
Chapter 3

Reflections on Logic and Proof

In this chapter, we cover some basic principles of logic and describe some methods for constructing
proofs. This chapter is not meant to be a complete enumeration of all possible proof techniques.
The philosophy of this book is that most people learn more about proofs by reading, watching,
and attempting proofs than by an extended study of the logical rules behind proofs. On the
other hand, now that we have some examples of proofs, it will help you read and do proofs if we
reflect on their structure and discuss what constitutes a proof. To do so so we first develop a
language that will allow us to talk about proofs, and then we use this language to describe the
logical structure of a proof.

3.1 Equivalence and Implication

Equivalence of statements

Exercise 3.1-1 A group of students are working on a project that involves writing a merge
sort program. Joe and Mary have each written an algorithm for a function that takes
two lists, List1 and List2, of lengths p and q and merges them into a third list,
List3. Part of Mary’s algorithm is the following:

(1) if ((i + j ≤ p + q) && (i ≤ p) && ((j ≥ q)||(List1[i] ≤ List2[j])))
(2) List3[k] = List1[i]
(3) i = i + 1
(4) else
(5) List3[k] = List2[j]
(6) j = j + 1

(7) k = k + 1
(8) Return List3

The corresponding part of Joe’s algorithm is

(1) if (((i + j ≤ p + q) && (i ≤ p) && (j ≥ q))
|| ((i + j ≤ p + q) && (i ≤ p) && (List1[i] ≤ List2[j])))
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(2) List3[k] = List1[i]
(3) i = i + 1
(4) else
(5) List3[k] = List2[j]
(6) j = j + 1

(7) k = k + 1
(8) Return List3

Do Joe and Mary’s algorithms do the same thing?

Notice that Joe and Mary’s algorithms are exactly the same except for the if statement in
line 1. (How convenient; they even used the same local variables!) In Mary’s algorithm we put
entry i of List1 into position k of List3 if

i + j ≤ p + q and i ≤ p and (j ≥ q or List1[i] ≤ List2[j]),

while in Joe’s algorithm we put entry i of List1 into position k of List3 if

(i+j ≤ p+q and i ≤ p and j ≥ q) or (i+j ≤ p+q and i ≤ p and List1[i] ≤ List2[j]).

Joe and Mary’s statements are both built up from the same constituent parts (namely com-
parison statements), so we can name these constituent parts and rewrite the statements. We
use

• s to stand for i + j ≤ p + q,

• t to stand for i ≤ p,

• u to stand for j ≥ q, and

• v to stand for List1[i] ≤ List2[j]

The condition in Mary’s if statement on Line 1 of her code becomes

s and t and (u or v)

while Joe’s if statement on Line 1 of his code becomes

(s and t and u) or (s and t and v).

By recasting the statements in this symbolic form, we see that s and t always appear together
as “s and t.” We can thus simplify their expressions by substituting w for “s and t.” Mary’s
condition now has the form

w and (u or v)

and Joe’s has the form
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(w and u) or (w and v).

Although we can argue, based on our knowledge of the structure of the English language,
that Joe’s statement and Mary’s statement are saying the same thing, it will help us understand
logic if we formalize the idea of “saying the same thing.” If you look closely at Joe’s and Mary’s
statements, you can see that we are saying that, the word “and” distributes over the word “or,”
just as set intersection distributes over set union, and multiplication distributes over addition.
In order to analyze when statements mean the same thing, and explain more precisely what we
mean when we say something like “and” distributes over “or,” logicians have adopted a standard
notation for writing symbolic versions of compound statements. We shall use the symbol ∧ to
stand for “and” and ∨ to stand for “or.” In this notation, Mary’s condition becomes

w ∧ (u ∨ v)

and Joe’s becomes

(w ∧ u) ∨ (w ∧ v).

We now have a nice notation (which makes our compound statements look a lot like the two
sides of the distributive law for intersection of sets over union), but we have not yet explained why
two statements with this symbolic form mean the same thing. We must therefore give a precise
definition of “meaning the same thing,” and develop a tool for analyzing when two statements
satisfy this definition. We are going to consider symbolic compound statements that may be
built up from the following notation:

• symbols (s, t, etc.) standing for statements (these will be called variables),

• the symbol ∧, standing for “and,”

• the symbol ∨, standing for “or,”

• the symbol ⊕ standing for “exclusive or,” and

• the symbol ¬, standing for “not.”

Truth tables

We will develop a theory for deciding when a compound statement is true based on the truth or
falsity of its component statements. Using this theory, we will determine, for a particular setting
of variables, say s, t and u, whether a particular compound statement, say (s ⊕ t) ∧ (¬u ∨ (s ∧
t))∧¬(s⊕(t∨u)), is true or false. Our technique uses truth tables, which you have probably seen
before. We will see how truth tables are the proper tool to determine whether two statements
are equivalent.

As with arithmetic, the order of operations in a logical statement is important. In our sample
compound statement (s ⊕ t) ∧ (¬u ∨ (s ∧ t)) ∧ ¬(s ⊕ (t ∨ u)) we used parentheses to make it
clear which operation to do first, with one exception, namely our use of the ¬ symbol. The
symbol ¬ always has the highest priority, which means that when we wrote ¬u∨(s∧ t), we meant
(¬u) ∨ (s ∧ t), rather than ¬(u ∨ (s ∧ t)). The principle we use here is simple; the symbol ¬
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applies to the smallest number of possible following symbols needed for it to make sense. This
is the same principle we use with minus signs in algebraic expressions. With this one exception,
we will always use parentheses to make the order in which we are to perform operations clear;
you should do the same.

The operators ∧, ∨, ⊕ and ¬ are called logical connectives. The truth table for a logical
connective states, in terms of the possible truth or falsity of the component parts, when the
compound statement made by connecting those parts is true and when it is false. The the truth
tables for the connectives we have mentioned so far are in Figure 3.1

Figure 3.1: The truth tables for the basic logical connectives.

AND
s t s ∧ t

T T T
T F F
F T F
F F F

OR
s t s ∨ t

T T T
T F T
F T T
F F F

XOR
s t s ⊕ t

T T F
T F T
F T T
F F F

NOT
s s ⊕ t

T F
F T

These truth tables define the words “and,” “or,” “exclusive or” (“xor” for short), and “not”
in the context of symbolic compound statements. For example, the truth table for ∨—or—tells
us that when s and t are both true, then so is “s or t.” It tells us that when s is true and t is
false, or s is false and t is true, then “s or t” is true. Finally it tells us that when s and t are both
false, then so is “s or t.” Is this how we use the word “or” in English? The answer is sometimes!
The word “or” is used ambiguously in English. When a teacher says “Each question on the test
will be short answer or multiple choice,” the teacher is presumably not intending that a question
could be both. Thus the word “or” is being used here in the sense of “exclusive or”—the “⊕” in
the truth tables above. When someone says “Let’s see, this afternoon I could take a walk or I
could shop for some new gloves,” she probably does not mean to preclude the possibility of doing
both—perhaps even taking a walk downtown and then shopping for new gloves before walking
back. Thus in English, we determine the way in which someone uses the word “or” from context.
In mathematics and computer science we don’t always have context and so we agree that we will
say “exclusive or” or “xor” for short when that is what we mean, and otherwise we will mean
the “or” whose truth table is given by ∨. In the case of “and” and “not” the truth tables are
exactly what we would expect.

We have been thinking of s and t as variables that stand for statements. The purpose of
a truth table is to define when a compound statement is true or false in terms of when its
component statements are true and false. Since we focus on just the truth and falsity of our
statements when we are giving truth tables, we can also think of s and t as variables that can
take on the values “true” (T) and “false” (F). We refer to these values as the truth values of s
and t. Then a truth table gives us the truth values of a compound statement in terms of the
truth values of the component parts of the compound statement. The statements s ∧ t, s ∨ t
and s ⊕ t each have two component parts, s and t. Because there are two values we can assign
to s, and for each value we assign to s there are two values we can assign to t, by the product
principle, there are 2 · 2 = 4 ways to assign truth values to s and t. Thus we have four rows in
our truth table, one for each way of assigning truth values to s and t.

For a more complex compound statement, such as the one in Line 1 in Joe and Mary’s
programs, we still want to describe situations in which the statement is true and situations in
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Table 3.1: The truth table for Joe’s statement

w u v u ∨ v w ∧ (u ∨ v)
T T T T T
T T F T T
T F T T T
T F F F F
F T T T F
F T F T F
F F T T F
F F F F F

which the statement is false. We will do this by working out a truth table for the compound
statement from the truth tables of its symbolic statements and its connectives. We use a variable
to represent the truth value each symbolic statement. The truth table has one column for each of
the original variables, and for each of the pieces we use to build up the compound statement. The
truth table has one row for each possible way of assigning truth values to the original variables.
Thus if we have two variables, we have, as above, four rows. If we have just one variable, then
we have, as above, just two rows. If we have three variables then we will have 23 = 8 rows, and
so on.

In Table 3.1 we give the truth table for the symbolic statement that we derived from Line 1
of Joe’s algorithm. The columns to the left of the double line contain the possible truth values of
the variables; the columns to the right correspond to various sub-expressions whose truth values
we need to compute. We give the truth table as many columns as we need in order to correctly
compute the final result; as a general rule, each column should be easily computed from one or
two previous columns.

