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After mastering the material in this chapter, you will be able to:

LO12-4 Assess the effects of two factors on a
response variable by using a two-way
analysis of variance.

LO12-5 Describe what happens when two factors
interact.

Learning Objectives

LO12-1 Explain the basic terminology and
concepts of experimental design.

LO12-2 Compare several different population
means by using a one-way analysis of
variance.

LO12-3 Compare treatment effects and block
effects by using a randomized block
design.
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n Chapter 10 we learned that business
improvement often involves making
comparisons. In that chapter we presented

several confidence intervals and several hypothesis
testing procedures for comparing two population
means. However, business improvement often
requires that we compare more than two
population means. For instance, we might compare
the mean sales obtained by using three different
advertising campaigns in order to improve a
company’s marketing process. Or, we might compare
the mean production output obtained by using four

different manufacturing process designs to improve
productivity.

In this chapter we extend the methods presented
in Chapter 10 by considering statistical procedures for
comparing two or more population means. Each
of the methods we discuss is called an analysis of
variance (ANOVA) procedure. We also present some
basic concepts of experimental design, which involves
deciding how to collect data in a way that allows us
to most effectively compare population means.

We explain the methods of this chapter in the
context of three cases:

I

The Oil Company Case: An oil company wishes to
develop a reasonably priced gasoline that will
deliver improved mileages. The company uses
one-way analysis of variance to compare the
effects of three types of gasoline on mileage in
order to find the gasoline type that delivers the
highest mean mileage.

The Cardboard Box Case: A paper company per-
forms an experiment to investigate the effects of
four production methods on the number of
defective cardboard boxes produced in an hour.
The company uses a randomized block ANOVA to

determine which production method yields the
smallest mean number of defective boxes.

The Supermarket Case: A commercial bakery
supplies many supermarkets. In order to improve
the effectiveness of its supermarket shelf dis-
plays the company wishes to compare the effects
of shelf display height (bottom, middle, or top)
and width (regular or wide) on monthly
demand. The bakery employs two-way analysis
of variance to find the display height and width
combination that produces the highest monthly
demand.

12.1 Basic Concepts of Experimental Design 
In many statistical studies a variable of interest, called the response variable (or dependent
variable), is identified. Then data are collected that tell us about how one or more factors (or
independent variables) influence the variable of interest. If we cannot control the factor(s) being
studied, we say that the data obtained are observational. For example, suppose that in order to
study how the size of a home relates to the sales price of the home, a real estate agent randomly
selects 50 recently sold homes and records the square footages and sales prices of these homes.
Because the real estate agent cannot control the sizes of the randomly selected homes, we say that
the data are observational.

If we can control the factors being studied, we say that the data are experimental. Furthermore,
in this case the values, or levels, of the factor (or combination of factors) are called treatments.
The purpose of most experiments is to compare and estimate the effects of the different treat-
ments on the response variable. For example, suppose that an oil company wishes to study how
three different gasoline types (A, B, and C) affect the mileage obtained by a popular compact
automobile model. Here the response variable is gasoline mileage, and the company will study a
single factor—gasoline type. Because the oil company can control which gasoline type is used in
the compact automobile, the data that the oil company will collect are experimental. Furthermore,
the treatments—the levels of the factor gasoline type—are gasoline types A, B, and C.

In order to collect data in an experiment, the different treatments are assigned to objects
(people, cars, animals, or the like) that are called experimental units. For example, in the gaso-
line mileage situation, gasoline types A, B, and C will be compared by conducting mileage tests
using a compact automobile. The automobiles used in the tests are the experimental units.

In general, when a treatment is applied to more than one experimental unit, it is said to be
replicated. Furthermore, when the analyst controls the treatments employed and how they are
applied to the experimental units, a designed experiment is being carried out. A commonly used,
simple experimental design is called the completely randomized experimental design.

C
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terminology and
concepts of
experimental
design.
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In a completely randomized experimental design, independent random samples of experimen-
tal units are assigned to the treatments.

As illustrated in the following examples, we can sometimes assign independent random samples
of experimental units to the treatments by assigning different random samples of experimental
units to different treatments.

428 Chapter 12 Experimental Design and Analysis of Variance

EXAMPLE 12.1 The Oil Company Case: Comparing Gasoline Types

North American Oil Company is attempting to develop a reasonably priced gasoline that will
deliver improved gasoline mileages. As part of its development process, the company would like
to compare the effects of three types of gasoline (A, B, and C) on gasoline mileage. For testing
purposes, North American Oil will compare the effects of gasoline types A, B, and C on the gaso-
line mileage obtained by a popular compact model called the Lance. Suppose the company has ac-
cess to 1,000 Lances that are representative of the population of all Lances, and suppose the com-
pany will utilize a completely randomized experimental design that employs samples of size five.
In order to accomplish this, five Lances will be randomly selected from the 1,000 available
Lances. These autos will be assigned to gasoline type A. Next, five different Lances will be ran-
domly selected from the remaining 995 available Lances. These autos will be assigned to gasoline
type B. Finally, five different Lances will be randomly selected from the remaining 990 available
Lances. These autos will be assigned to gasoline type C.

Each randomly selected Lance is test driven using the appropriate gasoline type (treatment)
under normal conditions for a specified distance, and the gasoline mileage for each test drive is
measured. We let xij denote the j th mileage obtained when using gasoline type i. The mileage data
obtained are given in Table 12.1. Here we assume that the set of gasoline mileage observations
obtained by using a particular gasoline type is a sample randomly selected from the infinite pop-
ulation of all Lance mileages that could be obtained using that gasoline type. Examining the box
plots shown next to the mileage data, we see some evidence that gasoline type B yields the high-
est gasoline mileages.
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Gasoline Type A Gasoline Type B Gasoline Type C
xA1 � 34.0 xB1 � 35.3 xC1 � 33.3
xA2 � 35.0 xB2 � 36.5 xC2 � 34.0
xA3 � 34.3 xB3 � 36.4 xC3 � 34.7
xA4 � 35.5 xB4 � 37.0 xC4 � 33.0
xA5 � 35.8 xB5 � 37.6 xC5 � 34.9

T A B L E 1 2 . 1 The Gasoline Mileage Data GasMile2DS

EXAMPLE 12.2 The Supermarket Case: Studying the Effect of Display Height

The Tastee Bakery Company supplies a bakery product to many supermarkets in a metropolitan
area. The company wishes to study the effect of the shelf display height employed by the super-
markets on monthly sales (measured in cases of 10 units each) for this product. Shelf display
height, the factor to be studied, has three levels—bottom (B), middle (M), and top (T )—which
are the treatments. To compare these treatments, the bakery uses a completely randomized
experimental design. For each shelf height, six supermarkets (the experimental units) of equal
sales potential are randomly selected, and each supermarket displays the product using its as-
signed shelf height for a month. At the end of the month, sales of the bakery product (the response
variable) at the 18 participating stores are recorded, giving the data in Table 12.2. Here we
assume that the set of sales amounts for each display height is a sample randomly selected from the
population of all sales amounts that could be obtained (at supermarkets of the given sales

C

C
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T A B L E 1 2 . 2 The Bakery Product Sales Data BakeSaleDS

Shelf Display Height
Bottom (B) Middle (M) Top (T )
58.2 73.0 52.4
53.7 78.1 49.7
55.8 75.4 50.9
55.7 76.2 54.0
52.5 78.4 52.1
58.9 82.1 49.9

potential) at that display height. Examining the box plots that are shown next to the sales data, we
seem to have evidence that a middle display height gives the highest bakery product sales.

Assumptions for One-Way Analysis of Variance

3 Independence—the samples of experimental units
associated with the treatments are randomly
selected, independent samples.

1 Constant variance—the p populations of values
of the response variable associated with the
treatments have equal variances.

2 Normality—the p populations of values of the
response variable associated with the treatments
all have normal distributions.

12.2 One-Way Analysis of Variance 
Suppose we wish to study the effects of p treatments (treatments 1, 2, . . . , p) on a response
variable. For any particular treatment, say treatment i, we define mi and si to be the mean and
standard deviation of the population of all possible values of the response variable that could
potentially be observed when using treatment i. Here we refer to mi as treatment mean i. The
goal of one-way analysis of variance (often called one-way ANOVA) is to estimate and com-
pare the effects of the different treatments on the response variable. We do this by estimating
and comparing the treatment means m1, m2, . . . , mp. Here we assume that a sample has been
randomly selected for each of the p treatments by employing a completely randomized experi-
mental design. We let ni denote the size of the sample that has been randomly selected for treat-
ment i, and we let xij denote the jth value of the response variable that is observed when using
treatment i. It then follows that the point estimate of mi is , the average of the sample of ni val-
ues of the response variable observed when using treatment i. It further follows that the point
estimate of si is si, the standard deviation of the sample of ni values of the response variable
observed when using treatment i.

For example, consider the gasoline mileage situation. We let mA, mB, and mC denote the means
and sA, sB, and sC denote the standard deviations of the populations of all possible gasoline
mileages using gasoline types A, B, and C. To estimate these means and standard deviations,
North American Oil has employed a completely randomized experimental design and has
obtained the samples of mileages in Table 12.1. The means of these samples—

, and � 33.98—are the point estimates of mA, mB, and mC. The standard deviations
of these samples—sA � .7662, sB � .8503, and sC � .8349—are the point estimates of sA, sB,
and sC. Using these point estimates, we will (later in this section) test to see whether there are
any statistically significant differences between the treatment means mA, mB, and mC. If such dif-
ferences exist, we will estimate the magnitudes of these differences. This will allow North
American Oil to judge whether these differences have practical importance.

The one-way ANOVA formulas allow us to test for significant differences between treatment
means and allow us to estimate differences between treatment means. The validity of these for-
mulas requires that the following assumptions hold:

xCxB � 36.56
xA � 34.92,

xi

Compare
several dif-

ferent population
means by using a
one-way analysis of
variance.

LO12-2
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430 Chapter 12 Experimental Design and Analysis of Variance

The one-way ANOVA results are not very sensitive to violations of the equal variances as-
sumption. Studies have shown that this is particularly true when the sample sizes employed are
equal (or nearly equal). Therefore, a good way to make sure that unequal variances will not be a
problem is to take samples that are the same size. In addition, it is useful to compare the sample
standard deviations s1, s2, . . . , sp to see if they are reasonably equal. As a general rule, the one-
way ANOVA results will be approximately correct if the largest sample standard deviation is no
more than twice the smallest sample standard deviation. The variations of the samples can also
be compared by constructing a box plot for each sample (as we have done for the gasoline
mileage data in Table 12.1). Several statistical tests also employ the sample variances to test the
equality of the population variances [see Bowerman and O’Connell (1990) for two of these tests].
However, these tests have some drawbacks—in particular, their results are very sensitive to vio-
lations of the normality assumption. Because of this, there is controversy as to whether these tests
should be performed.

The normality assumption says that each of the p populations is normally distributed. This
assumption is not crucial. It has been shown that the one-way ANOVA results are approximately
valid for mound-shaped distributions. It is useful to construct a box plot and/or a stem-and-leaf
display for each sample. If the distributions are reasonably symmetric, and if there are no outliers,
the ANOVA results can be trusted for sample sizes as small as 4 or 5. As an example, consider the
gasoline mileage study of Example 12.1. The box plots of Table 12.1 suggest that the variability
of the mileages in each of the three samples is roughly the same. Furthermore, the sample stan-
dard deviations sA � .7662, sB � .8503, and sC � .8349 are reasonably equal (the largest is not
even close to twice the smallest). Therefore, it is reasonable to believe that the constant variance
assumption is satisfied. Moreover, because the sample sizes are the same, unequal variances
would probably not be a serious problem anyway. Many small, independent factors influence
gasoline mileage, so the distributions of mileages for gasoline types A, B, and C are probably
mound-shaped. In addition, the box plots of Table 12.1 indicate that each distribution is roughly
symmetric with no outliers. Thus, the normality assumption probably approximately holds.
Finally, because North American Oil has employed a completely randomized design, the
independence assumption probably holds. This is because the gasoline mileages in the different
samples were obtained for different Lances.

