algorithm
might input a graph and a permutation of the vertex set of the graph. The algorithm would then
check the permutation to see if it lists the vertices in the order of a Hamiltonian cycle and output
“yes” if it does. We say the algorithm accepts a graph if there is additional information it can use
with the graph as an input to output “yes.” We call such an algorithm nondeterministic, because
whether or not it accepts a graph is determined not merely by the graph but by the additional
information as well. In particular, the algorithm might or might not accept every graph with the
given property. We say a property is in the class NP if there is an NP-algorithm that accepts
exactly the graphs with the property. Since graph decision problems ask us to decide whether
or not a graph has a given problem, we adopt the notation P and NP to describe problems as
well. We say a decision problem is in P or NP if the graph property it asks us to decide is in P
or NP respectively.

When we say that a nondeterministic algorithm uses the additional information, we are think-
ing of “use” in a very loose way. In particular, for a graph decision problem in P, the algorithm
could simply ignore the additional information and use the polynomial time algorithm to de-
termine whether the answer should be yes. Thus every graph property in P is also in NP as
well. The question as to whether P and NP are the same class of problems has vexed computer
scientists since it was introduced in 1968.

Some problems in NP, like the Hamiltonian path problem have an exciting feature: any
instance9 of any problem in NP can be translated in O(nk) steps, where n and k are as before,
into O(nj) instances of the Hamilton path problem, where j is independent of n and k. In
particular, the answer to the original problem is yes if and only if the answer to one of the
Hamiltonian path problems is yes. The translation preserves whether or not the graph in the
original instance of the problem is accepted. We say that the Hamiltonian Path problem is NP-
complete. More generally, a problem in NP is called NP-complete if, for each other problem
in NP, we can devise an algorithm for the second problem that has O(nk) steps (where n is a
measure of the size of the input graph, and k is independent of n), including counting as one step
solving an instance of the first problem, and accepts exactly the instances of the second problem
that have a yes answer. The question of whether a graph has a clique (a subgraph that is a
complete graph) of size j is another problem in NP that is NP-complete. In particular, if one
NP complete problem has a polynomial time algorithm, every problem in NP is in P. Thus we
can determine in polynomial time whether an arbitrary graph has a Hamiltonian path if and only
if we can determine in polynomial time whether an arbitrary graph has a clique of (an arbitrary)
size j. Literally hundreds of interesting problems are NP-complete. Thus a polynomial time
solution to any one of them would provide a polynomial time solution to all of them. For this
reason, many computer scientists consider a demonstration that a problem is NP-complete to be
a demonstration that it is unlikely to be solved by a polynomial time algorithm.

This brief discussion of NP-completeness is intended to give the reader a sense of the nature
and importance of the subject. We restricted ourselves to graph problems for two reasons. First,
we expect the reader to have a sense of what a graph problem is. Second, no treatment of graph
theory is complete without at least some explanation of how some problems seem to be much more
intractable than others. However, there are NP-complete problems throughout mathematics and

9An instance of a problem is a case of the problem in which all parameters are specified; for example a particular
instance of the Hamiltonian Cycle problem is a case of the problem for a particular graph.
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computer science. Providing a real understanding of the subject would require much more time
than is available in an introductory course in discrete mathematics.

Important Concepts, Formulas, and Theorems

1. A graph that has a path, starting and ending at the same place, that includes each vertex
at least once and each edge once and only once is called an Eulerian Graph. Such a path
is known as an Eulerian Tour or Eulerian Circuit.

2. A graph has an Eulerian Tour if and only if it is connected and each vertex has even degree.

3. A path that includes each vertex of the graph at least once and each edge of the graph
exactly once, but has different first and last endpoints, is known as an Eulerian Trail

4. A graph G has an Eulerian Trail if and only if G is connected and all but two of the vertices
of G have even degree.

5. A cycle that includes each vertex of a graph exactly once (thinking of the first and last
vertex of the cycle as the same) is called a Hamiltonian Cycle. A graph is called Hamiltonian
if it has a Hamiltonian cycle.

6. A Hamiltonian Path is a simple path that includes each vertex of the graph exactly once.

7. (Dirac’s Theorem) If every vertex of a v-vertex simple graph G with at least three vertices
has degree at least v/2, then G has a Hamiltonian cycle.

8. (Ore’s Theorem) If G is a v-vertex simple graph with v ≥ 3 such that for each two non-
adjacent vertices x and y the sum of the degrees of x and y is at least v, then G has a
Hamiltonian cycle.

9. A question about whether a graph has a certain property is called a graph decision problem.

10. A P-algorithm or polynomial time algorithm for a property takes a graph as input and in
time O(nk), where k is a positive integer independent of the input graph and n is a measure
of the amount of information needed to specify the input graph, it outputs the answer “yes”
if and only if the graph does have the property. We say the algorithm accepts the graph if
it answers yes.

11. We say a property of graphs is in the class P if there is a P-algorithm that accepts exactly
the graphs with the property.

12. An NP-algorithm (non-deterministic polynomial time) for a property takes a graph and
O(nj) additional information, and in time O(nk), where k and j are positive integers
independent of the the input graph and n is a measure of the amount of information
needed to specify the input graph, outputs the answer yes if and only if it can use the
additional information to determine that the graph has the property.

13. A graph decision problem in NP if called NP-complete if, for each other problem in NP,
we can devise an algorithm for the second problem that has O(nk) steps (where n is a
measure of the size of the input graph, and k is independent of n), including counting as
one step solving an instance of the first problem, and accepts exactly the instances of the
second problem that have a yes answer.
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Figure 6.19: Some graphs
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Problems

1. For each graph in Figure 6.19, either explain why the graph does not have an Eulerian
circuit or find an Eulerian Circuit.

2. For each graph in Figure 6.20, either explain why the graph does not have an Eulerian Trail
or find an Eulerian Trail.

Figure 6.20: Some more graphs
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3. What is the minimum number of new bridges that would have to be built in Königsberg
and where could they be built in order to give a graph with an Eulerian circuit?

4. If we built a new bridge in Königsberg between the Island and the top and bottom banks
of the river, could we take a walk that crosses all the bridges and uses none twice? Either
explain where could we start and end in that case or why we couldn’t do it.

5. For which values of n does the complete graph on n vertices have an Eulerian Circuit?

6. The hypercube graph Qn has as its vertex set the n-tuples of zeros and ones. Two of these
vertices are adjacent if and only if they are different in one position. The name comes from
the fact that Q3 can be drawn in three dimensional space as a cube. For what values of n
is Qn Eulerian?

7. For what values of n is the hypercube graph Qn (see Problem 6) Hamiltonian?

8. Give an example of a graph which has a Hamiltonian cycle but no Eulerian Circuit and a
graph which has an Eulerian Circuit but no Hamiltonian Cycle.
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9. The complete bipartite graph Km,n is a graph with m + n vertices. These vertices are
divided into a set of size m and a set of size n. We call these sets the parts of the graph.
Within each of these sets there are no edges. But between each pair of vertices in different
sets, there is an edge. The graph K4,4 is pictured in part (d) of Figure 6.19.

(a) For what values of m and n is Km,n Eulerian?

(b) For which values of m and n is Km,n Hamiltonian?

10. Show that the edge set of a graph in which each vertex has even degree may be partitioned
into edge sets of cycles of the graph.

11. A cut-vertex of a graph is a vertex whose removal (along with all edges incident with it)
increases the number of connected components of the graph. Describe any circumstances
under which a graph with a cut vertex can be Hamiltonian.

12. Which of the graphs in Figure 6.21 satisfy the hypotheses of Dirac’s Theorem? of Ore’s
Theorem? Which have Hamiltonian cycles?

Figure 6.21: Which of these graphs have Hamiltonian Cycles?

(a) (b) (c) (d)

13. Prove Theorem 6.12.

14. The Hamiltonian Path problem is the problem of determining whether a graph has a Hamil-
tonian Path. Explain why this problem is in NP. Explain why the problem of determining
whether a graph has a Hamiltonian Path is NP-complete.

15. The k-Path problem is the problem of determining whether a graph on n vertices has a
path of length k, where k is allowed to depend on n. Show that the k-Path problem is
NP-complete.

16. We form the Hamiltonian closure of a graph by constructing a sequence of graphs Gi with
G0 = G, and Gi formed from Gi−1 by adding an edge between two nonadjacent vertices
whose degree sum is at least nv. When we reach a Gi to which we cannot add such an
edge, we call it a Hamiltonian Closure of G. Prove that a Hamiltonian Closure of a simple
graph G is Hamiltonian if and only if G is.

