
III L OGIC

It is now a good time to be more specific about the precise meaning of mathematical statements. They are governed by
the rules of logic.

8 Boolean Algebra
9 Quantifiers

10 Inference
Homework Assignments

23



8 Boolean Algebra

Logic is generally considered to lie in the intersection be-
tween Philosophy and Mathematics. It studies the mean-
ing of statements and the relationship between them.

Logical statements in computer programs. Program-
ming languages provide all the tools to be excessively pre-
cise. This includeslogical statementswhich are used to
construct loops, among other things. As an example, con-
sider a while loop that exchanges adjacent array elements
until some condition expressed by a logical statement is
satisfied. Putting the while loop inside a for loop we get a
piece of code that sorts an arrayA[1..n]:

for i = 1 to n do j = i;
while j > 1 and A[j] > A[j − 1] do

a = A[j]; A[j] = A[j − 1]; A[j − 1] = a;
j = j − 1

endwhile
endfor.

This particular method for sorting is often referred to as
insertion sort because afteri − 1 iterations,A[1..i − 1] is
sorted, and thei-th iteration inserts thei-th element such
thatA[1..i] is sorted. We illustrate the algorithm in Figure
7. Here we focus on the logic that controls the while loop.

4 5

4 5 1

4 1 5

5 4 1 7 3

x

x

x

1 4 5 7 3

1 4 5 3 7

1 4 3 5 7

3 4 5 71
x

x

x

1 4 5 7

1 4 5

Figure 7: The insertion sort algorithm applied to an unsorted
sequence of five integers.

The iteration is executed as long as two conditions hold,
namely “j > 1” and “A[j] > A[j − 1]”. The first pre-
vents we step beyond the left end of the array. The second
condition limits the exchanges to cases in which adjacent
elements are not yet in non-decreasing order. The two con-
ditions are connected by a logical and, which requires both
to be true.

Boolean operations. A logical statement is either true
(T) of false (F). We call this thetruth valueof the state-
ment. We will frequently represent the statement by a
variablewhich can be either true or false. Aboolean oper-
ation takes one or more truth values as input and produces
a new output truth value. It thus functions very much like
an arithmetic operation. For example,negationis a unary
operation. It maps a truth value to the opposite; see Ta-
ble 6. Much more common are binary operations; such as

p ¬p

T F

F T

Table 6: Truth table for negation (¬).

and, or, and exclusive or. We use a truth table to specify
the values for all possible combinations of inputs; see Ta-
ble 7. Binary operations have two input variables, each in
one of two states. The number of different inputs is there-
fore only four. We have seen the use of these particular

p q p ∧ q p ∨ q p ⊕ q

T T T T F

T F F T T

F T F T T

F F F F F

Table 7: Truth table for and (∧), or (∨), and exclusive or (⊕)
operations.

boolean operations before, namely in the definition of the
common set operations; see Figure 8.

Ac = {x | x 6∈ A};
A ∩ B = {x | x ∈ A and x ∈ B};
A ∪ B = {x | x ∈ A or x ∈ B};
A ⊕ B = {x | x ∈ A xor x ∈ B};
A − B = {x | x ∈ A and x 6∈ B}.

Figure 8: From left to right: the complement of one set and the
intersection, union, symmetric difference, and difference of two
sets.

24



Algebraic properties. We observe that boolean opera-
tions behave very much like ordinary arithmetic opera-
tions. For example, they follow the same kind of rules
when we transform them.

• All three binary operations are commutative, that is,

p ∧ q iff q ∧ p;

p ∨ q iff q ∨ p;

p ⊕ q iff q ⊕ p.

• The and operation distributes over the or operation,
and vice versa, that is,

p ∧ (q ∨ r) iff (p ∧ q) ∨ (p ∧ r);

p ∨ (q ∧ r) iff (p ∨ q) ∧ (p ∨ r).

Similarly, negation distributes over and and or, but it
changes one into the other as it does so. This is known
as de Morgan’s Law.

DE MORGAN’ S LAW. Lettingp andq be two variables,

¬(p ∧ q) iff ¬p ∨ ¬q;

¬(p ∨ q) iff ¬p ∧ ¬q.

PROOF. We construct the truth table, with a row for each
combination of truth values forp andq; see Table 8. Since

p q ¬(p ∧ q) ¬p ∨ ¬q

T T F F

T F T T

F T T T

F F T T

Table 8: The truth table for the expressions on the left and the
right of the first de Morgan Law.

the two relations are symmetric, we restrict our attention
to the first. We see that the truth values of the two expres-
sions are the same in each row, as required.