In Table 3.2 we give the truth table for the statement that we derived from Line 1 of Mary’s
algorithm.

Table 3.2: The truth table for Mary’s statement

w u v w ∧ u w ∧ v (w ∧ u) ∨ (w ∧ v)
T T T T T T
T T F T F T
T F T F T T
T F F F F F
F T T F F F
F T F F F F
F F T F F F
F F F F F F

You will notice that the pattern of T’s and F’s that we used to the left of the double line
in both Joe’s and Mary’s truth tables are the same—namely, reverse alphabetical order.1 Thus

1Alphabetical order is sometimes called lexicographic order. Lexicography is the study of the principles and
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row i of Table 3.1 represents exactly the same assignment of truth values to u , v, and w as
row i of Table 3.2. The final columns of the two truth tables are identical, which means that
Joe’s symbolic statement and Mary’s symbolic statement are true in exactly the same cases.
Therefore, the two statements must say the same thing, and Mary and Joe’s program segments
return exactly the same values. We say that two symbolic compound statements are equivalent
if they are true in exactly the same cases. Alternatively, two statements are equivalent if their
truth tables have the same final column (assuming both tables assign truth values to the original
symbolic statements in the same pattern).

Tables 3.1 and 3.2 actually prove a distributive law:

Lemma 3.1 The statements
w ∧ (u ∨ v)

and
(w ∧ u) ∨ (w ∧ v)

are equivalent.

DeMorgan’s Laws

Exercise 3.1-2 DeMorgan’s Laws say that ¬(p ∨ q) is equivalent to ¬p ∧ ¬q, and that
¬(p ∧ q) is equivalent to ¬p ∨ ¬q,. Use truth tables to demonstrate that DeMorgan’s
laws are correct.

Exercise 3.1-3 Show that p⊕q, the exclusive or of p and q, is equivalent to (p∨q)∧¬(p∧q).
Apply one of DeMorgan’s laws to ¬(¬(p ∨ q)) ∧ ¬(p ∧ q) to find another symbolic
statement equivalent to the exclusive or.

To verify the first DeMorgan’s Law, we create a pair of truth tables that we have condensed into
one “double truth table” in Table 3.3. The second double vertical line separates the computation
of the truth values of ¬(p∨q) and ¬p∧¬q We see that the fourth and the last columns are identical,

Table 3.3: Proving the first DeMorgan Law.

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q

T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

and therefore the first DeMorgan’s Law is correct. We can verify the second of DeMorgan’s Laws
by a similar process.

To show that p ⊕ q is equivalent to (p ∨ q) ∧ ¬(p ∧ q), we use the “double truth table” in
Table 3.4.

practices used in making dictionaries. Thus you will also see the order we used for the T’s and F’s called reverse
lexicographic order, or reverse lex order for short.
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Table 3.4: An equivalent statement to p ⊕ q.

p q p ⊕ q p ∨ q p ∧ q ¬(p ∧ q) (p ∨ q) ∧ ¬(p ∧ q)
T T F T T F F
T F T T F T T
F T T T F T T
F F F F F T F

By applying DeMorgan’s law to ¬(¬(p∨ q))∧¬(p∧ q), we see that p⊕ q is also equivalent to
¬(¬(p ∨ q) ∨ (p ∧ q)). It was easier to use DeMorgan’s law to show this equivalence than to use
another double truth table.

Implication

Another kind of compound statement occurs frequently in mathematics and computer science.
Recall 2.21, Fermat’s Little Theorem:

If p is a prime, then ap−1 mod p = 1 for each non-zero a ∈ Zp.

Fermat’s Little Theorem combines two constituent statements,

p is a prime

and

ap−1 mod p = 1 for each non-zero a ∈ Zp.

We can also restate Fermat’s Little Theorem (a bit clumsily) as

p is a prime only if ap−1 mod p = 1 for each non-zero a ∈ Zp,

or

p is a prime implies ap−1 mod p = 1 for each non-zero a ∈ Zp,

or

ap−1 mod p = 1 for each non-zero a ∈ Zp if p is prime.

Using s to stand for “p is a prime” and t to stand for “ap−1 mod p = 1 for every non-zero
a ∈ Zp,” we symbolize any of the four statements of Fermat’s Little Theorem as

s ⇒ t,

which most people read as “s implies t.” When we translate from symbolic language to English,
it is often clearer to say “If s then t.”

We summarize this discussion in the following definition:
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Definition 3.1 The following four English phrases are intended to mean the same thing. In
other words, they are defined by the same truth table:

• s implies t,

• if s then t,

• t if s, and

• s only if t.

Observe that the use of “only if” may seem a little different than the normal usage in English.
Also observe that there are still other ways of making an “if . . . then” statement in English. In a
number of our lemmas, theorems, and corollaries (for example, Corollary 2.6 and Lemma 2.5) we
have had two sentences. In the first we say “Suppose . . . .” In the second we say “Then . . . .” The
two sentences “Suppose s.” and “Then t.” are equivalent to the single sentence s ⇒ t. When we
have a statement equivalent to s ⇒ t, we call the statement s the hypothesis of the implication
and we call the statement t the conclusion of the implication.

If and only if

The word “if” and the phrase “only if” frequently appear together in mathematical statements.
For example, in Theorem 2.9 we proved

A number a has a multiplicative inverse in Zn if and only if there are integers x and
y such that ax + ny = 1.

Using s to stand for the statement “a number a has a multiplicative inverse in Zn” and t to stand
for the statement “there are integers x and y such that ax+ny = 1,” we can write this statement
symbolically as

s if and only if t.

Referring to Definition 3.1, we parse this as

s if t, and s only if t,

which again by the definition above is the same as

s ⇒ t and t ⇒ s.

We denote the statement “s if and only if t” by s ⇔ t. Statements of the form s ⇒ t and s ⇔ t are
called conditional statements, and the connectives ⇒ and ⇔ are called conditional connectives.

Exercise 3.1-4 Use truth tables to explain the difference between s ⇒ t and s ⇔ t.
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In order to be able to analyze the truth and falsity of statements involving “implies” and “if
and only if,” we need to understand exactly how they are different. By constructing truth tables
for these statements, we see that there is only one case in which they could have different truth
values. In particular if s is true and t is true, then we would say that both s ⇒ t and s ⇔ t are
true. If s is true and t is false, we would say that both s ⇒ t and s ⇔ t are false. In the case
that both s and t are false we would say that s ⇔ t is true. What about s ⇒ t? Let us try an
example. Suppose that s is the statement “it is supposed to rain” and t is the statement “I carry
an umbrella.” Then if, on a given day, it is not supposed to rain and I do not carry an umbrella,
we would say that the statement “if it is supposed to rain then I carry an umbrella” is true on
that day. This suggests that we also want to say s ⇒ t is true if s is false and t is false.2 Thus
the truth tables are identical in rows one, two, and four. For “implies” and “if and only if” to
mean different things, the truth tables must therefore be different in row three. Row three is the
case where s is false and t is true. Clearly in this case we would want s if and only if t to be
false, so our only choice is to say that s ⇒ t is true in this case. This gives us the truth tables in
Figure 3.2.

Figure 3.2: The truth tables for “implies” and for “if and only if.”

IMPLIES
s t s ⇒ t

T T T
T F F
F T T
F F T

IF AND ONLY IF
s t s ⇔ t

T T T
T F F
F T F
F F T

Here is another place where (as with the usage for “or”) English usage is sometimes inconsis-
tent. Suppose a parent says “I will take the family to McDougalls for dinner if you get an A on
this test,” and even though the student gets a C, the parent still takes the family to McDougalls
for dinner. While this is something we didn’t expect, was the parent’s statement still true? Some
people would say “yes”; others would say “no”. Those who would say “no” mean, in effect,
that in this context the parent’s statement meant the same as “I will take the family to dinner
at McDougalls if and only if you get an A on this test.” In other words, to some people, in
certain contexts, “If” and “If and only if” mean the same thing! Fortunately questions of child
rearing aren’t part of mathematics or computer science (at least not this kind of question!). In
mathematics and computer science, we adopt the two truth tables just given as the meaning of
the compound statement s ⇒ t (or “if s then t” or “t if s”) and the compound statement s ⇔ t
(or “s if and only if t.”) In particular, the truth table marked IMPLIES is the truth table referred
to in Definition 3.1. This truth table thus defines the mathematical meaning of s implies t, or
any of the other three statements referred to in that definition.

Some people have difficulty using the truth table for s ⇒ t because of this ambiguity in
English. The following example can be helpful in resolving this ambiguity. Suppose that I hold

2Note that we are making this conclusion on the basis of one example. Why can we do so? We are not trying
to prove something, but trying to figure out what the appropriate definition is for the ⇒ connective. Since we
have said that the truth or falsity of s ⇒ t depends only on the truth or falsity of s and t, one example serves to
lead us to an appropriate definition. If a different example led us to a different definition, then we would want to
define two different kinds of implications, just as we have two different kinds of “ors,” ∨ and ⊕. Fortunately, the
only kinds of conditional statements we need for doing mathematics and computer science are “implies” and “if
and only if.”
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an ordinary playing card (with its back to you) and say “If this card is a heart, then it is a
queen.” In which of the following four circumstances would you say I lied:

1. the card is a heart and a queen

2. the card is a heart and a king

3. the card is a diamond and a queen

4. the card is a diamond and a king?