17. Show that a simple connected graph has one and only one Hamiltonian closure.
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6.4 Matching Theory

The idea of a matching

Suppose a school board is deciding among applicants for faculty positions. The school board has
positions for teachers in a number of different grades, a position for an assistant librarian, two
coaching positions, and for high school math and English teachers. They have many applicants,
each of whom can fill more than one of the positions. They would like to know whether they can
fill all the positions with people who have applied for jobs and have been judged as qualified.

Exercise 6.4-1 Table 6.1 shows a sample of the kinds of applications a school district might
get for its positions. An x below an applicant’s number means that that applicant

Table 6.1: Some sample job application data

job\applicant 1 2 3 4 5 6 7 8 9
assistant librarian x x x
second grade x x x x
third grade x x x
high school math x x x
high school English x x x
asst baseball coach x x x x
asst football coach x x x

qualifies for the position to the left of the x. Thus candidate 1 is qualified to teach
second grade, third grade, and be an assistant librarian. The coaches teach physical
education when they are not coaching, so a coach can’t also hold one of the listed
teaching positions. Draw a graph in which the vertices are labelled 1 through 9 for
the applicants, and s, t, l, m, e, b, and f for the positions. Draw an edge from an
applicant to a position if that applicant can fill that position. Use the graph to help
you decide if it is possible to fill all the positions from among the applicants deemed
suitable. If you can do so, give an assignment of people to jobs. If you cannot, try to
explain why not.

Exercise 6.4-2 Table 6.2 shows a second sample of the kinds of applications a school
district might get for its positions. Draw a graph as before and use it to help
you decide if it is possible to fill all the positions from among the applicants deemed
suitable. If you can do so, give an assignment of people to jobs. If you cannot, try to
explain why not.

The graph of the data in Table 6.1 is shown in Figure 6.22.

From the figure it is clear that l:1, s:2, t:4, m:5, e:6, b:7, f :8 is one assignment of jobs to people
that works. This assignment picks out a set of edges that share no endpoints. For example, the
edge from l to 1 has no endpoint among s, t, m, e, b, f , 2, 3, 4, 5, 6, 7, or 8. A set of edges
in a graph that share no endpoints is called a matching of the graph. Thus we have a matching
between jobs and people that can fill the jobs. Since we don’t want to assign two jobs to one
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Table 6.2: Some other sample job application data

job\applicant 1 2 3 4 5 6 7 8 9
library assistant x x
second grade x x x 8
third grade x x x x x
high school math x x x
high school English x x
asst baseball coach x x x x
asst football coach x x x

Figure 6.22: A graph of the data from Table 6.1.

l s t m e b f

1 2 3 4 5 6 7 8 9

person or two people to one job, this is exactly the sort of solution we were looking for. Notice
that the edge from l to 1 is a matching all by itself, so we weren’t simply looking for a matching;
we were looking for a matching that fills all the jobs. A matching is said to saturate a set X of
vertices if every vertex in X is matched. We wanted a matching that saturates the jobs. In this
case a matching that saturates all the jobs is a matching that is as big as possible, so it is also a
maximum matching, that is, a matching that is at least as big as any other matching.

The graph in Figure 6.22 is an example of a “bipartite graph.” A graph is called bipartite
whenever its vertex set can be partitioned into two sets X and Y so that each edge connects a
vertex in X with a vertex in Y . We can think of the jobs as the set X and the applicants as the
set Y . Each of the two sets is called a part of the graph. A part of a bipartite graph is an example
of an “independent set.” A subset of the vertex set of a graph is called independent if no two of
its vertices are joined by an edge. Thus a graph is bipartite if and only if its vertex set is a union
of two independent sets. Notice that a bipartite graph cannot have any loop edges, because a
loop would connect a vertex to a vertex in the same set. More generally, a vertex joined to itself
by a loop cannot be in an independent set.

In a bipartite graph, it is sometimes easy to pick a maximum matching out just by staring at
a drawing of the graph. However that is not always the case. Figure 6.23 is a graph of the data
in Table 6.2. Staring at this Figure gives us many matchings, but no matching that saturates
the set of jobs. But staring is not a proof, unless we can describe what we are staring at very
well. Perhaps you tried to construct a matching by matching l to 4, s to 2, t to 7, m to 5, e to 6,
b to 7, and then were frustrated when you got to f and 4, 5 and 6 were already used. You may
then have gone back and tried to redo your earlier choices so as to keep one of 4, 5, or 6 free, and
found you couldn’t do so. This is because jobs l, m, e, and f are adjacent only to people 4, 5,
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Figure 6.23: A graph of the data of Table 6.2.
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and 6. Thus there are only three people qualified for these four jobs, and so there is no way we
can fill them all.

We call the set N(S) of all vertices adjacent to at least one vertex of S the neighborhood of S
or the neighbors of S. In these terms, there is no matching that saturates a part X of a bipartite
graph if there is some subset S of X such that the set N(S) of neighbors of S is smaller than S.
We call the set N(S) of all vertices adjacent to at least one vertex of S the neighborhood of S or
the neighbors of S. In symbols, we can summarize as follows.

Lemma 6.13 If we can find a subset S of a part X of a bipartite graph G such that |N(S)| < |S|,
then there is no matching of G that saturates X.

Proof: A matching that saturates X must saturate S. But if there is such a matching,
each element of S must be matched to a different vertex, and this vertex cannot be in S since
S ⊆ X. Therefore there are edges from vertices in S to at least |S| different vertices not in S, so
|N(S)| > |S|, a contradiction. Thus there is no such matching.

This gives a proof that there is no matching that saturates all the jobs, so the matching that
matches l to 4, s to 2, t to 7, m to 5, e to 6, b to 7 is a maximum matching for the graph in
Figure 6.23.

Another method you may have used to prove that there is no larger matching than the one
we found is the following. When we matched l to 4, we may have noted that 4 is an endpoint of
quite a few edges. Then when we matched s to 2, we may have noted that s is an endpoint of
quite a few edges, and so is t. In fact, 4, s, and t touch 12 edges of the graph, and there are only
23 edges in the graph. If we could find three more vertices that touch the remaining edges of the
graph, we would have six vertices that among them are incident with every edge. A set of vertices
such that at least one of them is incident with each edge of a graph G is called a vertex cover
of the edges of G, or a vertex cover of G for short. What does this have to do with a matching?
Each matching edge would have to touch one, or perhaps two of the vertices in a vertex cover of
the edges. Thus the number of edges in a matching is always less than the number of vertices in
a vertex cover of the edges of a graph. Thus if we can find a vertex cover of size six in our graph
in Figure 6.23, we will know that there is no matching that saturates the set of jobs since there
are seven jobs. For future reference, we state our result about the size of a matching and the size
of a vertex cover as a lemma.

Lemma 6.14 The size of a matching in a graph G is no more than the size of a vertex cover of
G.
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Proof: Given in the preceding discussion.

We have seen that 4, s, and t are good candidates for being members of a relatively small
vertex cover of the graph in Figure 6.23, since they cover more than half the edges of the graph.
Continuing through the edges we first examined, we see that m, 6, and b are good candidates
for a small vertex cover as well. In fact, {4, s, t, m, 6, b} do form a vertex cover. Since we have
a vertex cover of size six, we know a maximum matching has size no more than six. Since we
have already found a six-edge matching, that is a maximum matching. Therefore with the data
in Table 6.2, it is not possible to fill all the jobs.

Making matchings bigger

Practical problems involving matchings will usually lead us to search for the largest possible
matching in a graph. To see how to use a matching to create a larger one, we will assume we
have two matchings of the same graph and see how they differ, especially how a larger one differs
from a smaller one.

Exercise 6.4-3 In the graph G of Figure 6.22, let M1 be the matching {l, 1}, {s, 2}, {t, 4},
{m, 5}, {e, 6}, {b, 9}, {f, 8}, and let M2 be the matching {l, 4}, {s, 2} {t, 1}, {m, 6},
{e, 7} {b, 8}. Recall that for sets S1 and S2 the symmetric difference of S1 and S2,
denoted by S1∆S2 is (S1 ∪ S2) − (S1 ∩ S2). Compute the set M1∆M2 and draw the
graph with the same vertex set as G and edge set M1∆M2. Use different colors or
textures for the edges from M1 and M2 so you can see their interaction. Describe the
kinds of graphs you see as connected components as succinctly as possible.

Exercise 6.4-4 In Exercise 6.4-3, one of the connected components suggests a way to
modify M2 by removing one or more edges and substituting one or more edges from
M1 that will give you a larger matching M ′

2 related to M2. In particular, this larger
matching should saturate everything M2 saturates and more. What is M ′

2 and what
else does it saturate?

Exercise 6.4-5 Consider the matching M = {s, 1}, {t, 4}, {m, 6}, {b, 8} in the graph of
Figure 6.23. How does it relate to the simple path whose vertices are 3, s, 1, t, 4, m, 6, f?
Say as much as you can about the set M ′ that you obtain from M by deleting the
edges of M that are in the path and adding to the result the edges of the path that
are not in M .