Implications. The implication is another kind of binary
boolean operation. It frequently occurs in statements of
lemmas and theorems. An example is Fermat’s Little The-
orem. To emphasize the logical structure, we writeA
for the statement “n is prime” andB for “an−1 mod n =
1 for every non-zeroa ∈ Zn”. There are different, equiv-
alent ways to restate the theorem, namely “ifA thenB”;
“A impliesB”; “ A only if B”; “ B if A”. The operation is

p q p ⇒ q ¬q ⇒ ¬p ¬(p ∧ ¬q) ¬p ∨ q

T T T T T T

T F F F F F

F T T T T T

F F T T T T

Table 9: The truth table for the implication (⇒).

defined in Table 9. We see the contrapositive in the second
column on the right, which is equivalent, as expected. We
also note thatq is forced to be true ifp is true and thatq
can be anything ifp is false. This is expressed in the third
column on the right, which relates to the last column by
de Morgan’s Law. The corresponding set operation is the
complement of the difference,(A − B)c; see Figure 9 on
the left.

Figure 9: Left: the complement of the difference between the
two sets. Right: the complement of the symmetric difference.

We recall that a logical statement is either true or false.
This is referred to as the law of theexcluded middle. In
other words, a statement is true precisely when it is not
false. There is no allowance for ambiguities or paradoxes.
An example is the sometimes counter-intuitive definition
that false implies true is true. WriteA for the statement
“it is raining”, B for “I use my umbrella”, and consider
A ⇒ B. Hence, if it is raining then I use my umbrella.
This does not preclude me from using the umbrella if it is
not raining. In other words, the implication is not false if
I use my umbrella without rain. Hence, it is true.

Equivalences. If implications go both ways, we have an
equivalence. An example is the existence of a multiplica-
tive inverse iff the multiplication permutes. We writeA for
the statement “a has a multiplicative inverse inZn” andB
for “the functionM : Zn → Zn defined byM(x) = a ·nx
is bijective”. There are different, equivalent ways to re-
state the claim, namely “A if and only if B” and “A andB
are equivalent”. The operation is defined in Table 10. The
last column shows that equivalence is the opposite of the
exclusive or operation. Figure 9 shows the corresponding
set operation on the right.

Recalling the definition of a group, we may ask which

25



p q p ⇔ q (p ⇒ q) ∧ (q ⇒ p) ¬(p ⊕ q)

T T T T T

T F F F F

F T F F F

F F T T T

Table 10: The truth table for the equivalence (⇔).

of the binary operations form an Abelian group. The set is
{F, T}. One of the two must be the neutral element. If we
chooseF thenF ◦ F = F andF ◦T = T ◦ F = T. Further-
more,T ◦T = F is necessary forT to have an inverse. We
see that the answer is the exclusive or operation. Mapping
F to 0 andT to 1, as it is commonly done in programming
languages, we see that the exclusive or can be interpreted
as adding modulo2. Hence,({F, T},⊕) is isomorphc to
(Z2, +2).

Summary. We have learned about the main components
of logical statements, boolean variables and operations.
We have seen that the operations are very similar to the
more familiar arithmetic operations, mapping one or more
boolean input variable to a boolean output variable.

26



9 Quantifiers

Logical statements usually includevariables, which range
over sets of possible instances, often referred to asuni-
verses. We use quantifiers to specify that something holds
for all possible instances or for some but possibly not all
instances.

Universal and existential quantifiers. We introduce
the concept by taking an in-depth look at a result we have
discussed in Chapter II.

EUCLID ’ S DIVISION THEOREM. Letting n be a posi-
tive integer, for every integerm there are unique integers
q andr, with 0 ≤ r < n, such thatm = nq + r.

In this statement, we haven, m, q, r as variables. They
are integers, soZ is the universe, except that some of the
variables are constrained further, that is,n ≥ 1 and0 ≤
r < n. The claim is “for all” m “there exist” q andr.
These are quantifiers expressed in English language. The
first is called theuniversal quantifier:

∀x [p(x)]: for all instantiations of the variablex, the
statementp(x) is true.

For example, ifx varies over the integers then this is
equivalent to

. . . ∧ p(−1) ∧ p(0) ∧ p(1) ∧ p(2) ∧ . . .

The second is theexistential quantifier:

∃x [q(x)]: there exists an instantiation of the variablex
such that the statementq(x) is true.

For the integers, this is equivalent to

. . . ∨ q(−1) ∨ q(0) ∨ q(1) ∨ q(2) ∨ . . .