You would certainly say I lied in the case the card is the king of hearts, and you would certainly
say I didn’t lie if the card is the queen of hearts. Hopefully in this example, the inconsistency
of English language seems out of place to you and you would not say I am a liar in either of the
other cases. Now we apply the principle called the principle of the excluded middle

Principle 3.1 A statement is true exactly when it is not false.

This principle tells us that that my statement is true in the three cases where you wouldn’t say
I lied. We used this principle implicitly before when we introduced the principle of proof by
contradiction, Principle 2.1. We were explaining the proof of Corollary 2.6, which states

Suppose there is a b in Zn such that the equation

a ·n x = b

does not have a solution. Then a does not have a multiplicative inverse in Zn.

We had assumed that the hypothesis of the corollary was true so that a ·n x = b does not have
a solution. Then we assumed the conclusion that a does not have a multiplicative inverse was
false. We saw that these two assumptions led to a contradiction, so that it was impossible for
both of them to be true. Thus we concluded whenever the first assumption was true, the second
had to be false. Why could we conclude this? Because the principle of the excluded middle says
that the second assumption has to be either true or false. We didn’t introduce the principle of
the excluded middle at this point for two reasons. First, we expected that the reader would agree
with our proof even if we didn’t mention the principle, and second, we didn’t want to confuse
the reader’s understanding of proof by contradiction by talking about two principles at once!

Important Concepts, Formulas, and Theorems

1. Logical statements. Logical statements may be built up from the following notation:

• symbols (s, t, etc.) standing for statements (these will be called variables),

• the symbol ∧, standing for “and,”

• the symbol ∨, standing for “or,”

• the symbol ⊕ standing for “exclusive or,”

• the symbol ¬, standing for “not,”
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• the symbol ⇒, standing for “implies,” and

• the symbol ⇔ , standing for “if and only if.”

The operators ∧, ∨, ⊕, ⇒, ⇔, and ¬ are called logical connectives. The operators ⇒ and
⇔ are called conditional connectives.

2. Truth Tables. The following are truth tables for the basic logical connectives:

AND
s t s ∧ t

T T T
T F F
F T F
F F F

OR
s t s ∨ t

T T T
T F T
F T T
F F F

XOR
s t s ⊕ t

T T F
T F T
F T T
F F F

NOT
s s ⊕ t

T F
F T

3. Equivalence of logical statements. We say that two symbolic compound statements are
equivalent if they are true in exactly the same cases.

4. Distributive Law. The statements

w ∧ (u ∨ v)

and

(w ∧ u) ∨ (w ∧ v)

are equivalent.

5. DeMorgan’s Laws. DeMorgan’s Laws say that ¬(p ∨ q) is equivalent to ¬p ∧ ¬q, and that
¬(p ∧ q) is equivalent to ¬p ∨ ¬q.

6. Implication. The following four English phrases are equivalent:

• s implies t,

• if s then t,

• t if s, and

• s only if t.

7. Truth tables for implies and if and only if.

IMPLIES
s t s ⇒ t

T T T
T F F
F T T
F F T

IF AND ONLY IF
s t s ⇔ t

T T T
T F F
F T F
F F T

8. Principle of the Excluded Middle. A statement is true exactly when it is not false.
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Problems

1. Give truth tables for the following expressions:

a. (s ∨ t) ∧ (¬s ∨ t) ∧ (s ∨ ¬t)

b. (s ⇒ t) ∧ (t ⇒ u)

c. (s ∨ t ∨ u) ∧ (s ∨ ¬t ∨ u)

2. Find at least two more examples of the use of some word or phrase equivalent to “implies”
in lemmas, theorems, or corollaries in Chapters One or Two.

3. Find at least two more examples of the use of the phrase “if and only if” in lemmas,
theorems, and corollaries in Chapters One or Two.

4. Show that the statements s ⇒ t and ¬s ∨ t are equivalent.

5. Prove the DeMorgan law which states ¬(p ∧ q) = ¬p ∨ ¬q.

6. Show that p ⊕ q is equivalent to (p ∧ ¬q) ∨ (¬p ∧ q).

7. Give a simplified form of each of the following expressions (using T to stand for a statement
that is always true and F to stand for a statement that is always false)3:

• s ∨ s,

• s ∧ s,

• s ∨ ¬s,

• s ∧ ¬s.

8. Use a truth table to show that (s∨t)∧(u∨v) is equivalent to (s∧u)∨(s∧v)∨(t∧u)∨(t∧v).
What algebraic rule is this similar to?

9. Use DeMorgan’s Law, the distributive law, and Problems 7 and 8 to show that ¬((s ∨ t) ∧
(s ∨ ¬t)) is equivalent to ¬s.

10. Give an example in English where “or” seems to you to mean exclusive or (or where you
think it would for many people) and an example in English where “or” seems to you to
mean inclusive or (or where you think it would for many people).

11. Give an example in English where “if . . . then” seems to you to mean “if and only if” (or
where you think it would to many people) and an example in English where it seems to
you not to mean “if and only if” (or where you think it would not to many people).

12. Find a statement involving only ∧, ∨ and ¬ (and s and t) equivalent to s ⇔ t. Does your
statement have as few symbols as possible? If you think it doesn’t, try to find one with
fewer symbols.

13. Suppose that for each line of a 2-variable truth table, you are told whether the final column
in that line should evaluate to true or to false. (For example, you might be told that the
final column should contain T, F, T, and F in that order.) Explain how to create a logical
statement using the symbols s, t, ∧, ∨, and ¬ that has that pattern as its final column.
Can you extend this procedure to an arbitrary number of variables?

3A statement that is always true is called a tautology; a statement that is always false is called a contradiction
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14. In Problem 13, your solution may have used ∧, ∨ and ¬. Is it possible to give a solution
using only one of those symbols? Is it possible to give a solution using only two of these
symbols?

15. We proved that ∧ distributes over ∨ in the sense of giving two equivalent statements that
represent the two “sides” of the distributive law. For each question below, explain why
your answer is true.

a. Does ∨ distribute over ∧?

b. Does ∨ distribute over ⊕?

c. Does ∧ distribute over ⊕?
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3.2 Variables and Quantifiers

Variables and universes

Statements we use in computer languages to control loops or conditionals are statements about
variables. When we declare these variables, we give the computer information about their possible
values. For example, in some programming languages we may declare a variable to be a “boolean”
or an “integer” or a “real.”4 In English and in mathematics, we also make statements about
variables, but it is not always clear which words are being used as variables and what values
these variables may take on. We use the phrase varies over to describe the set of values a
variable may take on. For example, in English, we might say “If someone’s umbrella is up, then
it must be raining.” In this case, the word “someone” is a variable, and presumably it varies
over the people who happen to be in a given place at a given time. In mathematics, we might
say “For every pair of positive integers m and n, there are nonnegative integers q and r with
0 ≤ r < n such that m = nq + r.” In this case m, n, q, and r are clearly our variables; our
statement itself suggests that two of our variables range over the positive integers and two range
over the nonnegative integers. We call the set of possible values for a variable the universe of
that variable.

In the statement “m is an even integer,” it is clear that m is a variable, but the universe is
not given. It might be the integers, just the even integers, or the rational numbers, or one of
many other sets. The choice of the universe is crucial for determining the truth or falsity of a
statement. If we choose the set of integers as the universe for m, then the statement is true for
some integers and false for others. On the other hand, if we choose integer multiples of 10 as our
universe, then the statement is always true. In the same way, when we control a while loop with
a statement such as “i < j” there are some values of i and j for which the statement is true and
some for which it is false. In statements like “m is an even integer” and “i < j” our variables
are not constrained and so are called free variables. For each possible value of a free variable,
we have a new statement, which might be either true or false, determined by substituting the
possible value for the variable. The truth value of the statement is determined only after such a
substitution.

Exercise 3.2-1 For what values of m is the statement m2 > m a true statement and for
what values is it a false statement? Since we have not specified a universe, your
answer will depend on what universe you choose to use.

If you used the universe of positive integers, the statement is true for every value of m but
1; if you used the real numbers, the statement is true for every value of m except for those in
the closed interval [0, 1]. There are really two points to make here. First, a statement about a
variable can often be interpreted as a statement about more than one universe, and so to make
it unambiguous, the universe must be clearly stated. Second, a statement about a variable can
be true for some values of a variable and false for others.

4Note that to declare a variable x as an integer in, say, a C program does not mean that same thing as saying
that x is an integer. In a C program, an integer may really be a 32-bit integer, and so it is limited to values
between 231 − 1 and −231. Similarly a real has some fixed precision, and hence a real variable y may not be able
to take on a value of, say, 10−985.
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Quantifiers

In contrast, the statement
For every integer m, m2 > m. (3.1)

is false; we do not need to qualify our answer by saying that it is true some of the time and false
at other times. To determine whether Statement 3.1 is true or false, we could substitute various
values for m into the simpler statement m2 > m, and decide, for each of these values, whether
the statement m2 > m is true or false. Doing so, we see that the statement m2 > m is true for
values such as m = −3 or m = 9, but false for m = 0 or m = 1. Thus it is not the case that
for every integer m, m2 > m, so Statement 3.1 is false. It is false as a statement because it is
an assertion that the simpler statement m2 > m holds for each integer value of m we substitute
in. A phrase like “for every integer m” that converts a symbolic statement about potentially
any member of our universe into a statement about the universe instead is called a quantifier. A
quantifier that asserts a statement about a variable is true for every value of the variable in its
universe is called a universal quantifier.