Testing for significant differences between treatment means As a preliminary step
in one-way ANOVA, we wish to determine whether there are any statistically significant differ-
ences between the treatment means m1, m2, . . . , mp. To do this, we test the null hypothesis

H0: m1 �m2 � � � � �mp

This hypothesis says that all the treatments have the same effect on the mean response. We test
H0 versus the alternative hypothesis

Ha: At least two of m1, m2, . . . , mp differ

This alternative says that at least two treatments have different effects on the mean response.
To carry out such a test, we compare what we call the between-treatment variability 

to the within-treatment variability. For instance, suppose we wish to study the effects of three
gasoline types (X, Y, and Z) on mean gasoline mileage, and consider Figure 12.1(a). This figure
depicts three independent random samples of gasoline mileages obtained using gasoline types X,
Y, and Z. Observations obtained using gasoline type X are plotted as blue dots (•), observations
obtained using gasoline type Y are plotted as red dots (•), and observations obtained using gaso-
line type Z are plotted as green dots (•). Furthermore, the sample treatment means are labeled as
“type X mean,” “type Y mean,” and “type Z mean.” We see that the variability of the sample
treatment means—that is, the between-treatment variability—is not large compared to the
variability within each sample (the within-treatment variability). In this case, the differences
between the sample treatment means could quite easily be the result of sampling variation. Thus
we would not have sufficient evidence to reject

H0: mX �mY �mZ

Next look at Figure 12.1(b), which depicts a different set of three independent random samples
of gasoline mileages. Here the variability of the sample treatment means (the between-treatment
variability) is large compared to the variability within each sample. This would probably provide
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12.2 One-Way Analysis of Variance 431

enough evidence to tell us to reject H0: mX �mY �mZ in favor of Ha: At least two of mX,mY, and
mZ differ. We would conclude that at least two of gasoline types X, Y, and Z have different effects
on mean mileage.

In order to numerically compare the between-treatment and within-treatment variability, we
can define several sums of squares and mean squares. To begin, we define n to be the total num-
ber of experimental units employed in the one-way ANOVA, and we define to be the overall
mean of all observed values of the response variable. Then we define the following:

x

Type
Y

mean

Type
Z

mean

Type
X

mean

Type X observations
Type Y observations
Type Z observations

23 24 25 26 27 28

(a) Between-treatment variability is not large compared to within-treatment
 variability.  Do not reject H0: �X � �Y � �Z

Type
Y

mean

Type
X

mean

Type X observations
Type Y observations
Type Z observations

23 24 25 26 27 28

Type
Z

mean

(b) Between-treatment variability is large compared to within-treatment
 variability.  Reject H0: �X � �Y � �Z

F I G U R E 1 2 . 1 Comparing Between-Treatment Variability and Within-Treatment Variability

The treatment sum of squares is 

SST � a
p

i�1
ni (xi � x)2

In order to compute SST, we calculate the difference between each sample treatment mean and
the overall mean , we square each of these differences, we multiply each squared difference
by the number of observations for that treatment, and we sum over all treatments. The SST
measures the variability of the sample treatment means. For instance, if all the sample treatment
means ( values) were equal, then the treatment sum of squares would be equal to 0. The more
the values vary, the larger will be SST. In other words, the treatment sum of squares measures
the amount of between-treatment variability.

As an example, consider the gasoline mileage data in Table 12.1. In this experiment we
employ a total of

n � nA � nB � nC � 5 � 5 � 5 � 15

experimental units. Furthermore, the overall mean of the 15 observed gasoline mileages is

Then

In order to measure the within-treatment variability, we define the following quantity:

 � 17.0493

 � 5(34.92 � 35.153)2 � 5(36.56 � 35.153)2 � 5(33.98 � 35.153)2

 � nA(xA � x)2 � nB(xB � x)2 � nC(xC � x)2

 SST � a
i�A,B,C

ni(xi � x)2

x �
34.0 � 35.0 � � � � � 34.9

15
�

527.3

15
� 35.153

xi

xi

x
xi
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Here x1j is the j th observed value of the response in the first sample, x2j is the j th observed value
of the response in the second sample, and so forth. The formula above says that we compute SSE
by calculating the squared difference between each observed value of the response and its corre-
sponding sample treatment mean and by summing these squared differences over all the obser-
vations in the experiment.

The SSE measures the variability of the observed values of the response variable around their
respective sample treatment means. For example, if there were no variability within each sample,
the error sum of squares would be equal to 0. The more the values within the samples vary, the
larger will be SSE.

As an example, in the gasoline mileage study, the sample treatment means are � 34.92,
� 36.56, and � 33.98. It follows that

Finally, we define a sum of squares that measures the total amount of variability in the
observed values of the response:

 � 8.028

� [(33.3 � 33.98)2 � (34.0 � 33.98)2 � (34.7 � 33.98)2 � (33.0 � 33.98)2 � (34.9 � 33.98)2]

� [(35.3 � 36.56)2 � (36.5 � 36.56)2 � (36.4 � 36.56)2 � (37.0 � 36.56)2 � (37.6 � 36.56)2]

 � [(34.0 � 34.92)2 � (35.0 � 34.92)2 � (34.3 � 34.92)2 � (35.5 � 34.92)2 � (35.8 � 34.92)2]

 SSE � a
nA

j�1
(xAj � xA)2 � a

nB

j�1
(xBj � xB)2 � a

nC

j�1
(xCj � xC)2

xCxB

xA

432 Chapter 12 Experimental Design and Analysis of Variance

An F-Test for Differences between Treatment Means

Suppose that we wish to compare p treatment means m1, m2, . . . , mp and consider testing

H0: m1 �m2 � � � � �mp versus Ha: At least two of m1,m2, . . . , mp differ 
(all treatment means are equal) (at least two treatment means differ)

To perform the hypothesis test, define the treatment mean square to be MST � SST�(p � 1) and define the
error mean square to be MSE � SSE�(n � p). Also, define the F statistic

and its p-value to be the area under the F curve with p � 1 and n � p degrees of freedom to the right of F.
We can reject H0 in favor of Ha at level of significance a if either of the following equivalent conditions holds:

1 F � Fa 2 p-value � a

Here the Fa point is based on p � 1 numerator and n � p denominator degrees of freedom.

F �
MST
MSE

�
SST�(p � 1)
SSE�(n � p)

The error sum of squares is

SSE � a
n1

j�1
(x1j � x1)

2 � a
n2

j�1
(x2j � x2)

2 � � � � � a
np

j�1
(xpj � xp)2

The total sum of squares is

SSTO � SST � SSE

The variability in the observed values of the response must come from one of two sources—the
between-treatment variability or the within-treatment variability. It follows that the total sum of
squares equals the sum of the treatment sum of squares and the error sum of squares. Therefore,
the SST and SSE are said to partition the total sum of squares. For the gasoline mileage study

SSTO � SST � SSE � 17.0493 � 8.028 � 25.0773

In order to decide whether there are any statistically significant differences between the
treatment means, it makes sense to compare the amount of between-treatment variability to
the amount of within-treatment variability. This comparison suggests the following F-test:
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12.2 One-Way Analysis of Variance 433

A large value of F results when SST, which measures the between-treatment variability, is
large compared to SSE, which measures the within-treatment variability. If F is large enough, this
implies that H0 should be rejected. The rejection point Fa tells us when F is large enough to allow
us to reject H0 at level of significance a. When F is large, the associated p-value is small. If this
p-value is less than a, we can reject H0 at level of significance a.

EXAMPLE 12.3 The Oil Company Case: Comparing Gasoline Types

Consider the North American Oil Company data in Table 12.1. The company wishes to determine
whether any of gasoline types A, B, and C have different effects on mean Lance gasoline mileage.
That is, we wish to see whether there are any statistically significant differences between mA, mB,
and mC. To do this, we test the null hypothesis H0: mA �mB �mC, which says that gasoline types
A, B, and C have the same effects on mean gasoline mileage. We test H0 versus the alternative Ha:
At least two of mA,mB, and mC differ, which says that at least two of gasoline types A, B, and C
have different effects on mean gasoline mileage.

Because we have previously computed SST to be 17.0493 and SSE to be 8.028, and because
we are comparing p � 3 treatment means, we have

and

It follows that

In order to test H0 at the .05 level of significance, we use F.05 with p � 1 � 3 � 1 � 2 numerator
and n � p � 15 � 3 � 12 denominator degrees of freedom. Table A.7 (page 796) tells us that this
F point equals 3.89, so we have

F � 12.74 � F.05 � 3.89

Therefore, we reject H0 at the .05 level of significance. This says we have strong evidence that at
least two of the treatment means mA,mB, and mC differ. In other words, we conclude that at least
two of gasoline types A, B, and C have different effects on mean gasoline mileage.

The results of an analysis of variance are often summarized in what is called an analysis of
variance table. This table gives the sums of squares (SST, SSE, SSTO), the mean squares (MST
and MSE), and the F statistic and its related p-value for the ANOVA. The table also gives the
degrees of freedom associated with each source of variation—treatments, error, and total.
Table 12.3 gives the ANOVA table for the gasoline mileage problem. Notice that in the column
labeled “Sums of Squares,” the values of SST and SSE sum to SSTO.

Figure 12.2 gives the MINITAB and Excel output of an analysis of variance of the gasoline
mileage data. Note that the upper portion of the MINITAB output and the lower portion of
the Excel output give the ANOVA table of Table 12.3. Also, note that each output gives the value
F � 12.74 and the related p-value, which equals .001(rounded). Because this p-value is less than
.05, we reject H0 at the .05 level of significance.

F �
MST

MSE
�

8.525

0.669
� 12.74

MSE �
SSE

n � p
�

8.028

15 � 3
� 0.669

MST �
SST

p � 1
�

17.0493

3 � 1
� 8.525

C

Pairwise comparisons If the one-way ANOVA F test says that at least two treatment means
differ, then we investigate which treatment means differ and we estimate how large the differ-
ences are. We do this by making what we call pairwise comparisons (that is, we compare treat-
ment means two at a time). One way to make these comparisons is to compute point estimates of
and confidence intervals for pairwise differences. For example, in the oil company case we
might estimate the pairwise differences mA �mB, mA �mC, and mB �mC. Here, for instance, the
pairwise difference mA �mB can be interpreted as the change in mean mileage achieved by
changing from using gasoline type B to using gasoline type A.
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434 Chapter 12 Experimental Design and Analysis of Variance

F I G U R E 1 2 . 2 MINITAB and Excel Output of an Analysis of Variance of the Oil Company
Gasoline Mileage Data in Table 12.1

(a) The MINITAB output

One-way ANOVA: Type A, Type B, Type C                               Tukey 95% Simultaneous

Source  DF       SS      MS   F      P                        Confidence Intervals

Gas Type 2 1   17.049 4   8.525 7   12.74 9   0.001 10                 

Error 12 2    8.028 5   0.669 8                                       Type A subtracted from:

Total 14 3   25.077 6                                                           Lower    Center    Upper

Individual 95% Type B 0.2610    1.6400   3.0190

CIs For Mean Based on Pooled StDev Type C -2.3190   -0.9400   0.439

Level   N  Mean          StDev ---+---------+---------+---------+------    

Type A 5  34.920 11     0.766       (------*------)                 Type B subtracted from:

Type B 5  36.560 12     0.850                       (------*-----)                 Lower    Center    Upper

Type C 5  33.980 13     0.835 (-----*------)                           Type C -3.9590   -2.5800  -1.2010

---+---------+---------+---------+------  

Pooled StDev = 0.818             33.6       34.8     36.0      37.2

(b) The Excel output

SUMMARY
Groups Count Sum Average Variance
Type A 5 174.6 34.92 0.587
Type B 5 182.8 36.56 0.723
Type C 5 169.9 33.98 0.697

ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 17.0493 2 8.5247 12.7424 0.0011 3.8853
Within Groups 8.0280 12 0.6690
Total 25.0773 14

4 1 7

5 2 8

6 3

9 1410

11

12

13

p�1 n�p n�1 SST SSE SSTO MST MSE F statistic p-value related to F A B C F.05
14x13x12x1110987654321

There are two approaches to calculating confidence intervals for pairwise differences. The
first involves computing the usual, or individual, confidence interval for each pairwise differ-
ence. Here, if we are computing 100(1 �a) percent confidence intervals, we are 100(1 �a) per-
cent confident that each individual pairwise difference is contained in its respective interval. That
is, the confidence level associated with each (individual) comparison is 100(1 �a) percent, and
we refer to a as the comparisonwise error rate. However, we are less than 100(1 �a) percent
confident that all of the pairwise differences are simultaneously contained in their respective
intervals. A more conservative approach is to compute simultaneous confidence intervals. Such

T A B L E 1 2 . 3 Analysis of Variance (ANOVA) Table for Testing H0: MA �MB �MC in the Oil Company Case 
(p � 3 Gasoline Types, n � 15 Observations)

Degrees
Source of Freedom Sums of Squares Mean Squares F Statistic p-Value

Treatments p � 1 � 3 �1 SST � 17.0493 0.001
� 2

Error n � p � 15 � 3 SSE � 8.028
� 12

Total n � 1 � 15 � 1 SSTO � 25.0773
� 14

 � 0.669

 �
8.028

15 � 3

 MSE �
SSE

n � p

 � 12.74 � 8.525

 �
8.525
0.669

 �
17.0493
3 � 1

 F �
MST
MSE

 MST �
SST

p � 1
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12.2 One-Way Analysis of Variance 435

intervals make us percent confident that all of the pairwise differences are simulta-
neously contained in their respective intervals. That is, when we compute simultaneous intervals,
the overall confidence level associated with all the comparisons being made in the experiment is
100(1 �a) percent, and we refer to a as the experimentwise error rate.

