
Data Storage

In this chapter, we consider topics associated with data represen-

tation and the storage of data within a computer. The types of data

we will consider include text, numeric values, images, audio, and

video. Much of the information in this chapter is also relevant to

fields other than traditional computing, such as digital photogra-

phy, audio/video recording and reproduction, and long-distance

communication.
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We begin our study of computer science by considering how information is
encoded and stored inside computers. Our first step is to discuss the basics of a
computer’s data storage devices and then to consider how information is
encoded for storage in these systems. We will explore the ramifications of today’s
data storage systems and how such techniques as data compression and error
handling are used to overcome their shortfalls.

1.1 Bits and Their Storage
Inside today’s computers information is encoded as patterns of 0s and 1s. These
digits are called bits (short for binary digits). Although you may be inclined to
associate bits with numeric values, they are really only symbols whose meaning
depends on the application at hand. Sometimes patterns of bits are used to rep-
resent numeric values; sometimes they represent characters in an alphabet and
punctuation marks; sometimes they represent images; and sometimes they rep-
resent sounds.

Boolean Operations
To understand how individual bits are stored and manipulated inside a com-
puter, it is convenient to imagine that the bit 0 represents the value false and
the bit 1 represents the value true because that allows us to think of manipulat-
ing bits as manipulating true/false values. Operations that manipulate
true/false values are called Boolean operations, in honor of the mathemati-
cian George Boole (1815–1864), who was a pioneer in the field of mathematics
called logic. Three of the basic Boolean operations are AND, OR, and XOR
(exclusive or) as summarized in Figure 1.1. These operations are similar to the
arithmetic operations TIMES and PLUS because they combine a pair of values
(the operation’s input) to produce a third value (the output). In contrast to
arithmetic operations, however, Boolean operations combine true/false values
rather than numeric values.

The Boolean operation AND is designed to reflect the truth or falseness of a
statement formed by combining two smaller, or simpler, statements with the
conjunction and. Such statements have the generic form

P AND Q

where P represents one statement and Q represents another—for example,

Kermit is a frog AND Miss Piggy is an actress.

The inputs to the AND operation represent the truth or falseness of the compound
statement’s components; the output represents the truth or falseness of the com-
pound statement itself. Since a statement of the form P AND Q is true only when
both of its components are true, we conclude that 1 AND 1 should be 1, whereas all
other cases should produce an output of 0, in agreement with Figure 1.1.

In a similar manner, the OR operation is based on compound statements of
the form

P OR Q
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Figure 1.1 The Boolean operations AND, OR, and XOR (exclusive or)

where, again, P represents one statement and Q represents another. Such state-
ments are true when at least one of their components is true, which agrees with
the OR operation depicted in Figure 1.1.

There is not a single conjunction in the English language that captures the
meaning of the XOR operation. XOR produces an output of 1 (true) when one of
its inputs is 1 (true) and the other is 0 (false). For example, a statement of the
form P XOR Q means “either P or Q but not both.” (In short, the XOR operation
produces an output of 1 when its inputs are different.)

The operation NOT is another Boolean operation. It differs from AND,
OR, and XOR because it has only one input. Its output is the opposite of that
input; if the input of the operation NOT is true, then the output is false, and
vice versa. Thus, if the input of the NOT operation is the truth or falseness of
the statement

Fozzie is a bear.

then the output would represent the truth or falseness of the statement

Fozzie is not a bear.

Gates and Flip-Flops
A device that produces the output of a Boolean operation when given the opera-
tion’s input values is called a gate. Gates can be constructed from a variety of
technologies such as gears, relays, and optic devices. Inside today’s computers,
gates are usually implemented as small electronic circuits in which the digits 0
and 1 are represented as voltage levels. We need not concern ourselves with such
details, however. For our purposes, it suffices to represent gates in their symbolic
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Figure 1.2 A pictorial representation of AND, OR, XOR, and NOT gates as well as their input
and output values

form, as shown in Figure 1.2. Note that the AND, OR, XOR, and NOT gates are
represented by distinctively shaped symbols, with the input values entering on
one side and the output exiting on the other.

Gates provide the building blocks from which computers are constructed.
One important step in this direction is depicted in the circuit in Figure 1.3. This is
a particular example from a collection of circuits known as a flip-flop. A flip-flop
is a circuit that produces an output value of 0 or 1, which remains constant until a
pulse (a temporary change to a 1 that returns to 0) from another circuit causes it
to shift to the other value. In other words, the output will flip or flop between two
values under control of external stimuli. As long as both inputs in the circuit in
Figure 1.3 remain 0, the output (whether 0 or 1) will not change. However, tem-
porarily placing a 1 on the upper input will force the output to be 1, whereas tem-
porarily placing a 1 on the lower input will force the output to be 0.

Let us consider this claim in more detail. Without knowing the current output
of the circuit in Figure 1.3, suppose that the upper input is changed to 1 while the
lower input remains 0 (Figure 1.4a). This will cause the output of the OR gate to
be 1, regardless of the other input to this gate. In turn, both inputs to the AND
gate will now be 1, since the other input to this gate is already 1 (the output pro-
duced by the NOT gate whenever the lower input of the flip-flop is at 0). The out-
put of the AND gate will then become 1, which means that the second input to



231.1 Bits and Their Storage

Input

Input

Output

Figure 1.3 A simple flip-flop circuit

the OR gate will now be 1 (Figure 1.4b). This guarantees that the output of the
OR gate will remain 1, even when the upper input to the flip-flop is changed
back to 0 (Figure 1.4c). In summary, the flip-flop’s output has become 1, and this
output value will remain after the upper input returns to 0.

In a similar manner, temporarily placing the value 1 on the lower input will
force the flip-flop’s output to be 0, and this output will persist after the input
value returns to 0.

c. The 1 from the AND gate keeps the OR gate from
   changing after the upper input returns to 0.
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Figure 1.4 Setting the output of a flip-flop to 1
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Our purpose in introducing the flip-flop circuit in Figures 1.3 and 1.4 is
threefold. First, it demonstrates how devices can be constructed from gates, a
process known as digital circuit design, which is an important topic in computer
engineering. Indeed, the flip-flop is only one of many circuits that are basic tools
in computer engineering.

Second, the concept of a flip-flop provides an example of abstraction and the
use of abstract tools. Actually, there are other ways to build a flip-flop. One alter-
native is shown in Figure 1.5. If you experiment with this circuit, you will find
that, although it has a different internal structure, its external properties are the
same as those of Figure 1.3. A computer engineer does not need to know which
circuit is actually used within a flip-flop. Instead, only an understanding of the
flip-flop’s external properties is needed to use it as an abstract tool. A flip-flop,
along with other well-defined circuits, forms a set of building blocks from which
an engineer can construct more complex circuitry. In turn, the design of com-
puter circuitry takes on a hierarchical structure, each level of which uses the
lower level components as abstract tools.

The third purpose for introducing the flip-flop is that it is one means of stor-
ing a bit within a modern computer. More precisely, a flip-flop can be set to have
the output value of either 0 or 1. Other circuits can adjust this value by sending
pulses to the flip-flop’s inputs, and still other circuits can respond to the stored
value by using the flip-flop’s output as their inputs. Thus, many flip-flops, con-
structed as very small electrical circuits, can be used inside a computer as a
means of recording information that is encoded as patterns of 0s and 1s. Indeed,
technology known as very large-scale integration (VLSI), which allows mil-
lions of electrical components to be constructed on a wafer (called a chip), is
used to create miniature devices containing millions of flip-flops along with their
controlling circuitry. In turn, these chips are used as abstract tools in the con-
struction of computer systems. In fact, in some cases VLSI is used to create an
entire computer system on a single chip.

Hexadecimal Notation
When considering the internal activities of a computer, we must deal with pat-
terns of bits, which we will refer to as a string of bits, some of which can be quite
long. A long string of bits is often called a stream. Unfortunately, streams are
difficult for the human mind to comprehend. Merely transcribing the pattern
101101010011 is tedious and error prone. To simplify the representation of such
bit patterns, therefore, we usually use a shorthand notation called hexadecimal

Input

Input
Output

Figure 1.5 Another way of constructing a flip-flop
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notation, which takes advantage of the fact that bit patterns within a machine
tend to have lengths in multiples of four. In particular, hexadecimal notation uses
a single symbol to represent a pattern of four bits. For example, a string of twelve
bits can be represented by three hexadecimal symbols.

Figure 1.6 presents the hexadecimal encoding system. The left column dis-
plays all possible bit patterns of length four; the right column shows the symbol
used in hexadecimal notation to represent the bit pattern to its left. Using this
system, the bit pattern 10110101 is represented as B5. This is obtained by dividing
the bit pattern into substrings of length four and then representing each sub-
string by its hexadecimal equivalent—1011 is represented by B, and 0101 is repre-
sented by 5. In this manner, the 16-bit pattern 1010010011001000 can be reduced
to the more palatable form A4C8.

We will use hexadecimal notation extensively in the next chapter. There you
will come to appreciate its efficiency.

Figure 1.6 The hexadecimal encoding system

Questions & Exercises

1. What input bit patterns will cause the following circuit to produce an
output of 1?

2. In the text, we claimed that placing a 1 on the lower input of the flip-flop
in Figure 1.3 (while holding the upper input at 0) will force the flip-flop’s
output to be 0. Describe the sequence of events that occurs within the
flip-flop in this case.

Inputs Output



3. Assuming that both inputs to the flip-flop in Figure 1.5 are 0, describe the
sequence of events that occurs when the upper input is temporarily set to 1.

4. a. If the output of an AND gate is passed through a NOT gate, the com-
bination computes the Boolean operation called NAND, which has an
output of 0 only when both its inputs are 1. The symbol for a NAND
gate is the same as an AND gate except that it has a circle at its output.
The following is a circuit containing a NAND gate. What Boolean oper-
ation does the circuit compute?
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1.2 Main Memory
For the purpose of storing data, a computer contains a large collection of circuits
(such as flip-flops), each capable of storing a single bit. This bit reservoir is
known as the machine’s main memory.

Memory Organization
A computer’s main memory is organized in manageable units called cells, with
a typical cell size being eight bits. (A string of eight bits is called a byte. Thus, a
typical memory cell has a capacity of one byte.) Small computers used in such
household devices as microwave ovens may have main memories consisting of
only a few hundred cells, whereas large computers may have billions of cells in
their main memories.

Input

Input

Input

Output

Input

b. If the output of an OR gate is passed through a NOT gate, the combi-
nation computes the Boolean operation called NOR that has an output
of 1 only when both its inputs are 0. The symbol for a NOR gate is the
same as an OR gate except that it has a circle at its output. The fol-
lowing is a circuit containing an AND gate and two NOR gates. What
Boolean operation does the circuit compute?

5. Use hexadecimal notation to represent the following bit patterns:

a. 0110101011110010 b. 111010000101010100010111
c. 01001000

6. What bit patterns are represented by the following hexadecimal patterns?

a. 5FD97 b. 610A c. ABCD d. 0100
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Although there is no left or right within a computer, we normally envision the
bits within a memory cell as being arranged in a row. The left end of this row is
called the high-order end, and the right end is called the low-order end. The left-
most bit is called either the high-order bit or the most significant bit in reference
to the fact that if the contents of the cell were interpreted as representing a numeric
value, this bit would be the most significant digit in the number. Similarly, the right-
most bit is referred to as the low-order bit or the least significant bit. Thus we may
represent the contents of a byte-size memory cell as shown in Figure 1.7.

To identify individual cells in a computer’s main memory, each cell is
assigned a unique “name,” called its address. The system is analogous to the tech-
nique of identifying houses in a city by addresses. In the case of memory cells,
however, the addresses used are entirely numeric. To be more precise, we envi-
sion all the cells being placed in a single row and numbered in this order starting
with the value zero. Such an addressing system not only gives us a way of
uniquely identifying each cell but also associates an order to the cells (Figure 1.8),
giving us phrases such as “the next cell” or “the previous cell.”

An important consequence of assigning an order to both the cells in main
memory and the bits within each cell is that the entire collection of bits within a
computer’s main memory is essentially ordered in one long row. Pieces of this
long row can therefore be used to store bit patterns that may be longer than the
length of a single cell. In particular, we can still store a string of 16 bits merely by
using two consecutive memory cells.

To complete the main memory of a computer, the circuitry that actually
holds the bits is combined with the circuitry required to allow other circuits to

High-order end Low-order end0 1 0 1 1 0 1 0

Most
significant
bit

Least
significant
bit

Figure 1.7 The organization of a byte-size memory cell
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store and retrieve data from the memory cells. In this way, other circuits can get
data from the memory by electronically asking for the contents of a certain
address (called a read operation), or they can record information in the memory
by requesting that a certain bit pattern be placed in the cell at a particular
address (called a write operation).

Because a computer’s main memory is organized as individual, addressable
cells, the cells can be accessed independently as required. To reflect the ability to
access cells in any order, a computer’s main memory is often called random
access memory (RAM). This random access feature of main memory is in
stark contrast to the mass storage systems that we will discuss in the next sec-
tion, in which long strings of bits are manipulated as amalgamated blocks.

Although we have introduced flip-flops as a means of storing bits, the RAM in
most modern computers is constructed using other technologies that provide
greater miniaturization and faster response time. Many of these technologies store
bits as tiny electric charges that dissipate quickly. Thus these devices require addi-
tional circuitry, known as a refresh circuit, that repeatedly replenishes the charges
many times a second. In recognition of this volatility, computer memory con-
structed from such technology is often called dynamic memory, leading to the
term DRAM (pronounced “DEE–ram”) meaning Dynamic RAM. Or, at times the
term SDRAM (pronounced “ES-DEE-ram”), meaning Synchronous DRAM, is used
in reference to DRAM that applies additional techniques to decrease the time
needed to retrieve the contents from its memory cells.