The previous example illustrates a very important point.

If a statement asserts something for every value of a variable, then to show the
statement is false, we need only give one value of the variable for which the assertion
is untrue.

Another example of a quantifier is the phrase “There is an integer m” in the sentence

There is an integer m such that m2 > m.

This statement is also about the universe of integers, and as such it is true—there are plenty
of integers m we can substitute into the symbolic statement m2 > m to make it true. This is an
example of an “existential quantifier.” An existential quantifier asserts that a certain element of
our universe exists. A second important point similar to the one we made above is:

To show that a statement with an existential quantifier is true, we need only exhibit
one value of the variable being quantified that makes the statement true.

As the more complex statement

For every pair of positive integers m and n, there are nonnegative integers q and r
with 0 ≤ r < n such that m = qn + r,

shows, statements of mathematical interest abound with quantifiers. Recall the following defini-
tion of the “big-O” notation you have probably used in earlier computer science courses:

Definition 3.2 We say that f(x) = O(g(x)) if there are positive numbers c and n0 such that
f(x) ≤ cg(x) for every x > n0.

Exercise 3.2-2 Quantification is present in our everyday language as well. The sentences
“Every child wants a pony” and “No child wants a toothache” are two different
examples of quantified sentences. Give ten examples of everyday sentences that use
quantifiers, but use different words to indicate the quantification.
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Exercise 3.2-3 Convert the sentence “No child wants a toothache” into a sentence of the
form “It is not the case that...” Find an existential quantifier in your sentence.

Exercise 3.2-4 What would you have to do to show that a statement about one variable
with an existential quantifier is false? Correspondingly, what would you have to do
to show that a statement about one variable with a universal quantifier is true?

As Exercise 3.2-2 points out, English has many different ways to express quantifiers. For
example, the sentences, “All hammers are tools”, “Each sandwich is delicious”, “No one in their
right mind would do that”, “Somebody loves me”, and “Yes Virginia, there is a Santa Claus” all
contain quantifiers. For Exercise 3.2-3, we can say “It is not the case that there is a child who
wants a toothache.” Our quantifier is the phrase “there is.”

To show that a statement about one variable with an existential quantifier is false, we have
to show that every element of the universe makes the statement (such as m2 > m) false. Thus
to show that the statement “There is an x in [0, 1] with x2 > x” is false, we have to show that
every x in the interval makes the statement x2 > x false. Similarly, to show that a statement
with a universal quantifier is true, we have to show that the statement being quantified is true for
every member of our universe. We will give more details about how to show a statement about
a variable is true or false for every member of our universe later in this section.

Mathematical statements of theorems, lemmas, and corollaries often have quantifiers. For
example in Lemma 2.5 the phrase “for any” is a quantifier, and in Corollary 2.6 the phrase
“there is” is a quantifier.

Standard notation for quantification

Each of the many variants of language that describe quantification describe one of two situations:

A quantified statement about a variable x asserts either

• that the statement is true for all x in the universe, or

• that there exists an x in the universe that makes the statement true.

All quantified statements have one of these two forms. We use the standard shorthand of ∀ for
the phrase “for all” and the standard shorthand of ∃ for the phrase “there exists.” We also adopt
the convention that we parenthesize the expression that is subject to the quantification. For
example, using Z to stand for the universe of all integers, we write

∀n ∈ Z (n2 ≥ n)

as a shorthand for the statement “For all integers n, n2 ≥ n.” It is perhaps more natural to read
the notation as “For all n in Z, n2 ≥ n,” which is how we recommend reading the symbolism.
We similarly use

∃n ∈ Z(n2 �> n)

to stand for “There exists an n in Z such that n2 �> n.” Notice that in order to cast our symbolic
form of an existence statement into grammatical English we have included the supplementary
word “an” and the supplementary phrase “such that.” People often leave out the “an” as they
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read an existence statement, but rarely leave out the “such that.” Such supplementary language
is not needed with ∀.

As another example, we rewrite the definition of the “Big Oh” notation with these symbols.
We use the letter R to stand for the universe of real numbers, and the symbol R+ to stand for
the universe of positive real numbers.

f = O(g) means that ∃c ∈ R+(∃n0 ∈ R+(∀x ∈ R(x > n0 ⇒ f(x) ≤ cg(x))))

We would read this literally as

f is big Oh of g means that there exists a c in R+ such that there exists an n0 in R+

such that for all x in R, if x > n0, then f(x) ≤ cg(x).

Clearly this has the same meaning (when we translate it into more idiomatic English) as

f is big Oh of g means that there exist a c in R+ and an n0 in R+ such that for all
real numbers x > n0, f(x) ≤ cg(x).

This statement is identical to the definition of “big Oh” that we gave earlier in Definition 3.2,
except for more precision as to what c and n0 actually are.

Exercise 3.2-5 How would you rewrite Euclid’s division theorem, Theorem 2.12 using the
shorthand notation we have introduced for quantifiers? Use Z+ to to stand for the
positive integers and N to stand for the nonnegative integers.

We can rewrite Euclid’s division theorem as

∀m ∈ N(∀n ∈ Z+(∃q ∈ N(∃r ∈ N((r < n) ∧ (m = qn + r))))).

Statements about variables

To talk about statements about variables, we need a notation to use for such statements. For
example, we can use p(n) to stand for the statement n2 > n. Now, we can say that p(4) and
p(−3) are true, while p(1) and p(.5) are false. In effect we are introducing variables that stand
for statements about (other) variables! We typically use symbols like p(n), q(x), etc. to stand
for statements about a variable n or x. Then the statement “For all x in U p(x)” can be written
as ∀x ∈ U(p(x)) and the statement “There exists an n in U such that q(n)” can be written
as ∃n ∈ U(q(n)). Sometimes we have statements about more than one variable; for example,
our definition of “big Oh” notation had the form ∃c(∃n0(∀x(p(c, n0, x)))), where p(c, n0, x) is
(x > n0 ⇒ f(x) ≤ cg(x)). (We have left out mention of the universes for our variables here to
emphasize the form of the statement.)

Exercise 3.2-6 Rewrite Euclid’s division theorem, using the notation above for statements
about variables. Leave out the references to universes so that you can see clearly the
order in which the quantifiers occur.

The form of Euclid’s division theorem is ∀m(∀n(∃q(∃r(p(m, n, q, r))))).
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Rewriting statements to encompass larger universes

It is sometimes useful to rewrite a quantified statement so that the universe is larger, and the
statement itself serves to limit the scope of the universe.

Exercise 3.2-7 Let R to stand for the real numbers and R+ to stand for the positive real
numbers. Consider the following two statements:

a) ∀x ∈ R+(x > 1)

b) ∃x ∈ R+(x > 1)

Rewrite these statements so that the universe is all the real numbers, but the state-
ments say the same thing in everyday English that they did before.

For Exercise 3.2-7, there are potentially many ways to rewrite the statements. Two partic-
ularly simple ways are ∀x ∈ R(x > 0 ⇒ x > 1) and ∃x ∈ R(x > 0 ∧ x > 1). Notice that we
translated one of these statements with “implies” and one with “and.” We can state this rule as
a general theorem:

Theorem 3.2 Let U1 be a universe, and let U2 be another universe with U1 ⊆ U2. Suppose that
q(x) is a statement such that

U1 = {x| q(x) is true}. (3.2)

Then if p(x) is a statement about U2, it may also be interpreted as a statement about U1, and

(a) ∀x ∈ U1(p(x)) is equivalent to ∀x ∈ U2(q(x) ⇒ p(x)).

(b) ∃x ∈ U1(p(x)) is equivalent to ∃x ∈ U2(q(x) ∧ p(x)).

Proof: By Equation 3.2 the statement q(x) must be true for all x ∈ U1 and false for all x in U2

but not U1. To prove part (a) we must show that ∀x ∈ U1(p(x)) is true in exactly the same cases
as the statement ∀x ∈ U2(q(x) ⇒ p(x)). For this purpose, suppose first that ∀x ∈ U1(p(x)) is
true. Then p(x) is true for all x in U1. Therefore, by the truth table for “implies” and our remark
about Equation 3.2, the statement ∀x ∈ U2(q(x) ⇒ p(x)) is true. Now suppose ∀x ∈ U1(p(x)) is
false. Then there exists an x in U1 such that p(x) is false. Then by the truth table for “implies,”
the statement ∀x ∈ U2(q(x) ⇒ p(x)) is false. Thus the statement ∀x ∈ U1(p(x)) is true if and
only if the statement ∀x ∈ U2(q(x) ⇒ p(x)) is true. Therefore the two statements are true in
exactly the same cases. Part (a) of the theorem follows.