Several kinds of simultaneous confidence intervals can be computed. In this book we present
what is called the Tukey formula for simultaneous intervals. We do this because, if we are in-
terested in studying all pairwise differences between treatment means, the Tukey formula yields
the most precise (shortest) simultaneous confidence intervals.

100(1 � a)

Estimation in One-Way ANOVA

points of the studentized range. In this table qa is
listed corresponding to values of p and n � p. Fur-
thermore, we assume that the sample sizes ni and
nh are equal to the same value, which we denote
as m. If ni and nh are not equal, we replace

by 

3 A point estimate of the treatment mean �i is –xi

and an individual 100(1 �A) percent confidence
interval for Mi is

Here, the ta�2 point is based on n � p degrees of
freedom.

Rxi � ta�2 

B

MSE
ni

B

(qa�12)1MSE[(1�ni) � (1�nh)].qa1MSE�m

1 Consider the pairwise difference �i � �h, which
can be interpreted to be the change in the mean
value of the response variable associated with
changing from using treatment h to using treat-
ment i. Then, a point estimate of the difference
Mi �Mh is , where and are the sample
treatment means associated with treatments i
and h. 

2 A Tukey simultaneous 100(1 �A) percent confi-
dence interval for Mi �Mh is 

Here, the value qa is obtained from Table A.10
(pages 799–800), which is a table of percentage

R(xi � xh) � qa 
B

MSE
m

B

xhxixi � xh

EXAMPLE 12.4 The Oil Company Case: Comparing Gasoline Types

Part 1: Using confidence intervals In the gasoline mileage study, we are comparing p � 3
treatment means (mA, mB, and mC). Furthermore, each sample is of size m � 5, there are a total of
n � 15 observed gas mileages, and the MSE found in Table 12.3 is .669. Because q.05 � 3.77 is
the entry found in Table A.10 (page 799) corresponding to p � 3 and n � p � 12, a Tukey simul-
taneous 95 percent confidence interval for mB �mA is

Similarly, Tukey simultaneous 95 percent confidence intervals for mA �mC and mB �mC are,
respectively,

and

These intervals make us simultaneously 95 percent confident that (1) changing from gasoline
type A to gasoline type B increases mean mileage by between .261 and 3.019 mpg, (2) changing
from gasoline type C to gasoline type A might decrease mean mileage by as much as .439 mpg
or might increase mean mileage by as much as 2.319 mpg, and (3) changing from gasoline type C
to gasoline type B increases mean mileage by between 1.201 and 3.959 mpg. The first and third
of these intervals make us 95 percent confident that mB is at least .261 mpg greater than mA and at
least 1.201 mpg greater than mC. Therefore, we have strong evidence that gasoline type B yields
the highest mean mileage of the gasoline types tested. Furthermore, noting that t.025 based on

� [1.201, 3.959]� [�0.439, 2.319]

� [(36.56 � 33.98) � 1.379]� [(34.92 � 33.98) � 1.379]

[(xB � xC) � 1.379][(xA � xC) � 1.379]

 � [.261, 3.019]

 � [1.64 � 1.379]

 B (xB � xA) � q.05 
A

MSE

m
R � B (36.56 � 34.92) � 3.77

A

.669

5
R  

C

BI
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436 Chapter 12 Experimental Design and Analysis of Variance

n � p � 12 degrees of freedom is 2.179, it follows that an individual 95 percent confidence
interval for mB is

This interval says we can be 95 percent confident that the mean mileage obtained by using gaso-
line type B is between 35.763 and 37.357 mpg. Notice that this confidence interval is graphed on
the MINITAB output of Figure 12.2. This output also shows the 95 percent confidence intervals
for mA and mC and gives Tukey simultaneous 95 percent intervals for mB � mA, mC � mA, and 
mC � mB. Note that the last two Tukey intervals on the output are the “negatives” of the Tukey
intervals that we hand calculated for mA � mC and mB � mC.

Part 2: Using hypothesis testing (optional) We next consider testing 
versus . The test statistic t for performing this test is calculated by dividing

by . For example, consider testing versus
. Since and 

, the test statistic t equals . This test statistic
value is given in the leftmost portion of the following Excel add-in (MegaStat) output, as is the
test statistic value for testing and the test statistic value for testing

:H0 :mA � mC � 0 (t � 1.82)
H0 :mB � mC � 0 (t � 4.99)

1.64�.5173 � 3.171.669[(1�5) � (1�5)] � .5173
1MSE [(1�nB) � (1�nA)] �xB � xA � 36.56 � 34.92 � 1.64Ha :mB � mA 	 0

H0:mB � mA � 01MSE [(1�ni) � (1�nh)]xi � xh

Ha :mi � mh 	 0
H0 :mi � mh � 0

 � [35.763, 37.357]

 BxB � t.025
A

MSE

nB

R � B36.56 � 2.179 
A

.669

5
R

If we wish to use the Tukey simultaneous comparison procedure having an experimentwise
error rate of , we reject in favor of if the absolute value of t
is greater than the critical value . Table A.10 (page 799) tells us that is 3.77 and is
5.04. Therefore, the critical values for experimentwise error rates of .05 and .01 are, respectively,

and (see the right portion of the MegaStat output). Suppose
we set equal to .05. Then, since the test statistic value for testing 
and the test statistic value for testing are greater than the critical
value 2.67, we reject both null hypotheses. This, along with the fact that is greater
than and , leads us to conclude that gasoline type B yields the highest
mean mileage.

In general, when we use a completely randomized experimental design, it is important to
compare the treatments by using experimental units that are essentially the same with respect to
the characteristic under study. For example, in the oil company case we have used cars of the
same type (Lances) to compare the different gasoline types, and in the supermarket case we have
used grocery stores of the same sales potential for the bakery product to compare the shelf dis-
play heights (the reader will analyze the data for this case in the exercises). Sometimes, however,
it is not possible to use experimental units that are essentially the same with respect to the char-
acteristic under study. One approach to dealing with this situation is to employ a randomized
block design. This experimental design is discussed in Section 12.3.

To conclude this section, we note that if we fear that the normality and/or equal variances as-
sumptions for one-way analysis of variance do not hold, we can use a nonparametric approach to
compare several populations. See Section 18.4 of Chapter 18.

xC � 33.98xA � 34.92
xB � 36.56

H0 :mB � mC � 0 (t � 4.99)
H0 :mB � mA � 0 (t � 3.17)a

5.04�12 � 3.563.77�12 � 2.67

q.01q.05qa�12
Ha:mi � mh 	 0H0 :mi � mh � 0a

Exercises for Section 12.2
CONCEPTS

12.1 Define the meaning of the terms response variable, factor, treatments, and experimental units.

12.2 Explain the assumptions that must be satisfied in order to validly use the one-way ANOVA formulas.

Tukey simultaneous comparison t-values (d.f. � 12)
Type C Type A Type B
33.98 34.92 36.56

Type C 33.98
Type A 34.92 1.82
Type B 36.56 4.99 3.17

critical values for experimentwise error rate: 
0.05 2.67
0.01 3.56
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12.2 One-Way Analysis of Variance 437

One-way ANOVA: Bakery Sales versus Display Height
Tukey 95% Simultaneous           

Source          DF       SS       MS       F      P                      Confidence Intervals 
Display Height   2  2273.88  1136.94  184.57  0.000                          
Error           15    92.40     6.16                                    Bottom subtracted from:
Total           17  2366.28                                                      Lower   Center   Upper  
                                Individual 95%                          Middle  17.681   21.400  25.119 

CIs For Mean Based on Pooled StDev      Top -8.019   -4.300  -0.581
Level    N    Mean  StDev --------+---------+---------+---------+-
Bottom   6  55.800  2.477       (--*-)                                 Middle subtracted from:
Middle   6  77.200  3.103                                  (--*-)               Lower   Center    Upper
Top      6  51.500  1.648  (-*--)                                       Top -29.419  -25.700  -21.981 
                           --------+---------+---------+---------+- 
Pooled StDev = 2.482            56.0      64.0      72.0      80.0 

F I G U R E 1 2 . 3 MINITAB Output of a One-Way ANOVA of the Bakery Sales Data in Table 12.2

One-way ANOVA: Time versus Display Tukey 95% Simultaneous 
Confidence Intervals 

Source   DF      SS      MS      F      P                              
Display   2  500.17  250.08  30.11  0.000                               A subtracted from:
Error     9   74.75    8.31                                                  Lower  Center   Upper
Total    11  574.92                                                     B   -9.692  -4.000   1.692 

Individual 95% C    5.558  11.250  16.942 
CIs For Mean Based on Pooled StDev 

Level  N    Mean  StDev    -+---------+---------+---------+--------     
A      4  24.500  2.646          (-----*----)                           B subtracted from: 
B 4 20.500 2.646 (----*-----)     Lower  Center   Upper
C      4  35.750  3.304                             (-----*----)        C    9.558  15.250  20.942 
                           -+---------+---------+---------+--------                                    
Pooled StDev = 2.882      18.0      24.0      30.0      36.0 

F I G U R E 1 2 . 4 MINITAB Output of a One-Way ANOVA of the Display Panel Study Data in Table 12.4

12.3 Explain the difference between the between-treatment variability and the within-treatment
variability when performing a one-way ANOVA.

12.4 Explain why we conduct pairwise comparisons of treatment means.

METHODS AND APPLICATIONS

12.5 THE SUPERMARKET CASE BakeSale

Consider Example 12.2, and let mB, mM, and mT represent the mean monthly sales when using
the bottom, middle, and top shelf display heights, respectively. Figure 12.3 gives the
MINITAB output of a one-way ANOVA of the bakery sales study data in Table 12.2 
(page 429).
a Test the null hypothesis that mB, mM, and mT are equal by setting a� .05. On the basis of this

test, can we conclude that the bottom, middle, and top shelf display heights have different
effects on mean monthly sales?

b Consider the pairwise differences mM �mB, mT �mB, and mT �mM. Find a point estimate of
and a Tukey simultaneous 95 percent confidence interval for each pairwise difference. Interpret
the meaning of each interval in practical terms. Which display height maximizes mean sales?

c Find 95 percent confidence intervals for mB, mM, and mT. Interpret each interval.

12.6 A study compared three different display panels for use by air traffic controllers. Each display
panel was tested in a simulated emergency condition; 12 highly trained air traffic controllers took
part in the study. Four controllers were randomly assigned to each display panel. The time (in
seconds) needed to stabilize the emergency condition was recorded. The results of the study are
given in Table 12.4. Let mA, mB, and mC represent the mean times to stabilize the emergency condi-
tion when using display panels A, B, and C, respectively. Figure 12.4 gives the MINITAB output
of a one-way ANOVA of the display panel data Display
a Test the null hypothesis that and are equal by setting On the basis of this

test, can we conclude that display panels A, B, and C have different effects on the mean time to
stabilize the emergency condition?

b Consider the pairwise differences mB �mA, mC �mA, and mC �mB. Find a point estimate of and
a Tukey simultaneous 95 percent confidence interval for each pairwise difference. Interpret the

a � .05.mCmA, mB,
DS

DS

Display Panel
A B C
21 24 40
27 21 36
24 18 35
26 19 32

T A B L E 1 2 . 4
Display Panel
Study Data

DisplayDS
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T A B L E 1 2 . 6
Golf Ball Durability 
Test Results 

GolfBallDS

Brand
Alpha Best
281 270
220 334
274 307
242 290
251 331

Century Divot
218 364
244 302
225 325
273 337
249 355

F I G U R E 1 2 . 6 Excel Output of a One-Way ANOVA of the Golf Ball Durability Data

SUMMARY
Groups Count Sum Average Variance
Alpha 5 1268 253.6 609.3
Best 5 1532 306.4 740.3
Century 5 1209 241.8 469.7
Divot 5 1683 336.6 605.3

ANOVA
Source of Variation SS df MS F P-Value F crit
Between Groups 29860.4 3 9953.4667 16.420798 3.853E-05 3.2388715
Within Groups 9698.4 16 606.15

Total 39558.8 19

SUMMARY
Groups Count Sum Average Variance
DESIGN A 5 83 16.6 5.3
DESIGN B 5 164 32.8 9.2
DESIGN C 5 124 24.8 8.2

ANOVA
Source of Variation SS df MS F P-Value F crit
Between Groups 656.1333 2 328.0667 43.35683 3.23E-06 3.88529
Within Groups 90.8 12 7.566667

Total 746.9333 14

F I G U R E 1 2 . 5 Excel Output of a One-Way ANOVA of the Bottle Design Study Data

results by describing the effects of changing from using each display panel to using each of
the other panels. Which display panel minimizes the time required to stabilize the emergency
condition?