Measuring Memory Capacity
As we will learn in the next chapter, it is convenient to design main memory systems
in which the total number of cells is a power of two. In turn, the size of the memo-
ries in early computers were often measured in 1024 (which is 210) cell units. Since
1024 is close to the value 1000, the computing community adopted the prefix kilo in
reference to this unit. That is, the term kilobyte (abbreviated KB) was used to refer to
1024 bytes. Thus, a machine with 4096 memory cells was said to have a 4KB mem-
ory (4096 � 4 � 1024). As memories became larger, this terminology grew to include
MB (megabyte), GB (gigabyte), and TB (terabyte). Unfortunately, this application of
prefixes kilo-, mega-, and so on, represents a misuse of terminology because these
are already used in other fields in reference to units that are powers of a thousand.
For example, when measuring distance, kilometer refers to 1000 meters, and when
measuring radio frequencies, megahertz refers to 1,000,000 hertz. Thus, a word of
caution is in order when using this terminology. As a general rule, terms such as
kilo-, mega-, etc. refer to powers of two when used in the context of a computer’s
memory, but they refer to powers of a thousand when used in other contexts.

Questions & Exercises

1. If the memory cell whose address is 5 contains the value 8, what is the
difference between writing the value 5 into cell number 6 and moving
the contents of cell number 5 into cell number 6?

2. Suppose you want to interchange the values stored in memory cells 2
and 3. What is wrong with the following sequence of steps:
Step 1. Move the contents of cell number 2 to cell number 3.
Step 2. Move the contents of cell number 3 to cell number 2.
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1.3 Mass Storage
Due to the volatility and limited size of a computer’s main memory, most computers
have additional memory devices called mass storage (or secondary storage) sys-
tems, including magnetic disks, CDs, DVDs, magnetic tapes, and flash drives (all of
which we will discuss shortly). The advantages of mass storage systems over main
memory include less volatility, large storage capacities, low cost, and in many cases,
the ability to remove the storage medium from the machine for archival purposes.

The terms on-line and off-line are often used to describe devices that can be
either attached to or detached from a machine. On-line means that the device or
information is connected and readily available to the machine without human
intervention. Off-line means that human intervention is required before the
device or information can be accessed by the machine—perhaps because the
device must be turned on, or the medium holding the information must be
inserted into some mechanism.

A major disadvantage of mass storage systems is that they typically require
mechanical motion and therefore require significantly more time to store and
retrieve data than a machine’s main memory, where all activities are per-
formed electronically.

Magnetic Systems
For years, magnetic technology has dominated the mass storage arena. The most
common example in use today is the magnetic disk, in which a thin spinning
disk with magnetic coating is used to hold data (Figure 1.9). Read/write heads are
placed above and/or below the disk so that as the disk spins, each head traverses
a circle, called a track. By repositioning the read/write heads, different concen-
tric tracks can be accessed. In many cases, a disk storage system consists of sev-
eral disks mounted on a common spindle, one on top of the other, with enough
space for the read/write heads to slip between the platters. In such cases, the

Design a sequence of steps that correctly interchanges the contents of
these cells. If needed, you may use additional cells.

3. How many bits would be in the memory of a computer with 4KB memory?

Track divided
into sectors

Disk
Read/write head

Disk motion

Arm motion

Access arm

Figure 1.9 A disk storage system
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read/write heads move in unison. Each time the read/write heads are reposi-
tioned, a new set of tracks—which is called a cylinder—becomes accessible.

Since a track can contain more information than we would normally want
to manipulate at any one time, each track is divided into small arcs called
sectors on which information is recorded as a continuous string of bits. All sec-
tors on a disk contain the same number of bits (typical capacities are in the
range of 512 bytes to a few KB), and in the simplest disk storage systems each
track contains the same number of sectors. Thus, the bits within a sector on a
track near the outer edge of the disk are less compactly stored than those on the
tracks near the center, since the outer tracks are longer than the inner ones. In
fact, in high capacity disk storage systems, the tracks near the outer edge are
capable of containing significantly more sectors than those near the center, and
this capability is often utilized by applying a technique called zoned-bit
recording. Using zoned-bit recording, several adjacent tracks are collectively
known as zones, with a typical disk containing approximately ten zones. All
tracks within a zone have the same number of sectors, but each zone has more
sectors per track than the zone inside of it. In this manner, efficient utilization
of the entire disk surface is achieved. Regardless of the details, a disk storage
system consists of many individual sectors, each of which can be accessed as an
independent string of bits.

The location of tracks and sectors is not a permanent part of a disk’s physical
structure. Instead, they are marked magnetically through a process called
formatting (or initializing) the disk. This process is usually performed by the
disk’s manufacturer, resulting in what are known as formatted disks. Most com-
puter systems can also perform this task. Thus, if the format information on a
disk is damaged, the disk can be reformatted, although this process destroys all
the information that was previously recorded on the disk.

The capacity of a disk storage system depends on the number of platters
used and the density in which the tracks and sectors are placed. Lower-capacity
systems may consist of a single platter. High-capacity disk systems, capable of
holding many gigabytes, or even terabytes, consist of perhaps three to six plat-
ters mounted on a common spindle. Furthermore, data may be stored on both
the upper and lower surfaces of each platter.

Several measurements are used to evaluate a disk system’s performance: (1)
seek time (the time required to move the read/write heads from one track to
another); (2) rotation delay or latency time (half the time required for the disk
to make a complete rotation, which is the average amount of time required for
the desired data to rotate around to the read/write head once the head has been
positioned over the desired track); (3) access time (the sum of seek time and
rotation delay); and (4) transfer rate (the rate at which data can be transferred
to or from the disk). (Note that in the case of zone-bit recording, the amount of
data passing a read/write head in a single disk rotation is greater for tracks in an
outer zone than for an inner zone, and therefore the data transfer rate varies
depending on the portion of the disk being used.)

A factor limiting the access time and transfer rate is the speed at which a
disk system rotates. To facilitate fast rotation speeds, the read/write heads in
these systems do not touch the disk but instead “float” just off the surface. The
spacing is so close that even a single particle of dust could become jammed
between the head and disk surface, destroying both (a phenomenon known as a
head crash). Thus, disk systems are typically housed in cases that are sealed at
the factory. With this construction, disk systems are able to rotate at speeds of
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several thousands times per second, achieving transfer rates that are measured
in MB per second.

Since disk systems require physical motion for their operation, these sys-
tems suffer when compared to speeds within electronic circuitry. Delay times
within an electronic circuit are measured in units of nanoseconds (billionths of a
second) or less, whereas seek times, latency times, and access times of disk sys-
tems are measured in milliseconds (thousandths of a second). Thus the time
required to retrieve information from a disk system can seem like an eternity to
an electronic circuit awaiting a result.

Disk storage systems are not the only mass storage devices that apply mag-
netic technology. An older form of mass storage using magnetic technology is
magnetic tape (Figure 1.10). In these systems, information is recorded on the
magnetic coating of a thin plastic tape that is wound on a reel for storage. To
access the data, the tape is mounted in a device called a tape drive that typically
can read, write, and rewind the tape under control of the computer. Tape drives
range in size from small cartridge units, called streaming tape units, which use
tape similar in appearance to that in stereo systems to older, large reel-to-reel
units. Although the capacity of these devices depends on the format used, most
can hold many GB.

A major disadvantage of magnetic tape is that moving between different posi-
tions on a tape can be very time-consuming owing to the significant amount of
tape that must be moved between the reels. Thus tape systems have much longer
data access times than magnetic disk systems in which different sectors can be
accessed by short movements of the read/write head. In turn, tape systems are not
popular for on-line data storage. Instead, magnetic tape technology is reserved for
off-line archival data storage applications where its high capacity, reliability, and
cost efficiency are beneficial, although advances in alternatives, such as DVDs and
flash drives, are rapidly challenging this last vestige of magnetic tape.

Optical Systems
Another class of mass storage systems applies optical technology. An example is
the compact disk (CD). These disks are 12 centimeters (approximately 5 inches)
in diameter and consist of reflective material covered with a clear protective
coating. Information is recorded on them by creating variations in their reflective

Tape reel

Tape Tape

Take-up reel

Read/write
head

Tape motion

Figure 1.10 A magnetic tape storage mechanism



32 Chapter 1 Data Storage

surfaces. This information can then be retrieved by means of a laser beam that
detects irregularities on the reflective surface of the CD as it spins.

CD technology was originally applied to audio recordings using a recording
format known as CD-DA (compact disk-digital audio), and the CDs used today
for computer data storage use essentially the same format. In particular, informa-
tion on these CDs is stored on a single track that spirals around the CD like a
groove in an old-fashioned record, however, unlike old-fashioned records, the track
on a CD spirals from the inside out (Figure 1.11). This track is divided into units
called sectors, each with its own identifying markings and a capacity of 2KB of
data, which equates to 1⁄75 of a second of music in the case of audio recordings.

Note that the distance around the spiraled track is greater toward the outer
edge of the disk than at the inner portion. To maximize the capacity of a CD,
information is stored at a uniform linear density over the entire spiraled track,
which means that more information is stored in a loop around the outer portion
of the spiral than in a loop around the inner portion. In turn, more sectors will be
read in a single revolution of the disk when the laser beam is scanning the outer
portion of the spiraled track than when the beam is scanning the inner portion of
the track. Thus, to obtain a uniform rate of data transfer, CD-DA players are
designed to vary the rotation speed depending on the location of the laser beam.
However, most CD systems used for computer data storage spin at a faster, con-
stant speed and thus must accommodate variations in data transfer rates.

As a consequence of such design decisions, CD storage systems perform best
when dealing with long, continuous strings of data, as when reproducing music. In
contrast, when an application requires access to items of data in a random manner,
the approach used in magnetic disk storage (individual, concentric tracks divided
into individually accessible sectors) outperforms the spiral approach used in CDs.

Traditional CDs have capacities in the range of 600 to 700MB. However,
DVDs (Digital Versatile Disks), which are constructed from multiple, semi-
transparent layers that serve as distinct surfaces when viewed by a precisely
focused laser, provide storage capacities of several GB. Such disks are capable of
storing lengthy multimedia presentations, including entire motion pictures.
Finally, Blu-ray technology, which uses a laser in the blue-violet spectrum of
light (instead of red), is able to focus its laser beam with very fine precision. As a

Disk motion

CD

Data recorded on a single track,
consisting of individual sectors,
that spirals toward the outer edge

Figure 1.11 CD storage format
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result, BDs (Blu-ray Disks) provides over five times the capacity of a DVD.
This seemingly vast amount of storage is needed to meet the demands of high
definition video.

Flash Drives
A common property of mass storage systems based on magnetic or optic tech-
nology is that physical motion, such as spinning disks, moving read/write heads,
and aiming laser beams, is required to store and retrieve data. This means that
data storage and retrieval is slow compared to the speed of electronic circuitry.
Flash memory technology has the potential of alleviating this drawback. In a
flash memory system, bits are stored by sending electronic signals directly to the
storage medium where they cause electrons to be trapped in tiny chambers of
silicon dioxide, thus altering the characteristics of small electronic circuits. Since
these chambers are able to hold their captive electrons for many years, this tech-
nology is suitable for off-line storage of data.

Although data stored in flash memory systems can be accessed in small
byte-size units as in RAM applications, current technology dictates that stored
data be erased in large blocks. Moreover, repeated erasing slowly damages the
silicon dioxide chambers, meaning that current flash memory technology is not
suitable for general main memory applications where its contents might be
altered many times a second. However, in those applications in which alter-
ations can be controlled to a reasonable level, such as in digital cameras, cellu-
lar telephones, and hand-held PDAs, flash memory has become the mass
storage technology of choice. Indeed, since flash memory is not sensitive to
physical shock (in contrast to magnetic and optic systems) its potential in
portable applications is enticing.

Flash memory devices called flash drives, with capacities of up to a few
hundred GBs, are available for general mass storage applications. These units are
packaged in small plastic cases approximately three inches long with a remov-
able cap on one end to protect the unit’s electrical connector when the drive is
off-line. The high capacity of these portable units as well as the fact that they are
easily connected to and disconnected from a computer make them ideal for off-
line data storage. However, the vulnerability of their tiny storage chambers dic-
tates that they are not as reliable as optical disks for truly long term applications.

Another application of flash technology is found in SD (Secure Digital)
memory cards (or just SD Card). These provide up to two GBs of storage and are
packaged in a plastic rigged wafer about the size a postage stamp (SD cards are also
available in smaller mini and micro sizes), SDHC (High Capacity) memory
cards can provide up to 32 GBs and the next generation SDXC (Extended
Capacity) memory cards may exceed a TB. Given their compact physical size,
these cards conveniently slip into slots of small electronic devices. Thus, they are
ideal for digital cameras, smartphones, music players, car navigation systems, and
a host of other electronic appliances.

File Storage and Retrieval
Information stored in a mass storage system is conceptually grouped into large
units called files. A typical file may consist of a complete text document, a photo-
graph, a program, a music recording, or a collection of data about the employees in
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a company. We have seen that mass storage devices dictate that these files be
stored and retrieved in smaller, multiple byte units. For example, a file stored on a
magnetic disk must be manipulated by sectors, each of which is a fixed predeter-
mined size. A block of data conforming to the specific characteristics of a storage
device is called a physical record. Thus, a large file stored in mass storage will
typically consist of many physical records.

In contrast to this division into physical records, a file often has natural divi-
sions determined by the information represented. For example, a file containing
information regarding a company’s employees would consist of multiple units,
each consisting of the information about one employee. Or, a file containing a
text document would consist of paragraphs or pages. These naturally occurring
blocks of data are called logical records.

Logical records often consist of smaller units called fields. For example, a
logical record containing information about an employee would probably consist
of fields such as name, address, employee identification number, etc. Sometimes
each logical record within a file is uniquely identified by means of a particular
field within the record (perhaps an employee’s identification number, a part
number, or a catalogue item number). Such an identifying field is called a key
field. The value held in a key field is called a key.