With these quantifiers, we can restate Euclid’s Division
Theorem more formally:

∀n ≥ 1 ∀m ∃q ∃0 ≤ r < n[m = nq + r].

Negating quantified statements. Recall de Morgan’s
Law for negating a conjunction or a disjunction:

¬(p ∧ q) ⇔ ¬p ∨ ¬q;

¬(p ∨ q) ⇔ ¬p ∧ ¬q.

The corresponding rules for quantified statements are

¬ (∀x [p(x)]) ⇔ ∃x [¬p(x)];

¬ (∃x [q(x)]) ⇔ ∀x [¬q(x)].

We get the first line by applying de Morgan’s first Law
to the conjunction that corresponds to the expression on
the left hand side. Similarly, we get the second line by
applying de Morgan’s second Law. Alternatively, we can
derive the second line from the first. Since both sides of
the first line are equivalent, so are its negations. Now, all
we need to do it to substitute¬q(x) for p(x) and exchange
the two sides, which we can because⇔ is commutative.

Big-Oh notation. We practice the manipulation of
quantified statements by discussing the big-Oh notation
for functions. It is commonly used in statements about the
convergence of an iteration or the running time of an algo-
rithm. We writeR+ for the set of positive real numbers.

DEFINITION. Let f andg be functions fromR+ to R+.
Thenf = O(g) if there are positive constantsc andn0

such thatf(x) ≤ cg(x) wheneverx > n0.

This notation is useful in comparing the asymptotic be-
havior of the functionsf andg, that is, beyond a constant
n0. If f = O(g) thenf can grow at most a constant times
as fast asg. For example, we do not havef = O(g) if
f(x) = x2 andg(x) = x. Indeed,f(x) = xg(x) so there
is no constantc such thatf(x) ≤ cg(x) because we can
always choosex larger thanc andn0 and get a contradic-
tion. We rewrite the definition in more formal notation.
The statementf = O(g) is equivalent to

∃c > 0 ∃n0 > 0 ∀x ∈ R [x > n0 ⇒ f(x) ≤ cg(x)].

We can simplify by absorbing the constraint ofx being
larger than the constantn0 into the last quantifying state-
ment:

∃c > 0 ∃n0 > 0 ∀x > n0 [f(x) ≤ cg(x)].

We have seen above that negating a quantified statement
reverses all quantifiers and pulls the negation into the un-
quantified, inner statement. Recall that¬(p ⇒ q) is equiv-
alent top∧¬q. Hence, the statementf 6= O(g) is equiva-
lent to

∀c > 0 ∀n0 > 0 ∃x ∈ R [x > n0 ∧ f(x) > cg(x)].

We can again simplify by absorbing the constraint onx
into the quantifying statement:

∀c > 0 ∀n0 > 0 ∃x > n0 [f(x) > cg(x)].

27



Big-Theta notation. Recall that the big-Oh notation is
used to express that one function grows asymptotically
at most as fast as another, allowing for a constant factor
of difference. The big-Theta notation is stronger and ex-
presses that two functions grow asymptotically at the same
speed, again allowing for a constant difference.

DEFINITION. Let f andg be functions fromR+ to R+.
Thenf = Θ(g) if f = O(g) andg = O(f).

Note that in big-Oh notation, we can always increase the
constantsc andn0 without changing the truth value of the
statement. We can therefore rewrite the big-Theta state-
ment using the larger of the two constantsc and the larger
of the two constantsn0. Hence,f = Θ(g) is equivalent to

∃c > 0 ∃n0 > 0 ∀x > n0 [f(x) ≤ cg(x)∧g(x) ≤ cf(x)].

Here we can further simplify by rewriting the two inequal-
ities by a single one:1cg(x) ≤ f(x) ≤ cg(x). Just for
practice, we also write the negation in formal notation.
The statementf 6= Θ(f) is equivalent to

∀c > 0 ∀n0 > 0 ∃x > n0 [cg(x) < f(x)∨cf(x) < g(x)].

Because the two inequalities are connected by a logical or,
we cannot simply combine them. We could by negating it
first, ¬(1

cg(x) ≤ f(x) ≤ cg(x)), but this is hardly easier
to read.

Big-Omega notation. Complementary to the big-Oh
notation, we have

DEFINITION. Let f andg be functions fromR+ to R+.
Thenf = Ω(g) if g = O(f).

In formal notation,f = Ω(g) is equivalent to

∃c > 0 ∃n0 > 0∀x > n0 [f(x) ≥ cg(x)].