12.7 A consumer preference study compares the effects of three different bottle designs (A, B, and C) on
sales of a popular fabric softener. A completely randomized design is employed. Specifically, 15
supermarkets of equal sales potential are selected, and 5 of these supermarkets are randomly assigned
to each bottle design. The number of bottles sold in 24 hours at each supermarket is recorded. The
data obtained are displayed in Table 12.5. Let mA, mB, and mC represent mean daily sales using bottle
designs A, B, and C, respectively. Figure 12.5 gives the Excel output of a one-way ANOVA of the
bottle design study data. BottleDes
a Test the null hypothesis that are equal by setting That is, test for

statistically significant differences between these treatment means at the .05 level of
significance. Based on this test, can we conclude that bottle designs A, B, and C have different
effects on mean daily sales?

b Consider the pairwise differences mB �mA, mC �mA, and mC �mB. Find a point estimate of and
a Tukey simultaneous 95 percent confidence interval for each pairwise difference. Interpret the
results in practical terms. Which bottle design maximizes mean daily sales?

c Find and interpret a 95 percent confidence interval for each of the treatment means mA, mB, and mC. 

12.8 In order to compare the durability of four different brands of golf balls (ALPHA, BEST,
CENTURY, and DIVOT), the National Golf Association randomly selects five balls of each brand
and places each ball into a machine that exerts the force produced by a 250-yard drive. The
number of simulated drives needed to crack or chip each ball is recorded. The results are given in
Table 12.6. The Excel output of a one-way ANOVA of these data is shown in Figure 12.6. Test for
statistically significant differences between the treatment means mALPHA, mBEST, mCENTURY, and
mDIVOT. Set a� .05. GolfBall

12.9 Perform pairwise comparisons of the treatment means in Exercise 12.8 by (1) Using Tukey
simultaneous 95 percent confidence intervals (2) Optionally using t statistics and critical values
(see the right side of Figure 12.6 and page 436). Which brands are most durable? Find and inter-
pret a 95 percent confidence interval for each of the treatment means.

DS

a � .05.mA, mB, and mC

DS

Bottle Design
A B C
16 33 23
18 31 27
19 37 21
17 29 28
13 34 25

T A B L E 1 2 . 5
Bottle Design
Study Data

BottleDesDS

Critical values for
experimentwise error rate:

0.05 2.86
0.01 3.67

Tukey simultaneous comparison t-values (d.f. � 16)
Century Alpha Best Divot

241.8 253.6 306.4 336.6
Century 241.8

Alpha 253.6 0.76
Best 306.4 4.15 3.39

Divot 336.6 6.09 5.33 1.94

bow21493_ch12_426-459.qxd  11/29/12  1:39 AM  Page 438



12.3 The Randomized Block Design 439

12.3 The Randomized Block Design 
Not all experiments employ a completely randomized design. For instance, suppose that when we
employ a completely randomized design, we fail to reject the null hypothesis of equality of treatment
means because the within-treatment variability (which is measured by the SSE) is large. This could
happen because differences between the experimental units are concealing true differences between
the treatments. We can often remedy this by using what is called a randomized block design.

EXAMPLE 12.5 The Cardboard Box Case: Comparing Production Methods C

The Universal Paper Company manufactures cardboard boxes. The company wishes to investigate
the effects of four production methods (methods 1, 2, 3, and 4) on the number of defective boxes pro-
duced in an hour. To compare the methods, the company could utilize a completely randomized
design. For each of the four production methods, the company would select several (say, as an exam-
ple, three) machine operators, train each operator to use the production method to which he or she
has been assigned, have each operator produce boxes for one hour, and record the number of defec-
tive boxes produced. The three operators using any one production method would be different from
those using any other production method. That is, the completely randomized design would utilize
a total of 12 machine operators. However, the abilities of the machine operators could differ sub-
stantially.These differences might tend to conceal any real differences between the production meth-
ods. To overcome this disadvantage, the company will employ a randomized block experimental
design. This involves randomly selecting three machine operators and training each operator thor-
oughly to use all four production methods. Then each operator will produce boxes for one hour using
each of the four production methods. The order in which each operator uses the four methods should
be random. We record the number of defective boxes produced by each operator using each method.
The advantage of the randomized block design is that the defective rates obtained by using the four
methods result from employing the same three operators. Thus any true differences in the effective-
ness of the methods would not be concealed by differences in the operators’abilities.

When Universal Paper employs the randomized block design, it obtains the 12 defective
box counts in Table 12.7. We let xij denote the number of defective boxes produced by machine
operator j using production method i. For example, x32 � 5 says that 5 defective boxes were pro-
duced by machine operator 2 using production method 3 (see Table 12.7). In addition to the 12 de-
fective box counts, Table 12.7 gives the sample mean of these 12 observations, which is

and also gives sample treatment means and sample block means. The sample treat-
ment means are the average defective box counts obtained when using production methods 1, 2, 3,
and 4. Denoting these sample treatment means as we see from Table 12.7 that

, Because are less than
, we estimate that the mean number of defective boxes produced per hour by production

method 3 or 4 is less than the mean number of defective boxes produced per hour by production
method 1 or 2. The sample block means are the average defective box counts obtained by machine
operators 1, 2, and 3. Denoting these sample block means as we see from Table 12.7
that Because differ, we have evidence that
the abilities of the machine operators differ and thus that using the machine operators as blocks is
reasonable.

x.1, x.2, and x.3x.2 � 7.75, and x.3 � 9.0.x.1 � 6.0,
x.1, x.2, and x.3,

x1. and x2.
x3. and x4.x2. � 10.3333, x3. � 5.0, and x4. � 4.6667.x1. � 10.3333

x1., x2., x3., and x4.,

x � 7.5833,

T A B L E 1 2 . 7 Numbers of Defective Cardboard Boxes Obtained by Production Methods 1, 2, 3, and 4 and Machine
Operators 1, 2, and 3 CardBoxDS

Treatment Block (Machine Operator) Sample Treatment
(Production Method) 1 2 3 Mean
1 9 10 12 10.3333
2 8 11 12 10.3333
3 3 5 7 5.0
4 4 5 5 4.6667

Sample Block Mean 6.0 7.75 9.0 � 7.5833x

Compare
treatment

effects and block
effects by using a
randomized block
design.

LO12-3
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440 Chapter 12 Experimental Design and Analysis of Variance

In general, a randomized block design compares p treatments (for example, production
methods) by using b blocks (for example, machine operators). Each block is used exactly once to
measure the effect of each and every treatment. The advantage of the randomized block design
over the completely randomized design is that we are comparing the treatments by using the
same experimental units. Thus any true differences in the treatments will not be concealed by dif-
ferences in the experimental units.

In order to analyze the data obtained in a randomized block design, we define

the value of the response variable observed when block j uses treatment i

the mean of the b values of the response variable observed when using treatment i

the mean of the p values of the response variable observed when using block j

the mean of the total of the bp values of the response variable that we have observed 
in the experiment

The ANOVA procedure for a randomized block design partitions the total sum of squares
(SSTO) into three components: the treatment sum of squares (SST ), the block sum of squares
(SSB), and the error sum of squares (SSE). The formula for this partitioning is

SSTO � SST � SSB � SSE

We define each of these sums of squares and show how they are calculated for the defective card-
board box data as follows (note that p � 4 and b � 3):

Step 1: Calculate SST, which measures the amount of between-treatment variability:

Step 2: Calculate SSB, which measures the amount of variability due to the blocks:

Step 3: Calculate SSTO, which measures the total amount of variability:

� (9 � 7.5833)2 � (10 � 7.5833)2 � (12 � 7.5833)2

� (8 � 7.5833)2 � (11 � 7.5833)2 � (12 � 7.5833)2

� (3 � 7.5833)2 � (5 � 7.5833)2 � (7 � 7.5833)2

� (4 � 7.5833)2 � (5 � 7.5833)2 � (5 � 7.5833)2

� 112.9167

Step 4: Calculate SSE, which measures the amount of variability due to the error:

SSE � SSTO � SST � SSB

� 112.9167 � 90.9167 � 18.1667

� 3.8333

These sums of squares are shown in Table 12.8, which is the ANOVA table for a randomized
block design. This table also gives the degrees of freedom, mean squares, and F statistics used to

 SSTO � a
p

i�1
a

b

j�1
(xij � x)2

 � 18.1667

 � 4[(6.0 � 7.5833)2 � (7.75 � 7.5833)2 � (9.0 � 7.5833)2]

 � 4[(x# 1 � x)2 � (x # 2 � x)2 � (x #3 � x)2]

 SSB � pa
b

j�1
(x # j � x)2

 � 90.9167
 �(5.0 � 7.5833)2 � (4.6667 � 7.5833)2]

 � 3[(10.3333 � 7.5833)2 � (10.3333 � 7.5833)2

 � 3[(x1 # � x)2 � (x2 # � x)2 � (x3# � x)2 � (x4 # � x)2]

 SST � ba
p

i�1
(xi# � x)2

 x �

 x # j �

 xi# �

 xij �
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12.3 The Randomized Block Design 441

test the hypotheses of interest in a randomized block experiment, as well as the values of these
quantities for the defective cardboard box data.

Of main interest is the test of the null hypothesis H0 that no differences exist between the
treatment effects on the mean value of the response variable versus the alternative hypoth-
esis Ha that at least two treatment effects differ. We can reject H0 in favor of Ha at level of
significance a if F(treatments) is greater than the Fa point based on p � 1 numerator and 
(p � 1)(b � 1) denominator degrees of freedom. In the defective cardboard box case, F.05 based
on p � 1 � 3 numerator and (p � 1)(b � 1) � 6 denominator degrees of freedom is 4.76 (see
TableA.7, page 796). Because F(treatments) � 47.4348 (see Table 12.8) is greater than F.05 � 4.76,
we reject H0 at the .05 level of significance. Therefore, we have strong evidence that at least
two production methods have different effects on the mean number of defective boxes pro-
duced per hour.

It is also of interest to test the null hypothesis H0 that no differences exist between the block
effects on the mean value of the response variable versus the alternative hypothesis Ha that at
least two block effects differ. We can reject H0 in favor of Ha at level of significance a if
F(blocks) is greater than the Fa point based on b � 1 numerator and (p � 1)(b � 1) denominator
degrees of freedom. In the defective cardboard box case, F.05 based on b � 1 � 2 numerator and 
(p � 1)(b � 1) � 6 denominator degrees of freedom is 5.14 (see Table A.7, page 796). Because
F(blocks) � 14.2174 (see Table 12.8) is greater than F.05 � 5.14, we reject H0 at the .05 level of
significance. Therefore, we have strong evidence that at least two machine operators have different
effects on the mean number of defective boxes produced per hour.

Figure 12.7 gives the MINITAB and Excel outputs of a randomized block ANOVA of the
defective cardboard box data. The p-value of .000 (�.001) related to F(treatments) provides
extremely strong evidence of differences in production method effects. The p-value of .0053
related to F(blocks) provides very strong evidence of differences in machine operator effects.

If, in a randomized block design, we conclude that at least two treatment effects differ, we can
perform pairwise comparisons to determine how they differ.

T A B L E 1 2 . 8 Randomized Block ANOVA Table for the Defective Box Data

Source of Degrees of Sum of Mean
Variation Freedom Squares Square F

Treatments p � 1 � 3 SST � 90.9167 � 30.3056 � 47.4348

Blocks b � 1 � 2 SSB � 18.1667 � 9.0833 � 14.2174

Error (p � 1)(b � 1) � 6 SSE � 3.8333 � .6389

Total pb � 1 � 11 SSTO � 112.9167

MSE �
SSE

(p � 1)(b � 1)

F(blocks) �
MSB
MSE

MSB �
SSB

b � 1

F(treatments) �
MST
MSE

MST �
SST

p � 1

Point Estimates and Confidence Intervals in a Randomized Block ANOVA

Here the value qa is obtained from Table A.10
(pages 799–800), which is a table of percentage
points of the studentized range. In this table qa
is listed corresponding to values of p and
(p � 1)(b � 1).