Logical record sizes rarely match the physical record size dictated by a mass
storage device. In turn, one may find several logical records residing within a sin-
gle physical record or perhaps a logical record split between two or more physical
records (Figure 1.12). The result is that a certain amount of unscrambling is asso-
ciated with retrieving data from mass storage systems. A common solution to this
problem is to set aside an area of main memory that is large enough to hold sev-
eral physical records and to use this memory space as a regrouping area. That is,
blocks of data compatible with physical records can be transferred between this
main memory area and the mass storage system, while the data residing in the
main memory area can be referenced in terms of logical records.

An area of memory used in this manner is called a buffer. In general, a
buffer is a storage area used to hold data on a temporary basis, usually during the
process of being transferred from one device to another. For example, modern

Logical records correspond
to natural divisions within the data

Physical records correspond
to the size of a sector

Figure 1.12 Logical records versus physical records on a disk
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printers contain memory circuitry of their own, a large part of which is used as a
buffer for holding portions of a document that have been received by the printer
but not yet printed.

Questions & Exercises

1. What is gained by increasing the rotation speed of a disk or CD?
2. When recording data on a multiple-disk storage system, should we fill a

complete disk surface before starting on another surface, or should we
first fill an entire cylinder before starting on another cylinder?

3. Why should the data in a reservation system that is constantly being
updated be stored on a magnetic disk instead of a CD or DVD?

4. Sometimes, when modifying a document with a word processor, adding
text does not increase the apparent size of the file in mass storage, but at
other times the addition of a single symbol can increase the apparent
size of the file by several hundred bytes. Why?

5. What advantage do flash drives have over the other mass storage systems
introduced in this section?

6. What is a buffer?

1.4 Representing Information as Bit Patterns
Having considered techniques for storing bits, we now consider how information
can be encoded as bit patterns. Our study focuses on popular methods for encod-
ing text, numerical data, images, and sound. Each of these systems has repercus-
sions that are often visible to a typical computer user. Our goal is to understand
enough about these techniques so that we can recognize their consequences for
what they are.

Representing Text
Information in the form of text is normally represented by means of a code in
which each of the different symbols in the text (such as the letters of the alpha-
bet and punctuation marks) is assigned a unique bit pattern. The text is then rep-
resented as a long string of bits in which the successive patterns represent the
successive symbols in the original text.

In the 1940s and 1950s, many such codes were designed and used in con-
nection with different pieces of equipment, producing a corresponding prolifera-
tion of communication problems. To alleviate this situation, the American
National Standards Institute (ANSI, pronounced “AN–see”) adopted the
American Standard Code for Information Interchange (ASCII, pronounced
“AS–kee”). This code uses bit patterns of length seven to represent the upper-
and lowercase letters of the English alphabet, punctuation symbols, the digits 0
through 9, and certain control information such as line feeds, carriage returns,
and tabs. ASCII is extended to an eight-bit-per-symbol format by adding a 0 at the
most significant end of each of the seven-bit patterns. This technique not only
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produces a code in which each pattern fits conveniently into a typical byte-size
memory cell but also provides 128 additional bit patterns (those obtained by
assigning the extra bit the value 1) that can be used to represent symbols beyond
the English alphabet and associated punctuation.

A portion of ASCII in its eight-bit-per-symbol format is shown in Appendix A.
By referring to this appendix, we can decode the bit pattern

01001000 01100101 01101100 01101100 01101111 00101110

as the message “Hello.” as demonstrated in Figure 1.13.
The International Organization for Standardization (also known as ISO,

in reference to the Greek word isos, meaning equal) has developed a number of
extensions to ASCII, each of which were designed to accommodate a major lan-
guage group. For example, one standard provides the symbols needed to express
the text of most Western European languages. Included in its 128 additional pat-
terns are symbols for the British pound and the German vowels ä, ö, and ü.

The ISO extended ASCII standards made tremendous headway toward sup-
porting all of the world’s multilingual communication; however, two major obsta-
cles surfaced. First, the number of extra bit patterns available in extended ASCII
is simply insufficient to accommodate the alphabet of many Asian and some
Eastern European languages. Second, because a given document was con-
strained to using symbols in just the one selected standard, documents contain-
ing text of languages from disparate language groups could not be supported.
Both proved to be a significant detriment to international use. To address this
deficiency, Unicode, was developed through the cooperation of several of the
leading manufacturers of hardware and software and has rapidly gained the sup-
port in the computing community. This code uses a unique pattern of 16 bits 
to represent each symbol. As a result, Unicode consists of 65,536 different bit
patterns—enough to allow text written in such languages as Chinese, Japanese,
and Hebrew to be represented.

A file consisting of a long sequence of symbols encoded using ASCII or
Unicode is often called a text file. It is important to distinguish between simple
text files that are manipulated by utility programs called text editors (or often
simply editors) and the more elaborate files produced by word processors such
as Microsoft’s Word. Both consist of textual material. However, a text file contains
only a character-by-character encoding of the text, whereas a file produced by a
word processor contains numerous proprietary codes representing changes in
fonts, alignment information, etc.

Representing Numeric Values
Storing information in terms of encoded characters is inefficient when the infor-
mation being recorded is purely numeric. To see why, consider the problem of
storing the value 25. If we insist on storing it as encoded symbols in ASCII using
one byte per symbol, we need a total of 16 bits. Moreover, the largest number 

01001000

H

01101100

I

01101100

I

01101111

o

00101110

.

01100101

e

Figure 1.13 The message “Hello.” in ASCII
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The American National Standards Institute
The American National Standards Institute (ANSI) was founded in 1918 by a small
consortium of engineering societies and government agencies as a nonprofit federa-
tion to coordinate the development of voluntary standards in the private sector.
Today, ANSI membership includes more than 1300 businesses, professional organi-
zations, trade associations, and government agencies. ANSI is headquartered in New
York and represents the United States as a member body in the ISO. The Web site for
the American National Standards Institute is at http://www.ansi.org.

Similar organizations in other countries include Standards Australia (Australia),
Standards Council of Canada (Canada), China State Bureau of Quality and Technical
Supervision (China), Deutsches Institut für Normung (Germany), Japanese Industrial
Standards Committee (Japan), Dirección General de Normas (Mexico), State Committee
of the Russian Federation for Standardization and Metrology (Russia), Swiss
Association for Standardization (Switzerland), and British Standards Institution
(United Kingdom).

we could store using 16 bits is 99. However, as we will shortly see, by using
binary notation we can store any integer in the range from 0 to 65535 in these
16 bits. Thus, binary notation (or variations of it) is used extensively for encoded
numeric data for computer storage.

Binary notation is a way of representing numeric values using only the digits
0 and 1 rather than the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 as in the traditional dec-
imal, or base ten, system. We will study the binary system more thoroughly in
Section 1.5. For now, all we need is an elementary understanding of the system.
For this purpose consider an old-fashioned car odometer whose display wheels
contain only the digits 0 and 1 rather than the traditional digits 0 through 9. The
odometer starts with a reading of all 0s, and as the car is driven for the first few
miles, the rightmost wheel rotates from a 0 to a 1. Then, as that 1 rotates back to
a 0, it causes a 1 to appear to its left, producing the pattern 10. The 0 on the right
then rotates to a 1, producing 11. Now the rightmost wheel rotates from 1 back to
0, causing the 1 to its left to rotate to a 0 as well. This in turn causes another 1 to
appear in the third column, producing the pattern 100. In short, as we drive the
car we see the following sequence of odometer readings:

0000

0001

0010

0011

0100

0101

0110

0111

1000

This sequence consists of the binary representations of the integers zero
through eight. Although tedious, we could extend this counting technique to dis-
cover that the bit pattern consisting of sixteen 1s represents the value 65535,

http://www.ansi.org
http://www.ansi.org
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which confirms our claim that any integer in the range from 0 to 65535 can be
encoded using 16 bits.

Due to this efficiency, it is common to store numeric information in a form of
binary notation rather than in encoded symbols. We say “a form of binary nota-
tion” because the straightforward binary system just described is only the basis for
several numeric storage techniques used within machines. Some of these varia-
tions of the binary system are discussed later in this chapter. For now, we merely
note that a system called two’s complement notation (see Section 1.6) is com-
mon for storing whole numbers because it provides a convenient method for rep-
resenting negative numbers as well as positive. For representing numbers with
fractional parts such as 41⁄2 or 3⁄4, another technique, called floating-point nota-
tion (see Section 1.7), is used.

Representing Images
One means of representing an image is to interpret the image as a collection of
dots, each of which is called a pixel, short for “picture element.” The appearance
of each pixel is then encoded and the entire image is represented as a collection
of these encoded pixels. Such a collection is called a bit map. This approach is
popular because many display devices, such as printers and display screens,
operate on the pixel concept. In turn, images in bit map form are easily format-
ted for display.

The method of encoding the pixels in a bit map varies among applications.
In the case of a simple black and white image, each pixel can be represented by
a single bit whose value depends on whether the corresponding pixel is black or
white. This is the approach used by most facsimile machines. For more elaborate
back and white photographs, each pixel can be represented by a collection of bits
(usually eight), which allows a variety of shades of grayness to be represented.

In the case of color images, each pixel is encoded by more complex system.
Two approaches are common. In one, which we will call RGB encoding, each
pixel is represented as three color components—a red component, a green com-
ponent, and a blue component—corresponding to the three primary colors of
light. One byte is normally used to represent the intensity of each color compo-
nent. In turn, three bytes of storage are required to represent a single pixel in the
original image.

ISO—The International Organization for Standardization
The International Organization for Standardization (more commonly called ISO) was
established in 1947 as a worldwide federation of standardization bodies, one from
each country. Today, it is headquartered in Geneva, Switzerland and has more than
100 member bodies as well as numerous correspondent members. (A correspondent
member is usually a standardization body from a country that does not have a
nationally recognized standardization body. Such members cannot participate
directly in the development of standards but are kept informed of ISO activities.) ISO
maintains a Web site at http://www.iso.org.

http://www.iso.org
http://www.iso.org
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An alternative to simple RGB encoding is to use a “brightness” component
and two color components. In this case the “brightness” component, which is
called the pixel’s luminance, is essentially the sum of the red, green, and blue
components. (Actually, it is considered to be the amount of white light in the
pixel, but these details need not concern us here.) The other two components,
called the blue chrominance and the red chrominance, are determined by com-
puting the difference between the pixel’s luminance and the amount of blue or
red light, respectively, in the pixel. Together these three components contain the
information required to reproduce the pixel.

The popularity of encoding images using luminance and chrominance com-
ponents originated in the field of color television broadcast because this
approach provided a means of encoding color images that was also compatible
with older black-and-white television receivers. Indeed, a gray-scale version of
an image can be produced by using only the luminance components of the
encoded color image.

A disadvantage of representing images as bit maps is that an image cannot
be rescaled easily to any arbitrary size. Essentially, the only way to enlarge the
image is to make the pixels bigger, which leads to a grainy appearance. (This is
the technique called “digital zoom” used in digital cameras as opposed to “optical
zoom” that is obtained by adjusting the camera lens.)

An alternate way of representing images that avoids this scaling problem is to
describe the image as a collection of geometric structures, such as lines and
curves, that can be encoded using techniques of analytic geometry. Such a
description allows the device that ultimately displays the image to decide how the
geometric structures should be displayed rather than insisting that the device
reproduce a particular pixel pattern. This is the approach used to produce the
scalable fonts that are available via today’s word processing systems. For example,
TrueType (developed by Microsoft and Apple) is a system for geometrically
describing text symbols. Likewise, PostScript (developed by Adobe Systems) pro-
vides a means of describing characters as well as more general pictorial data. This
geometric means of representing images is also popular in computer-aided
design (CAD) systems in which drawings of three-dimensional objects are dis-
played and manipulated on computer display screens.

The distinction between representing an image in the form of geometric
structures as opposed to bit maps is evident to users of many drawing software
systems (such as Microsoft’s Paint utility) that allow the user to draw pictures
consisting of preestablished shapes such as rectangles, ovals, and elementary
curves. The user simply selects the desired geometric shape from a menu and
then directs the drawing of that shape via a mouse. During the drawing
process, the software maintains a geometric description of the shape being
drawn. As directions are given by the mouse, the internal geometric represen-
tation is modified, reconverted to bit map form, and displayed. This allows for
easy scaling and shaping of the image. Once the drawing process is complete,
however, the underlying geometric description is discarded and only the bit
map is preserved, meaning that additional alterations require a tedious pixel-
by-pixel modification process. On the other hand, some drawing systems pre-
serve the description as geometric shapes, which can be modified later. With
these systems, the shapes can be easily resized, maintaining a crisp display at
any dimension.



Representing Sound
The most generic method of encoding audio information for computer storage
and manipulation is to sample the amplitude of the sound wave at regular inter-
vals and record the series of values obtained. For instance, the series 0, 1.5, 2.0,
1.5, 2.0, 3.0, 4.0, 3.0, 0 would represent a sound wave that rises in amplitude, falls
briefly, rises to a higher level, and then drops back to 0 (Figure 1.14). This tech-
nique, using a sample rate of 8000 samples per second, has been used for years
in long-distance voice telephone communication. The voice at one end of the
communication is encoded as numeric values representing the amplitude of the
voice every eight-thousandth of a second. These numeric values are then trans-
mitted over the communication line to the receiving end, where they are used to
reproduce the sound of the voice.

Although 8000 samples per second may seem to be a rapid rate, it is not suf-
ficient for high-fidelity music recordings. To obtain the quality sound reproduc-
tion obtained by today’s musical CDs, a sample rate of 44,100 samples per second
is used. The data obtained from each sample are represented in 16 bits (32 bits
for stereo recordings). Consequently, each second of music recorded in stereo
requires more than a million bits.