In Exercise 6.4-3

M1∆M2 = {l, 1}, {l, 4}, {t, 4}, {t, 1}, {m, 5}, {m, 6}, {e, 6}, {e, 7}, {b, 8}, {f, 8}, {b, 9}.

We have drawn the graph in Figure 6.24. We show the edges of M2 as dashed. As you see,
it consists of a cycle with four edges, alternating between edges of M1 and M2, a path with four
edges, alternating between edges of M1 and M2, and a path with three edges, alternating between
edges of M1 and M2. We call a simple path or cycle an alternating path or alternating cycle for
a matching M of a graph G if its edges alternate between edges in M and edges not in M . Thus
our connected components were alternating paths and cycles for both M1 and M2. The example
we just discussed shows all the ways in which two matchings can differ in the following sense.
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Figure 6.24: The graph for Exercise 6.4-3.
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Lemma 6.15 (Berge) If M1 and M2 are matchings of a graph G = (V, E) then the connected
components of M1∆M2 are cycles with an even number of vertices and simple paths. Further,
the cycles and paths are alternating cycles and paths for both M1 and M2.

Proof: Each vertex of the graph (V, M1∆M2) has degree 0, 1, or two. If a component has
no cycles it is a tree, and the only kind of tree that has vertices of degree 1 and two is a simple
path. If a component has a cycle, then it cannot have any edges other than the edges of the cycle
incident with its vertices because the graph would then have a vertex of degree 3 or more. Thus
the component must be a cycle. If two edges of a path or cycle in (V, M1∆M2) share a vertex,
they cannot come from the same matching, since two edges in the same matching do not share
a vertex. Thus alternating edges of a path or cycle of (V, M1∆M2) must come from different
matchings.

Corollary 6.16 If M1 and M2 are matchings of a graph G = (V, E) and |M2| < |M1|, then there
is an alternating path for M1 and M2 that starts and ends with vertices saturated by M2 but not
by M1.

Proof: Since an even alternating cycle and an even alternating path in (V, M1∆M2) have
equal numbers of edges from M1 and M2, at least one component must be an alternating path
with more edges from M1 than M2, because otherwise |M2| ≤ |M1|. Since this is a component of
(V, M1∆M2), its endpoints lie only in edges of M2, so they are saturated by M2 but not M1.

The path with three edges in Exercise 6.4-3 has two edges of M1 and one edge of M2. We see
that if we remove {b, 8} from M2 and add {b, 9} and {f, 8}, we get the matching

M ′
2 = {{l, 4}, {s, 2}, {t, 1}, {m, 6}, {e, 7}, {b, 9}, {f, 8}}.

This answers the question of Exercise 6.4-4. Notice that this matching saturates everything M2

does, and also saturates vertices f and 9.

In Figure 6.25 we have shown the matching edges of the path in Exercise 6.4-5 in bold and
the non-matching edges of the path as dashed. The edge of the matching not in the path is
shown in zig-zag. Notice that the dashed edges and the zig-zag edge form a matching which is
larger than M and saturates all the vertices that M does in addition to 3 and f . The path begins
and ends with unmatched vertices, namely 3 and f , and and alternates between matching edges
and non-matching edges. All but the first and last vertices of such a path lie on matching edges
of the path and the endpoints of the path do not lie on matching edges. Thus no edges of the
matching that are not path-edges will be incident with vertices on the path. Thus if we delete all
the matching edges of the path from M and add all the other edges of the path to M , we will get
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Figure 6.25: The path and matching of Exercise 6.4-5.
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a new matching, because by taking every second edge of a simple path, we get edges that do not
have endpoints in common. An alternating path is called an augmenting path for a matching M
if it begins and ends with M -unsaturated vertices. That is, it is an alternating path that begins
and ends with unmatched vertices. Our preceding discussion suggests the proof of the following
theorem.

Theorem 6.17 (Berge) A matching M in a graph is of maximum size if and only if M has no
augmenting path. Further, if a matching M has an augmenting path P with edge set E(P ), then
we can create a larger matching by deleting the edges in M ∩ E(P ) from M and adding in the
edges of E(P ) − M .

Proof: First if there is a matching M1 larger than M , then by Corollary 6.16 there is an
augmenting path for M . Thus if a matching has maximum size, it has no augmenting path.
Further, as in our discussion of Exercise 6.4-5, if there is an augmenting path for M , then there
is a larger matching for M . Finally, this discussion showed that if P is an augmenting path, we
can get such a larger matching by deleting the edges in M ∩ E(P ) and adding in the edges of
E(P ) − M .

Corollary 6.18 While the larger matching of Theorem 6.17 may not contain M as a subset, it
does saturate all the vertices that M saturates and two additional vertices.

Proof: Every vertex incident with an edge in M is incident with some edge of the larger
matching, and each of the two endpoints of the augmenting path is also incident with a matching
edge. Because we may have removed edges of M to get the larger matching, it may not contain
M .

Matching in Bipartite Graphs

While our examples have all been bipartite, all our lemmas, corollaries and theorems about
matchings have been about general graphs. In fact, it some of the results can be strengthened in
bipartite graphs. For example, Lemma 6.14 tells us that the size of a matching is no more than
the size of a vertex cover. We shall soon see that in a bipartite graph, the size of a maximum
matching actually equals the size of a minimum vertex cover.
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Searching for Augmenting Paths in Bipartite Graphs

We have seen that if we can find an augmenting path for a matching M in a graph G, then
we can create a bigger matching. Since our goal from the outset has been to create the largest
matching possible, this helps us achieve that goal. However, you may ask, how do we find an
augmenting path? Recall that a breadth-first search tree centered at a vertex x in a graph
contains a path, in fact a shortest path, from x to every vertex y to which it is connected. Thus
it seems that we ought to be able to alternate between matching edges and non-matching edges
when doing a breadth-first search and find alternating paths. In particular, if we add vertex i to
our tree by using a matching edge, then any edge we use to add a vertex from vertex i should
be a non-matching edge. And if we add vertex i to our tree by using a non-matching edge, then
any edge we use to add a vertex from vertex i should be a matching edge. (Thus there is just
one such edge.) Because not all edges are available to us to use in adding vertices to the tree, the
tree we get will not necessarily be a spanning tree of our original graph. However we can hope
that if there is an augmenting path starting at vertex x and ending at vertex y, then we will find
it by using breadth first search starting from x in this alternating manner.

Exercise 6.4-6 Given the matching {s, 2}, {t, 4}, {b, 7}{f, 8} of the graph in Figure 6.22
use breadth-first search starting at vertex 1 in an alternating way to search for an
augmenting path starting at vertex 1. Use the augmenting path you get to create a
larger matching.

Exercise 6.4-7 Continue using the method of Exercise 6.4-6 until you find a matching of
maximum size.

Exercise 6.4-8 Apply breadth-first search from vertex 0 in an alternating way to graph (a)
in Figure 6.26. Does this method find an augmenting path? Is there an augmenting
path?

Figure 6.26: Matching edges are shown in bold in these graphs.
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For Exercise 6.4-6, if we begin at vertex 1, we add vertices l,s and t to our tree, giving them
breadth-first numbers 1,2, and 3. Since l is not incident with a matching edge, we cannot continue
the search from there. Since vertex s is incident with matching edge {s, 2}, we can use this edge
to add vertex 2 to the tree and give it breadth-first number 4. This is the only vertex we can
add from l since we can only use matching edges to add vertices from l. Similarly, from t we
can add vertex 4 by using the matching edge {t, 4} and giving it breadth-first number 5. All
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vertices adjacent to vertex 2 have already been added to the tree, but from vertex 4 we can use
non-matching edges to add vertices m and e to our tree, giving them breadth first numbers 6 and
7. Now we can only use matching edges to add vertices to the tree from m or e, but there are
no matching edges incident with them, so our alternating search tree stops here. Since m and e
are unmatched, we know we have a path in our tree from vertex 1 to vertex m and a path from
vertex 1 to vertex e. The vertex sequence of the path from 1 to m is 1s2t4m Thus our matching
becomes {1, s}, {2, t}, {4, m}, {b, 7}, {f, 8}.

