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Aims and Objectives

Differentiating a function of several variables
with respect to one of its varaibles
Geometric representation and applications
of partial derivatives
Second order partial derivatives
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Partial Derivatives

Find the rate of change of a function of two variables
with respect to one of its variables
when the other is held constant.
Differentiate the function
with respect to the particular variable
while keeping the other variable fixed.
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Definition and Notation

Partial Derivatives
Suppose z = f (x , y).

The partial derivative of f with respect to x is denoted by

fx (x , y) =
∂z
∂x

and is the function obtained by differentiating f
with respect to x , treating y as a constant.
The partial derivative of f with respect to y is denoted by

fy (x , y) =
∂z
∂y

and is the function obtained by differentiating f
with respect to y , treating x as a constant.
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Computation of Partial Derivatives

Example
Find the partial derivatives fx and fy if f (x , y) = xe−2xy .

Solution.
Use the product rule:

fx (x , y) = e−2xy + x(−2ye−2xy ) = (1− 2xy)e−2xy .

Use the constant multiple rule:

fy (x , y) = x(−2xe−2xy ) = −2x2e−2xy .
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Geometric Interpretation of Partial Derivatives

The value z = f (x , y):
assigning a "height"
to the point (x,y,0).
If y is kept fixed at y = y0,
the points (x , y0, f (x , y0))
form a curve:
the intersection
of the surface z = f (x , y)
with the plane y = y0.
At each point of the curve,
the partial derivative ∂z∂x
is the slope of the curve
in the plane y = y0.

x

y
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b

Figure: ∂z
∂x = slope in x direction.
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Marginal Analysis

Example
It is estimated that the weekly output of a certain plant is given
by the function Q(x , y) = 1,200x + 500y + x2y − x3 − y2 units,
where x is the number of skilled workers
and y is the number of unskilled workers employed at the plant.
Currently the workforce consists of 30 skilled workers
and 60 unskilled workers.
Use marginal analysis to estimate the change in the weekly output
that will result from the addition of 1 more skilled worker
if the number of unskilled workers in unchanged.
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Marginal Analysis. (Continued)

Solution.

Qx (x , y) = 1,200 + 2xy − 3x2

The resulting change in output is approximately:

Q(31, 60)− Q(30, 60) ≈ Qx (30, 60)
= 1,200 + 2 · 30 · 60− 3 · 302 = 2,100

units.
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Substitute and Complementary Commodities

Partial Derivatives
Two commodities are said to be substitute commodities
if an increase in the demand of either
results in a decrease in demand of the other
(e.g. butter, margarine).
Two commodities are said to be complementary commodities
if an decrease in the demand of either
results in a decrease in demand of the other
(e.g. camera, film).
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Substitute and Complementary Commodities. (Continued)

Partial Derivatives
Suppose D1(p1, p2) and D2(p1, p2) units
of the two commodities are demanded
when the unit prices of the commodities are p1 and p2,
respectively.
We have

∂D1
∂p1
< 0 and ∂D2

∂p2
< 0.
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Substitute and Complementary Commodities. (Continued)

Partial Derivatives
For substitute commodities:

∂D1
∂p2
> 0 and ∂D2

∂p1
> 0.

For complementary commodities:

∂D1
∂p2
< 0 and ∂D2

∂p1
< 0.
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Substitute and Complementary Commodities. (Continued)

Example
Suppose the demand function for flour in a certain community
is given by

D1(p1, p2) = 500 +
10

p1 + 2 − 5p2,

while the corresponding demand for bread is given by

D2(p1, p2) = 400− 2p1 +
7

p2 + 3 ,

where p1 is the price in euros of a kilogram of flour
and p2 is the price of a loaf of bread.
Determine whether flour and bread are substitute
or complementary or neither.
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Substitute and Complementary Commodities. (Continued)

Solution.
∂D1
∂p2

= −5 < 0 and ∂D2
∂p1

= −2 < 0.

Since both partial derivatives are negative,
it follows that flour and bread are complemetary commodities.
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For Further Reading

http://fberisha.netfirms.com

Homework: Exercises from teaching materials
L. D. Hofmann, G. L. Bradley, Calculus – for business,
economics and life sciences, pp. 519–533.
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Summary

Partial derivatives of z = f (x , y):

fx =
∂z
∂x fy =

∂z
∂y
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