An alternative encoding system known as Musical Instrument Digital
Interface (MIDI, pronounced “MID–ee”) is widely used in the music synthesiz-
ers found in electronic keyboards, for video game sound, and for sound effects
accompanying Web sites. By encoding directions for producing music on a syn-
thesizer rather than encoding the sound itself, MIDI avoids the large storage
requirements of the sampling technique. More precisely, MIDI encodes what
instrument is to play which note for what duration of time, which means that a
clarinet playing the note D for two seconds can be encoding in three bytes
rather than more than two million bits when sampled at a rate of 44,100 sam-
ples per second.

In short, MIDI can be thought of as a way of encoding the sheet music read
by a performer rather than the performance itself, and in turn, a MIDI “record-
ing” can sound significantly different when performed on different synthesizers.
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0 1.5 2.0 1.5 2.0 3.0 4.0 3.0 0

Amplitudes

Encoded sound wave

Figure 1.14 The sound wave represented by the sequence 0, 1.5, 2.0, 1.5, 2.0, 3.0, 4.0, 3.0, 0
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Questions & Exercises

1. Here is a message encoded in ASCII using 8 bits per symbol. What does
it say? (See Appendix A)

2. In the ASCII code, what is the relationship between the codes for an
uppercase letter and the same letter in lowercase? (See Appendix A.)

3. Encode these sentences in ASCII:

a. “Stop!” Cheryl shouted. b. Does 2 � 3 � 5?

4. Describe a device from everyday life that can be in either of two states,
such as a flag on a flagpole that is either up or down. Assign the symbol 1
to one of the states and 0 to the other, and show how the ASCII repre-
sentation for the letter b would appear when stored with such bits.

5. Convert each of the following binary representations to its equivalent
base ten form:

a. 0101 b. 1001 c. 1011
d. 0110 e. 10000 f. 10010

6. Convert each of the following base ten representations to its equivalent
binary form:

a. 6 b. 13 c. 11
d. 18 e. 27 f. 4

7. What is the largest numeric value that could be represented with three
bytes if each digit were encoded using one ASCII pattern per byte? What
if binary notation were used?

8. An alternative to hexadecimal notation for representing bit patterns is
dotted decimal notation in which each byte in the pattern is repre-
sented by its base ten equivalent. In turn, these byte representations are
separated by periods. For example, 12.5 represents the pattern
0000110000000101 (the byte 00001100 is represented by 12, and 00000101
is represented by 5), and the pattern 100010000001000000000111 is repre-
sented by 136.16.7. Represent each of the following bit patterns in dotted
decimal notation.

a. 0000111100001111 b. 001100110000000010000000
c. 0000101010100000

9. What is an advantage of representing images via geometric structures as
opposed to bit maps? What about bit map techniques as opposed to geo-
metric structures?

10. Suppose a stereo recording of one hour of music is encoded using a sam-
ple rate of 44,100 samples per second as discussed in the text. How does
the size of the encoded version compare to the storage capacity of a CD?

01000011 01101111 01101101 01110000 01110101 01110100
01100101 01110010 00100000 01010011 01100011 01101001
01100101 01101110 01100011 01100101
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1.5 The Binary System
In Section 1.4 we saw that binary notation is a means of representing numeric
values using only the digits 0 and 1 rather than the ten digits 0 through 9 that are
used in the more common base ten notational system. It is time now to look at
binary notation more thoroughly.

Binary Notation
Recall that in the base ten system, each position in a representation is associated
with a quantity. In the representation 375, the 5 is in the position associated with
the quantity one, the 7 is in the position associated with ten, and the 3 is in the
position associated with the quantity one hundred (Figure 1.15a). Each quantity
is ten times that of the quantity to its right. The value represented by the entire
expression is obtained by multiplying the value of each digit by the quantity
associated with that digit’s position and then adding those products. To illustrate,
the pattern 375 represents (3 � hundred) � (7 � ten) � (5 � one), which, in
more technical notation, is (3 � 102) � (7 � 101) � (5 � 100).

The position of each digit in binary notation is also associated with a
quantity, except that the quantity associated with each position is twice the
quantity associated with the position to its right. More precisely, the rightmost
digit in a binary representation is associated with the quantity one (20), the
next position to the left is associated with two (21), the next is associated with
four (22), the next with eight (23), and so on. For example, in the binary repre-
sentation 1011, the rightmost 1 is in the position associated with the quantity
one, the 1 next to it is in the position associated with two, the 0 is in the posi-
tion associated with four, and the leftmost 1 is in the position associated with
eight (Figure 1.15b).

To extract the value represented by a binary representation, we follow the
same procedure as in base ten—we multiply the value of each digit by the quan-
tity associated with its position and add the results. For example, the value rep-
resented by 100101 is 37, as shown in Figure 1.16. Note that since binary notation
uses only the digits 0 and 1, this multiply-and-add process reduces merely to
adding the quantities associated with the positions occupied by 1s. Thus the
binary pattern 1011 represents the value eleven, because the 1s are found in the
positions associated with the quantities one, two, and eight.

In Section 1.4 we learned how to count in binary notation, which allowed us
to encode small integers. For finding binary representations of large values, you
may prefer the approach described by the algorithm in Figure 1.17. Let us apply
this algorithm to the value thirteen (Figure 1.18). We first divide thirteen by two,
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Figure 1.15 The base ten and binary systems
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Binary
pattern

Value 
of bit

Total
Position’s 
quantity

1   x  one
0   x  two
1   x  four
0   x  eight
0   x  sixteen
1   x  thirty-two

     1

     0
     4
     0
     0

    32

1 1 10 0 0

37

=
=
=
=
=
=

Figure 1.16 Decoding the binary representation 100101

Step 1. Divide the value by two and record the remainder.

Step 2. As long as the quotient obtained is not zero, continue to divide
the newest quotient by two and record the remainder.

Step 3. Now that a quotient of zero has been obtained, the binary
representation of the original value consists of the remainders 
listed from right to left in the order they were recorded.

Figure 1.17 An algorithm for finding the binary representation of a positive integer

2
0
1

Remainder  1

2
1
3

Remainder  1

2
3
6

Remainder  0

2
6
13

Remainder  1

Binary representation1 1 0 1

Figure 1.18 Applying the algorithm in Figure 1.17 to obtain the binary representation 
of thirteen

obtaining a quotient of six and a remainder of one. Since the quotient was not
zero, Step 2 tells us to divide the quotient (six) by two, obtaining a new quotient
of three and a remainder of zero. The newest quotient is still not zero, so we
divide it by two, obtaining a quotient of one and a remainder of one. Once again,
we divide the newest quotient (one) by two, this time obtaining a quotient of
zero and a remainder of one. Since we have now acquired a quotient of zero, we
move on to Step 3, where we learn that the binary representation of the original
value (thirteen) is 1101, obtained from the list of remainders.
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Binary Addition
To understand the process of adding two integers that are represented in binary,
let us first recall the process of adding values that are represented in traditional
base ten notation. Consider, for example, the following problem:

58
� 27

We begin by adding the 8 and the 7 in the rightmost column to obtain the sum 15.
We record the 5 at the bottom of that column and carry the 1 to the next column,
producing

1
58

� 27
5

We now add the 5 and 2 in the next column along with the 1 that was carried
to obtain the sum 8, which we record at the bottom of the column. The result
is as follows:

58
� 27
85

In short, the procedure is to progress from right to left as we add the digits in
each column, write the least significant digit of that sum under the column, and
carry the more significant digit of the sum (if there is one) to the next column.

To add two integers represented in binary notation, we follow the same pro-
cedure except that all sums are computed using the addition facts shown in 
Figure 1.19 rather than the traditional base ten facts that you learned in elemen-
tary school. For example, to solve the problem

111010
� 11011

we begin by adding the rightmost 0 and 1; we obtain 1, which we write below the
column. Now we add the 1 and 1 from the next column, obtaining 10. We write
the 0 from this 10 under the column and carry the 1 to the top of the next col-
umn. At this point, our solution looks like this:

1
111010

� 11011
01

0
0
0

�
1
0
1

�
0
1
1

�
1
1
10
+

Figure 1.19 The binary addition facts
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We add the 1, 0, and 0 in the next column, obtain 1, and write the 1 under this
column. The 1 and 1 from the next column total 10; we write the 0 under the col-
umn and carry the 1 to the next column. Now our solution looks like this:

1
111010

� 11011
0101

The 1, 1, and 1 in the next column total 11 (binary notation for the value three);
we write the low-order 1 under the column and carry the other 1 to the top of the
next column. We add that 1 to the 1 already in that column to obtain 10. Again,
we record the low-order 0 and carry the 1 to the next column. We now have

1
111010

� 11011
010101

The only entry in the next column is the 1 that we carried from the previous col-
umn so we record it in the answer. Our final solution is this:

111010
� 11011
1010101

Fractions in Binary
To extend binary notation to accommodate fractional values, we use a radix
point in the same role as the decimal point in decimal notation. That is, the dig-
its to the left of the point represent the integer part (whole part) of the value and
are interpreted as in the binary system discussed previously. The digits to its
right represent the fractional part of the value and are interpreted in a manner
similar to the other bits, except their positions are assigned fractional quanti-
ties. That is, the first position to the right of the radix is assigned the quantity
1⁄2 (which is 2�1), the next position the quantity 1⁄4 (which is 2�2), the next 1⁄8

(which is 2�3), and so on. Note that this is merely a continuation of the rule
stated previously: Each position is assigned a quantity twice the size of the one
to its right. With these quantities assigned to the bit positions, decoding a
binary representation containing a radix point requires the same procedure as
used without a radix point. More precisely, we multiply each bit value by the
quantity assigned to that bit’s position in the representation. To illustrate, the
binary representation 101.101 decodes to 55⁄8, as shown in Figure 1.20.

Binary
pattern

Value 
of bit

Total
Position’s 
quantity

1   x  one-eighth
0   x  one-fourth
1   x  one-half
1   x  one
0   x  two
1   x  four

     0

     1
     0
    4

1 1 10 1 0

5

=
=
=
=
=
=

.

5
8

18

12

Figure 1.20 Decoding the binary representation 101.101
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For addition, the techniques applied in the base ten system are also applica-
ble in binary. That is, to add two binary representations having radix points, we
merely align the radix points and apply the same addition process as before. For
example, 10.011 added to 100.11 produces 111.001, as shown here:

10.011
� 100.110

111.001

Analog Versus Digital
Prior to the twenty-first century, many researchers debated the pros and cons of dig-
ital versus analog technology. In a digital system, a value is encoded as a series of
digits and then stored using several devices, each representing one of the digits. In
an analog system, each value is stored in a single device that can represent any value
within a continuous range.

Let us compare the two approaches using buckets of water as the storage devices. To
simulate a digital system, we could agree to let an empty bucket represent the digit 0 and
a full bucket represent the digit 1. Then we could store a numeric value in a row of buckets
using floating-point notation (see Section 1.7). In contrast, we could simulate an analog
system by partially filling a single bucket to the point at which the water level represented
the numeric value being represented. At first glance, the analog system may appear to be
more accurate since it would not suffer from the truncation errors inherent in the digital
system (again see Section 1.7). However, any movement of the bucket in the analog sys-
tem could cause errors in detecting the water level, whereas a significant amount of
sloshing would have to occur in the digital system before the distinction between a full
bucket and an empty bucket would be blurred. Thus the digital system would be less
sensitive to error than the analog system. This robustness is a major reason why many
applications that were originally based on analog technology (such as telephone commu-
nication, audio recordings, and television) are shifting to digital technology.

Questions & Exercises

1. Convert each of the following binary representations to its equivalent
base ten form:

a. 101010 b. 100001 c. 10111 d. 0110 e. 11111

2. Convert each of the following base ten representations to its equivalent
binary form:

a. 32 b. 64 c. 96 d. 15 e. 27

3. Convert each of the following binary representations to its equivalent
base ten form:

a. 11.01 b. 101.111 c. 10.1 d. 110.011 e. 0.101

4. Express the following values in binary notation:

a. 41⁄2 b. 23⁄4 c. 11⁄8 d. 5⁄16 e. 55⁄8
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1.6 Storing Integers
Mathematicians have long been interested in numeric notational systems, and
many of their ideas have turned out to be very compatible with the design of dig-
ital circuitry. In this section we consider two of these notational systems, two’s
complement notation and excess notation, which are used for representing inte-
ger values in computing equipment. These systems are based on the binary sys-
tem but have additional properties that make them more compatible with
computer design. With these advantages, however, come disadvantages as well.
Our goal is to understand these properties and how they affect computer usage.

Two’s Complement Notation
The most popular system for representing integers within today’s computers is
two’s complement notation. This system uses a fixed number of bits to repre-
sent each of the values in the system. In today’s equipment, it is common to use
a two’s complement system in which each value is represented by a pattern of
32 bits. Such a large system allows a wide range of numbers to be represented
but is awkward for demonstration purposes. Thus, to study the properties of
two’s complement systems, we will concentrate on smaller systems.

Figure 1.21 shows two complete two’s complement systems—one based on
bit patterns of length three, the other based on bit patterns of length four. Such a

5. Perform the following additions in binary notation:
a. 11011 b. 1010.001 c. 11111 d. 111.11

�1100 � 1.101 � 0001 � 00.01

a. Using patterns of length three b. Using patterns of length four

�

�

�

�

�

�

�

�

�

�

�

�

Figure 1.21 Two’s complement notation systems
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system is constructed by starting with a string of 0s of the appropriate length and
then counting in binary until the pattern consisting of a single 0 followed by 1s is
reached. These patterns represent the values 0, 1, 2, 3, . . . . The patterns repre-
senting negative values are obtained by starting with a string of 1s of the appro-
priate length and then counting backward in binary until the pattern consisting
of a single 1 followed by 0s is reached. These patterns represent the values �1,
�2, �3, . . . . (If counting backward in binary is difficult for you, merely start at
the very bottom of the table with the pattern consisting of a single 1 followed by
0s, and count up to the pattern consisting of all 1s.)