For Exercise 6.4-7 find another unmatched vertex and repeat the search. Working from
vertex l, say, we start a tree by using the edges {l, 1}, {l, 3}, {l, 4} to add vertices 1, 3, and 4.
We could continue working on the tree, but since we see that l{l, 3}3 is an augmenting path,
we use it to add the edge {l, 3} to the matching, short-circuiting the tree-construction process.
Thus our matching becomes {1, s}, {2, t}, {l, 3}, {4, m}, {b, 7}{f, 8}. The next unmatched vertex
we see might be vertex 5. Starting from it, we add m and f to our tree, giving them breadth
first numbers 1 and 2. From m we have the matching edge {m, 4}, and from f we have the
matching edge {f, 8}, so we use them to add the vertices 4 and 8 to the tree. From vertex 4
we add l, s, t, and e to the tree, and from vertex 8 we add vertex b to the tree. All these
vertices except e are in matching edges. Since e is not in a matching edge, we have discovered
a vertex connected by an augmenting path to vertex 5. The path in the tree from vertex 5
to vertex e has vertex sequence 5m4e, and using this augmenting path gives us the matching
{1, s}, {2, t}, {l, 3}, {5, m}, {4, e}, {b, 7}, {f, 8}. Since we now have a matching whose size is the
same as the size of a vertex cover, namely the bottom part of the graph in Figure 6.22, we have
a matching of maximum size.

For Exercise 6.4-8 we start at vertex 0 and add vertex 1. From vertex 1 we use our matching
edge to add vertex 2. From vertex 2 we use our two non-matching edges to add vertices 3 and
4. However, vertices 3 and 4 are incident with the same matching edge, so we cannot use that
matching edge to add any vertices to the tree, and we must stop without finding an augmenting
path. From staring at the picture, we see there is an augmenting path, namely 012435, and it
gives us the matching {{0, 1}, {2, 4}, {3, 5}}. We would have similar difficulties in discovering
either of the augmenting paths in part (b) of Figure 6.26.

It turns out to be the odd cycles in Figure 6.26 that prevent us from finding augmenting paths
by our modification of breadth-first search. We shall demonstrate this by describing an algorithm
which is a variation on the alternating breadth-first search we were using in solving our exercises.
This algorithm takes a bipartite graph and a matching and either gives us an augmenting path
or constructs a vertex cover whose size is the same as the size of the matching.

The Augmentation-Cover algorithm

We begin with a bipartite graph with parts X and Y and a matching M . We label the unmatched
vertices in X with the label a (which stands for alternating). We number them in sequence as
we label them. Starting with i = 1 and taking labeled vertices in order of the numbers we have
assigned them, we use vertex number i to do additional labelling as follows.

1. If vertex i is in X, we label all unlabeled vertices adjacent to it with the label a and the
name of vertex i. Then we number these newly labeled vertices, continuing our sequence
of numbers without interruption.
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2. If vertex i is in Y , and it is incident with an edge of M , its neighbor in the matching edge
cannot yet be labeled. We label this neighbor with the label a and the name of vertex i.

3. If vertex i is in Y , and it is not incident with an edge of M , then we have discovered an
augmenting path: the path from vertex i to the vertex we used to add it (and recorded
at vertex i) and so on back to one of the unlabeled vertices in X. It is alternating by our
labeling method, and it starts and ends with unsaturated vertices, so it is augmenting.

If we can continue the labelling process until no more labeling is possible and we do not find an
augmenting path, then we let A be the set of labeled vertices. The set C = (X − A) ∪ (Y ∩ A)
then turns out to be a vertex cover whose size is the size of M . We call this algorithm the
augmentation-cover algorithm.

Theorem 6.19 (König and Egerváry) In a bipartite graph with parts X and Y , the size of
a maximum sized matching equals the size of a minimum-sized vertex cover.

Proof: In light of Berge’s Theorem, if the augmentation-cover algorithm gives us an augment-
ing path, then the matching is not maximum sized, and in light of Lemma 6.14, if we can prove
that the set C the algorithm gives us when there is no augmenting path is a vertex cover whose
size is the size of the matching, we will have proved the theorem. To see that C is a vertex cover,
note that every edge incident with a vertex in X ∩ A is covered, because its endpoint in Y has
been marked with an a and so is in Y ∩ A. But every other edge must be covered by X − A
because in a bipartite graph, each edge must be incident with a vertex in each part. Therefore
C is a vertex cover. If an element of Y ∩ A, were not matched, it would be an endpoint of an
augmenting path, and so all elements of Y ∩ A are incident with matching edges. But every
vertex of X − A is matched because A includes all unmatched vertices of X. By step 2 of the
augmentation-cover algorithm, if ε is a matching edge with an endpoint in Y ∩A, then the other
endpoint must be in A. Therefore each matching edge contains only one member of C. Therefore
the size of a maximum matching is the size of C.

Corollary 6.20 The augmentation-cover algorithm applied to a bipartite graph and a matching
of that graph produces either an augmenting path for the matching or a minimum vertex cover
whose size equals the size of the matching.

Before we proved the König-Egerváry Theorem, we knew that if we could find a matching and
a vertex cover of the same size, then we had a maximum sized matching and a minimum sized
vertex cover. However it is possible that in some graphs we can’t test for whether a matching
is as large as possible by comparing its size to that of a vertex cover because a maximum sized
matching might be smaller than a minimum sized vertex cover. The König-Egárvary Theorem
tells us that in bipartite graphs this problem never arises, so the test always works.

We had a second technique we used to show that a matching could not saturate the set X
of all jobs in Exercise 6.4-2. In Lemma 6.13 we showed that if we can find a subset S of a part
X of a bipartite graph G such that |N(S)| < |S|, then there is no matching of G that saturates
X. In other words, to have a matching that saturates X in a bipartite graph on parts X and Y ,
it is necessary that |N(S)| ≥ |S| for every subset S of X. (When S = ∅, then so does N(S).)
This necessary condition is called Hall’s condition, and Hall’s theorem says that this necessary
condition is sufficient.
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Theorem 6.21 (Hall) If G is a bipartite graph with parts X and Y , then there is a matching
of G that saturates X if and only if |N(S)| ≥ |S| for every subset ⊆ X.

Proof: In Lemma 6.13 we showed (the contrapositive of the statement) that if there is a
matching of G, then |N(S)| ≥ |S| for every subset of X. (There is no reason to use a contrapositive
argument though; if there is a matching that saturates X, then because matching edges have no
endpoints in common, the elements of each subset S of X will be matched to at least |S| different
elements, and these will all be in N(S).)

Thus we need only show that if the graph satisfies Hall’s condition then there is a matching
that saturates S. We will do this by showing that X is a minimum-sized vertex cover. Let C be
some vertex cover of G. Let S = X − C. If ε is an edge from a vertex in S to a vertex y ∈ Y , ε
cannot be covered by a vertex in C ∩X. Therefore ε must be covered by a vertex in C ∩Y . This
means that N(S) ⊆ C ∩ Y , so |C ∩ Y | ≥ |N(S)|. By Hall’s condition, N(S)| > |S|. Therefore
|C ∩ Y | ≥ |S|. Since C ∩X and C ∩ Y are disjoint sets whose union is C, we can summarize our
remarks with the equation

|C| = |C ∩ X| + |C ∩ Y | ≥ |C ∩ X| + |N(S)| ≥ |C ∩ X| + |S| = |C ∩ X| + |C − X| = |X|.

X is a vertex cover, and we have just shown that it is a vertex cover of minimum size . Therefore
a matching of maximum size has size |X|. Thus there is a matching that saturates X.

Good Algorithms

While Hall’s theorem is quite elegant, applying it requires that we look at every subset of X,
which would take us Ω

(
2|X|

)
time. Similarly, actually finding a minimum vertex cover could

involve looking at all (or nearly all) subsets of X ∪Y , which would also take us exponential time.
However, the augmentation-cover algorithm requires that we examine each edge at most some
fixed number of times and then do a little extra work; certainly no more than O(e) work. We
need to repeat the algorithm at most X times to find a maximum matching and minimum vertex
cover. Thus in time O(ev), we can not only find out whether we have a matching that saturates
X; we can find such a matching if it exists and a vertex cover that proves it doesn’t exist if it
doesn’t. However this only applies to bipartite graphs. The situation is much more complicated
in non-bipartite graphs. In a paper which introduced the idea that a good algorithm is one that
runs in time O(nc), where n is the amount of information needed to specify the input and c
is a constant, Edmunds10 developed a more complicated algorithm that extended the idea of a
search tree to a more complicated structure he called a flower. He showed that this algorithm
was good in his sense, introduced the problem class NP, and conjectured that P �= NP. In a
wry twist of fate, the problem of finding a minimum vertex cover problem (actually the problem
of determining whether there is a vertex cover of size k, where k can be a function of v) is, in fact,
NP-complete in arbitrary graphs. It is fascinating that the matching problem for general graphs
turned out to be solvable in polynomial time, while determining the “natural” upper bound on
the size of a matching, an upper bound that originally seemed quite useful, remains out of our
reach.