Consider the difference between the effects of treatments i and h on the mean value of
the response variable. Then:

1 A point estimate of this difference is 

2 A Tukey simultaneous 100(1 �A) percent confi-
dence interval for this difference is

B (xi. � xh.) � qa 
s
1b
R

xi. � xh.
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442 Chapter 12 Experimental Design and Analysis of Variance

F I G U R E 1 2 . 7 MINITAB and Excel Outputs of a Randomized Block ANOVA of the Defective Box Data

Rows: Method   Columns: Operator
1          2            3         All

1 9.000     10.000       12.000      10.333
2 8.000     11.000       12.000      10.333
3 3.000      5.000        7.000       5.000
4 4.000      5.000        5.000       4.667
All 6.000      7.750        9.000       7.583

Two-way ANOVA: Rejects versus Method, Operator

Source      DF            SS               MS            F            P
Method 3        90.917          30.3056        47.43        0.000
Operator 2        18.167           9.0833        14.22        0.005
Error 6         3.833           0.6389
Total 11       112.917

1

2

3

5

6

8

10

9

11

7

4

12

13

14

16

17

18

15

(a) The MINITAB Output

EXAMPLE 12.6 The Cardboard Box Case: Comparing Production Methods

We have previously concluded that we have extremely strong evidence that at least two produc-
tion methods have different effects on the mean number of defective boxes produced per hour.
We have also seen that the sample treatment means are � 10.3333, � 10.3333, � 5.0,
and � 4.6667. Because is the smallest sample treatment mean, we will use Tukey simulta-
neous 95 percent confidence intervals to compare the effect of production method 4 with the ef-
fects of production methods 1, 2, and 3. To compute these intervals, we first note that q.05 � 4.90
is the entry in Table A.10 (page 799) corresponding to p � 4 and (p � 1)(b � 1) � 6. Also, note
that the MSE found in the randomized block ANOVA table is .6389 (see Figure 12.7), which im-
plies that . It follows that a Tukey simultaneous 95 percent confidence in-
terval for the difference between the effects of production methods 4 and 1 on the mean number
of defective boxes produced per hour is 

 � [�7.9281, �3.4051]

 � [�5.6666 � 2.2615]

 B (x4. � x1.) � q.05 
s

1b
R � B (4.6667 � 10.3333) � 4.90¢ .7993

13
≤ R

s � 1.6389 � .7993

x4.x4.
x3.x2.x1.

C

Method      Mean          Operator   Mean
1 10.3333          1 6.00
2 10.3333          2 7.75
3 5.0000          3 9.00
4 4.6667

ANOVA: Two-Factor Without Replication
Summary Count Sum Average Variance
Method1 3 31 10.3333 2.3333
Method2 3 31 10.3333 4.3333
Method3 3 5 5 4
Method4 3 14 4.6667 0.3333

Operator1 4 24 6 8.6667
Operator2 4 31 7.75 10.25
Operator3 4 36 9 12.6667

ANOVA
Source of Variation SS df MS F P-value F crit
Method 90.9167 3 30.3056 47.4348 0.0001 4.7571
Operator 18.1667 2 9.0833 14.2174 0.0053 5.1433
Error 3.8333 6 0.6389
Total 112.9167 11

SST SSB SSE SSTO MST MSB MSE F(treatments) p-value for F(treatments)

F(blocks) p-value for F(blocks) x.318x.217x.116x4.15x3.14x2.13x1.121110

987654321

1

2

3

5

6

8

10

9

11

7

4

12

13

14

16

17

18

15

(b) The Excel output
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12.3 The Randomized Block Design 443

Furthermore, it can be verified that a Tukey simultaneous 95 percent confidence interval for the
difference between the effects of production methods 4 and 2 on the mean number of defective
boxes produced per hour is also [�7.9281, �3.4051]. Therefore, we can be 95 percent confident
that changing from production method 1 or 2 to production method 4 decreases the mean number
of defective boxes produced per hour by a machine operator by between 3.4051 and 7.9281 boxes.
A Tukey simultaneous 95 percent confidence interval for the difference between the effects of
production methods 4 and 3 on the mean number of defective boxes produced per hour is

This interval tells us (with 95 percent confidence) that changing from production method 3 to
production method 4 might decrease the mean number of defective boxes produced per hour by
as many as 2.5948 boxes or might increase this mean by as many as 1.9282 boxes. In other words,
because this interval contains 0, we cannot conclude that the effects of production methods 4 and
3 differ.

 � [�2.5948, 1.9282]

 [(x4. � x3.) � 2.2615] � [(4.6667 � 5) � 2.2615]

Exercises for Section 12.3
CONCEPTS

12.10 In your own words, explain why we sometimes employ the randomized block design.

12.11 Describe what SSTO, SST, SSB, and SSE measure.

12.12 How can we test to determine if the blocks we have chosen are reasonable?

METHODS AND APPLICATIONS

12.13 A marketing organization wishes to study the effects of four sales methods on weekly sales of a
product. The organization employs a randomized block design in which three salesman use each
sales method. The results obtained are given in Figure 12.8, along with the Excel output of a ran-
domized block ANOVA of these data. SaleMeth
a Test the null hypothesis H0 that no differences exist between the effects of the sales methods

(treatments) on mean weekly sales. Set a � .05. Can we conclude that the different sales
methods have different effects on mean weekly sales?

b Test the null hypothesis H0 that no differences exist between the effects of the salesmen
(blocks) on mean weekly sales. Set a � .05. Can we conclude that the different salesmen
have different effects on mean weekly sales?

c Use Tukey simultaneous 95 percent confidence intervals to make pairwise comparisons of the
sales method effects on mean weekly sales. Which sales method(s) maximize mean weekly
sales?

DS

F I G U R E 1 2 . 8 The Sales Method Data and the Excel Output of a Randomized Block ANOVA SaleMethDS

ANOVA: Two-Factor without Replication

SUMMARY Count Sum Average Variance
Method 1 3 91 30.3333 2.3333
Method 2 3 90 30 4
Method 3 3 76 25.3333 6.3333
Method 4 3 72 24 1

Salesman A 4 117 29.25 11.5833
Salesman B 4 108 27 8.6667
Salesman C 4 104 26 12.6667

Salesman, j
Sales Method, i A B C
1 32 29 30
2 32 30 28
3 28 25 23
4 25 24 23

ANOVA
Source of Variation SS df MS F P-value F crit
Rows 93.5833 3 31.1944 36.2258 0.0003 4.7571
Columns 22.1667 2 11.0833 12.8710 0.0068 5.1433
Error 5.1667 6 0.8611

Total 120.9167 11

BI
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444 Chapter 12 Experimental Design and Analysis of Variance

12.14 A consumer preference study involving three different bottle designs (A, B, and C) for the jumbo
size of a new liquid laundry detergent was carried out using a randomized block experimental
design, with supermarkets as blocks. Specifically, four supermarkets were supplied with all three
bottle designs, which were priced the same. Table 12.9 gives the number of bottles of each
design sold in a 24-hour period at each supermarket. If we use these data, SST, SSB, and SSE can
be calculated to be 586.1667, 421.6667, and 1.8333, respectively. BottleDes2
a Test the null hypothesis H0 that no differences exist between the effects of the bottle designs

on mean daily sales. Set a � .05. Can we conclude that the different bottle designs have
different effects on mean sales?

b Test the null hypothesis H0 that no differences exist between the effects of the supermarkets
on mean daily sales. Set a � .05. Can we conclude that the different supermarkets have
different effects on mean sales?

c Use Tukey simultaneous 95 percent confidence intervals to make pairwise comparisons of the
bottle design effects on mean daily sales. Which bottle design(s) maximize mean sales?

12.15 To compare three brands of computer keyboards, four data entry specialists were randomly
selected. Each specialist used all three keyboards to enter the same kind of text material for
10 minutes, and the number of words entered per minute was recorded. The data obtained are
given in Table 12.10. If we use these data, SST, SSB, and SSE can be calculated to be 392.6667,
143.5833, and 2.6667, respectively. Keyboard
a Test the null hypothesis H0 that no differences exist between the effects of the keyboard

brands on the mean number of words entered per minute. Set a � .05.
b Test the null hypothesis H0 that no differences exist between the effects of the data entry

specialists on the mean number of words entered per minute. Set a � .05.
c Use Tukey simultaneous 95 percent confidence intervals to make pairwise comparisons of the

keyboard brand effects on the mean number of words entered per minute. Which keyboard
brand maximizes the mean number of words entered per minute?

12.16 The Coca-Cola Company introduced New Coke in 1985. Within three months of this introduc-
tion, negative consumer reaction forced Coca-Cola to reintroduce the original formula of Coke as
Coca-Cola Classic. Suppose that two years later, in 1987, a marketing research firm in Chicago
compared the sales of Coca-Cola Classic, New Coke, and Pepsi in public building vending
machines. To do this, the marketing research firm randomly selected 10 public buildings in
Chicago having both a Coke machine (selling Coke Classic and New Coke) and a Pepsi machine.

DS

DS

T A B L E 1 2 . 9 Results of a Bottle Design Experiment
BottleDes2DS

Supermarket, j
Bottle Design, i 1 2 3 4
A 16 14 1 6
B 33 30 19 23
C 23 21 8 12

T A B L E 1 2 . 1 0 Results of a Keyboard Experiment
KeyboardDS

Keyboard Brand
Data Entry
Specialist A B C
1 77 67 63
2 71 62 59
3 74 63 59
4 67 57 54

F I G U R E 1 2 . 9 The Coca-Cola Data and a MINITAB Output of a Randomized Block ANOVA of the Data

Building
1 2 3 4 5 6 7 8 9 10

Coke Classic 45 136 134 41 146 33 71 224 111 87
New Coke 6 114 56 14 39 20 42 156 61 140
Pepsi 24 90 100 43 51 42 68 131 74 107

Two-way ANOVA: Cans versus Drink, Building Descriptive Statistics: Cans
Source DF SS MS F P Variable Drink Mean
Drink 2 7997.6 3998.80 5.78 0.011 Cans Coke Classic 102.8
Building 9 55573.5 6174.83 8.93 0.000 New Coke 64.8
Error 18 12443.7 691.32 Pepsi 73.0
Total 29 76014.8

bow21493_ch12_426-459.qxd  11/29/12  1:39 AM  Page 444



12.4 Two-Way Analysis of Variance 445

The data—in number of cans sold over a given period of time—and a MINITAB randomized
block ANOVA of the data are given in Figure 12.9. Coke
a Test the null hypothesis H0 that no differences exist between the mean sales of Coca-Cola

Classic, New Coke, and Pepsi in Chicago public building vending machines. Set a � .05.
b Make pairwise comparisons of the mean sales of Coca-Cola Classic, New Coke, and Pepsi in

Chicago public building vending machines by using Tukey simultaneous 95 percent confi-
dence intervals.

c By the mid-1990s the Coca-Cola Company had discontinued making New Coke and had re-
turned to making only its original product. Is there evidence in the 1987 study that this might
happen? Explain your answer.

12.4 Two-Way Analysis of Variance 
Many response variables are affected by more than one factor. Because of this we must often con-
duct experiments in which we study the effects of several factors on the response. In this section
we consider studying the effects of two factors on a response variable. To begin, recall that in
Example 12.2 we discussed an experiment in which the Tastee Bakery Company investigated the
effect of shelf display height on monthly demand for one of its bakery products. This one-factor
experiment is actually a simplification of a two-factor experiment carried out by the Tastee
Bakery Company. We discuss this two-factor experiment in the following example.

DS

EXAMPLE 12.7 The Supermarket Case: Comparing Display Heights and Widths C

The Tastee Bakery Company supplies a bakery product to many metropolitan supermarkets. The
company wishes to study the effects of two factors—shelf display height and shelf display
width—on monthly demand (measured in cases of 10 units each) for this product. The factor
“display height” is defined to have three levels: B (bottom), M (middle), and T (top). The factor
“display width” is defined to have two levels: R (regular) and W (wide). The treatments in this
experiment are display height and display width combinations. These treatments are

BR BW MR MW TR TW

Here, for example, the notation BR denotes the treatment “bottom display height and regular dis-
play width.” For each display height and width combination the company randomly selects a sam-
ple of m � 3 metropolitan area supermarkets (all supermarkets used in the study will be of equal
sales potential). Each supermarket sells the product for one month using its assigned display height
and width combination, and the month’s demand for the product is recorded. The six samples ob-
tained in this experiment are given in Table 12.11 on the next page. We let xij,k denote the monthly
demand obtained at the kth supermarket that used display height i and display width j. For ex-
ample, xMW,2 � 78.4 is the monthly demand obtained at the second supermarket that used a mid-
dle display height and a wide display.

In addition to giving the six samples, Table 12.11 gives the sample treatment mean for each
display height and display width combination. For example, � 55.9 is the mean of the sam-
ple of three demands observed at supermarkets using a bottom display height and a regular dis-
play width. The table also gives the sample mean demand for each level of display height (B, M,
and T ) and for each level of display width (R and W). Specifically,

� 55.8 � the mean of the six demands observed when using a bottom display height

� 77.2 � the mean of the six demands observed when using a middle display height

� 51.5 � the mean of the six demands observed when using a top display height

� 60.8 � the mean of the nine demands observed when using a regular display width

� 62.2 � the mean of the nine demands observed when using a wide display

Finally, Table 12.11 gives � 61.5, which is the overall mean of the total of 18 demands observed
in the experiment. Because � 77.2 is considerably larger than � 55.8 and � 51.5, 
we estimate that mean monthly demand is highest when using a middle display height. Because

� 60.8 and � 62.2 do not differ by very much, we estimate there is little difference between
the effects of a regular display width and a wide display on mean monthly demand.

x.Wx.R

xT.xB.xM.
x

x.W

x.R

xT.

xM.

xB.

xBR

Assess the
effects of

two factors on a
response variable
by using a two-way
analysis of variance.