Note that in a two’s complement system, the leftmost bit of a bit pattern indi-
cates the sign of the value represented. Thus, the leftmost bit is often called the
sign bit. In a two’s complement system, negative values are represented by the
patterns whose sign bits are 1; nonnegative values are represented by patterns
whose sign bits are 0.

In a two’s complement system, there is a convenient relationship between
the patterns representing positive and negative values of the same magnitude.
They are identical when read from right to left, up to and including the first 1.
From there on, the patterns are complements of one another. (The
complement of a pattern is the pattern obtained by changing all the 0s to 1s
and all the 1s to 0s; 0110 and 1001 are complements.) For example, in the 4-bit
system in Figure 1.21 the patterns representing 2 and �2 both end with 10, but
the pattern representing 2 begins with 00, whereas the pattern representing �2
begins with 11. This observation leads to an algorithm for converting back and
forth between bit patterns representing positive and negative values of the same
magnitude. We merely copy the original pattern from right to left until a 1 has
been copied, then we complement the remaining bits as they are transferred to
the final bit pattern (Figure 1.22).

Understanding these basic properties of two’s complement systems also
leads to an algorithm for decoding two’s complement representations. If the
pattern to be decoded has a sign bit of 0, we need merely read the value as

Two’s complement notation
for 6 using four bits

Two’s complement notation
for –6 using four bits

Copy the bits from 
right to left until a 
1 has been copied

Complement the
remaining bits

0 1 1 0

1 0 1 0

Figure 1.22 Encoding the value �6 in two’s complement notation using 4 bits
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though the pattern were a binary representation. For example, 0110 represents the
value 6, because 110 is binary for 6. If the pattern to be decoded has a sign bit of
1, we know the value represented is negative, and all that remains is to find the
magnitude of the value. We do this by applying the “copy and complement” pro-
cedure in Figure 1.22 and then decoding the pattern obtained as though it were a
straightforward binary representation. For example, to decode the pattern 1010,
we first recognize that since the sign bit is 1, the value represented is negative.
Hence, we apply the “copy and complement” procedure to obtain the pattern
0110, recognize that this is the binary representation for 6, and conclude that the
original pattern represents �6.

Addition in Two’s Complement Notation To add values represented in two’s comple-
ment notation, we apply the same algorithm that we used for binary addition,
except that all bit patterns, including the answer, are the same length. This
means that when adding in a two’s complement system, any extra bit generated
on the left of the answer by a final carry must be truncated. Thus “adding” 0101
and 0010 produces 0111, and “adding” 0111 and 1011 results in 0010 (0111 � 1011 �
10010, which is truncated to 0010).

With this understanding, consider the three addition problems in Figure 1.23.
In each case, we have translated the problem into two’s complement notation
(using bit patterns of length four), performed the addition process previously
described, and decoded the result back into our usual base ten notation.

Observe that the third problem in Figure 1.23 involves the addition of a pos-
itive number to a negative number, which demonstrates a major benefit of two’s
complement notation: Addition of any combination of signed numbers can be
accomplished using the same algorithm and thus the same circuitry. This is in
stark contrast to how humans traditionally perform arithmetic computations.
Whereas elementary school children are first taught to add and later taught to
subtract, a machine using two’s complement notation needs to know only how
to add.

Problem in
base ten

Answer in
base ten

Problem in
two's complement

�

� �

� �

�

�

�

�

�

Figure 1.23 Addition problems converted to two’s complement notation
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For example, the subtraction problem 7 � 5 is the same as the addition prob-
lem 7 � (�5). Consequently, if a machine were asked to subtract 5 (stored as
0101) from 7 (stored as 0111), it would first change the 5 to �5 (represented as
1011) and then perform the addition process of 0111 � 1011 to obtain 0010, which
represents 2, as follows:

7 0111 0111
�5 S � 0101 S � 1011

0010 S 2

We see, then, that when two’s complement notation is used to represent numeric
values, a circuit for addition combined with a circuit for negating a value is suffi-
cient for solving both addition and subtraction problems. (Such circuits are
shown and explained in Appendix B.)

The Problem of Overflow One problem we have avoided in the preceding examples
is that in any two’s complement system there is a limit to the size of the values
that can be represented. When using two’s complement with patterns of 4 bits,
the largest positive integer that can be represented is 7, and the most negative
integer is �8. In particular, the value 9 can not be represented, which means that
we cannot hope to obtain the correct answer to the problem 5 � 4. In fact, the
result would appear as �7. This phenomenon is called overflow. That is, over-
flow is the problem that occurs when a computation produces a value that falls
outside the range of values that can be represented. When using two’s comple-
ment notation, this might occur when adding two positive values or when adding
two negative values. In either case, the condition can be detected by checking
the sign bit of the answer. An overflow is indicated if the addition of two positive
values results in the pattern for a negative value or if the sum of two negative
values appears to be positive.

Of course, because most computers use two’s complement systems with
longer bit patterns than we have used in our examples, larger values can be
manipulated without causing an overflow. Today, it is common to use patterns of
32 bits for storing values in two’s complement notation, allowing for positive val-
ues as large as 2,147,483,647 to accumulate before overflow occurs. If still larger
values are needed, longer bit patterns can be used or perhaps the units of meas-
ure can be changed. For instance, finding a solution in terms of miles instead of
inches results in smaller numbers being used and might still provide the accu-
racy required.

The point is that computers can make mistakes. So, the person using the
machine must be aware of the dangers involved. One problem is that computer
programmers and users become complacent and ignore the fact that small values
can accumulate to produce large numbers. For example, in the past it was com-
mon to use patterns of 16 bits for representing values in two’s complement nota-
tion, which meant that overflow would occur when values of 215 � 32,768 or
larger were reached. On September 19, 1989, a hospital computer system mal-
functioned after years of reliable service. Close inspection revealed that this date
was 32,768 days after January 1, 1900, and the machine was programmed to com-
pute dates based on that starting date. Thus, because of overflow, September 19,
1989, produced a negative value—a phenomenon for which the computer’s pro-
gram was not designed to handle.
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Excess Notation
Another method of representing integer values is excess notation. As is the
case with two’s complement notation, each of the values in an excess nota-
tion system is represented by a bit pattern of the same length. To establish
an excess system, we first select the pattern length to be used, then write
down all the different bit patterns of that length in the order they would
appear if we were counting in binary. Next, we observe that the first pattern
with a 1 as its most significant bit appears approximately halfway through
the list. We pick this pattern to represent zero; the patterns following this are
used to represent 1, 2, 3, . . .; and the patterns preceding it are used for �1,
�2, �3, . . . . The resulting code, when using patterns of length four, is
shown in Figure 1.24. There we see that the value 5 is represented by the
pattern 1101 and �5 is represented by 0011. (Note that the difference
between an excess system and a two’s complement system is that the sign
bits are reversed.)

The system represented in Figure 1.24 is known as excess eight notation.
To understand why, first interpret each of the patterns in the code using the
traditional binary system and then compare these results to the values repre-
sented in the excess notation. In each case, you will find that the binary inter-
pretation exceeds the excess notation interpretation by the value 8. For
example, the pattern 1100 in binary notation represents the value 12, but in
our excess system it represents 4; 0000 in binary notation represents 0, but in
the excess system it represents negative 8. In a similar manner, an excess sys-
tem based on patterns of length five would be called excess 16 notation,

Figure 1.24 An excess eight conversion table
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Questions & Exercises

1. Convert each of the following two’s complement representations to its
equivalent base ten form:

a. 00011 b. 01111 c. 11100
d. 11010 e. 00000 f. 10000

2. Convert each of the following base ten representations to its equivalent
two’s complement form using patterns of 8 bits:

a. 6 b. �6 c. �17
d. 13 e. �1 f. 0

3. Suppose the following bit patterns represent values stored in two’s com-
plement notation. Find the two’s complement representation of the neg-
ative of each value:

a. 00000001 b. 01010101 c. 11111100
d. 11111110 e. 00000000 f. 01111111

4. Suppose a machine stores numbers in two’s complement notation. What
are the largest and smallest numbers that can be stored if the machine
uses bit patterns of the following lengths?

a. four b. six c. eight
5. In the following problems, each bit pattern represents a value stored in

two’s complement notation. Find the answer to each problem in two’s
complement notation by performing the addition process described in

Figure 1.25 An excess notation system using bit patterns of length three

because the pattern 10000, for instance, would be used to represent zero
rather than representing its usual value of 16. Likewise, you may want to
confirm that the three-bit excess system would be known as excess four nota-
tion (Figure 1.25).
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the text. Then check your work by translating the problem and your
answer into base ten notation.
a. 0101 b. 0011 c. 0101 d. 1110 e. 1010

� 0010 � 0001 � 1010 � 0011 � 1110

6. Solve each of the following problems in two’s complement notation, but
this time watch for overflow and indicate which answers are incorrect
because of this phenomenon.
a. 0100 b. 0101 c. 1010 d. 1010 e. 0111

� 0011 � 0110 � 1010 � 0111 � 0001

7. Translate each of the following problems from base ten notation into
two’s complement notation using bit patterns of length four, then con-
vert each problem to an equivalent addition problem (as a machine
might do), and perform the addition. Check your answers by converting
them back to base ten notation.
a. 6 b. 3 c. 4 d. 2 e. 1

�(�1) �2 �6 �(�4) �5

8. Can overflow ever occur when values are added in two’s complement nota-
tion with one value positive and the other negative? Explain your answer.

9. Convert each of the following excess eight representations to its equiva-
lent base ten form without referring to the table in the text:

a. 1110 b. 0111 c. 1000
d. 0010 e. 0000 f. 1001

10. Convert each of the following base ten representations to its equivalent
excess eight form without referring to the table in the text:

a. 5 b. �5 c. 3
d. 0 e. 7 f. �8

11. Can the value 9 be represented in excess eight notation? What about rep-
resenting 6 in excess four notation? Explain your answer.

1.7 Storing Fractions
In contrast to the storage of integers, the storage of a value with a fractional part
requires that we store not only the pattern of 0s and 1s representing its binary
representation but also the position of the radix point. A popular way of doing
this is based on scientific notation and is called floating-point notation.

Floating-Point Notation
Let us explain floating-point notation with an example using only one byte of
storage. Although machines normally use much longer patterns, this 8-bit format
is representative of actual systems and serves to demonstrate the important con-
cepts without the clutter of long bit patterns.

We first designate the high-order bit of the byte as the sign bit. Once again, a
0 in the sign bit will mean that the value stored is nonnegative, and a 1 will mean
that the value is negative. Next, we divide the remaining 7 bits of the byte into
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two groups, or fields: the exponent field and the mantissa field. Let us desig-
nate the 3 bits following the sign bit as the exponent field and the remaining 
4 bits as the mantissa field. Figure 1.26 illustrates how the byte is divided.

We can explain the meaning of the fields by considering the following exam-
ple. Suppose a byte consists of the bit pattern 01101011. Analyzing this pattern
with the preceding format, we see that the sign bit is 0, the exponent is 110, and
the mantissa is 1011. To decode the byte, we first extract the mantissa and place a
radix point on its left side, obtaining

.1011

Next, we extract the contents of the exponent field (110) and interpret it as an
integer stored using the 3-bit excess method (see again Figure 1.25). Thus the
pattern in the exponent field in our example represents a positive 2. This tells us
to move the radix in our solution to the right by 2 bits. (A negative exponent
would mean to move the radix to the left.) Consequently, we obtain

10.11

which is the binary representation for 23⁄4. Next, we note that the sign bit in our
example is 0; the value represented is thus nonnegative. We conclude that the
byte 01101011 represents 23⁄4. Had the pattern been 11101011 (which is the same as
before except for the sign bit), the value represented would have been �23⁄4.

As another example, consider the byte 00111100. We extract the mantissa
to obtain

.1100

and move the radix 1 bit to the left, since the exponent field (011) represents the
value �1. We therefore have

.01100

which represents 3⁄8. Since the sign bit in the original pattern is 0, the value
stored is nonnegative. We conclude that the pattern 00111100 represents 3⁄8.

To store a value using floating-point notation, we reverse the preceding
process. For example, to encode 11⁄8, first we express it in binary notation and
obtain 1.001. Next, we copy the bit pattern into the mantissa field from left to
right, starting with the leftmost 1 in the binary representation. At this point, the
byte looks like this:

1 0 0 1

We must now fill in the exponent field. To this end, we imagine the contents
of the mantissa field with a radix point at its left and determine the number of bits
and the direction the radix must be moved to obtain the original binary number.

Sign bit

Exponent
Mantissa

Bit positions
— — —— — — — — 

Figure 1.26 Floating-point notation components
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In our example, we see that the radix in .1001 must be moved 1 bit to the right to
obtain 1.001. The exponent should therefore be a positive one, so we place 101
(which is positive one in excess four notation as shown in Figure 1.25) in the
exponent field. Finally, we fill the sign bit with 0 because the value being stored is
nonnegative. The finished byte looks like this:

0 1 0 1 1 0 0 1

There is a subtle point you may have missed when filling in the mantissa field.
The rule is to copy the bit pattern appearing in the binary representation from left
to right, starting with the leftmost 1. To clarify, consider the process of storing the
value 3⁄8, which is .011 in binary notation. In this case the mantissa will be

1 1 0 0

It will not be

0 1 1 0

This is because we fill in the mantissa field starting with the leftmost 1 that
appears in the binary representation. Representations that conform to this rule
are said to be in normalized form.

Using normalized form eliminates the possibility of multiple representations
for the same value. For example, both 00111100 and 01000110 would decode to the
value 3⁄8, but only the first pattern is in normalized form. Complying with nor-
malized form also means that the representation for all nonzero values will have
a mantissa that starts with 1. The value zero, however, is a special case; its
floating-point representation is a bit pattern of all 0s.