We may think of big-Oh like a less-than-or-equal-to for
functions, and big-Omega as the complementary greater-
than-or-equal-to. Just as we havex = y iff x ≤ y and
x ≥ y, we havef = Θ(g) iff f = O(g) andf = Ω(g).

Little-oh and little-omega notation. For completeness,
we add notation that corresponds to the strict less-than and
greater-than relations.

DEFINITION. Let f andg be functions fromR+ to R+.
Thenf = o(g) if for all constantsc > 0 there exists a
constantn0 > 0 such thatf(x) < cg(x) wheneverx >
n0. Furthermore,f = ω(g) if g = o(f).

This is not equivalent tof = O(g) and f 6= Ω(g).
The reason for this is the existence of functions that can-
not be compared at all. Consider for examplef(x) =
x2(cos x + 1). For x = 2kπ, k a non-negative integer,
we havef(x) = 2x2, while for x = (2k + 1)π, we
havef(x) = 0. Let g(x) = x. For even multiples of
π, f grows much fast thang, while for odd multiples of
π it grows much slower thang, namely not at all. We
rewrite the little-Oh notation in formal notation. Specifi-
cally, f = o(g) is equivalent to

∀c > 0 ∃n0 > 0 ∀x > n0 [f(x) < cg(x)].

Similarly, f = ω(g) is equivalent to

∀c > 0 ∃n0 > 0 ∀x > n0 [f(x) >
1

c
g(x)].

In words, no matter how small our positive constantc is,
there always exists a constantn0 such that beyond that
constant,f(x) is larger thang(x) overc. Equivalently, no
matter how big our constantc is, there always exists a con-
stantn0 such that beyond that constant,f(x) is larger than
c timesg(x). We can thus simplify the formal statement
by substituting[f(x) > cg(x)] for the inequality.

28



10 Inference

In this section, we discuss the application of logic to prov-
ing theorems. In principle, every proof should be re-
ducible to a sequence of simple logical deductions. While
this is not practical for human consumption, there have
been major strides toward that goal in computerized proof
systems.

Modus ponens. This is an example ofdirect inference,
the cornerstone of logical arguments.

PRINCIPLE OFMODUS PONENS. From p andp ⇒ q,
we may concludeq.

We read this as a recipe to proveq. First we provep, then
we prove thatp impliesq, and finally we concludeq. Let
us take a look at Table 11 to be sure. We see that modus

p q (p ∧ (p ⇒ q)) ⇒ q
T T T T T T T

T F T F F T F

F T F F T T T

F F F F T T F

Table 11: The truth table for modus ponens.

ponens is indeed a tautology, that is, it is always true. Ev-
ery theorem is this way, namely always true.

Other methods of direct inference. There are many
other direct proof principles, all easy to verify. Some are
straighforward re-interpretations of logical formulas and
others use logical equivalences we have learned about.
Here are but a few:

p andq then p ∧ q;

p or q then p ∨ q;

q or¬p then p ⇒ q;

¬q andp then p 6⇒ q;

p ⇒ q andq ⇒ p then p ⇔ q;

p ⇒ q andq ⇒ r then p ⇔ r.

The last principle is perhaps more interesting than the oth-
ers because it is the only one among the six that is not an
equivalence; see Table 12.

Contrapositive. This is the first example of anindirect
inferencemethod.

p q r ((p ⇒ q) ∧ (q ⇒ r)) ⇒ (p ⇒ r)
T T T T T T T T

T T F T F F T F

T F T F F T T T

T F F F F T T F

F T T T T T T T

F T F T F F T T

F F T T T T T T

F F F T T T T T

Table 12: The truth table for reasoning by transitivity.

PRINCIPLE OFCONTRAPOSITION. The statements
p ⇒ q and¬q ⇒ ¬p are equivalent, and so a proof of one
is a proof of the other.

We have seen a truth table that shows the equivalence of
the two statements earlier, in Section 8. Let us look at an
example.

CLAIM . If n is a positive integer withn2 > 25 then
n > 5.

PROOF. The statementp is that n is a positive integer
whose square is larger than25. The statementq is thatn is
larger than5. We could argue directly but then we would
need to know something about talking square roots. In-
stead, let us argue indirectly. Suppose¬q, that is,n ≤ 5.
By monotonicity of multiplication, we have

n2 ≤ 5n ≤ 5 · 5 ≤ 25.

Now, by transitivity of the smaller-than-or-equal-to rela-
tion, we haven2 ≤ 25. Thus¬q implies¬p.