Similarly, for Part (b), we observe that if ∃x ∈ U1(p(x)) is true, then for some x′ ∈ U1, p(x′)
is true. For that x′, q(x′) is also true, and hence p(x′)∧ q(x′) is true, so that ∃x ∈ U2(q(x)∧p(x))
is true as well. On the other hand, if ∃x ∈ U1(p(x)) is false, then no x ∈ U1 has p(x) true.
Therefore by the truth table for “and” q(x)∧p(x) won’t be true either. Thus the two statements
in Part (b) are true in exactly the same cases and so are equivalent.
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Proving quantified statements true or false

Exercise 3.2-8 Let R stand for the real numbers and R+ stand for the positive real
numbers. For each of the following statements, say whether it is true or false and
why.

a) ∀x ∈ R+(x > 1)

b) ∃x ∈ R+(x > 1)

c) ∀x ∈ R(∃y ∈ R(y > x))

d) ∀x ∈ R(∀y ∈ R(y > x))

e) ∃x ∈ R(x ≥ 0 ∧ ∀y ∈ R+(y > x))

In Exercise 3.2-8, since .5 is not greater than 1, statement (a) is false. However since 2 > 1,
statement (b) is true. Statement (c) says that for each real number x there is a real number y
bigger than x, which we know is true. Statement (d) says that every y in R is larger than every
x in R, and so it is false. Statement (e) says that there is a nonnegative number x such that
every positive y is larger than x, which is true because x = 0 fills the bill.

We can summarize what we know about the meaning of quantified statements as follows.

Principle 3.2 (The meaning of quantified statements)

• The statement ∃x ∈ U(p(x)) is true if there is at least one value of x in U for which the
statement p(x) is true.

• The statement ∃x ∈ U(p(x)) is false if there is no x ∈ U for which p(x) is true.

• The statement ∀x ∈ U(p(x)) is true if p(x) is true for each value of x in U .

• The statement ∀x ∈ U(p(x)) is false if p(x) is false for at least one value of x in U .

Negation of quantified statements

An interesting connection between ∀ and ∃ arises from the negation of statements.

Exercise 3.2-9 What does the statement “It is not the case that for all integers n, n2 > 0”
mean?

From our knowledge of English we see that since the statement ¬∀n ∈ Z(n2 > 0) asserts that it
is not the case that, for all integers n, we have n2 > 0, there must be some integer n such that
n2 �> 0. In other words, it says there is some integer n such that n2 ≤ 0. Thus the negation
of our “for all” statement is a “there exists” statement. We can make this idea more precise by
recalling the notion of equivalence of statements. We have said that two symbolic statements are
equivalent if they are true in exactly the same cases. By considering the case when p(x) is true
for all x ∈ U , (we call this case “always true”) and the case when p(x) is false for at least one
x ∈ U (we call this case “not always true”) we can analyze the equivalence. The theorem that
follows, which formalizes the example above in which p(x) was the statement x2 > 0, is proved
by dividing these cases into two possibilities.
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Theorem 3.3 The statements ¬∀x ∈U(p(x)) and ∃x ∈ U(¬p(x)) are equivalent.

Proof: Consider the following table which we have set up much like a truth table, except
that the relevant cases are not determined by whether p(x) is true or false, but by whether p(x)
is true for all x in the universe U or not.

p(x) ¬p(x) ∀x ∈ U(p(x)) ¬∀x ∈ U(p(x)) ∃x ∈ U(¬p(x))
always true always false true false false

not always true not always false false true true

Since the last two columns are identical, the theorem holds.

Corollary 3.4 The statements ¬∃x ∈ U(q(x)) and ∀x ∈ U(¬q(x)) are equivalent.

Proof: Since the two statements in Theorem 3.3 are equivalent, their negations are also
equivalent. We then substitute ¬q(x) for p(x) to prove the corollary.

Put another way, to negate a quantified statement, you switch the quantifier and “push” the
negation inside.

To deal with the negation of more complicated statements, we simply take them one quantifier
at a time. Recall Definition 3.2, the definition of big Oh notation,

f(x) = O(g(x)) if ∃c ∈ R+(∃n0 ∈ R+(∀x ∈ R(x > n0 ⇒ f(x) ≤ cg(x)))).

What does it mean to say that f(x) is not O(g(x))? First we can write

f(x) �= O(g(x)) if ¬∃c ∈ R+(∃n0 ∈ R+(∀x ∈ R(x > n0 ⇒ f(x) ≤ cg(x)))).

After one application of Corollary 3.4 we get

f(x) �= O(g(x)) if ∀c ∈ R+(¬∃n0 ∈ R+(∀x ∈ R(x > n0 ⇒ f(x) ≤ cg(x)))).

After another application of Corollary 3.4 we obtain

f(x) �= O(g(x)) if ∀c ∈ R+(∀n0 ∈ R+(¬∀x ∈ R(x > n0 ⇒ f(x) ≤ cg(x)))).

Now we apply Theorem 3.3 and obtain

f(x) �= O(g(x)) if ∀c ∈ R+(∀n0 ∈ R+(∃x ∈ R(¬(x > n0 ⇒ f(x) ≤ cg(x))))).

Now ¬(p ⇒ q) is equivalent to p ∧ ¬q, so we can write

f(x) �= O(g(x)) if ∀c ∈ R+(∀n0 ∈ R+(∃x ∈ R((x > n0) ∧ (f(x) �≤ cg(x)))))).

Thus f(x) is not O(g(x)) if for every c in R+ and every n0 in R+, there is an x such that
x > n0 and f(x) �≤ cg(x).

In our next exercise, we use the “Big Theta” notation defined as follows:
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Definition 3.3 f(x) = Θ(g(x)) means that f(x) = O(g(x)) and g(x) = O(f(x)).

Exercise 3.2-10 Express ¬(f(x) = Θ(g(x))) in terms similar to those we used to describe
f(x) �= O(g(x)).

Exercise 3.2-11 Suppose the universe for a statement p(x) is the integers from 1 to 10.
Express the statement ∀x(p(x)) without any quantifiers. Express the negation in
terms of ¬p without any quantifiers. Discuss how negation of “for all” and “there
exists” statements corresponds to DeMorgan’s Law.

By DeMorgan’s law, ¬(f = Θ(g)) means ¬(f = O(g)) ∨ ¬(g = O(f)). Thus ¬(f = Θ(g)) means
that either for every c and n0 in R+ there is an x in R with x > n0 and f(x) �< cg(x) or for every
c and n0 in R+ there is an x in R with x > n0 and g(x) < cf(x) (or both).

For Exercise 3.2-11 we see that ∀x(p(x)) is simply

p(1) ∧ p(2) ∧ p(3) ∧ p(4) ∧ p(5) ∧ p(6) ∧ p(7) ∧ p(8) ∧ p(9) ∧ p(10).

By DeMorgan’s law the negation of this statement is

¬p(1) ∨ ¬p(2) ∨ ¬p(3) ∨ ¬p(4) ∨ ¬p(5) ∨ ¬p(6) ∨ ¬p(7) ∨ ¬p(8) ∨ ¬p(9) ∨ ¬p(10).

Thus the relationship that negation gives between “for all” and “there exists” statements is the
extension of DeMorgan’s law from a finite number of statements to potentially infinitely many
statements about a potentially infinite universe.

Implicit quantification

Exercise 3.2-12 Are there any quantifiers in the statement “The sum of even integers is
even?”

It is an elementary fact about numbers that the sum of even integers is even. Another way
to say this is that if m and n are even, then m + n is even. If p(n) stands for the statement “n
is even,” then this last sentence translates to p(m) ∧ p(n) ⇒ p(m + n). From the logical form of
the statement, we see that our variables are free, so we could substitute various integers in for
m and n to see whether the statement is true. But in Exercise 3.2-12, we said we were stating a
more general fact about the integers. What we meant to say is that for every pair of integers m
and n, if m and n are even, then m + n is even. In symbols, using p(k) for “k is even,” we have

∀m ∈ Z(∀n ∈ Z(p(m) ∧ p(n) ⇒ p(m + n))).

This way of representing the statement captures the meaning we originally intended. This is one
of the reasons that mathematical statements and their proofs sometimes seem confusing—just as
in English, sentences in mathematics have to be interpreted in context. Since mathematics has
to be written in some natural language, and since context is used to remove ambiguity in natural
language, so must context be used to remove ambiguity from mathematical statements made in
natural language. In fact, we frequently rely on context in writing mathematical statements with
implicit quantifiers because, in context, it makes the statements easier to read. For example, in
Lemma 2.8 we said
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The equation
a ·n x = 1

has a solution in Zn if and only if there exist integers x and y such that

ax + ny = 1.

In context it was clear that the a we were talking about was an arbitrary member of Zn. It would
simply have made the statement read more clumsily if we had said

For every a ∈ Zn, the equation
a ·n x = 1

has a solution in Zn if and only if there exist integers x and y such that

ax + ny = 1.

On the other hand, we were making a transition from talking about Zn to talking about the
integers, so it was important for us to include the quantified statement “there exist integers x
and y such that ax+ny = 1.” More recently in Theorem 3.3, we also did not feel it was necessary
to say “For all universes U and for all statements p about U ,” at the beginning of the theorem.
We felt the theorem would be easier to read if we kept those quantifiers implicit and let the reader
(not necessarily consciously) infer them from context.

Proof of quantified statements

We said that “the sum of even integers is even” is an elementary fact about numbers. How do
we know it is a fact? One answer is that we know it because our teachers told us so. (And
presumably they knew it because their teachers told them so.) But someone had to figure it out
in the first place, and so we ask how we would prove this statement? A mathematician asked to
give a proof that the sum of even numbers is even might write

If m and n are even, then m = 2i and n = 2j so that

m + n = 2i + 2j = 2(i + j)

and thus m + n is even.