Truncation Errors
Let us consider the annoying problem that occurs if we try to store the value 25⁄8

with our one-byte floating-point system. We first write 25⁄8 in binary, which gives
us 10.101. But when we copy this into the mantissa field, we run out of room, and
the rightmost 1 (which represents the last 1⁄8) is lost (Figure 1.27). If we ignore

Lost bit

1 0 . 1 0 1

25/8

1 0 1 0 1

1 0 1 0

Original representation

Base two representation

Raw bit pattern

Sign bit

Exponent
Mantissa

— — — — — — — 

Figure 1.27 Encoding the value 25⁄8



this problem for now and continue by filling in the exponent field and the sign
bit, we end up with the bit pattern 01101010, which represents 21⁄2 instead of
25⁄8. What has occurred is called a truncation error, or round-off error—
meaning that part of the value being stored is lost because the mantissa field is
not large enough.

The significance of such errors can be reduced by using a longer mantissa
field. In fact, most computers manufactured today use at least 32 bits for storing
values in floating-point notation instead of the 8 bits we have used here. This
also allows for a longer exponent field at the same time. Even with these longer
formats, however, there are still times when more accuracy is required.

Another source of truncation errors is a phenomenon that you are already
accustomed to in base ten notation: the problem of nonterminating expan-
sions, such as those found when trying to express 1⁄3 in decimal form. Some val-
ues cannot be accurately expressed regardless of how many digits we use. The
difference between our traditional base ten notation and binary notation is that
more values have nonterminating representations in binary than in decimal
notation. For example, the value one-tenth is nonterminating when expressed
in binary. Imagine the problems this might cause the unwary person using
floating-point notation to store and manipulate dollars and cents. In particular,
if the dollar is used as the unit of measure, the value of a dime could not be
stored accurately. A solution in this case is to manipulate the data in units of
pennies so that all values are integers that can be accurately stored using a
method such as two’s complement.

Truncation errors and their related problems are an everyday concern for
people working in the area of numerical analysis. This branch of mathematics
deals with the problems involved when doing actual computations that are often
massive and require significant accuracy.

The following is an example that would warm the heart of any numerical
analyst. Suppose we are asked to add the following three values using our one-
byte floating-point notation defined previously:

21⁄2 � 1⁄8 � 1⁄8
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Single Precision Floating Point
The floating-point notation introduced in this chapter (Section 1.7) is far too simplis-
tic to be used in an actual computer. After all, with just 8 bits only 256 numbers out of
set of all real numbers can be expressed. Our discussion has used 8 bits to keep the
examples simple, yet still cover the important underlying concepts.

Many of today’s computers support a 32 bit form of this notation called Single
Precision Floating Point. This format uses 1 bit for the sign, 8 bits for the exponent
(in an excess notation), and 23 bits for the mantissa. Thus, single precision floating
point is capable of expressing very large numbers (order of 1038) down to very small
numbers (order of 10�37) with the precision of 7 decimal digits. That is to say, the
first 7 digits of a given decimal number can be stored with very good accuracy (a
small amount of error may still be present). Any digits passed the first 7 will certainly
be lost by truncation error (although the magnitude of the number is retained).
Another form, called Double Precision Floating Point, uses 64 bits and provides a
precision of 15 decimal digits.
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If we add the values in the order listed, we first add 21⁄2 to 1⁄8 and obtain 25⁄8,
which in binary is 10.101. Unfortunately, because this value cannot be stored
accurately (as seen previously), the result of our first step ends up being stored
as 21⁄2 (which is the same as one of the values we were adding). The next step is
to add this result to the last 1⁄8. Here again a truncation error occurs, and our final
result turns out to be the incorrect answer 21⁄2 .

Now let us add the values in the opposite order. We first add 1⁄8 to 1⁄8 to obtain
1⁄4. In binary this is .01; so the result of our first step is stored in a byte as
00111000, which is accurate. We now add this 1⁄4 to the next value in the list, 21⁄2 ,
and obtain 23⁄4 , which we can accurately store in a byte as 01101011. The result
this time is the correct answer.

To summarize, in adding numeric values represented in floating-point nota-
tion, the order in which they are added can be important. The problem is that if
a very large number is added to a very small number, the small number may be
truncated. Thus, the general rule for adding multiple values is to add the smaller
values together first, in hopes that they will accumulate to a value that is signifi-
cant when added to the larger values. This was the phenomenon experienced in
the preceding example.

Designers of today’s commercial software packages do a good job of shielding
the uneducated user from problems such as this. In a typical spreadsheet sys-
tem, correct answers will be obtained unless the values being added differ in size
by a factor of 1016 or more. Thus, if you found it necessary to add one to the value

10,000,000,000,000,000

you might get the answer

10,000,000,000,000,000

rather than

10,000,000,000,000,001

Such problems are significant in applications (such as navigational systems) in
which minor errors can be compounded in additional computations and ulti-
mately produce significant consequences, but for the typical PC user the degree
of accuracy offered by most commercial software is sufficient.

Questions & Exercises

1. Decode the following bit patterns using the floating-point format dis-
cussed in the text:

a. 01001010 b. 01101101 c. 00111001 d. 11011100 e. 10101011

2. Encode the following values into the floating-point format discussed in
the text. Indicate the occurrence of truncation errors.

a. 23⁄4 b. 51⁄4 c. 3⁄4 d. �31⁄2 e. �43⁄8

3. In terms of the floating-point format discussed in the text, which of the
patterns 01001001 and 00111101 represents the larger value? Describe a
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1.8 Data Compression
For the purpose of storing or transferring data, it is often helpful (and sometimes
mandatory) to reduce the size of the data involved while retaining the underlying
information. The technique for accomplishing this is called data compression.
We begin this section by considering some generic data compression methods
and then look at some approaches designed for specific applications.

Generic Data Compression Techniques
Data compression schemes fall into two categories. Some are lossless, others are
lossy. Lossless schemes are those that do not lose information in the compres-
sion process. Lossy schemes are those that may lead to the loss of information.
Lossy techniques often provide more compression than lossless ones and are
therefore popular in settings in which minor errors can be tolerated, as in the
case of images and audio.

In cases where the data being compressed consist of long sequences of the
same value, the compression technique called run-length encoding, which is a
lossless method, is popular. It is the process of replacing sequences of identical
data elements with a code indicating the element that is repeated and the num-
ber of times it occurs in the sequence. For example, less space is required to indi-
cate that a bit pattern consists of 253 ones, followed by 118 zeros, followed by
87 ones than to actually list all 458 bits.

Another lossless data compression technique is frequency-dependent
encoding, a system in which the length of the bit pattern used to represent a data
item is inversely related to the frequency of the item’s use. Such codes are exam-
ples of variable-length codes, meaning that items are represented by patterns of
different lengths as opposed to codes such as Unicode, in which all symbols are
represented by 16 bits. David Huffman is credited with discovering an algorithm
that is commonly used for developing frequency-dependent codes, and it is com-
mon practice to refer to codes developed in this manner as Huffman codes. In
turn, most frequency-dependent codes in use today are Huffman codes.

As an example of frequency-dependent encoding, consider the task of
encoded English language text. In the English language the letters e, t, a, and i
are used more frequently than the letters z, q, and x. So, when constructing a
code for text in the English language, space can be saved by using short bit pat-
terns to represent the former letters and longer bit patterns to represent the lat-
ter ones. The result would be a code in which English text would have shorter
representations than would be obtained with uniform-length codes.

In some cases, the stream of data to be compressed consists of units, each of
which differs only slightly from the preceding one. An example would be con-
secutive frames of a motion picture. In these cases, techniques using relative

simple procedure for determining which of two patterns represents the
larger value.

4. When using the floating-point format discussed in the text, what is the
largest value that can be represented? What is the smallest positive value
that can be represented?
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encoding, also known as differential encoding, are helpful. These techniques
record the differences between consecutive data units rather than entire units;
that is, each unit is encoded in terms of its relationship to the previous unit.
Relative encoding can be implemented in either lossless or lossy form depending
on whether the differences between consecutive data units are encoded pre-
cisely or approximated.

Still other popular compression systems are based on dictionary encoding
techniques. Here the term dictionary refers to a collection of building blocks
from which the message being compressed is constructed, and the message itself
is encoded as a sequence of references to the dictionary. We normally think of
dictionary encoding systems as lossless systems, but as we will see in our dis-
cussion of image compression, there are times when the entries in the dictionary
are only approximations of the correct data elements, resulting in a lossy com-
pression system.

Dictionary encoding can be used by word processors to compress text docu-
ments because the dictionaries already contained in these processors for the
purpose of spell checking make excellent compression dictionaries. In particu-
lar, an entire word can be encoded as a single reference to this dictionary rather
than as a sequence of individual characters encoded using a system such as
ASCII or Unicode. A typical dictionary in a word processor contains approxi-
mately 25,000 entries, which means an individual entry can be identified by an
integer in the range of 0 to 24,999. This means that a particular entry in the dic-
tionary can be identified by a pattern of only 15 bits. In contrast, if the word
being referenced consisted of six letters, its character-by-character encoding
would require 48 bits using 8-bit ASCII or 96 bits using Unicode.

A variation of dictionary encoding is adaptive dictionary encoding (also
known as dynamic dictionary encoding). In an adaptive dictionary encoding sys-
tem, the dictionary is allowed to change during the encoding process. A popular
example is Lempel-Ziv-Welsh (LZW) encoding (named after its creators,
Abraham Lempel, Jacob Ziv, and Terry Welsh). To encode a message using LZW,
one starts with a dictionary containing the basic building blocks from which the
message is constructed, but as larger units are found in the message, they are
added to the dictionary—meaning that future occurrences of those units can be
encoded as single, rather than multiple, dictionary references. For example,
when encoding English text, one could start with a dictionary containing indi-
vidual characters, digits, and punctuation marks. But as words in the message
are identified, they could be added to the dictionary. Thus, the dictionary would
grow as the message is encoded, and as the dictionary grows, more words (or
recurring patterns of words) in the message could be encoded as single refer-
ences to the dictionary.

The result would be a message encoded in terms of a rather large dictionary
that is unique to that particular message. But this large dictionary would not
have to be present to decode the message. Only the original small dictionary
would be needed. Indeed, the decoding process could begin with the same small
dictionary with which the encoding process started. Then, as the decoding
process continues, it would encounter the same units found during the encoding
process, and thus be able to add them to the dictionary for future reference just
as in the encoding process.

To clarify, consider applying LZW encoding to the message

xyx xyx xyx xyx
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starting with a dictionary with three entries, the first being x, the second being y,
and the third being a space. We would begin by encoding xyx as 121, meaning
that the message starts with the pattern consisting of the first dictionary entry,
followed by the second, followed by the first. Then the space is encoded to pro-
duce 1213. But, having reached a space, we know that the preceding string of
characters forms a word, and so we add the pattern xyx to the dictionary as the
fourth entry. Continuing in this manner, the entire message would be encoded
as 121343434.

If we were now asked to decode this message, starting with the original
three-entry dictionary, we would begin by decoding the initial string 1213 as xyx
followed by a space. At this point we would recognize that the string xyx forms a
word and add it to the dictionary as the fourth entry, just as we did during the
encoding process. We would then continue decoding the message by recognizing
that the 4 in the message refers to this new fourth entry and decode it as the
word xyx, producing the pattern

xyx xyx

Continuing in this manner we would ultimately decode the string 121343434 as

xyx xyx xyx xyx

which is the original message.

Compressing Images
In Section 1.4, we saw how images are encoded using bit map techniques.
Unfortunately, the bit maps produced are often very large. In turn, numerous
compression schemes have been developed specifically for image representations.

One system known as GIF (short for Graphic Interchange Format and pro-
nounced “Giff” by some and “Jiff” by others) is a dictionary encoding system that
was developed by CompuServe. It approaches the compression problem by
reducing the number of colors that can be assigned to a pixel to only 256. The
red-green-blue combination for each of these colors is encoded using three bytes,
and these 256 encodings are stored in a table (a dictionary) called the palette.
Each pixel in an image can then be represented by a single byte whose value
indicates which of the 256 palette entries represents the pixel’s color. (Recall that
a single byte can contain any one of 256 different bit patterns.) Note that GIF is a
lossy compression system when applied to arbitrary images because the colors
in the palette may not be identical to the colors in the original image.

GIF can obtain additional compression by extending this simple dictionary
system to an adaptive dictionary system using LZW techniques. In particular, as
patterns of pixels are encountered during the encoding process, they are added
to the dictionary so that future occurrences of these patterns can be encoded
more efficiently. Thus, the final dictionary consists of the original palette and a
collection of pixel patterns.

One of the colors in a GIF palette is normally assigned the value “transpar-
ent,” which means that the background is allowed to show through each region
assigned that “color.” This option, combined with the relative simplicity of the
GIF system, makes GIF a logical choice in simple animation applications in
which multiple images must move around on a computer screen. On the other
hand, its ability to encode only 256 colors renders it unsuitable for applications
in which higher precision is required, as in the field of photography.
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Another popular compression system for images is JPEG (pronounced “JAY-
peg”). It is a standard developed by the Joint Photographic Experts Group
(hence the standard’s name) within ISO. JPEG has proved to be an effective stan-
dard for compressing color photographs and is widely used in the photography
industry, as witnessed by the fact that most digital cameras use JPEG as their
default compression technique.

The JPEG standard actually encompasses several methods of image com-
pression, each with its own goals. In those situations that require the utmost in
precision, JPEG provides a lossless mode. However, JPEG’s lossless mode does
not produce high levels of compression when compared to other JPEG options.
Moreover, other JPEG options have proven very successful, meaning that JPEG’s
lossless mode is rarely used. Instead, the option known as JPEG’s baseline stan-
dard (also known as JPEG’s lossy sequential mode) has become the standard of
choice in many applications.