10Jack Edmonds. Paths, Trees and Flowers. Canadian Journal of Mathematics, 17, 1965 pp449-467
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Important Concepts, Formulas, and Theorems

1. Matching. A set of edges in a graph that share no endpoints is called a matching of the
graph.

2. Saturate. A matching is said to saturate a set X of vertices if every vertex in X is matched.

3. Maximum Matching. A matching in a graph is a maximum matching if it is at least as big
as any other matching.

4. Bipartite Graph. A graph is called bipartite whenever its vertex set can be partitioned into
two sets X and Y so that each edge connects a vertex in X with a vertex in Y . Each of
the two sets is called a part of the graph.

5. Independent Set. A subset of the vertex set of a graph is called independent if no two of its
vertices are connected by an edge. (In particular, a vertex connected to itself by a loop is
in no independent set.) A part of a bipartite graph is an example of an ‘independent set.

6. Neighborhood. We call the set N(S) of all vertices adjacent to at least one vertex of S the
neighborhood of S or the neighbors of S.

7. Hall’s theorem for a Matching in a Bipartite Graph. If we can find a subset S of a part
X of a bipartite graph G such that |N(S)| < |S|, then there is no matching of G that
saturates X. If there is no subset S ⊆ X such that |N(S)| < |S|, then there is a matching
that saturates X.

8. Vertex Cover. A set of vertices such that at least one of them is incident with each edge
of a graph G is called a vertex cover of the edges of G, or a vertex cover of G for short. In
any graph, the size a matching is less than or equal to the size of any vertex cover.

9. Alternating Path, Augmenting Path. A simple path is called an alternating path for a
matching M if, as we move along the path, the edges alternate between edges in M and
edges not in M . An augmenting path is an alternating path that begins and ends at
unmatched vertices.

10. Berge’s Lemma. If M1 and M2 are matchings of a graph G then the connected components
of M1∆M2 are cycles with an even number of vertices and simple paths. Further, the cycles
and paths are alternating cycles and paths for both M1 and M2.

11. Berge’s Corollary. If M1 and M2 are matchings of a graph G = (V, E) and |M1| > |M2|,
then there is an alternating path for M1 and M2 that starts and ends with vertices saturated
by M1 but not by M2.

12. Berge’s Theorem. A matching M in a graph is of maximum size if and only if M has no
augmenting path. Further, if a matching M has an augmenting path P with edge set E(P ),
then we can create a larger matching by deleting the edges in M∩E(P ) from M and adding
in the edges of E(P ) − M .

13. Augmentation-Cover Algorithm. The Augmentation-Cover algorithm is an algorithm that
begins with a bipartite graph and a matching of that graph and produces either an aug-
menting path or a vertex cover whose size equals that of the matching, thus proving that
the matching is a maximum matching.
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14. König-Egerváry Theorem. In a bipartite graph with parts X and Y , the size of a maximum
sized matching equals the size of a minimum-sized vertex cover.

Problems

1. Either find a maximum matching or a subset S of the set X = {a, b, c, d, e} such that
|S| > |N(S)| in the graph of Figure 6.27

Figure 6.27: A bipartite graph

a b c d e

1 2 3 4 5 6 7

2. Find a maximum matching and a minimum vertex cover in the graph of Figure 6.27

3. Either find a matching which saturates the set X = {a, b, c, d, e, f} in Figure 6.28 or find a
set S such that |N(S)| < |X|.

Figure 6.28: A bipartite graph

a b c d fe

1 2 3 4 5 6

4. Find a maximum matching and a minimum vertex cover in the graph of Figure 6.28.

5. In the previous exercises, when you were able to find a set S with |S| > |N(S)|, how did
N(S) relate to the vertex cover? Why did this work out as it did?

6. A star is a another name for a tree with one vertex connected to each of n other vertices.
(So a star has n + 1 vertices.) What are the size of a maximum matching and a minimum
vertex cover in a star with n + 1 vertices?

7. In Theorem 6.17 is it true that if there is an augmenting path P with edge set E(P ) for a
matching M , then M∆E(P ) is a larger matching than M?

8. Find a maximum matching and a minimum vertex cover in graph (b) of Figure 6.26.

9. In a bipartite graph, is one of the parts always a maximum-sized independent set? What
if the graph is connected?
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10. Find infinitely many examples of graphs in which a maximum-sized matching is smaller
than a minimum-sized vertex cover.

11. Find an example of a graph in which the maximum size of a matching is less than one
quarter of the size of a minimum vertex cover.

12. Prove or give a counter-example: Every tree is a bipartite graph. (Note, a single vertex
with no edges is a bipartite graph; one of the two parts is empty.)

13. Prove or give a counter-example. A bipartite graph has no odd cycles.

14. Let G be a connected graph with no odd cycles. Let x be a vertex of G. Let X be all
vertices at an even distance from x, and let Y be all vertices at an odd distance from x.
Prove that G is bipartite with parts X and Y .

15. What is the sum of the maximum size of an independent set and the minimum size of a
vertex cover in a graph G? Hint: it is useful to think both about the independent set and
its complement (relative to the vertex set).
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6.5 Coloring and planarity

The idea of coloring

Graph coloring was one of the origins of graph theory. It arose from a question from Francis
Guthrie, who noticed that that four colors were enough colors to color the map of the counties of
England so that if two counties shared a common boundary line, then they got different colors. He
wondered whether this was the case for any map. Through his brother he passed it on to Agustus
DeMorgan, and in this way it seeped into the consciousness of the mathematical community. If
we think of the counties as vertices and draw an edge between two vertices if their counties share
some boundary line, we get a representation of the problem that is independent of such things as
the shape of the counties, the amount of boundary line they share, etc. so that it captures the
part of the problem we need to focus on. We now color the vertices of the graph, and for this
problem we want to do so in such a way that adjacent vertices get different colors. We will return
to this problem later in the section; we begin our study with another application of coloring.

Exercise 6.5-1 The executive committee of the board of trustees of a small college has
seven members, Kim, Smith, Jones, Gupta, Ramirez, Wang, and Chernov. It has six
subcommittees with the following membership

• Investments: W, R, G

• Operations: G, J, S, K

• Academic affairs: S, W, C

• Fund Raising: W, C, K

• Budget: G, R, C

• Enrollment: R, S, J, K

Each time the executive committee has a meeting, first each of the subcommittees
meets with appropriate college officers, and then the executive committee gets to-
gether as a whole to go over subcommittee recommendations and make decisions.
Two committees cannot meet at the same time if they have a member in common,
but committees that don’t have a member in common can meet at the same time. In
this exercise you will figure out the minimum number of time slots needed to schedule
all the subcommittee meetings. Draw a graph in which the vertices are named by the
initials of the committee names and two vertices are adjacent if they have a member
in common. Then assign numbers to the vertices in such a way that two adjacent
vertices get different numbers. The numbers represent time slots, so they need not be
distinct unless they are on adjacent vertices. What is the minimum possible number
of numbers you need?

Because the problem of map coloring motivated much of graph theory, it is traditional to refer
to the process of assigning labels to the vertices of a graph as coloring the graph. An assignment
of labels, that is a function from the vertices to some set, is called a coloring. The set of possible
labels (the range of the coloring function) is often referred to as a set of colors. Thus in Exercise
6.5-1 we are asking for a coloring of the graph. However, as with the map problem, we want a
coloring in which adjacent vertices have different colors. A coloring of a graph is called a proper
coloring if it assigns different colors to adjacent vertices.



314 CHAPTER 6. GRAPHS

We have drawn the graph of Exercise 6.5-1 in Figure 6.29. We call this kind of graph an
intersection graph, which means its vertices correspond to sets and it has an edge between two
vertices if and only if the corresponding sets intersect.

Figure 6.29: The “intersection” graph of the committees.
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The problem asked us to color the graph with as few colors possible, regarding the colors as
1,2,3, etc. We will represent 1 as a white vertex, 2 as a light grey vertex, 3 as a dark grey vertex
and 4 as a black vertex. The triangle on the bottom requires three colors simply because all three
vertices are adjacent. Since it doesn’t matter which three colors we use, we choose arbitrarily to
make them white, light grey, and dark grey. Now we know we need at least three colors to color
the graph, so it makes sense to see if we can finish off a coloring using just three colors. Vertex
I must be colored differently from E and D, so if we use the same three colors, it must have the
same color as B. Similarly, vertex A would have to be the same color as E if we use the same
three colors. But now none of the colors can be used on vertex O, because it is adjacent to three
vertices of different colors. Thus we need at least four colors rather than 3, and we show a proper
four-coloring in Figure 6.30.

Figure 6.30: A proper coloring of the committee intersection graph.
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Exercise 6.5-2 How many colors are needed to give a proper coloring of the complete
graph Kn?