LO12-4
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446 Chapter 12 Experimental Design and Analysis of Variance

Figure 12.10 presents a graphical analysis of the bakery demand data. In this figure we plot,
for each display width (R and W), the change in the sample treatment mean demand associated
with changing the display height from bottom (B) to middle (M) to top (T). Note that, for either
a regular display width (R) or a wide display (W), the middle display height (M) gives the high-
est mean monthly demand. Also, note that, for either a bottom, middle, or top display height,
there is little difference between the effects of a regular display width and a wide display on mean
monthly demand. This sort of graphical analysis is useful for determining whether a condition
called interaction exists. In general, for two factors that might affect a response variable, we say
that interaction exists if the relationship between the mean response and one factor depends
on the other factor. This is clearly true in the leftmost figure below:

Specifically, this figure shows that at levels 1 and 3 of factor 1, level 1 of factor 2 gives the high-
est mean response, while at level 2 of factor 1, level 2 of factor 2 gives the highest mean
response. On the other hand, the parallel line plots in the rightmost figure indicate a lack of
interaction between factors 1 and 2. Because the sample mean plots in Figure 12.10 look nearly
parallel, we might intuitively conclude that there is little or no interaction between display height
and display width.

Mean
response

Level 2
of factor 2

Level 1
of factor 2

Levels of factor 1

1 2 3

Mean
response

Level 2
of factor 2

Level 1
of factor 2

Levels of factor 1

1 2 3

Display Width

Display Height R W
B 58.2 55.7 

53.7 52.5
55.8 58.9

� 55.9 � 55.7 � 55.8

M 73.0 76.2
78.1 78.4
75.4 82.1

� 75.5 � 78.9 � 77.2

T 52.4 54.0
49.7 52.1
50.9 49.9

� 51.0 � 52.0 � 51.5
� 60.8 � 62.2 � 61.5xx.Wx.R

xT.xTWxTR

xM.xMWxMR

xB.xBWxBR

T A B L E 1 2 . 1 1 Six Samples of Monthly Demands for
a Bakery Product BakeSale2 DS
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F I G U R E 1 2 . 1 0 Graphical Analysis of the Bakery
Demand Data

Suppose we wish to study the effects of two factors on a response variable. We assume that the
first factor, which we refer to as factor 1, has a levels (levels 1, 2, . . . , a). Further, we assume that
the second factor, which we will refer to as factor 2, has b levels (levels 1, 2, . . . , b). Here a treat-
ment is considered to be a combination of a level of factor 1 and a level of factor 2. It follows
that there are a total of ab treatments, and we assume that we will employ a completely random-
ized experimental design in which we will assign m randomly selected experimental units to each
treatment. This procedure results in our observing m values of the response variable for each of the
ab treatments, and in this case we say that we are performing a two-factor factorial experiment.

Describe
what

happens when two
factors interact.

LO12-5
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12.4 Two-Way Analysis of Variance 447

In addition to graphical analysis, two-way analysis of variance (two-way ANOVA) is a
useful tool for analyzing the data from a two-factor factorial experiment. To explain the ANOVA
approach for analyzing such an experiment, we define

the kth value of the response variable observed when using level i of factor 1 and
level j of factor 2

the mean of the m values observed when using the ith level of factor 1 and the jth
level of factor 2

the mean of the bm values observed when using the ith level of factor 1

the mean of the am values observed when using the jth level of factor 2

the mean of the abm values that we have observed in the experiment

The ANOVA procedure for a two-factor factorial experiment partitions the total sum of squares
(SSTO) into four components: the factor 1 sum of squares–SS(1), the factor 2 sum of
squares–SS(2), the interaction sum of squares–SS(int), and the error sum of squares–SSE.
The formula for this partitioning is as follows:

SSTO � SS(1) � SS(2) � SS(int) � SSE

We define each of these sums of squares and show how they are calculated for the bakery demand
data as follows (note that 

Step 1: Calculate SSTO, which measures the total amount of variability:

Step 2: Calculate SS(1), which measures the amount of variability due to the different levels of
factor 1:

� 6[(55.8 � 61.5)2 � (77.2 � 61.5)2 � (51.5 � 61.5)2] � 2,273.88

Step 3: Calculate SS(2), which measures the amount of variability due to the different levels of
factor 2:

� 9[(60.8 � 61.5)2 � (62.2 � 61.5)2] � 8.82

Step 4: Calculate SS(int), which measures the amount of variability due to the interaction
between factors 1 and 2:

 � (51.0 � 51.5 � 60.8 � 61.5)2 � (52.0 � 51.5 � 62.2 � 61.5)2] � 10.08

 � (75.5 � 77.2 � 60.8 � 61.5)2 � (78.9 � 77.2 � 62.2 � 61.5)2

 � 3[(55.9 � 55.8 � 60.8 � 61.5)2 � (55.7 � 55.8 � 62.2 � 61.5)2

 � (xTR � xT. � x.R � x)2 � (xTW � xT. � x.W � x)2]

 � (xMR � xM. � x.R � x)2 � (xMW � xM. � x.W � x)2

 � 3[(xBR � xB. � x.R � x)2 � (xBW � xB. � x.W � x)2

SS(int) � ma
a

i�1
a

b

j�1
(xij � xi. � x.j � x)2

� 3 � 3[(x.R � x)2 � (x.W � x)2]

SS(2) � ama
b

j�1
(x.j � x)2

� 2 # 3[(xB. � x)2 � (xM. � x)2 � (xT. � x)2]

SS(1) � bma
a

i�1
(xi. � x)2

 � (58.2 � 61.5)2 � (53.7 � 61.5)2 � … � (49.9 � 61.5)2 � 2,366.28

 SSTO � a
a

i�1
a

b

j�1
a
m

k�1
(xij,k � x)2

a � 3, b � 2, and m � 3) :

x �

x.j �

xi. �

xij �

xij,k �
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Step 5: Calculate SSE, which measures the amount of variability due to the error:

SSE � SSTO � SS(1) � SS(2) � SS(int)

� 2,366.28 � 2,273.88 � 8.82 � 10.08 � 73.50

These sums of squares are shown in Table 12.12, which is called a two-way analysis of variance
(ANOVA) table. This table also gives the degrees of freedom, mean squares, and F statistics
used to test the hypotheses of interest in a two-factor factorial experiment, as well as the values
of these quantities for the shelf display data.

We first test the null hypothesis H0 that no interaction exists between factors 1 and 2 versus
the alternative hypothesis Ha that interaction does exist. We can reject H0 in favor of Ha at
level of significance a if F(int) is greater than the Fa point based on (a � 1)(b � 1) numerator
and ab(m � 1) denominator degrees of freedom. In the supermarket case, F.05 based on 
(a � 1)(b � 1) � 2 numerator and ab(m � 1) � 12 denominator degrees of freedom is 3.89 (see
Table A.7, page 796). Because F(int) � .8229 (see Table 12.12) is less than F.05 � 3.89, we
cannot reject H0 at the .05 level of significance. We conclude that little or no interaction exists
between shelf display height and shelf display width. That is, we conclude that the relationship
between mean demand for the bakery product and shelf display height depends little (or not at
all) on the shelf display width. Further, we conclude that the relationship between mean demand
and shelf display width depends little (or not at all) on the shelf display height. Therefore, we
can test the significance of each factor separately.

To test the significance of factor 1, we test the null hypothesis H0 that no differences exist
between the effects of the different levels of factor 1 on the mean response versus the alterna-
tive hypothesis Ha that at least two levels of factor 1 have different effects. We can reject H0

in favor of Ha at level of significance a if F(1) is greater than the Fa point based on a � 1 numer-
ator and ab(m � 1) denominator degrees of freedom. In the supermarket case, F.05 based on
a � 1 � 2 numerator and ab(m � 1) � 12 denominator degrees of freedom is 3.89. Because
F(1) � 185.6229 (see Table 12.12) is greater than F.05 � 3.89, we can reject H0 at the .05 level of
significance. Therefore, we have strong evidence that at least two of the bottom, middle, and top
display heights have different effects on mean monthly demand.

To test the significance of factor 2, we test the null hypothesis H0 that no differences exist
between the effects of the different levels of factor 2 on the mean response versus the alterna-
tive hypothesis Ha that at least two levels of factor 2 have different effects. We can reject H0

in favor of Ha at level of significance a if F(2) is greater than the Fa point based on b � 1
numerator and ab(m � 1) denominator degrees of freedom. In the supermarket case, F.05 based 
on b � 1 � 1 numerator and ab(m � 1) � 12 denominator degrees of freedom is 4.75. Because
F(2) � 1.44 (see Table 12.12) is less than F.05 � 4.75, we cannot reject H0 at the .05 level of
significance. Therefore, we do not have strong evidence that the regular display width and the
wide display have different effects on mean monthly demand.

448 Chapter 12 Experimental Design and Analysis of Variance

T A B L E 1 2 . 1 2 Two-Way ANOVA Table for the Bakery Demand Data

Source of Degrees of Sum of
Variation Freedom Squares Mean Square F

Factor 1 a � 1 � 2 SS(1) � 2,273.88 � 1136.94 � 185.6229

Factor 2 b � 1 � 1 SS(2) � 8.82 � 8.82 � 1.44

Interaction (a � 1)(b � 1) � 2 SS(int) � 10.08 � 5.04 � .8229

Error ab(m � 1) � 12 SSE � 73.50 � 6.125

Total abm � 1 � 17 SSTO � 2,366.28

MSE �
SSE

ab(m � 1)

F(int) �
MS(int)

MSE
MS(int) �

SS(int)
(a � 1)(b � 1)

F(2) �
MS(2)
MSE

MS(2) �
SS(2)
b � 1

F(1) �
MS(1)
MSE

MS(1) �
SS(1)
a � 1
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12.4 Two-Way Analysis of Variance 449

SS(1) SS(2) SS(int) SSE SSTO MS(1) MS(2) MS(int) MSE F(1) p-value for F(1)

F(2) p-value for F(2) F(int) p-value for F(int) x.W20x.R19xT.18xM.17xB.1615141312

1110987654321

F I G U R E 1 2 . 1 1 MINITAB and Excel Outputs of a Two-Way ANOVA of the Bakery Demand Data

Rows : Height    Columns : Width      
Cell Contents : Demand  : Mean

Regular      Wide        All
Bottom 55.90     55.70      55.80
Middle 75.50     78.90      77.20
Top 51.00     52.00      51.50
All 60.80     62.20      61.50

Two-way ANOVA: Demand versus Height, Width

Source DF SS MS F P
Height 2      2273.88        1136.94       185.62       0.000
Width 1         8.82           8.82         1.44       0.253
Interaction 2        10.08           5.04         0.82       0.462
Error 12        73.50           6.12
Total 17      2366.28

1

2

3

4

6

7

8

10

12

14

11

13

15

9

5

16

17

19

20

18

(a) The MINITAB Output

ANOVA: Two-Factor With Replication

SUMMARY Regular Wide Total
Bottom

Count 3 3 6
Sum 167.7 167.1 334.8
Average 55.9 55.7 55.8
Variance 5.07 10.24 6.136

Middle

Count 3 3 6
Sum 226.5 236.7 463.2
Average 75.5 78.9 77.2
Variance 6.51 8.89 9.628

Top

Count 3 3 6
Sum 153.0 156.0 309.0
Average 51.0 52.0 51.5
Variance 1.8 4.2 2.7

Total

Count 9 9
Sum 547.2 559.8
Average 60.8 62.2
Variance 129.405 165.277

ANOVA
Source of Variation SS df MS F P-value F crit
Height 2273.88 2 1136.94 185.6229 0.0000 3.8853
Width 8.82 1 8.82 1.4400 0.2533 4.7472
Interaction 10.08 2 5.04 0.8229 0.4625 3.8853
Within 73.5 12 6.125
Total 2366.28 17

16

17

18

19 20

1 6 10 11

2 7 12 13

3 8 14 15

4 9

5

(b) The Excel Output

Height    Mean        Width       Mean
Bottom 55.8        Regular 60.8
Middle 77.2        Wide 62.2
Top 51.5

Noting that Figure 12.11 gives MINITAB and Excel outputs of a two-way ANOVA for the
bakery demand data, we next discuss how to make pairwise comparisons. 
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450 Chapter 12 Experimental Design and Analysis of Variance

Point Estimates and Confidence Intervals in Two-Way ANOVA

b A Tukey simultaneous 100(1 �A) percent
confidence interval for this difference (in
the set of all possible paired differences
between the effects of the different levels
of factor 2) is

where qa is obtained from Table A.10 and is
listed corresponding to values of b and
ab(m � 1).

3 Let mij denote the mean value of the response
variable obtained when using level i of factor 1
and level j of factor 2. A point estimate of Mij is

and an individual 100(1 �A) percent confi-
dence interval for mij is

where the ta�2 point is based on ab(m � 1)
degrees of freedom.