Because mathematicians think and write in natural language, they will often rely on context
to remove ambiguities. For example, there are no quantifiers in the proof above. However the
sentence, while technically incomplete as a proof, captures the essence of why the sum of two
even numbers is even. A typical complete (but more formal and wordy than usual) proof might
go like this.

Let m and n be integers. Suppose m and n are even. If m and n are even, then by
definition there are integers i and j such that m = 2i and n = 2j. Thus there are
integers i and j such that m = 2i and n = 2j. Then

m + n = 2i + 2j = 2(i + j),

so by definition m + n is an even integer. We have shown that if m and n are even,
then m + n is even. Therefore for every m and n, if m and n are even integers, then
so is m + n.
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We began our proof by assuming that m and n are integers. This gives us symbolic notation for
talking about two integers. We then appealed to the definition of an even integer, namely that
an integer h is even if there is another integer k so that h = 2k. (Note the use of a quantifier
in the definition.) Then we used algebra to show that m + n is also two times another number.
Since this is the definition of m + n being even, we concluded that m + n is even. This allowed
us to say that if m and n are even, the m + n is even. Then we asserted that for every pair of
integers m and n, if m and n are even, then m + n is even.

There are a number of principles of proof illustrated here. The next section will be devoted to
a discussion of principles we use in constructing proofs. For now, let us conclude with a remark
about the limitations of logic. How did we know that we wanted to write the symbolic equation

m + n = 2i + 2j = 2(i + j)?

It was not logic that told us to do this, but intuition and experience.

Important Concepts, Formulas, and Theorems

1. Varies over. We use the phrase varies over to describe the set of values a variable may take
on.

2. Universe. We call the set of possible values for a variable the universe of that variable.

3. Free variables. Variables that are not constrained in any way whatever are called free
variables.

4. Quantifier. A phrase that converts a symbolic statement about potentially any member of
our universe into a statement about the universe instead is called a quantifier. There are
two types of quantifiers:

• Universal quantifier. A quantifier that asserts a statement about a variable is true for
every value of the variable in its universe is called a universal quantifier.

• Existential quantifier. A quantifier that asserts a statement about a variable is true
for at least one value of the variable in its universe is called an existential quantifier.

5. Larger universes. Let U1 be a universe, and let U2 be another universe with U1 ⊆ U2.
Suppose that q(x) is a statement such that

U1 = {x| q(x) is true}.

Then if p(x) is a statement about U2, it may also be interpreted as a statement about U1,
and

(a) ∀x ∈ U1(p(x)) is equivalent to ∀x ∈ U2(q(x) ⇒ p(x)).

(b) ∃x ∈ U1(p(x)) is equivalent to ∃x ∈ U2(q(x) ∧ p(x)).

6. Proving quantified statements true or false.

• The statement ∃x ∈ U(p(x)) is true if there is at least one value of x in U for which
the statement p(x) is true.
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• The statement ∃x ∈ U(p(x)) is false if there is no x ∈ U for which p(x) is true.

• The statement ∀x ∈ U(p(x)) is true if p(x) is true for each value of x in U .

• The statement ∀x ∈ U(p(x)) is false if p(x) is false for at least one value of x in U .

7. Negation of quantified statements. To negate a quantified statement, you switch the quan-
tifier and push the negation inside.

• The statements ¬∀x ∈U(p(x)) and ∃x ∈ U(¬p(x)) are equivalent.

• The statements ¬∃x ∈U(p(x)) and ∀x ∈ U(¬p(x)) are equivalent.

8. Big-Oh We say that f(x) = O(g(x)) if there are positive numbers c and n0 such that
f(x) ≤ cg(x) for every x > n0.

9. Big-Theta. f(x) = Θ(g(x)) means that f = O(g(x)) and g = O(f(x)).

10. Some notation for sets of numbers. We use R to stand for the real numbers, R+ to stand
for the positive real numbers, Z to stand for the integers (positive, negative, and zero), Z+

to stand for the positive integers, and N to stand for the nonnegative integers.

Problems

1. For what positive integers x is the statement (x − 2)2 + 1 ≤ 2 true? For what integers
is it true? For what real numbers is it true? If we expand the universe for which we
are considering a statement about a variable, does this always increase the size of the
statement’s truth set?

2. Is the statement “There is an integer greater than 2 such that (x − 2)2 + 1 ≤ 2” true or
false? How do you know?

3. Write the statement that the square of every real number is greater than or equal to zero
as a quantified statement about the universe of real numbers. You may use R to stand for
the universe of real numbers.

4. The definition of a prime number is that it is an integer greater than 1 whose only positive
integer factors are itself and 1. Find two ways to write this definition so that all quantifiers
are explicit. (It may be convenient to introduce a variable to stand for the number and
perhaps a variable or some variables for its factors.)

5. Write down the definition of a greatest common divisor of m and n in such a way that
all quantifiers are explicit and expressed explicitly as “for all” or “there exists.” Write
down Euclid’s extended greatest common divisor theorem that relates the greatest common
divisor of m and n algebraically to m and n. Again make sure all quantifiers are explicit
and expressed explicitly as “for all” or “there exists.”

6. What is the form of the definition of a greatest common divisor, using s(x, y, z) to be the
statement x = yz and t(x, y) to be the statement x < y? (You need not include references
to the universes for the variables.)

7. Which of the following statements (in which Z+ stands for the positive integers and Z
stands for all integers) is true and which is false, and why?
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(a) ∀z ∈ Z+(z2 + 6z + 10 > 20).

(b) ∀z ∈ Z(z2 − z ≥ 0).

(c) ∃z ∈ Z+(z − z2 > 0).

(d) ∃z ∈ Z(z2 − z = 6).

8. Are there any (implicit) quantifiers in the statement “The product of odd integers is odd?”
If so, what are they?

9. Rewrite the statement “The product of odd integers is odd,” with all quantifiers (including
any in the definition of odd integers) explicitly stated as “for all” or “there exist.”

10. Rewrite the following statement without any negations. It is not the case that there exists
an integer n such that n > 0 and for all integers m > n, for every polynomial equation
p(x) = 0 of degree m there are no real numbers for solutions.

11. Consider the following slight modification of Theorem 3.2. For each part below, either
prove that it is true or give a counterexample.

Let U1 be a universe, and let U2 be another universe with U1 ⊆ U2. Suppose that q(x) is a
statement such that U1 = {x| q(x) is true}.

(a) ∀x ∈ U1(p(x)) is equivalent to ∀x ∈ U2(q(x) ∧ p(x)).

(b) ∃x ∈ U1(p(x)) is equivalent to ∃x ∈ U2(q(x) ⇒ p(x)).

12. Let p(x) stand for “x is a prime,” q(x) for “x is even,” and r(x, y) stand for “x = y.” Write
down the statement “There is one and only one even prime,” using these three symbolic
statements and appropriate logical notation. (Use the set of integers for your universe.)

13. Each expression below represents a statement about the integers. Using p(x) for “x is
prime,” q(x, y) for “x = y2,” r(x, y) for “x ≤ y,” s(x, y, z) for “z = xy,” and t(x, y) for
“x = y,” determine which expressions represent true statements and which represent false
statements.

(a) ∀x ∈ Z(∃y ∈ Z(q(x, y) ∨ p(x)))

(b) ∀x ∈ Z(∀y ∈ Z(s(x, x, y) ⇔ q(x, y)))

(c) ∀y ∈ Z(∃x ∈ Z(q(y, x)))

(d) ∃z ∈ Z(∃x ∈ Z(∃y ∈ Z(p(x) ∧ p(y) ∧ ¬t(x, y)))

14. Find a reason why (∃x ∈ U(p(x)))∧(∃y ∈ U(q(y))) is not equivalent to ∃z ∈ U(p(z)∨q(z)).
Are the statements (∃x ∈ U(p(x))) ∨ (∃y ∈ U(q(y))) and ∃z ∈ U(p(z) ∨ q(z)) equivalent?

15. Give an example (in English) of a statement that has the form ∀x ∈ U(∃y ∈ V (p(x, y))).
(The statement can be a mathematical statement or a statement about “everyday life,” or
whatever you prefer.) Now write in English the statement using the same p(x, y) but of the
form ∃y ∈ V (∀x ∈ U(p(x, y))). Comment on whether “for all” and “there exist” commute.
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3.3 Inference

Direct Inference (Modus Ponens) and Proofs

We concluded our last section with a proof that the sum of two even numbers is even. That
proof contained several crucial ingredients. First, we introduced symbols for members of the
universe of integers. In other words, rather than saying “suppose we have two integers,” we
introduced symbols for the two members of our universe we assumed we had. How did we know
to use algebraic symbols? There are many possible answers to this question, but in this case our
intuition was probably based on thinking about what an even number is, and realizing that the
definition itself is essentially symbolic. (You may argue that an even number is just twice another
number, and you would be right. Apparently no symbols are in that definition. But they really
are there; they are the phrases “even number” and “another number.” Since we all know algebra
is easier with symbolic variables rather than words, we should recognize that it makes sense to
use algebraic notation.) Thus this decision was based on experience, not logic.