Example: Chinese remainders. Another instructive
example is a result we have seen in Section 6. Letm andn
be relative prime, positive integers. We map each integer
in Zmn to the pair of remainders, that is, for0 ≤ x < mn
we definef(x) = (x mod m, x mod n).

CHINESE REMAINDER THEOREM. If x 6= y both be-
long toZmn thenf(x) 6= f(y).

PROOF. We use again the indirect approach by contrapo-
sition. Assumef(x) = f(y). Then

x mod m = y mod m;

x mod n = y mod n.

29



Hence,

(x − y) mod m = 0;

(x − y) mod n = 0.

Therefore,x−y is a multiple of bothm andn. Hence,(x−
y) mod mn = 0 and thereforex mod mn = y mod mn,
which contradicts thatx 6= y in Zmn.

Reduction to Absurdity. Another powerful indirect
proof technique is by contradiction.

PRINCIPLE OFREDUCTION TO ABSURDITY. If from
assumingp and¬q we can deriver as well as¬r then
p ⇒ q.

Herer can be any statement. Often we use a statementr
that is always true (or always false) so that we only need to
derive¬r (or r) from p and¬q. Let us take a look at Table
13. As with all the proof methods, it is best to see exam-

p q r ((p ∧ ¬q) ⇒ (r ∧ ¬r)) ⇒ (p ⇒ q)
T T T F T F T T

T T F F T F T T

T F T T F F T F

T F F T F F T F

F T T F T F T T

F T F F T F T T

F F T F T F T T

F F F F T F T T

Table 13: The truth table for the reduction to absurdity.

ples. There are many and a large variety because different
principles are combined, or made more complicated, etc.

Example: irrational numbers. A real numberu is ra-
tional if there are integersm and n such thatu = m

n
and irrational otherwise. The set of rational numbers is
denoted asQ. For any two different rational numbers,
u < w, we can always find a third that lies strictly be-
tween them. For example, ifw = k

l then

v =
u + w

2

=
ml + nk

nl

lies halfway betweenu andw. This property is sometimes
expressed by saying the rational numbers aredensein the
set of real numbers. How do we know that not all real
numbers are rational?

CLAIM .
√

5 is irrational.

PROOF. Assume the square root of5 is rational, that is,
there exist integersm andn such that

√
5 = m

n . Squaring
the two sides, we get

5 =
m2

n2

or, equivalently,5n2 = m2. But m2 has an even number
of prime factors, namely each factor twice, while5n2 has
an odd number of prime factors, namely5 together with an
even number of prime factors forn2. Hence,5n2 = m2 is
not possible, a contradiction.

We take a look at the logic structure of this proof. Let

p be the statement that
√

5
2

= 5 andq the statement that√
5 is irrational. Thus¬q is the statement that

√
5 = m

n .
From assumingp and¬q, we deriver, that is the state-
ment5n2 = m2. But we also have¬r, because each in-
teger has a unique decomposition into prime factors. We
thus derivedr and¬r. But this cannot be true. Using the
Principle of Reduction to Absurdity, we conclude thatp
impliesq. By modus ponens, assumingp givesq.

Summary. We have learned that theorems are tautolo-
gies and there are different ways to prove them. As ap-
plications of logic rules we have discussed direct methods
(Principle of Modus Ponens) and indirect methods (Prin-
ciple of Contrapositive and Principle of Reduction to Ab-
surdity).

30



Third Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is February 23.

Question 1. (20 = 10+10 points). (Problem 3.1-6 in our
textbook). Show thatp⊕q is equivalent to(p∧¬q)∨
(¬p∧ q). State the corresponding relation in terms of
sets and set operations.

Question 2. (20 = 10 + 10 points). (Problem 3.2-14 in
our textbook). Letx, y, z be variables andp, q logical
statements that depend on one variable.

(a) Are the following two compound logical state-
ments equivalent?

1. (∃x ∈ R [p(x)]) ∧ (∃y ∈ R [q(y)]);
2. ∃z ∈ R [p(z) ∧ q(z)].

(Justify your answer.)

(b) Are the following two compound logical state-
ments equivalent?

1. (∃x ∈ R [p(x)]) ∨ (∃y ∈ R [q(y)]);
2. ∃z ∈ R [p(z) ∨ q(z)].

(Justify your answer.)

Question 3. (20 points). (Problem 3.3-6 in our textbook).
Is the statementp ⇒ q equivalent to the statement
¬p ⇒ ¬q? (If yes, why? If no, why not?)

Question 4. (20 points). (Problem 3.3-14 in our text-
book). Prove that there is no largest prime number.
In other words, for every prime number there is an-
other, larger prime number.

31