Exercise 6.5-3 How many colors are needed for a proper coloring of a cycle Cn on n =
3, 4, 5, and 6 vertices?

In Exercise 6.5-2 we need n colors to properly color Kn, because each pair of vertices is
adjacent and thus must have two different colors. In Exercise 6.5-3, if n is even, we can just
alternate two colors as we go around the cycle. However if n is odd, using two colors would
require that they alternate as we go around the cycle, and when we colored our last vertex, it
would be the same color as the first. Thus we need at least three colors, and by alternating two
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of them as we go around the cycle until we get to the last vertex and color it the third color we
get a proper coloring with three colors.

The chromatic number of a graph G, traditionally denoted χ(G), is the minimum number
of colors needed to properly color G. Thus we have shown that the chromatic number of the
complete graph Kn is n, the chromatic number of a cycle on an even number of vertices is two,
and the chromatic number of a cycle on an odd number of vertices is three. We showed that the
chromatic number of our committee graph is 4.

From Exercise 6.5-2, we see that if a graph G has a subgraph which is a complete graph on
n vertices, then we need at least n colors to color those vertices, so we need at least n colors to
color G. this is useful enough that we will state it as a lemma.

Lemma 6.22 If a graph G contains a subgraph that is a complete graph on n vertices, then the
chromatic number of G is at least n.

Proof: Given above.

Interval Graphs

An interesting application of coloring arises in the design of optimizing compilers for computer
languages. In addition to the usual RAM, a computer typically has some memory locations called
registers which can be accessed at very high speeds. Thus values of variables which are going to
be used again in the program are kept in registers if possible, so they will be quickly available
when we need them. An optimizing compiler will attempt to decide the time interval in which a
given variable may be used during a run of a program and arrange for that variable to be stored
in a register for that entire interval of time. The time interval is not determined in absolute
terms of seconds, but the relative endpoints of the intervals can be determined by when variables
first appear and last appear as one steps through the computer code. This information is what is
needed to set aside registers to use for the variables. We can think of coloring the variables by the
registers as follows. We draw a graph in which the vertices are labeled with the variable names,
and associated to each variable is the interval during which it is used. Two variables can use the
same register if they are needed during non-overlapping time intervals. This is helpful, because
registers are significantly more expensive than ordinary RAM, so they are limited in number.
We can think of our graph on the variables as the intersection graph of the intervals. We want
to color the graph properly with a minimum number of registers; hopefully this will be no more
than the number of registers our computer has available. The problem of assigning variables to
registers is called the register assignment problem.

An intersection graph of a set of intervals of real numbers is called an interval graph. The
assignment of intervals to the vertices is called an interval representation. You will notice that
so far in our discussion of coloring, we have not given an algorithm for properly coloring a graph
efficiently. This is because the problem of whether a graph has a proper coloring with k colors,
for any fixed k greater than 2 is another example of an NP-complete problem. However, for
interval graphs, there is a very simple algorithm for properly coloring the graph in a minimum
number of colors.

Exercise 6.5-4 Consider the closed intervals [1, 4], [2, 5], [3, 8], [5, 12], [6, 12], [7, 14], [13, 14].
Draw the interval graph determined by these intervals and find its chromatic number.
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We have drawn the graph of Exercise 6.5-4 in Figure 6.31. (We have not included the square
braces to avoid cluttering the figure.) Because of the way we have drawn it, it is easy to see a

Figure 6.31: The graph of Exercise 6.5-4
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subgraph that is a complete graph on four vertices, so we know by our lemma that the graph has
chromatic number at least four. In fact, Figure 6.32 shows that the chromatic number is exactly
four. This is no accident.

Figure 6.32: A proper coloring of the graph of Exercise 6.5-4 with four colors
.
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Theorem 6.23 In an interval graph G, the chromatic number is the size of the largest complete
subgraph.

Proof: List the intervals of an interval representation of the graph in order of their left
endpoints. Then color them with the integers 1 through some number n by starting with 1 on
the first interval in the list and for each succeeding interval, use the smallest color not used on
any neighbor of the interval earlier in the list. This will clearly give a proper coloring. To see that
the number of colors needed is the size of the largest complete subgraph, let n denote the largest
color used, and choose an interval I colored with color n. Then, by our coloring algorithm, I
must intersect with earlier intervals in the list colored 1 through n − 1; otherwise we could have
used a smaller color on I. All these intervals must contain the left endpoint of I, because they
intersect I and come earlier in the list. Therefore they all have a point in common, so they form
a complete graph on n vertices. Therefore the minimum number of colors needed is the size of a
complete subgraph of G. But by Lemma 6.22, G can have no larger complete subgraph. Thus
the chromatic number of G is the size of the largest complete subgraph of G.

Corollary 6.24 An interval graph G may be properly colored using χ(G) consecutive integers as
colors by listing the intervals of a representation in order of their left endpoints and going through
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the list, assigning the smallest color not used on an earlier adjacent interval to each interval in
the list.

Proof: This is the coloring algorithm we used in the proof of Theorem 6.23.

Notice that using the correspondence between numbers and grey-shades we used before, the
coloring in Figure 6.32 is the one given by this algorithm. An algorithm that colors an (arbitrary)
graph G with consecutive integers by listing its vertices in some order, coloring the first vertex
in the list 1, and then coloring each vertex with the least number not used on any adjacent
vertices earlier in the list is called a greedy coloring algorithm. We have just seen that the greedy
coloring algorithm allows us to find the chromatic number of an interval graph. This algorithm
takes time O(n2), because as we go through the list, we might consider every earlier entry when
we are considering a given element of the list. It is good luck that we have a polynomial time
algorithm, because even though we stated in Theorem 6.23 that the chromatic number is the size
of the largest complete subgraph, determining whether the size of a largest complete subgraph in
a general graph (as opposed to an interval graph) is k (where k may be a function of the number
of vertices) is an NP-complete problem.

Of course we assumed that we were given an interval representation of our graph. Suppose
we are given a graph that happens to be an interval graph, but we don’t know an interval
representation. Can we still color it quickly? It turns out that there is a polynomial time
algorithm to determine whether a graph is an interval graph and find an interval representation.
This theory is quite beautiful,11 but it would take us too far afield to pursue it now.

Planarity

We began our discussion of coloring with the map coloring problem. This problem has a special
aspect that we did not mention. A map is drawn on a piece of paper, or on a globe. Thus a
map is drawn either on the plane or on the surface of a sphere. By thinking of the sphere as a
completely elastic balloon, we can imagine puncturing it with a pin somewhere where nothing
is drawn, and then stretching the pinhole until we have the surface of the balloon laid out flat
on a table. This means we can think of all maps as drawn in the plane. What does this mean
about the graphs we associated with the maps? Say, to be specific, that we are talking about
the counties of England. Then in each county we take an important town, and build a road to
the boundary of each county with which it shares more than a single boundary point. We can
build these roads so that they don’t cross each other, and the roads to a boundary line between
two different counties join together at that boundary line. Then the towns we chose are the
vertices of a graph representing the map, and the roads are the edges. Thus given a map drawn
in the plane, we can draw a graph to represent it in such a way that the edges of the graph do
not meet at any point except their endpoints.12 A graph is called planar if it has a drawing in
the plane such that edges do not meet except at their endpoints. Such a drawing is called a
planar drawing of the graph. The famous four color problem asked whether all planar graphs
have proper four colorings. In 1976, Apel and Haken, building on some of the early attempts
at proving the theorem, used a computer to demonstrate that four colors are sufficient to color

11See, for example, the book Algorithmic Graph Theory and the Perfect Graph Conjecture, by Martin Golumbic,
Academic Press, New York, 1980.

12We are temporarily ignoring a small geographic feature of counties that we will mention when we have the
terminology to describe it
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any planar graph. While we do not have time to indicate how their proof went, there is now a
book on the subject that gives a careful history of the problem and an explanation of what the
computer was asked to do and why, assuming that the computer was correctly programmed, that
led to a proof.13

What we will do here is derive enough information about planar graphs to show that five colors
suffice, giving the student some background on planarity relevant to the design of computer chips.

We start out with two problems that aren’t quite realistic, but are suggestive of how planarity
enters chip design.

Exercise 6.5-5 A circuit is to be laid out on a computer chip in a single layer. The design
includes five terminals (think of them as points to which multiple electrical circuits
may be connected) that need to be connected so that it is possible for a current to go
from any one of them to any other without sending current to a third. The connections
are made with a narrow layer of metal deposited on the surface of the chip, which
we will think of as a wire on the surface of the chip. Thus if one connection crosses
another one, current in one wire will flow through the other as well. Thus the chip
must be designed so that no two wires cross. Do you think this is possible?