Next we assumed the two integers were even. We then used the definition of even numbers,
and, as our previous parenthetic comment suggests, it was natural to use the definition symbol-
ically. The definition tells us that if m is an even number, then there exists another integer i
such that m = 2i. We combined this with the assumption that m is even to conclude that in
fact there does exist an integer i such that m = 2i. This is an example of using the principle of
direct inference (called modus ponens in Latin).

Principle 3.3 (Direct inference) From p and p ⇒ q we may conclude q.

This common-sense principle is a cornerstone of logical arguments. But why is it true? In Table
3.5 we take another look at the truth table for implication.

Table 3.5: Another look at implication

p q p ⇒ q

T T T
T F F
F T T
F F T

The only line which has a T in both the p column and the p ⇒ q column is the first line. In
this line q is true also, and we therefore conclude that if p and p ⇒ q hold then q must hold also.
While this may seem like a somewhat “inside out” application of the truth table, it is simply a
different way of using a truth table.

There are quite a few rules (called rules of inference) like the principle of direct inference that
people commonly use in proofs without explicitly stating them. Before beginning a formal study
of rules of inference, we complete our analysis of which rules we used in the proof that the sum
of two even integers is even. After concluding that m = 2i and n = 2j, we next used algebra to
show that because m = 2i and n = 2j, there exists a k such that m + n = 2k (our k was i + j).
Next we used the definition of even number again to say that m + n was even. We then used a
rule of inference which says
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Principle 3.4 (Conditional Proof) If, by assuming p, we may prove q, then the statement
p ⇒ q is true.

Using this principle, we reached the conclusion that if m and n are even integers, then m + n
is an even integer. In order to conclude that this statement is true for all integers m and n, we
used another rule of inference, one of the more difficult to describe. We originally introduced
the variables m and n. We used only well-known consequences of the fact that they were in the
universe of integers in our proof. Thus we felt justified in asserting that what we concluded about
m and n is true for any pair of integers. We might say that we were treating m and n as generic
members of our universe. Thus our rule of inference says

Principle 3.5 (Universal Generalization) If we can prove a statement about x by assuming
x is a member of our universe, then we can conclude the statement is true for every member of
our universe.

Perhaps the reason this rule is hard to put into words is that it is not simply a description of a
truth table, but is a principle that we use in order to prove universally quantified statements.

Rules of inference for direct proofs

We have seen the ingredients of a typical proof. What do we mean by a proof in general? A proof
of a statement is a convincing argument that the statement is true. To be more precise about
it, we can agree that a direct proof consists of a sequence of statements, each of which is either a
hypothesis5, a generally accepted fact, or the result of one of the following rules of inference for
compound statements.

Rules of Inference for Direct Proofs

1) From an example x that does not satisfy p(x), we may conclude ¬p(x).

2) From p(x) and q(x), we may conclude p(x) ∧ q(x).

3) From either p(x) or q(x), we may conclude p(x) ∨ q(x).

4) From either q(x) or ¬p(x) we may conclude p(x) ⇒ q(x).

5) From p(x) ⇒ q(x) and q(x) ⇒ p(x) we may conclude p(x) ⇔ q(x).

6) From p(x) and p(x) ⇒ q(x) we may conclude q(x).

7) From p(x) ⇒ q(x) and q(x) ⇒ r(x) we may conclude p(x) ⇒ r(x).

8) If we can derive q(x) from the hypothesis that x satisfies p(x), then we may conclude
p(x) ⇒ q(x).

9) If we can derive p(x) from the hypothesis that x is a (generic) member of our universe U ,
we may conclude ∀x ∈ U(p(x)).

5If we are proving an implication s ⇒ t, we call s a hypothesis. If we make assumptions by saying “Let
. . . ,” “Suppose . . . ,” or something similar before we give the statement to be proved, then these assumptions are
hypotheses as well.
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10) From an example of an x ∈ U satisfying p(x) we may conclude ∃x ∈ U(p(x)).

The first rule is a statement of the principle of the excluded middle as it applies to statements
about variables. The next four four rules are in effect a description of the truth tables for “and,”
“or,” “implies” and “if and only if.” Rule 5 says what we must do in order to write a proof of
an “if and only if” statement. Rule 6, exemplified in our earlier discussion, is the principle of
direct inference, and describes one row of the truth table for p ⇒ q. Rule 7 is the transitive law,
one we could derive by truth table analysis. Rule 8, the principle of conditional proof, which is
also exemplified earlier, may be regarded as yet another description of one row of the truth table
of p ⇒ q. Rule 9 is the principle of universal generalization, discussed and exemplified earlier.
Rule 10 specifies what we mean by the truth of an existentially quantified statement, according
to Principle 3.2.

Although some of our rules of inference are redundant, they are useful. For example, we could
have written a portion of our proof that the sum of even numbers is even as follows without using
Rule 8.

“Let m and n be integers. If m is even, then there is a k with m = 2k. If n is even,
then there is a j with n = 2j. Thus if m is even and n is even, there are a k and j
such that m + n = 2k + 2j = 2(k + j). Thus if m is even and n is even, there is an
integer h = k + j such that m + n = 2h. Thus if m is even and n is even, m + n is
even.”

This kind of argument could always be used to circumvent the use of Rule 8, so Rule 8 is not
required as a rule of inference, but because it permits us to avoid such unnecessarily complicated
“silliness” in our proofs, we choose to include it. Rule 7, the transitive law, has a similar role.

Exercise 3.3-1 Prove that if m is even, then m2 is even. Explain which steps of the proof
use one of the rules of inference above.

For Exercise 3.3-1, we can mimic the proof that the sum of even integers is even.

Let m be integer. Suppose that m is even. If m is even, then there is a k with m = 2k.
Thus, there is a k such that m2 = 4k2. Therefore, there is an integer h = 2k2 such
that m2 = 2h. Thus if m is even, m2 is even. Therefore, for all integers m, if m is
even, then m2 is even.

In our first sentence we are setting things up to use Rule 9. In the second sentence we are simply
stating an implicit hypothesis. In the next two sentences we use Rule 6, the principle of direct
inference. When we said “Therefore, there is an integer h = 2k2 such that m2 = 2h,” we were
simply stating an algebraic fact. In our next sentence we used Rule 8. Finally, we used Rule 9.
You might have written the proof in a different way and used different rules of inference.

Contrapositive rule of inference.

Exercise 3.3-2 Show that “p implies q” is equivalent to “¬q implies ¬p.”
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Exercise 3.3-3 Is “p implies q” equivalent to “q implies p?”

To do Exercise 3.3-2, we construct the double truth table in Table 3.6. Since the columns
under p ⇒ q and under ¬q ⇒ ¬p are exactly the same, we know the two statements are equivalent.
This exercise tells us that if we know that ¬q ⇒ ¬p, then we can conclude that p ⇒ q. This is

Table 3.6: A double truth table for p ⇒ q and ¬q ⇒ ¬p.

p q p ⇒ q ¬p ¬q ¬q ⇒ ¬p

T T T F F T
T F F F T F
F T T T F T
F F T T T T

called the principle of proof by contraposition.

Principle 3.6 (Proof by Contraposition) The statement p ⇒ q and the statement ¬q ⇒ ¬p
are equivalent, and so a proof of one is a proof of the other.

The statement ¬q ⇒ ¬p is called the contrapositive of the statement p ⇒ q. The following
example demonstrates the utility of the principle of proof by contraposition.

Lemma 3.5 If n is a positive integer with n2 > 100, then n > 10.

Proof: Suppose n is not greater than 10. (Now we use the rule of algebra for inequalities which
says that if x ≤ y and c ≥ 0, then cx ≤ cy.) Then since 1 ≤ n ≤ 10,

n · n ≤ n · 10 ≤ 10 · 10 = 100.

Thus n2 is not greater than 100. Therefore, if n is not greater than 10, n2 is not greater than
100. Then, by the principle of proof by contraposition, if n2 > 100, n must be greater than 10.

We adopt Principle 3.6 as a rule of inference, called the contrapositive rule of inference.

11) From ¬q(x) ⇒ ¬p(x) we may conclude p(x) ⇒ q(x).

In our proof of the Chinese Remainder Theorem, Theorem 2.24, we wanted to prove that for a
certain function f that if x and y were different integers between 0 and mn−1, then f(x) �= f(y).
To prove this we assumed that in fact f(x) = f(y) and proved that x and y were not different
integers between 0 and mn − 1. Had we known the principle of contrapositive inference, we
could have concluded then and there that f was one-to-one. Instead, we used the more common
principle of proof by contradiction, the major topic of the remainder of this section, to complete
our proof. If you look back at the proof, you will see that we might have been able to shorten it
by a sentence by using contrapositive inference.

For Exercise 3.3-3, a quick look at the double truth table for p ⇒ q and q ⇒ p in Table 3.7
demonstrates that these two statements are not equivalent. The statement q ⇒ p is called the
converse of p ⇒ q. Notice that p ⇔ q is true exactly when p ⇒ q and its converse are true. It
is surprising how often people, even professional mathematicians, absent-mindedly try to prove
the converse of a statement when they mean to prove the statement itself. Try not to join this
crowd!
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Table 3.7: A double truth table for p ⇒ q and q ⇒ p.

p q p ⇒ q q ⇒ p

T T T T
T F F T
F T T F
F F T T

Proof by contradiction

Proof by contrapositive inference is an example of what we call indirect proof. We have actually
seen another example indirect proof, the principle of proof by contradiction. In our proof of
Corollary 2.6 we introduced the principle of proof by contradiction, Principle 2.1. We were
trying to prove the statement

Suppose there is a b in Zn such that the equation

a ·n x = b

does not have a solution. Then a does not have a multiplicative inverse in Zn.