Image compression using the JPEG baseline standard requires a sequence of
steps, some of which are designed to take advantage of a human eye’s limita-
tions. In particular, the human eye is more sensitive to changes in brightness
than to changes in color. So, starting from an image that is encoded in terms of
luminance and chrominance components, the first step is to average the chromi-
nance values over two-by-two pixel squares. This reduces the size of the chromi-
nance information by a factor of four while preserving all the original brightness
information. The result is a significant degree of compression without a notice-
able loss of image quality.

The next step is to divide the image into eight-by-eight pixel blocks and to
compress the information in each block as a unit. This is done by applying a
mathematical technique known as the discrete cosine transform, whose details
need not concern us here. The important point is that this transformation con-
verts the original eight-by-eight block into another block whose entries reflect
how the pixels in the original block relate to each other rather than the actual
pixel values. Within this new block, values below a predetermined threshold are
then replaced by zeros, reflecting the fact that the changes represented by these
values are too subtle to be detected by the human eye. For example, if the origi-
nal block contained a checkerboard pattern, the new block might reflect a uni-
form average color. (A typical eight-by-eight pixel block would represent a very
small square within the image so the human eye would not identify the checker-
board appearance anyway.)

At this point, more traditional run-length encoding, relative encoding, and
variable-length encoding techniques are applied to obtain additional compression.
All together, JPEG’s baseline standard normally compresses color images by a fac-
tor of at least 10, and often by as much as 30, without noticeable loss of quality.

Still another data compression system associated with images is TIFF (short
for Tagged Image File Format). However, the most popular use of TIFF is not as
a means of data compression but instead as a standardized format for storing
photographs along with related information such as date, time, and camera set-
tings. In this context, the image itself is normally stored as red, green, and blue
pixel components without compression.

The TIFF collection of standards does include data compression techniques,
most of which are designed for compressing images of text documents in fac-
simile applications. These use variations of run-length encoding to take advan-
tage of the fact that text documents consist of long strings of white pixels. The
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color image compression option included in the TIFF standards is based on
techniques similar to those used by GIF, and are therefore not widely used in
the photography community.

Compressing Audio and Video
The most commonly used standards for encoding and compressing audio and
video were developed by the Motion Picture Experts Group (MPEG) under
the leadership of ISO. In turn, these standards themselves are called MPEG.

MPEG encompasses a variety of standards for different applications. For
example, the demands for high definition television (HDTV) broadcast are dis-
tinct from those for video conferencing in which the broadcast signal must find
its way over a variety of communication paths that may have limited capabili-
ties. And, both of these applications differ from that of storing video in such a
manner that sections can be replayed or skipped over.

The techniques employed by MPEG are well beyond the scope of this text,
but in general, video compression techniques are based on video being con-
structed as a sequence of pictures in much the same way that motion pictures
are recorded on film. To compress such sequences, only some of the pictures,
called I-frames, are encoded in their entirety. The pictures between the I-frames
are encoded using relative encoding techniques. That is, rather than encode the
entire picture, only its distinctions from the prior image are recorded. The 
I-frames themselves are usually compressed with techniques similar to JPEG.

The best known system for compressing audio is MP3, which was developed
within the MPEG standards. In fact, the acronym MP3 is short for MPEG layer 3.
Among other compression techniques, MP3 takes advantage of the properties of
the human ear, removing those details that the human ear cannot perceive. One
such property, called temporal masking, is that for a short period after a loud
sound, the human ear cannot detect softer sounds that would otherwise be audi-
ble. Another, called frequency masking, is that a sound at one frequency tends
to mask softer sounds at nearby frequencies. By taking advantage of such char-
acteristics, MP3 can be used to obtain significant compression of audio while
maintaining near CD quality sound.

Using MPEG and MP3 compression techniques, video cameras are able to
record as much as an hour’s worth of video within 128MB of storage and portable
music players can store as many as 400 popular songs in a single GB. But, in con-
trast to the goals of compression in other settings, the goal of compressing audio
and video is not necessarily to save storage space. Just as important is the goal of
obtaining encodings that allow information to be transmitted over today’s commu-
nication systems fast enough to provide timely presentation. If each video frame
required a MB of storage and the frames had to be transmitted over a communica-
tion path that could relay only one KB per second, there would be no hope of suc-
cessful video conferencing. Thus, in addition to the quality of reproduction
allowed, audio and video compression systems are often judged by the transmis-
sion speeds required for timely data communication. These speeds are normally
measured in bits per second (bps). Common units include Kbps (kilo-bps, equal
to one thousand bps), Mbps (mega-bps, equal to one million bps), and Gbps (giga-
bps, equal to one billion bps). Using MPEG techniques, video presentations can
be successfully relayed over communication paths that provide transfer rates of
40 Mbps. MP3 recordings generally require transfer rates of no more than 64 Kbps.
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1.9 Communication Errors
When information is transferred back and forth among the various parts of a
computer, or transmitted from the earth to the moon and back, or, for that mat-
ter, merely left in storage, a chance exists that the bit pattern ultimately retrieved
may not be identical to the original one. Particles of dirt or grease on a magnetic
recording surface or a malfunctioning circuit may cause data to be incorrectly
recorded or read. Static on a transmission path may corrupt portions of the data.
And, in the case of some technologies, normal background radiation can alter
patterns stored in a machine’s main memory.

To resolve such problems, a variety of encoding techniques have been devel-
oped to allow the detection and even the correction of errors. Today, because
these techniques are largely built into the internal components of a computer
system, they are not apparent to the personnel using the machine. Nonetheless,
their presence is important and represents a significant contribution to scientific
research. It is fitting, therefore, that we investigate some of these techniques that
lie behind the reliability of today’s equipment.

Parity Bits
A simple method of detecting errors is based on the principle that if each bit
pattern being manipulated has an odd number of 1s and a pattern with an
even number of 1s is encountered, an error must have occurred. To use this
principle, we need an encoding system in which each pattern contains an odd
number of 1s. This is easily obtained by first adding an additional bit, called a
parity bit, to each pattern in an encoding system already available (perhaps
at the high-order end). In each case, we assign the value 1 or 0 to this new bit

Questions & Exercises

1. List four generic compression techniques.
2. What would be the encoded version of the message

xyx yxxxy xyx yxxxy yxxxy

if LZW compression, starting with the dictionary containing x, y, and a
space (as described in the text), were used?

3. Why would GIF be better than JPEG when encoding color cartoons?
4. Suppose you were part of a team designing a spacecraft that will travel 

to other planets and send back photographs. Would it be a good idea to
compress the photographs using GIF or JPEG’s baseline standard to
reduce the resources required to store and transmit the images?

5. What characteristic of the human eye does JPEG’s baseline standard
exploit?

6. What characteristic of the human ear does MP3 exploit?
7. Identify a troubling phenomenon that is common when encoding

numeric information, images, and sound as bit patterns.
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so that the entire resulting pattern has an odd number of 1s. Once our encod-
ing system has been modified in this way, a pattern with an even number of
1s indicates that an error has occurred and that the pattern being manipulated
is incorrect.

Figure 1.28 demonstrates how parity bits could be added to the ASCII codes
for the letters A and F. Note that the code for A becomes 101000001 (parity bit 1)
and the ASCII for F becomes 001000110 (parity bit 0). Although the original 8-bit
pattern for A has an even number of 1s and the original 8-bit pattern for F has an
odd number of 1s, both the 9-bit patterns have an odd number of 1s. If this tech-
nique were applied to all the 8-bit ASCII patterns, we would obtain a 9-bit encod-
ing system in which an error would be indicated by any 9-bit pattern with an
even number of 1s.

The parity system just described is called odd parity, because we designed
our system so that each correct pattern contains an odd number of 1s. Another
technique is called even parity. In an even parity system, each pattern is
designed to contain an even number of 1s, and thus an error is signaled by the
occurrence of a pattern with an odd number of 1s.

Today it is not unusual to find parity bits being used in a computer’s main
memory. Although we envision these machines as having memory cells of 8-bit
capacity, in reality each has a capacity of 9 bits, 1 bit of which is used as a parity
bit. Each time an 8-bit pattern is given to the memory circuitry for storage, the
circuitry adds a parity bit and stores the resulting 9-bit pattern. When the pattern
is later retrieved, the circuitry checks the parity of the 9-bit pattern. If this does
not indicate an error, then the memory removes the parity bit and confidently
returns the remaining 8-bit pattern. Otherwise, the memory returns the 8 data
bits with a warning that the pattern being returned may not be the same pattern
that was originally entrusted to memory.

The straightforward use of parity bits is simple but it has its limitations. If a
pattern originally has an odd number of 1s and suffers two errors, it will still
have an odd number of 1s, and thus the parity system will not detect the errors.
In fact, straightforward applications of parity bits fail to detect any even number
of errors within a pattern.

One means of minimizing this problem is sometimes applied to long bit
patterns, such as the string of bits recorded in a sector on a magnetic disk. In
this case the pattern is accompanied by a collection of parity bits making up
a checkbyte. Each bit within the checkbyte is a parity bit associated with a
particular collection of bits scattered throughout the pattern. For instance,
one parity bit may be associated with every eighth bit in the pattern starting

Parity bit Parity bit

1 0 1 10 0 0 0 0 0 0 1 00 0 0 1 1

ASCII A containing an even
number of 1s

ASCII F containing an odd
number of 1s

Total pattern has an odd 
number of 1s

Total pattern has an odd 
number of 1s

Figure 1.28 The ASCII codes for the letters A and F adjusted for odd parity
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with the first bit, while another may be associated with every eighth bit start-
ing with the second bit. In this manner, a collection of errors concentrated in
one area of the original pattern is more likely to be detected, since it will be
in the scope of several parity bits. Variations of this checkbyte concept lead
to error detection schemes known as checksums and cyclic redundancy
checks (CRC).

Error-Correcting Codes
Although the use of a parity bit allows the detection of an error, it does not pro-
vide the information needed to correct the error. Many people are surprised
that error-correcting codes can be designed so that errors can be not only
detected but also corrected. After all, intuition says that we cannot correct
errors in a received message unless we already know the information in the
message. However, a simple code with such a corrective property is presented
in Figure 1.29.

To understand how this code works, we first define the term Hamming
distance, which is named after R. W. Hamming who pioneered the search for
error-correcting codes after becoming frustrated with the lack of reliability of the
early relay machines of the 1940s. The hamming distance between two bit pat-
terns is the number of bits in which the patterns differ. For example, the
Hamming distance between the patterns representing A and B in the code in
Figure 1.29 is four, and the Hamming distance between B and C is three. The
important feature of the code in Figure 1.29 is that any two patterns are sepa-
rated by a Hamming distance of at least three.

If a single bit is modified in a pattern from Figure 1.29, the error can be
detected since the result will not be a legal pattern. (We must change at least
3 bits in any pattern before it will look like another legal pattern.) Moreover, we
can also figure out what the original pattern was. After all, the modified pattern
will be a Hamming distance of only one from its original form but at least two
from any of the other legal patterns.

Thus, to decode a message that was originally encoded using Figure 1.29, we
simply compare each received pattern with the patterns in the code until we find
one that is within a distance of one from the received pattern. We consider this
to be the correct symbol for decoding. For example, if we received the bit pattern
010100 and compared this pattern to the patterns in the code, we would obtain

Symbol

A
B
C
D
E
F
G
H

000000
001111
010011
011100
100110
101001
110101
111010

Code

Figure 1.29 An error-correcting code
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the table in Figure 1.30. Thus, we would conclude that the character transmitted
must have been a D because this is the closest match.

You will observe that using this technique with the code in Figure 1.29 actu-
ally allows us to detect up to two errors per pattern and to correct one error. If we
designed the code so that each pattern was a Hamming distance of at least five
from each of the others, we would be able to detect up to four errors per pattern
and correct up to two. Of course, the design of efficient codes associated with
large Hamming distances is not a straightforward task. In fact, it constitutes a
part of the branch of mathematics called algebraic coding theory, which is a sub-
ject within the fields of linear algebra and matrix theory.

Error-correcting techniques are used extensively to increase the reliability of
computing equipment. For example, they are often used in high-capacity mag-
netic disk drives to reduce the possibility that flaws in the magnetic surface will
corrupt data. Moreover, a major distinction between the original CD format used
for audio disks and the later format used for computer data storage is in the
degree of error correction involved. CD-DA format incorporates error-correcting
features that reduce the error rate to only one error for two CDs. This is quite
adequate for audio recordings, but a company using CDs to supply software to
customers would find that flaws in 50 percent of the disks would be intolerable.
Thus, additional error-correcting features are employed in CDs used for data
storage, reducing the probability of error to one in 20,000 disks.

0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 1 0
1 0 1 0 0 1
1 1 0 1 0 1
1 1 1 0 1 0

Code
Pattern

received

0 1 0 1 0 0
0 1 0 1 0 0
0 1 0 1 0 0
0 1 0 1 0 0
0 1 0 1 0 0
0 1 0 1 0 0
0 1 0 1 0 0
0 1 0 1 0 0

2
4
3
1
3
5
2
4

Distance between
received pattern
and codeCharacter

A
B
C
D
E
F
G
H

Smallest
distance

Figure 1.30 Decoding the pattern 010100 using the code in Figure 1.29

Questions & Exercises

1. The following bytes were originally encoded using odd parity. In which
of them do you know that an error has occurred?

a. 100101101 b. 100000001 c. 000000000
d. 111000000 e. 011111111

2. Could errors have occurred in a byte from Question 1 without your
knowing it? Explain your answer.
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3. How would your answers to Questions 1 and 2 change if you were told
that even parity had been used instead of odd?

4. Encode these sentences in ASCII using odd parity by adding a parity bit
at the high-order end of each character code:

a. “Stop!” Cheryl shouted. b. Does 2 � 3 � 5?