Exercise 6.5-6 As in the previous exercise, we are laying out a computer circuit. However
we now have six terminals, labeled a, b, c, 1, 2, and 3, such that each of a, b, and c
must be connected to each of 1, 2, and 3, but there must be no other connections. As
before, the wires cannot touch each other, so we need to design this chip so that no
two wires cross. Do you think this is possible?

The answer to both these exercises is that it is not possible to design such a chip. One can
make compelling geometric arguments why it is not possible, but they require that we visualize
simultaneously a large variety of configurations with one picture. We will instead develop a
few equations and inequalities relating to planar graphs that will allow us to give convincing
arguments that both these designs are impossible.

The Faces of a Planar Drawing

If we assume our graphs are finite, then it is easy to believe that we can draw any edge of a
graph as a broken line segment (i.e. a bunch of line segments connected at their ends) rather
than a smooth curve. In this way a cycle in our graph determines a polygon in our drawing. This
polygon may have some of the graph drawn inside it and some of the graph drawn outside it.
We say a subset of the plane is geometrically connected if between any two points of the region
we can draw a curve.14 (In our context, you may assume this curve is a broken line segment,
but a careful study of geometric connectivity in general situations is less straightforward.) If we
remove all the vertices and edges of the graph from the plane, we are likely to break it up into a
number of connected sets.

Such a connected set is called a face of the drawing if it not a proper subset of any other
connected set of the plane with the drawing removed. For example, in Figure 6.33 the faces are

13Robin Wilson, Four Colors Suffice. Princeton University Press, Princeton NJ 2003.
14The usual thing to say is that it is connected, but we want to distinguish this kind of connectivity form

graphical connectivity. The fine point about counties that we didn’t point out earlier is that they are geometrically
connected. If they were not, the graph with a vertex for each county and an edge between two counties that share
some boundary line would not necessarily be planar.
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Figure 6.33: A typical graph and its faces.
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marked 1, a triangular face, 2, a quadrilateral face that has a line segment and point removed
for the edge {a, b} and the vertex z, 3, another quadrilateral that now has not only a line but a
triangle removed from it as well, 4, a triangular face, 5, a quadrilateral face, and 6 a face whose
boundary is a heptagon connected by a line segment to a quadrilateral. Face 6 is called the
“outside face” of the drawing and is the only face with infinite area. Each planar drawing of
a graph will have an outside face, that is a face of infinite area in which we can draw a circle
that encloses the entire graph. (Remember, we are thinking of our graphs as finite at this point.)
Each edge either lies between two faces or has the same face on both its sides.The edges {a, b},
{c, d} and {g, h} are the edges of the second type. Thus if an edge lies on a cycle, it must divide
two faces; otherwise removing that edge would increase the number of connected components of
the graph. Such an edge is called a cut edge and cannot lie between two distinct faces. It is
straightforward to show that any edge that is not a cut edge lies on a cycle. But if an edge lies
on only one face, it is a cut edge, because we can draw a broken line segment from one side of the
edge to the other, and this broken line segment plus part of the edge forms a closed curve that
encloses part of the graph. Thus removing the edge disconnects the enclosed part of the graph
from the rest of the graph.

Exercise 6.5-7 Draw some planar graphs with at least three faces and experiment to see if
you can find a numerical relationship among v, the number of vertices, e, the number
of edges, and f the number of faces. Check your relationship on the graph in Figure
6.33.

Exercise 6.5-8 In a simple graph, every face has at least three edges. This means that
the number of pairs of a face and an edge bordering that face is at least 3f . Use
the fact that an edge borders either one or two faces to get an inequality relating the
number of edges and the number of faces in a simple planar graph.

Some playing with planar drawings usually convinces people fairly quickly of the following
theorem known as Euler’s Formula.

Theorem 6.25 (Euler) In a planar drawing of a graph G with v vertices, e edges, and f faces,

v − e + f = 2.
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Proof: We induct on the number of cycles of G. If G has no cycles, it is a tree, and a tree has
one face because all its edges are cut-edges. Then v − e + f = v − (v − 1) + 1 = 2. Now suppose
G has n > 0 cycles. Choose an edge which is between two faces, so it is part of a cycle. Deleting
that edge joins the two faces it was on together, so the new graph has f ′ = f − 1 faces. The new
graph has the same number of vertices and one less edge. It also has fewer cycles than G, so we
have v − (e − 1) − (f − 1) = 2 by the inductive hypothesis, and this gives us v − e + f = 2.

ForExercise 6.5-8 let’s define an edge-face pair to be an edge and a face such that the edge
borders the face. Then we said that the number of such pairs is at least 3f in a simple graph.
Since each edge is in either one or two faces, the number of edge-face pairs is also no more than
2e. This gives us

3f ≤ # of edge-face pairs ≤ 2e,

or 3f ≤ 2e, so that f ≤ 2
3e in a planar drawing of a graph. We can combine this with Theorem

6.25 to get

2 = v − e + f ≤ v − e +
2
3
e = v − e/3

which we can rewrite as
e ≤ 3v − 6

in a planar graph.

Corollary 6.26 In a simple planar graph, e ≤ 3v − 6.

Proof: Given above.

In our discussion of Exercise 6.5-5 we said that we would see a simple proof that the circuit
layout problem was impossible. Notice that the question in that exercise was really the question
of whether the complete graph on 5 vertices, K5, is planar. If it were, the inequality e ≤ 3v − 6
would give us 10 ≤ 3 · 5 − 6 = 9, which is impossible, so K5 can’t be planar. The inequality of
Corollary 6.26 is not strong enough to solve Exercise 6.5-6. This exercise is really asking whether
the so-called “complete bipartite graph on two parts of size 3,” denoted by K3,3, is planar. In
order to show that it isn’t, we need to refine the inequality of Corollary 6.26 to take into account
the fact that in a simple bipartite graph there are no cycles of size 3, so there are no faces that
are bordered by just 3 edges. You are asked to do that in Problem 13.

Exercise 6.5-9 Prove or give a counter-example: Every planar graph has at least one
vertex of degree 5 or less.

Exercise 6.5-10 Prove that every planar graph has a proper coloring with six colors.

In Exercise 6.5-9 suppose that G is a planar graph in which each vertex has degree six or
more. Then the sum of the degrees of the vertices is at least 6v, and also is twice the number of
edges. Thus 2e ≥ 6v, or e ≥ 3v, contrary to e ≤ 3v − 6. This gives us yet another corollary to
Euler’s formula.

Corollary 6.27 Every planar graph has a vertex of degree 5 or less.

Proof: Given above.
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The Five Color Theorem

We are now in a position to give a proof of the five color theorem, essentially Heawood’s proof,
which was based on his analysis of an incorrect proof given by Kempe to the four color theorem
about ten years earlier in 1879. First we observe that in Exercise 6.5-10 we can use straightforward
induction to show that any planar graph on n vertices can be properly colored in six colors. As a
base step, the theorem is clearly true if the graph has six or fewer vertices. So now assume n > 6
and suppose that a graph with fewer than n vertices can be properly colored with six colors. Let
x be a vertex of degree 5 or less. Deleting x gives us a planar graph on n − 1 vertices, so by
the inductive hypothesis it can be properly colored with six colors. However only five or fewer of
those colors can appear on vertices which were originally neighbors of x, because x had degree 5
or less. Thus we can replace x in the colored graph and there is at least one color not used on
its neighbors. We use such a color on x and we have a proper coloring of G. Therefore, by the
principle of mathematical induction, every planar graph on n ≥ 1 vertices has a proper coloring
with six colors.

To prove the five color theorem, we make a similar start. However, it is possible that after
deleting x and using an inductive hypothesis to say that the resulting graph has a proper coloring
with 5 colors, when we want to restore x into the graph, five distinct colors are already used on
its neighbors. This is where the proof will become interesting.

Theorem 6.28 A planar graph G has a proper coloring with at most 5 colors.

Proof: We may assume that every face except perhaps the outside face of our drawing is a
triangle for two reasons. First, if we have a planar drawing with a face that is not a triangle,
we can draw in additional edges going through that face until it has been divided into triangles,
and the graph will remain planar. Second, if we can prove the theorem for graphs whose faces
are all triangles, then we can obtain graphs with non-triangular faces by removing edges from
graphs with triangular faces, and a proper coloring remains proper if we remove an edge from our
graph. Although this appears to muddy the argument at this point, at a crucial point it makes
it possible to give an argument that is clearer than it would otherwise be.

Our proof is by induction on the number of vertices of the graph. If G has five or fewer
vertices then it is clearly properly colorable with five or fewer colors. Suppose G has n vertices
and suppose inductively that every planar graph with fewer than n vertices is properly colorable
with five colors. G has a vertex x of degree 5 or less. Let G′ be the graph obtained by deleting
x form G. By the inductive hypothesis, G′ has a coloring with five or fewer colors. Fix such a
coloring. Now if x has degree four or less, or if x has degree 5 but is adjacent to vertices colored
with just four colors in G′, then we may replace x in G′ to get G and we have a color available
to use on x to get a proper coloring of G.