We assumed that the hypothesis that a ·n x = b does not have a solution was true. We also
assumed that the conclusion that a does not have a multiplicative inverse was false. We showed
that these two assumptions together led to a contradiction. Then, using the principle of the
excluded middle, Principle 3.1 (without saying so), we concluded that if the hypothesis is in fact
true, then the only possibility was that the conclusion is true as well.

We used the principle again later in our proof of Euclid’s Division Theorem. Recall that in
that proof we began by assuming that the theorem was false. We then chose among the pairs
of integers (m, n) such that m �= qn + r with 0 ≤ r < n a pair with the smallest possible m.
We then made some computations by which we proved that in this case there are a q and r with
0 ≤ r < n such that m = qn + r. Thus we started out by assuming the theorem was false, and
from that assumption we drew drew a contradiction to the assumption. Since all our reasoning,
except for the assumption that the theorem was false, used accepted rules of inference, the only
source of that contradiction was our assumption. Thus, by the principle of the excluded middle,
our assumption had to be incorrect. We adopt the principle of proof by contradiction (also called
the principle of reduction to absurdity) as our last rule of inference.

12) If from assuming p(x) and ¬q(x), we can derive both r(x) and ¬r(x) for some statement
r(x), then we may conclude p(x) ⇒ q(x).

There can be many variations of proof by contradiction. For example, we may assume p is
true and q is false, and from this derive the contradiction that p is false, as in the following
example.

Prove that if x2 + x − 2 = 0, then x �= 0.

Proof: Suppose that x2 + x − 2 = 0. Assume that x = 0. Then x2 + x − 2 =
0 + 0 − 2 = −2. This contradicts x2 + x − 2 = 0. Thus (by the principle of proof by
contradiction), if x2 + x − 2 = 0, then x �= 0.
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Here the statement r was identical to p, namely x2 + x − 2 = 0.

On the other hand, we may instead assume p is true and q is false, and derive a contradiction
of a known fact, as in the following example.

Prove that if x2 + x − 2 = 0, then x �= 0.

Proof: Suppose that x2 + x − 2 = 0. Assume that x = 0. Then x2 + x − 2 =
0 + 0 − 2 = −2. Thus 0 = −2, a contradiction. Thus (by the principle of proof by
contradiction), if x2 + x − 2 = 0, then x �= 0.

Here the statement r is the known fact that 0 �= −2.

Sometimes the statement r that appears in the principle of proof by contradiction is simply
a statement that arises naturally as we are trying to construct our proof, as in the following
example.

Prove that if x2 + x − 2 = 0, then x �= 0.

Proof: Suppose that x2 + x − 2 = 0. Then x2 + x = 2. Assume that x = 0. Then
x2 + x = 0 + 0 = 0. But this is a contradiction (to our observation that x2 + x = 2).
Thus (by the principle of proof by contradiction), if x2 + x − 2 = 0, then x �= 0.

Here the statement r is “x2 + x = 2.”

Finally, if proof by contradiction seems to you not to be much different from proof by con-
traposition, you are right, as the example that follows shows.

Prove that if x2 + x − 2 = 0, then x �= 0.

Proof: Assume that x = 0. Then x2+x−2 = 0+0−2 = −2, so that x2+x−2 �= 0.
Thus (by the principle of proof by contraposition), if x2 + x − 2 = 0, then x �= 0.

Any proof that uses one of the indirect methods of inference is called an indirect proof. The last
four examples illustrate the rich possibilities that indirect proof provides us. Of course they also
illustrate why indirect proof can be confusing. There is no set formula that we use in writing a
proof by contradiction, so there is no rule we can memorize in order to formulate indirect proofs.
Instead, we have to ask ourselves whether assuming the opposite of what we are trying to prove
gives us insight into why the assumption makes no sense. If it does, we have the basis of an
indirect proof, and the way in which we choose to write it is a matter of personal choice.

Exercise 3.3-4 Without extracting square roots, prove that if n is a positive integer such
that n2 < 9, then n < 3. You may use rules of algebra for dealing with inequalities.

Exercise 3.3-5 Prove that
√

5 is not rational.

To prove the statement in Exercise 3.3-4, we assume, for purposes of contradiction, that n ≥ 3.
Squaring both sides of this equation, we obtain

n2 ≥ 9 ,
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which contradicts our hypothesis that n2 < 9. Therefore, by the principle of proof by contradic-
tion, n < 3.

To prove the statement in Exercise 3.3-5, we assume, for the purpose of contradiction, that
√

5
is rational. This means that it can be expressed as the fraction m

n , where m and n are integers.
Squaring both sides of the equation m

n =
√

5, we obtain

m2

n2
= 5,

or
m2 = 5n2.

Now m2 must have an even number of prime factors (counting each prime factor as many times
as it occurs) as must n2. But 5n2 has an odd number of prime factors. Thus a product of an
even number of prime factors is equal to a product of an odd number of prime factors, which is
a contradiction since each positive integer may be expressed uniquely as a product of (positive)
prime numbers. Thus by the principle of proof by contradiction,

√
5 is not rational.

Important Concepts, Formulas, and Theorems

1. Principle of direct inference or modus ponens. From p and p ⇒ q we may conclude q.

2. Principle of conditional proof. If, by assuming p, we may prove q, then the statement p ⇒ q
is true.

3. Principle of universal generalization. If we can prove a statement about x by assuming x is
a member of our universe, then we can conclude it is true for every member of our universe.

4. Rules of Inference. 12 rules of inference appear in this chapter. They are

1) From an example x that does not satisfy p(x), we may conclude ¬p(x).

2) From p(x) and q(x), we may conclude p(x) ∧ q(x).

3) From either p(x) or q(x), we may conclude p(x) ∨ q(x).

4) From either q(x) or ¬p(x) we may conclude p(x) ⇒ q(x).

5) From p(x) ⇒ q(x) and q(x) ⇒ p(x) we may conclude p(x) ⇔ q(x).

6) From p(x) and p(x) ⇒ q(x) we may conclude q(x).

7) From p(x) ⇒ q(x) and q(x) ⇒ r(x) we may conclude p(x) ⇒ r(x).

8) If we can derive q(x) from the hypothesis that x satisfies p(x), then we may conclude
p(x) ⇒ q(x).

9) If we can derive p(x) from the hypothesis that x is a (generic) member of our universe
U , we may conclude ∀x ∈ U(p(x)).

10) From an example of an x ∈ U satisfying p(x) we may conclude ∃x ∈ U(p(x)).

11) From ¬q(x) ⇒ ¬p(x) we may conclude p(x) ⇒ q(x).

12) If from assuming p(x) and ¬q(x), we can derive both r(x) and ¬r(x) for some statement
r, then we may conclude p(x) ⇒ q(x).
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5. Contrapositive of p ⇒ q. The contrapositive of the statement p ⇒ q is the statement
¬q ⇒ ¬p.

6. Converse of p ⇒ q. The converse of the statement p ⇒ q is the statement q ⇒ p.

7. Contrapositive rule of inference. From ¬q ⇒ ¬p we may conclude p ⇒ q.

8. Principle of proof by contradiction. If from assuming p and ¬q, we can derive both r and
¬r for some statement r, then we may conclude p ⇒ q.

Problems

1. Write down the converse and contrapositive of each of these statements.

(a) If the hose is 60 feet long, then the hose will reach the tomatoes.

(b) George goes for a walk only if Mary goes for a walk.

(c) Pamela recites a poem if Andre asks for a poem.

2. Construct a proof that if m is odd, then m2 is odd.

3. Construct a proof that for all integers m and n, if m is even and n is odd, then m + n is
odd.

4. What do we really mean when we say “prove that if m is odd and n is odd then m + n is
even?” Prove this more precise statement.

5. Prove that for all integers m and n if m is odd and n is odd, then m · n is odd.

6. Is the statement p ⇒ q equivalent to the statement ¬p ⇒ ¬q?

7. Construct a contrapositive proof that for all real numbers x if x2 − 2x �= −1, then x �= 1.

8. Construct a proof by contradiction that for all real numbers x if x2−2x �= −1, then x �= 1.

9. Prove that if x3 > 8, then x > 2.

10. Prove that
√

3 is irrational.

11. Construct a proof that if m is an integer such that m2 is even, then m is even.

12. Prove or disprove the following statement. “For every positive integer n, if n is prime, then
12 and n3 − n2 + n have a common factor.”

13. Prove or disprove the following statement. “For all integers b, c, and d, if x is a rational
number such that x2 + bx + c = d, then x is an integer.” (Hints: Are all the quantifiers
given explicitly? It is ok to use the quadratic formula.)

14. Prove that there is no largest prime number.

15. Prove that if f(x), g(x) and h(x) are functions from R+ to R+ such that f(x) = O(g(x))
and g(x) = O(h(x)), then f(x) = O(h(x)).
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