Bxij � ta�2  

B

MSE
m
R

xij,

B ( x.j � x.j
) � qa  

A
MSE� 1

am�R

1 Consider the difference between the effects of
levels i and i� of factor 1 on the mean value of
the response variable.
a A point estimate of this difference is 
b A Tukey simultaneous 100(1 �A) percent con-

fidence interval for this difference (in the set
of all possible paired differences between the
effects of the different levels of factor 1) is

where qa is obtained from Table A.10
(pages 799–800), which is a table of percent-
age points of the studentized range. Here qa
is listed corresponding to values of a and
ab(m � 1). 

2 Consider the difference between the effects of
levels j and j� of factor 2 on the mean value of
the response variable.
a A point estimate of this difference is x.j � x.j�

B ( xi. � xi�.) � qa  

A
MSE� 1

bm�R

xi. � xi�.

EXAMPLE 12.8 The Supermarket Case: Comparing Display Heights and Widths

We have previously concluded that at least two of the bottom, middle, and top display heights
have different effects on mean monthly demand. Because is greater than 
and , we will use Tukey simultaneous 95 percent confidence intervals to compare the
effect of a middle display height with the effects of the bottom and top display heights. To
compute these intervals, we first note that is the entry in Table A.10 (page 799) corre-
sponding to a � 3 and ab(m � 1) � 12. Also note that the MSE found in the two-way ANOVA
table is 6.125 (see Table 12.12 on page 448). It follows that a Tukey simultaneous 95 percent con-
fidence interval for the difference between the effects of a middle and bottom display height on
mean monthly demand is

This interval says we are 95 percent confident that changing from a bottom display height to a mid-
dle display height will increase the mean demand for the bakery product by between 17.5909 and
25.2091 cases per month. Similarly, a Tukey simultaneous 95 percent confidence interval for the
difference between the effects of a middle and top display height on mean monthly demand is

This interval says we are 95 percent confident that changing from a top display height to a middle
display height will increase mean demand for the bakery product by between 21.8909 and 29.5091
cases per month. Together, these intervals make us 95 percent confident that a middle shelf display
height is, on average, at least 17.5909 cases sold per month better than a bottom shelf display
height and at least 21.8909 cases sold per month better than a top shelf display height.

Next, recall that previously conducted F-tests suggest that there is little or no interaction
between display height and display width and that there is little difference between using a
regular display width and a wide display. However, noting that is slightly largerxMW � 78.9

 � [21.8909, 29.5091]

 [(xM. � xT.) � 3.8091] � [(77.2 � 51.5) � 3.8091]

 � [17.5909, 25.2091]

 � [21.4 � 3.8091]

 B (xM. � xB.) � q.05 
A

MSE� 1

bm�R � B (77.2 � 55.8) � 3.77
A

6.125� 1

2(3)�R

q.05 � 3.77

xT. � 51.5
xB. � 55.8xM. � 77.2

C

BI
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12.4 Two-Way Analysis of Variance 451

than , we now find an individual 95 percent confidence interval for mMW, the mean
demand obtained when using a middle display height and a wide display:

Here is based on degrees of freedom. This interval says that,
when we use a middle display height and a wide display, we can be 95 percent confident that
mean demand for the bakery product will be between 75.7865 and 82.0135 cases per month.

ab(m � 1) � 12t.025 � 2.179

 � [75.7865, 82.0135]

 BxMW � t.025 
A

MSE

m
R � B78.9 � 2.179

A

6.125

3
R

xMR � 75.5

If we conclude that (substantial) interaction exists between factors 1 and 2, the effects of
changing the level of one factor will depend on the level of the other factor. In this case, we can-
not analyze the levels of the two factors separately. One simple alternative procedure is to use
one-way ANOVA (see Section 12.2) to compare all of the treatment means (the mij’s) with the
possible purpose of finding the best combination of levels of factors 1 and 2.

Exercises for Section 12.4
CONCEPTS

12.17 What is a treatment in the context of a two-factor factorial experiment? 

12.18 Explain what we mean when we say that interaction exists between two factors.

METHODS AND APPLICATIONS

12.19 A study compared three display panels used by air traffic controllers. Each display panel was
tested for four different simulated emergency conditions. Twenty-four highly trained air traffic
controllers were used in the study. Two controllers were randomly assigned to each display
panel–emergency condition combination. The time (in seconds) required to stabilize the
emergency condition was recorded. Figure 12.12 gives the resulting data and the MINITAB out-
put of a two-way ANOVA of the data. Display2
a Interpret the interaction plot in Figure 12.12. Then test for interaction with .
b Test the significance of display panel effects with a� .05.
c Test the significance of emergency condition effects with a� .05.
d Make pairwise comparisons of display panels A, B, and C by using Tukey simultaneous 

95 percent confidence intervals. 
e Make pairwise comparisons of emergency conditions 1, 2, 3, and 4 by using Tukey simulta-

neous 95 percent confidence intervals.
f Which display panel minimizes the time required to stabilize an emergency condition? Does

your answer depend on the emergency condition? Why?
g Calculate a 95 percent (individual) confidence interval for the mean time required to stabilize

emergency condition 4 using display panel B.

12.20 A telemarketing firm has studied the effects of two factors on the response to its television
advertisements. The first factor is the time of day at which the ad is run, while the second is the
position of the ad within the hour. The data in Figure 12.13, which were obtained by using a
completely randomized experimental design, give the number of calls placed to an 800 number
following a sample broadcast of the advertisement. If we use Excel to analyze these data, we
obtain the output in Figure 12.13. TelMktResp
a Perform graphical analysis to check for interaction between time of day and position of 

advertisement. Explain your conclusion. Then test for interaction with a� .05.
b Test the significance of time of day effects with a� .05.
c Test the significance of position of advertisement effects with a� .05.
d Make pairwise comparisons of the morning, afternoon, and evening times by using Tukey

simultaneous 95 percent confidence intervals.
e Make pairwise comparisons of the four ad positions by using Tukey simultaneous 95 percent

confidence intervals.
f Which time of day and advertisement position maximizes consumer response? Compute a 

95 percent (individual) confidence interval for the mean number of calls placed for this time
of day/ad position combination.

DS

a � .05
DS
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452 Chapter 12 Experimental Design and Analysis of Variance

F I G U R E 1 2 . 1 2 The Display Panel Data and the MINITAB Output of a Two-Way ANOVA Display2DS

Tabulated statistics: Panel, Condition

Rows: Panel Columns: Condition

1 2 3 4 All

A 15.50 24.50 32.50 13.50 21.50

B 13.50 20.50 29.50 9.50 18.25

C 22.50 28.50 34.50 17.00 25.63

All 17.17 24.50 32.17 13.33 21.79

Cell Contents: Time : Mean

10

15

20

25

30

35

Panel A Panel B Panel C

Condition
1
2
3
4

Two-way ANOVA: Time versus Panel, Condition
Source DF SS MS F P

Panel 2 218.58 109.292 26.49 0.000

Condition 3 1247.46 415.819 100.80 0.000

Interaction 6 16.42 2.736 0.66 0.681

Error 12 49.50 4.125

Total 23 1531.96

Emergency Condition
Display Panel 1 2 3 4
A 17 25 31 14

14 24 34 13

B 15 22 28 9
12 19 31 10

C 21 29 32 15
24 28 37 19

0

50

100

150

Hour Half-Hour Early Late

Evening

Afternoon

Morning

F I G U R E 1 2 . 1 3 The Telemarketing Data and the Excel Output of a Two-Way ANOVA TelMktRespDS

ANOVA: Two-Factor With Replication

Summary Hour Half-Hour Early Late Total

Morning

Count 3 3 3 3 12

Sum 120 115 194 146 575

Average 40 38.3 64.7 48.7 47.9

Variance 7 6.3 9.3 4.3 123.7

Afternoon

Count 3 3 3 3 12

Sum 180 172 254 193 799

Average 60 57.3 84.7 64.3 66.6

Variance 4 6.3 12.3 14.3 132.4

Evening

Count 3 3 3 3 12

Sum 299 294 373 313 1279

Average 99.67 98 124.3 104.3 106.6

Variance 12.33 7 14.3 9.3 128.3

Total

Count 9 9 9 9

Sum 599 581 821 652

Average 66.56 64.56 91.22 72.44

Variance 697.53 701.78 700.69 625.03

ANOVA

Source of SS df MS F P-value F crit
Variation

Sample 21560.89 2 10780.444 1209.02 8.12E-25 3.403

Columns 3989.42 3 1329.B06 149.14 1.19E-15 3.009

Interaction 25.33 6 4.222 0.47 0.8212 2.508

Within 214 24 8.917

Total 25789.64 35

Position of Advertisement
Time of Day On the Hour On the Half-Hour Early in Program Late in Program
10:00 morning 42 36 62 51

37 41 68 47
41 38 64 48

4:00 afternoon 62 57 88 67
60 60 85 60
58 55 81 66

9:00 evening 100 97 127 105
96 96 120 101

103 101 126 107
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Chapter Summary

We began this chapter by introducing some basic concepts of
experimental design. We saw that we carry out an experiment
by setting the values of one or more factors before the values of
the response variable are observed. The different values (or
levels) of a factor are called treatments, and the purpose of most
experiments is to compare and estimate the effects of the various
treatments on the response variable. We saw that the different
treatments are assigned to experimental units, and we discussed
the completely randomized experimental design. This design
assigns independent, random samples of experimental units to the
treatments.

We began studying how to analyze experimental data by dis-
cussing one-way analysis of variance (one-way ANOVA). Here
we study how one factor (having p levels) affects the response
variable. In particular, we learned how to use this methodology to
test for differences between the treatment means and to estimate
the size of pairwise differences between the treatment means.

Sometimes, even if we randomly select the experimental units,
differences between the experimental units conceal differences
between the treatments. In such a case, we learned that we can
employ a randomized block design. Each block (experimental
unit or set of experimental units) is used exactly once to measure
the effect of each and every treatment. Because we are comparing
the treatments by using the same experimental units, any true dif-
ferences between the treatments will not be concealed by differ-
ences between the experimental units.

The last technique we studied in this chapter was two-way
analysis of variance (two-way ANOVA). Here we study the ef-
fects of two factors by carrying out a two-factor factorial exper-
iment. If there is little or no interaction between the two factors,
then we are able to study the significance of each of the two fac-
tors separately. On the other hand, if substantial interaction exists
between the two factors, we study the nature of the differences
between the treatment means.

Glossary of Terms

analysis of variance table: A table that summarizes the sums of
squares, mean squares, F statistic(s), and p-value(s) for an analy-
sis of variance. (pages 434, 441, and 448)
completely randomized experimental design: An experimen-
tal design in which independent, random samples of experimental
units are assigned to the treatments. (page 428)
experimental units: The entities (objects, people, and so on) to
which the treatments are assigned. (page 427)
factor: A variable that might influence the response variable; an
independent variable. (page 427)
interaction: When the relationship between the mean response
and one factor depends on the level of the other factor. (page 446)
one-way ANOVA: A method used to estimate and compare the
effects of the different levels of a single factor on a response vari-
able. (page 429)
randomized block design: An experimental design that com-
pares p treatments by using b blocks (experimental units or sets of

experimental units). Each block is used exactly once to measure
the effect of each and every treatment. (page 439)
replication: When a treatment is applied to more than one
experimental unit. (page 427)
response variable: The variable of interest in an experiment; the
dependent variable. (page 427)
treatment: A value (or level) of a factor (or combination of
factors). (page 427)
treatment mean: The mean value of the response variable
obtained by using a particular treatment. (page 429)
two-factor factorial experiment: An experiment in which we
randomly assign m experimental units to each combination of
levels of two factors. (page 446)
two-way ANOVA: A method used to study the effects of two
factors on a response variable. (page 447)

Important Formulas and Tests

One-way ANOVA sums of squares: pages 431–432

One-way ANOVA F-test: page 432

One-way ANOVA table: page 434

Estimation in one-way ANOVA: page 435

Randomized block sums of squares: page 440

Randomized block ANOVA table: page 441

Estimation in a randomized block ANOVA: page 441

Two-way ANOVA sums of squares: pages 447–448

Two-way ANOVA table: page 448

Estimation in two-way ANOVA: page 450

Supplementary Exercises

12.21 An experiment is conducted to study the effects of two sales approaches—high-pressure (H) and
low-pressure (L)—and to study the effects of two sales pitches (1 and 2) on the weekly sales of a
product. The data in Table 12.13 on the next page are obtained by using a completely randomized
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454 Chapter 12 Experimental Design and Analysis of Variance

design, and Figure 12.14 gives the Excel output of a two-way ANOVA of the sales experiment
data. SaleMeth2
a Perform graphical analysis to check for interaction between sales pressure and sales pitch.
b Test for interaction by setting a� .05.
c Test for differences in the effects of the levels of sales pressure by setting a� .05. 
d Test for differences in the effects of the levels of sales pitch by setting a� .05.