Thus we may assume that x has degree 5, and that in G′ five different colors appear on the
vertices that are neighbors of x in G. Color all the vertices of G other than x as in G′. Let the five
vertices adjacent to x be a, b, c, d, e in clockwise order, and assume they are colored with colors
1, 2, 3, 4, and 5. Further, by our assumption that all faces are triangles, we have that {a, b},
{b, c}4,{c,d},{d, e}, and {e, a} are all edges, so that we have a pentagonal cycle surrounding
x. Consider the graph G1,3 of G which has the same vertex set as G but has only edges with
endpoints colored 1 and 3. (Some possibilities are shown in Figure 6.34. We show only edges
connecting vertices colored 1 and 3, as well as dashed lines for the edges from x to its neighbors
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and the edges between successive neighbors. There may be many more vertices and edges in G.)

Figure 6.34: Some possibilities for the graph G1,3.
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The graph G1,3 will have a number of connected components. If a and c are not in the same
component, then we may exchange the colors on the vertices of the component containing a
without affecting the color on c. In this way we obtain a coloring of G with only four colors,
3,2,3,4,5 on the vertices a, b, c, d, e. We may then use the fifth color (in this case 1) on vertex x
and we have properly colored G with five colors.

Otherwise, as in the second part of Figure 6.34, since a and c are in the same component of
G1,3, there is a path from a to c consisting entirely of vertices colored 1 and 3. Now temporarily
color x with a new color, say color 6. Then in G we have a cycle C of vertices colored 1, 3, and
6. This cycle has an inside and an outside. Part of the graph can be on the inside of C, and part
can be on the outside. In Figure 6.35 we show two cases for how the cycle could occur, one in

Figure 6.35: Possible cycles in the graph G1,3.
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which vertex b is inside the cycle C and one in which it is outside C. (Notice also that in both
cases, we have more than one choice for the cycle because there are two ways in which we could
use the quadrilateral at the bottom of the figure.)

In G we also have the cycle with vertex sequence a, b, c, d, e which is colored with five different
colors. This cycle and the cycle C can intersect only in the vertices a and c. Thus these two cycles
divide the plane into four regions: the one inside both cycles, the one outside both cycles, and the
two regions inside one cycle but not the other. If b is inside C, then the area inside both cycles
is bounded by the cycle a{a, b}b{b, c}c{c, x}x{x, a}a. Therefore e and d are not inside the cycle
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C. If one of d and e is inside C, then both are (because the edge between them cannot cross the
cycle) and the boundary of the region inside both cycles is a{a, e}e{e, d}d{d, c}c{c, x}x{x, a}a.
In this case b cannot be inside C. Therefore one of b and d is inside the cycle c and one is outside
it. Therefore if we look at the graph G2,4 with the same vertex set as G and just the edges
connecting vertices colored 2 and 4, the connected component containing b and the connected
component containing d must be different, because otherwise a path of vertices colored 2 and 4
would have to cross the cycle C colored with colors 1, 3, and 6. Therefore in G′ we may exchange
the colors 2 and 4 in the component containing d, and we now have only colors 1, 2, 3, and 5
used on vertices a, b, c, d, and e. Therefore we may use this coloring of G′ as the coloring for
the vertices of G different from x and we may change the color on x from 6 to 4, and we have
a proper five coloring of G. Therefore by the principle of mathematical induction, every finite
planar graph has a proper coloring with 5 colors.

Kempe’s argument that seemed to prove the four color theorem was similar to this, though
where we had five distinct colors on the neighbors of x and sought to remove one of them, he
had four distinct colors on the five neighbors of x and sought to remove one of them. He had a
more complicated argument involving two cycles in place of our cycle C, and he missed one of
the ways in which these two cycles can interact.

Important Concepts, Formulas, and Theorems

1. Graph Coloring. An assignment of labels to the vertices of a graph, that is a function from
the vertices to some set, is called a coloring of the graph. The set of possible labels (the
range of the coloring function) is often referred to as a set of colors.

2. Proper Coloring. A coloring of a graph is called a proper coloring if it assigns different
colors to adjacent vertices.

3. Intersection Graph. We call a graph an intersection graph if its vertices correspond to sets
and it has an edge between two vertices if and only if the corresponding sets intersect.

4. Chromatic Number. The chromatic number of a graph G, traditionally denoted χ(G), is
the minimum number of colors needed to properly color G.

5. Complete Subgraphs and Chromatic Numbers. If a graph G contains a subgraph that is a
complete graph on n vertices, then the chromatic number of G is at least n.

6. Interval Graph. An intersection graph of a set of intervals of real numbers is called an in-
terval graph. The assignment of intervals to the vertices is called an interval representation.

7. Chromatic Number of an Interval Graph. In an interval graph G, the chromatic number is
the size of the largest complete subgraph.

8. Algorithm to Compute the Chromatic number and a proper coloring of an Interval Graph.
An interval graph G may be properly colored using χ(G) consecutive integers as colors by
listing the intervals of a representation in order of their left endpoints and going through
the list, assigning the smallest color not used on an earlier adjacent interval to each interval
in the list.

9. Planar Graph and Planar Drawing. A graph is called planar if it has a drawing in the plane
such that edges do not meet except at their endpoints. Such a drawing is called a planar
drawing of the graph.
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10. Face of a Planar Drawing. A geometrically connected connected subset of the plane with
the vertices and edges of a planar graph taken away is called a face of the drawing if it not
a proper subset of any other connected set of the plane with the drawing removed.

11. Cut Edge. An edge whose removal from a graph increases the number of connected compo-
nents is called a cut edge of the graph. A cut edge of a planar graph lies on only one face
of a planar drawing.

12. Euler’s Formula. Euler’s formula states that in a planar drawing of a graph with v vertices,
e edges and f faces, v − e + f = 2. As a consequence, in a planar graph, e ≤ 3v − 6.

Problems

1. What is the minimum number of colors needed to properly color a path on n vertices if
n > 1?

2. What is the minimum number of colors needed to properly color a bipartite graph with
parts X and Y .

3. If a graph has chromatic number two, is it bipartite? Why or why not?

4. Prove that the chromatic number of a graph G is the maximum of the chromatic numbers
of its components.

5. A wheel on n vertices consists of a cycle on n − 1 vertices together with one more vertex,
normally drawn inside the cycle, which is connected to every vertex of the cycle. What is
the chromatic number of a wheel on 5 vertices? What is the chromatic number of a wheel
on an odd number of vertices?

6. A wheel on n vertices consists of a cycle on n − 1 vertices together with one more vertex,
normally drawn inside the cycle, which is connected to every vertex of the cycle. What is
the chromatic number of a wheel on 6 vertices? What is the chromatic number of a wheel
on an even number of vertices?

7. The usual symbol for the maximum degree of any vertex in a graph is ∆. Show that the
chromatic number of a graph is no more than ∆ + 1. (In fact Brooks proved that if G is
not complete or an odd cycle, then χ(G) ≤ ∆. Though there are now many proofs of this
fact, none are easy!)

8. Can an interval graph contain a cycle with four vertices and no other edges between vertices
of the cycle?

9. The Petersen graph is in Figure 6.36. What is its chromatic number?

10. Let G consist of a five cycle and a complete graph on four vertices, with all vertices of the
five-cycle joined to all vertices of the complete graph. What is the chromatic number of
G?

11. In how many ways can we properly color a tree on n vertices with t colors?

12. In how many ways may we properly color a complete graph on n vertices with t colors?
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Figure 6.36: The Petersen Graph.

13. Show that in a simple planar graph with no triangles, e ≤ 2v − 4.

14. Show that in a simple bipartite planar graph, e ≤ 2v − 4, and use that fact to prove that
K3,3 is not planar.

15. Show that in a planar graph with no triangles there is a vertex of degree three or less.

16. Show that if a planar graph has fewer than twelve vertices, then it has at least one vertex
of degree 4.

17. The Petersen Graph is in Figure 6.36. What is the size of the smallest cycle in the Petersen
Graph? Is the Petersen Graph planar?

18. Prove the following Theorem of Welsh and Powell. If a graph G has degree sequence
d1 ≥ d2 ≥ · · · ≥ dn, then χ(G) ≤ 1 + maxi[min(di, i − 1)]. (That is the maximum over all
i of the minimum of di and i − 1.)

19. What upper bounds do Problem 18 and Problem 7 and the Brooks bound in Problem 7
give you for the chromatic number in Problem 10. Which comes closest to the right value?
How close?