5. Using the error-correcting code presented in Figure 1.29, decode the fol-
lowing messages:

a. 001111 100100 001100 b. 010001 000000 001011
c. 011010 110110 100000 011100

6. Construct a code for the characters A, B, C, and D using bit patterns of
length five so that the Hamming distance between any two patterns is at
least three.

(Asterisked problems are associated with optional sections.)

Chapter Review Problems

1. Determine the output of each of the following
circuits, assuming that the upper input is 1
and the lower input is 0. What would be the
output when upper input is 0 and the lower
input is 1?

2. a. What Boolean operation does the circuit
compute?

b. What Boolean operation does the circuit
compute?

*3. a. If we were to purchase a flip-flop circuit from
an electronic component store, we may find
that it has an additional input called flip.
When this input changes from a 0 to 1, the
output flips state (if it was 0 it is now 1 and
vice versa). However, when the flip input
changes from 1 to a 0, nothing happens.
Even though we may not know the details of
the circuitry needed to accomplish this
behavior, we could still use this device as an
abstract tool in other circuits. Consider the
circuitry using two of the following flip-flops.
If a pulse were sent on the circuit’s input, the
bottom flip-flop would change state.
However, the second flip-flop would not
change, since its input (received from the
output of the NOT gate) went from a 1 to a 0.
As a result, this circuit would now produce
the outputs 0 and 1. A second pulse would

Input

Output

Input

Input

Input

Output

a.

b.

c.
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flip the state of both flip-flops, producing an
output of 1 and 0. What would be the output
after a third pulse? After a fourth pulse?

b. It is often necessary to coordinate activities
of various components within a computer.
This is accomplished by connecting a pul-
sating signal (called a clock) to circuitry
similar to part a. Additional gates (as
shown) will then send signals in a coordi-
nated fashion to other connected circuits.
On studying this circuit you should be able
to confirm that on the 1st, 5th, 9th . . . pulses
of the clock, a 1 will be sent on output A.
On what pulses of the clock will a 1 be sent
on output B? On what pulses of the clock
will a 1 be sent on output C? On which out-
put is a 1 sent on the 4th pulse of the clock?

4. Assume that both of the inputs in the follow-
ing circuit are 1. Describe what would happen
if the upper input were temporarily changed
to 0. Describe what would happen if the lower
input were temporarily changed to 0. Redraw
the circuit using NAND gates.

5. The following table represents the addresses
and contents (using hexadecimal notation) of

some cells in a machine’s main memory.
Starting with this memory arrangement, follow
the sequence of instructions and record the
final contents of each of these memory cells:

Step 1. Move the contents of the cell whose
address is 03 to the cell at address 00.

Step 2. Move the value 01 into the cell at
address 02.

Step 3. Move the value stored at address 01
into the cell at address 03.

6. How many cells can be in a computer’s main
memory if each cell’s address can be repre-
sented by two hexadecimal digits? What if four
hexadecimal digits are used?

7. What bit patterns are represented by the fol-
lowing hexadecimal notations?
a. CD b. 67 c. 9A
d. FF e. 10

8. What is the value of the most significant bit in
the bit patterns represented by the following
hexadecimal notations?
a. 8F b. FF
c. 6F d. 1F

9. Express the following bit patterns in hexadeci-
mal notation:
a. 101000001010
b. 110001111011
c. 000010111110

10. Suppose a digital camera has a storage capac-
ity of 256MB. How many photographs could
be stored in the camera if each consisted of
1024 pixels per row and 1024 pixels per column
if each pixel required three bytes of storage?

11. Suppose a picture is represented on a
display screen by a rectangular array
containing 1024 columns and 768 rows 
of pixels. If for each pixel, 8 bits are required
to encode the color and another 8 bits to
encode the intensity, how many byte-size
memory cells are required to hold the 
entire picture?

Address Contents
00 AB
01 53
02 D6
03 02

Flip-flop

Flip-flop

flip

flip

Clock

Output C

Output B

Output A

Flip-flop

Flip-flop

flip

flip

Input

1

0

0

0

0 0Output
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12. a. Identify two advantages that main memory
has over magnetic disk storage.

b. Identify two advantages that magnetic disk
storage has over main memory.

13. Suppose that only 50GB of your personal com-
puter’s 120GB hard-disk drive is empty. Would
it be reasonable to use CDs to store all the
material you have on the drive as a backup?
What about DVDs?

14. If each sector on a magnetic disk contains
1024 bytes, how many sectors are required to
store a single page of text (perhaps 50 lines of
100 characters) if each character is repre-
sented in Unicode?

15. How many bytes of storage space would be
required to store a 400-page novel in which
each page contains 3500 characters if ASCII
were used? How many bytes would be
required if Unicode were used?

16. How long is the latency time of a typical
hard-disk drive spinning at 360 revolutions
per second?

17. What is the average access time for a hard disk
spinning at 360 revolutions per second with a
seek time of 10 milliseconds?

18. Suppose a typist could type 60 words per
minute continuously day after day. How long
would it take the typist to fill a CD whose
capacity is 640MB? Assume one word is five
characters and each character requires one
byte of storage.

19. Here is a message in ASCII. What does it say?

20. The following is a message encoded in ASCII
using one byte per character and then repre-
sented in hexadecimal notation. What is the
message?

68657861646563696D616C

21. Encode the following sentences in ASCII using
one byte per character.
a. Does 100 / 5 � 20?
b. The total cost is $7.25.

22. Express your answers to the previous prob-
lem in hexadecimal notation.

23. List the binary representations of the inte-
gers from 8 to 18.

24. a. Write the number 23 by representing the 2
and 3 in ASCII.

b. Write the number 23 in binary 
representation.

25. What values have binary representations in
which only one of the bits is 1? List the
binary representations for the smallest six
values with this property.

*26. Convert each of the following binary represen-
tations to its equivalent base ten representation:
a. 1111 b. 0001 c. 10101
d. 1000 e. 10011 f. 000000
g. 1001 h. 10001 i. 100001
j. 11001 k. 11010 l. 11011

*27. Convert each of the following base ten represen-
tations to its equivalent binary representation:
a. 7 b. 11 c. 16
d. 17 e. 31

*28. Convert each of the following excess 16 
representations to its equivalent base ten
representation:
a. 10001 b. 10101 c. 01101
d. 01111 e. 11111

*29. Convert each of the following base ten 
representations to its equivalent excess four
representation:
a. 0 b. 3 c. �2
d. �1 e. 2

*30. Convert each of the following two’s comple-
ment representations to its equivalent base
ten representation:
a. 01111 b. 10100 c. 01100
d. 10000 e. 10110

*31. Convert each of the following base ten repre-
sentations to its equivalent two’s comple-
ment representation in which each value is
represented in 7 bits:
a. 13 b. �13 c. �1
d. 0 e. 16

*32. Perform each of the following additions
assuming the bit strings represent values in
two’s complement notation. Identify each

01010111 01101000 01100001 01110100
00100000 01100100 01101111 01100101
01110011 00100000 01101001 01110100
00100000 01110011 01100001 01111001
00111111
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case in which the answer is incorrect
because of overflow.

a. 00101 b. 11111 c. 01111
�01000 �00001 �00001

d. 10111 e. 11111 f. 00111
�11010 �11111 �01100

*33. Solve each of the following problems by trans-
lating the values into two’s complement nota-
tion (using patterns of 5 bits), converting any
subtraction problem to an equivalent addition
problem, and performing that addition. Check
your work by converting your answer to base
ten notation. (Watch out for overflow.)

a. 5 b. 5 c. 12
�1 �1 �5

d. 8 e. 12 f. 5
�7 �5 �11

*34. Convert each of the following binary
representations into its equivalent base 
ten representation:
a. 11.11 b. 100.0101 c. 0.1101
d. 1.0 e. 10.01

*35. Express each of the following values in 
binary notation:
a. 53⁄4 b. 1515⁄16 c. 53⁄8

d. 11⁄4 e. 65⁄8

*36. Decode the following bit patterns using the
floating-point format described in Figure 1.26:
a. 01011001 b. 11001000
c. 10101100 d. 00111001

*37. Encode the following values using the 8-bit
floating-point format described in Figure 1.26.
Indicate each case in which a truncation 
error occurs.
a. �71⁄2 b. 1⁄2 c. �33⁄4

d. 7⁄32 e. 31⁄32

*38. Assuming you are not restricted to using nor-
malized form, list all the bit patterns that could
be used to represent the value 3⁄8 using the
floating-point format described in Figure 1.26.

*39. What is the best approximation to the square
root of 2 that can be expressed in the 8-bit
floating-point format described in Figure 1.26?
What value is actually obtained if this approxi-
mation is squared by a machine using this
floating-point format?

*40. What is the best approximation to the value one-
tenth that can be represented using the 8-bit
floating-point format described in Figure 1.26?

*41. Explain how errors can occur when measure-
ments using the metric system are recorded
in floating-point notation. For example, what
if 110 cm was recorded in units of meters?

*42. One of the bit patterns 01011 and 11011 repre-
sents a value stored in excess 16 notation and
the other represents the same value stored in
two’s complement notation.
a. What can be determined about this com-

mon value?
b. What is the relationship between a pattern

representing a value stored in two’s com-
plement notation and the pattern repre-
senting the same value stored in excess
notation when both systems use the same
bit pattern length?

*43. The three bit patterns 10000010, 01101000,
and 00000010 are representations of the same
value in two’s complement, excess, and the 
8-bit floating-point format presented in 
Figure 1.26, but not necessarily in that order.
What is the common value, and which pat-
tern is in which notation?

*44. Which of the following values cannot be rep-
resented accurately in the floating-point for-
mat introduced in Figure 1.26?
a. 61⁄2 b. 13⁄16 c. 9
d. 17⁄32 e. 15⁄16

*45. If you changed the length of the bit strings
being used to represent integers in binary
from 4 bits to 6 bits, what change would be
made in the value of the largest integer you
could represent? What if you were using
two’s complement notation?

*46. What would be the hexadecimal representa-
tion of the largest memory address in a mem-
ory consisting of 4MB if each cell had a
one-byte capacity?

*47. What would be the encoded version of 
the message

xxy yyx xxy xxy yyx

if LZW compression, starting with the diction-
ary containing x, y, and a space (as described
in Section 1.8), were used?
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*48. The following message was compressed using
LZW compression with a dictionary whose
first, second, and third entries are x, y, and
space, respectively. What is the decompressed
message?

22123113431213536

*49. If the message

xxy yyx xxy xxyy

were compressed using LZW with a starting
dictionary whose first, second, and third
entries were x, y, and space, respectively, what
would be the entries in the final dictionary?

*50. As we will learn in the next chapter, one
means of transmitting bits over traditional
telephone systems is to convert the bit pat-
terns into sound, transfer the sound over the
telephone lines, and then convert the sound
back into bit patterns. Such techniques are
limited to transfer rates of 57.6 Kbps. Is this
sufficient for teleconferencing if the video is
compressed using MPEG?

*51. Encode the following sentences in ASCII 
using even parity by adding a parity bit 

at the high-order end of each character 
code:
a. Does 100/5 � 20?
b. The total cost is $7.25.

*52. The following message was originally transmit-
ted with odd parity in each short bit string. In
which strings have errors definitely occurred?

11001 11011 10110 00000 11111 10001
10101 00100 01110

*53. Suppose a 24-bit code is generated by repre-
senting each symbol by three consecutive
copies of its ASCII representation (for example,
the symbol A is represented by the bit string
010000010100000101000001). What error-
correcting properties does this new code have?

*54. Using the error-correcting code described in
Figure 1.30, decode the following words:
a. 111010 110110
b. 101000 100110 001100
c. 011101 000110 000000 010100
d. 010010 001000 001110 101111

000000 110111 100110
e. 010011 000000 101001 100110

Social Issues

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. A truncation error has occurred in a critical situation, causing extensive dam-
age and loss of life. Who is liable, if anyone? The designer of the hardware?
The designer of the software? The programmer who actually wrote that part
of the program? The person who decided to use the software in that particu-
lar application? What if the software had been corrected by the company that
originally developed it, but that update had not been purchased and applied
in the critical application? What if the software had been pirated?

2. Is it acceptable for an individual to ignore the possibility of truncation errors
and their consequences when developing his or her own applications?

3. Was it ethical to develop software in the 1970s using only two digits to repre-
sent the year (such as using 76 to represent the year 1976), ignoring the fact
that the software would be flawed as the turn of the century approached? Is
it ethical today to use only three digits to represent the year (such as 982 for
1982 and 015 for 2015)? What about using only four digits?
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4. Many argue that encoding information often dilutes or otherwise distorts the
information, since it essentially forces the information to be quantified. They
argue that a questionnaire in which subjects are required to record their opin-
ions by responding within a scale from one to five is inherently flawed. To what
extent is information quantifiable? Can the pros and cons of different locations
for a waste disposal plant be quantified? Is the debate over nuclear power and
nuclear waste quantifiable? Is it dangerous to base decisions on averages and
other statistical analysis? Is it ethical for news agencies to report polling results
without including the exact wording of the questions? Is it possible to quantify
the value of a human life? Is it acceptable for a company to stop investing in the
improvement of a product, even though additional investment could lower the
possibility of a fatality relating to the product’s use?

5. Should there be a distinction in the rights to collect and disseminate data
depending on the form of the data? That is, should the right to collect and
disseminate photographs, audio, or video be the same as the right to collect
and disseminate text?

6. Whether intentional or not, a report submitted by a journalist usually
reflects that journalist’s bias. Often by changing only a few words, a story can
be given either a positive or negative connotation. (Compare, “The majority
of those surveyed opposed the referendum.” to “A significant portion of those
surveyed supported the referendum.”) Is there a difference between altering
a story (by leaving out certain points or carefully selecting words) and alter-
ing a photograph?

7. Suppose that the use of a data compression system results in the loss of sub-
tle but significant items of information. What liability issues might be raised?
How should they be resolved?
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