12.22 A drug company wishes to compare the effects of three different drugs (X, Y, and Z ) that are
being developed to reduce cholesterol levels. Each drug is administered to six patients at the 
recommended dosage for six months. At the end of this period the reduction in cholesterol level
is recorded for each patient. The results are given in Table 12.14. Using these data we obtain
SSTO � 2547.8, SSE � 395.7, , and . Completely analyze
these data using one-way ANOVA. CholRed

12.23 A small builder of speculative homes builds three basic house designs and employs two foremen.
The builder has used each foreman to build two houses of each design and has obtained the 
profits given in Table 12.15 (the profits are given in thousands of dollars, and the sample means
are enclosed in blue rectangles). If we use two-way ANOVA, we find that the p-value related to
F(int) is .001. Is this consistent with what you see in Figure 12.15? Explain your answer. Using
the fact that , find an individual 95 percent confidence interval for the true mean profit
when foreman 1 builds house design 3. HouseProfDS

MSE � .39

DS

xZ � 12.50xX � 23.67, xY � 39.17

DS

T A B L E 1 2 . 1 4
Reduction of 
Cholesterol Levels

CholRedDS

Drug
X Y Z
22 40 15
31 35 9
19 47 14
27 41 11
25 39 21
18 33 5

Sales Pitch
Sales Pressure 1 2
H 32 32

29 30
30 28

L 28 25
25 24
23 23

TA B L E 1 2 . 1 3 Results of the Sales Approach
Experiment SaleMeth2DS

F I G U R E 1 2 . 1 4 Excel Output of a Two-Way ANOVA of the 
Sales Approach Data

ANOVA: Two-Factor With Replication

SUMMARY Pitch 1 Pitch 2 Total
High Pressure

Count 3 3 6
Sum 91 90 181
Average 30.3333 30 30.1667
Variance 2.3333 4 2.5667

Low Pressure
Count 3 3 6
Sum 76 72 148
Average 25.3333 24 24.6667
Variance 6.3333 1 3.4667

Total
Count 6 6
Sum 167 162
Average 27.8333 27
Variance 10.9667 12.8

ANOVA
Source of Variation SS df MS F P-value F crit
Pressure 90.75 1 90.75 26.5610 0.0009 5.3177
Pitch 2.0833 1 2.0833 0.6098 0.4574 5.3177
Interaction 0.75 1 0.75 0.2195 0.6519 5.3177
Within 27.3333 8 3.4167
Total 120.917 11

T A B L E 1 2 . 1 5 Results of the House Profitability Study
HouseProfDS

F I G U R E 1 2 . 1 5 An Interaction Plot
for the House
Profitability Data

Design

M
ea

n

CBA

20

15

10

1
2

Interaction Plot (data means) for Profit

Foreman

House Design
Foreman A B C
1 10.2 12.2 19.4

11.1 11.7 18.2

2 9.7 11.6 13.6
10.8 12.0 12.7

10.65 11.95

11.80

18.80

13.1510.25
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Appendix 12.1 ■ Experimental Design and Analysis of Variance
Using Excel

One-way ANOVA in Figure 12.2(b) on page 434 (data
file: GasMile2.xlsx):

• Enter the gasoline mileage data from Table 12.1
(page 428) as follows: type the label “Type A”
in cell A1 with its five mileage values in cells A2
to A6; type the label “Type B” in cell B1 with its
five mileage values in cells B2 to B6; type the
label “Type C” in cell C1 with its five mileage
values in cells C2 to C6.

• Select Data : Data Analysis : Anova : Single
Factor and click OK in the Data Analysis dialog
box.

• In the “Anova: Single Factor” dialog box, enter
A1:C6 into the “Input Range” window.

• Select the “Grouped by: Columns” option.

• Place a checkmark in the “Labels in first row”
checkbox.

• Enter 0.05 into the Alpha box.

• Under output options, select “New Worksheet
Ply” to have the output placed in a new 
worksheet and enter the name “Output” for
the new worksheet.

• Click OK in the “Anova: Single Factor” dialog
box.

Randomized block ANOVA in Figure 12.8 on page 443
(data file: SaleMeth.xlsx):

• Enter the sales methods data from Figure 12.8
(page 443) as shown in the screen.

• Select Data : Data Analysis : Anova: Two-Factor
Without Replication and click OK in the Data
Analysis dialog box.

• In the “Anova: Two Factor Without Replication”
dialog box, enter A1:D5 into the “Input Range”
window. 

• Place a checkmark in the “Labels” checkbox.

• Enter 0.05 in the Alpha box.

• Under output options, select “New Worksheet
Ply” to have the output placed in a new 
worksheet and enter the name “Output” for 
the new worksheet.

• Click OK in the “Anova: Two-Factor Without 
Replication” dialog box.
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456 Chapter 12 Experimental Design and Analysis of Variance

Two-way ANOVA in Figure 12.14 on page 454 (data
file: SaleMeth2.xlsx):

• Enter the sales approach experiment data from
Table 12.13 (page 454) as shown in the screen.

• Select Data : Data Analysis : Anova : Two-Factor
With Replication and click OK in the Data Analysis
dialog box.

• In the “Anova: Two-Factor With Replication” 
dialog box, enter A1:C7 into the “Input Range”
window.

• Enter the value 3 into the “Rows per Sample” box
(this indicates the number of replications).

• Enter 0.05 in the Alpha box.

• Under output options, select “New Worksheet
Ply” to have the output placed in a new 
worksheet and enter the name “Output”
for the new worksheet.

• Click OK in the “Anova: Two-Factor With 
Replication” dialog box.

Appendix 12.2 ■ Experimental Design and Analysis of Variance
Using MegaStat

One-way ANOVA similar to Figure 12.2(b) on page 434
(data file: GasMile2.xlsx):

• Enter the gas mileage data in Table 12.1 
(page 428) into columns A, B, and C—Type A
mileages in column A (with label “Type A”), Type
B mileages in column B (with label “Type B”), and 
Type C mileages in column C (with label “Type C”).
Note that the input columns for the different
groups must be side by side. However, the number
of observations in each group can be different.

• Select Add-Ins : MegaStat : Analysis of Variance :
One-Factor ANOVA.

• In the One-Factor ANOVA dialog box, use the 
AutoExpand feature to enter the range A1:C6 into
the Input Range window.

• If desired, request “Post-hoc Analysis” to obtain
Tukey simultaneous comparisons and pairwise t
tests. Select from the options: “Never,” “Always,”
or “When p � .05.” The option “When p � .05”
gives post-hoc analysis when the p-value for the
F statistic is less than .05.

• Check the Plot Data checkbox to obtain a plot
comparing the groups.

• Click OK in the One-Factor ANOVA dialog box.
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Randomized block ANOVA similar to Figure 12.7(b) on
page 442 (data file: CardBox.xlsx):

• Enter the cardboard box data in Table 12.7 
(page 439) in the arrangement shown in the
screen. Here each column corresponds to a 
treatment (in this case, a production method) and
each row corresponds to a block (in this case, a
machine operator). Identify the production 
methods using the labels Method 1, Method 2,
Method 3, and Method 4 in cells B1, C1, D1, 
and E1. Identify the blocks using the labels
Operator 1, Operator 2, and Operator 3 in cells A2,
A3, and A4.

• Select Add-Ins : MegaStat : Analysis of Variance :
Randomized Blocks ANOVA.

• In the Randomized Blocks ANOVA dialog box, click
in the Input Range window and enter the range
A1:E4.

• If desired, request “Post-hoc Analysis” to obtain
Tukey simultaneous comparisons and pairwise 
t-tests. Select from the options: “Never,” 
“Always,” or “When p � .05.” The option “When 
p � .05” gives post-hoc analysis when the 
p-value related to the F statistic for the treatments
is less than .05.

• Check the Plot Data checkbox to obtain a plot
comparing the treatments.

Two-way ANOVA similar to Figure 12.11(b) on page 449
(data file: BakeSale2.xlsx):

• Enter the bakery demand data in Table 12.11
(page 446) in the arrangement shown in the
screen. Here the row labels Bottom, Middle, and
Top are the levels of factor 1 (in this case, shelf
display height) and the column labels Regular
and Wide are the levels of factor 2 (in this case,
shelf display width). The arrangement of the
data is as laid out in Table 12.11.

• Select Add-Ins : MegaStat : Analysis of Variance:
Two-Factor ANOVA.

• In the Two-Factor ANOVA dialog box, enter the
range A1:C10 into the Input Range window.

• Type 3 into the “Replications per Cell” window.

• Check the “Interaction Plot by Factor 1” and 
“Interaction Plot by Factor 2” checkboxes to 
obtain interaction plots.

• If desired, request “Post-hoc Analysis” to 
obtain Tukey simultaneous comparisons and
pairwise t-tests. Select from the options:
“Never,” “Always,” and “When p � .05.” The
option “When p � .05” gives post-hoc analysis
when the p-value related to the F statistic for a
factor is less than .05. Here we have selected
“Always.”

• Click OK in the Two-Factor ANOVA dialog box.

• Click OK in the Randomized Blocks ANOVA dialog
box.
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Appendix 12.3 ■ Experimental Design and Analysis of Variance 
Using MINITAB

One-way ANOVA in Figure 12.2(a) on page 434 (data
file: GasMile2.MTW):

• In the Data window, enter the data from 
Table 12.1 (page 428) into three columns with
variable names Type A, Type B, and Type C.

• Select Stat : ANOVA : One-way (Unstacked).

• In the “One-Way Analysis of Variance” dialog
box, enter ‘Type A’ ‘Type B’ ‘Type C’ into the
“Responses (in separate columns)” window. (The
single quotes are necessary because of the blank
spaces in the variable names. The quotes will be
added automatically if the names are selected
from the variable list or if they are selected by
double clicking.)

• Click OK in the “One-Way Analysis of Variance”
dialog box.

To produce mileage by gasoline type boxplots similar
to those shown in Table 12.1 (page 428):

• Click the Graphs . . . button in the “One-Way
Analysis of Variance” dialog box.

• Check the “Boxplots of data” checkbox and click
OK in the “One-Way Analysis of Variance—
Graphs” dialog box.

• Click OK in the “One-Way Analysis of Variance”
dialog box.

To produce Tukey pairwise comparisons:

• Click on the Comparisons . . . button in the 
“One-Way Analysis of Variance” dialog box.

• Check the “Tukey’s family error rate” checkbox.

• In the “Tukey’s family error rate” box, enter 
the desired experimentwise error rate (here 
we have entered 5, which denotes 5%—
alternatively, we could enter the decimal 
fraction .05).

• Click OK in the “One-Way Multiple 
Comparisons” dialog box.

• Click OK in the “One-Way Analysis of Variance”
dialog box.

• The one-way ANOVA output and the Tukey
multiple comparisons will be given in the 
Session window, and the box plots will appear
in a graphics window.
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Randomized Block ANOVA in Figure 12.7(a) on page 442
(data File: CardBox.MTW):

• In the data window, enter the observed number
of defective boxes from Table 12.7 (page 439) into
column C1 with variable name “Rejects”; enter
the corresponding production method (1,2,3,or 4)
into column C2 with variable name “Method”;
and enter the corresponding machine operator
(1,2,or 3) into column C3 with variable name
“Operator.”

• Select Stat : ANOVA : Two-way.

• In the “Two-Way Analysis of Variance” dialog box,
select Rejects into the Response window.

• Select Method into the Row Factor window and
check the “Display Means” checkbox.

• Select Operator into the Column Factor window
and check the “Display Means” checkbox.

• Check the “Fit additive model” checkbox.

• Click OK in the “Two-way Analysis of Variance”
dialog box to display the randomized block
ANOVA in the Session window.

Two-way ANOVA in Figure 12.11(a) on page 449 (data
file: BakeSale2.MTW):

• In the data window, enter the observed demands
from Table 12.11 (page 446) into column C1 with
variable name “Demand”; enter the correspond-
ing shelf display heights (Bottom, Middle, or Top)
into column C2 with variable name “Height”; and
enter the corresponding shelf display widths
(Regular or Wide) into column C3 with variable
name “Width.”

• Select Stat : ANOVA : Two-Way.

• In the “Two-Way Analysis of Variance” dialog box,
select Demand into the Response window.

• Select Height into the “Row Factor” window.

• Select Width into the “Column Factor” window.

• To produce tables of means by Height and Width,
check the “Display means” checkboxes next to the
“Row factor” and “Column factor” windows. This
will also produce individual confidence intervals
for each level of the row factor and each level of
the column factor—these intervals are not shown
in Figure 12.11.

• Enter the desired level of confidence for the 
individual confidence intervals in the “Confidence
level” box.

• Click OK in the “Two-Way Analysis of Variance” 
dialog box.

To produce an interaction plot similar to the one in
Figure 12.10 on page 446:

• Select Stat : ANOVA : Interactions plot.

• In the Interactions Plot dialog box, select Demand
into the Responses window.

• Select Width and Height into the Factors window.

• Click OK in the Interactions Plot dialog box to ob-
tain the plot in a graphics window.
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