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Aims and Objectives

Learning the notion of a matrix as a rectangular array
and operations with matrices.
Computing the value of the determinant of a square matrix
of orders two and three.
Applying determinants for solving systems of linear equations
by Cramer’s rule.
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Example of a system of three equations

Example
In an automobile dealership, the most popular passenger cars are
Brand A, B and C. Because buyers bargain for the best price,
the sales price for each brand is not the same.
The table shows the sales and revenues for a 3-month period.
Compute the average sales price for each of these brands of cars.

Month Brand A Brand B Brand C Revenue
1 25 62 54 2, 756, 000 C
2 28 42 58 2, 695, 000 C
3 45 53 56 3, 124, 000 C

Table: Sales and Revenues from Selling Cars
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Example of a system of three equations. (Continued)

Solution.
Denote by x , y and z the average sales price
for Brand A, B, and C respectively.
Then, revenues for each of the periods can be represented
by the following system of equations.

25x + 62y + 54z = 2,756,000
28x + 42y + 58z = 2,695,000
45x + 53y + 56z = 3,124,000.
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Matrices

A matrix is a rectangular array of numbers,
such as those shown below.[

1 2 6
2 −3 5

]
ose

 1 3 1
−5 21 −3
1 −4 6

 .
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Matrices. (Continued)

Matrix
In general form, a matrix A is denoted as

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
...

...
...

...
am1 am2 am3 . . . amn

 = [aij ].

The numbers aij are the elements (or entries) of the matrix,
where the index i indicates the row and j indicates the column.
A matrix of m rows and n cols is said to be of m × n order.
If m = n, the matrix is said to be a square matrix of order n.
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First operations with matrices

Addition and Subtraction of Matrices
The sum of two matrices A = [aij ] and B = [bij ] of a same order
is the matrix C = A + B = [cij ] of the same order,
whose entries are the sums of corresponding entries:

cij = aij + bij for each i and j .

The difference of matrices A = [aij ] and B = [bij ] of a same order
is the matrix C = A− B = [cij ] of the same order,
whose entries are the differences of corresponding entries:

cij = aij − bij for each i and j .
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First operations with matrices. (Continued)

Example
Compute A + B and A− B given that

A =

[
1 2 6
2 −3 5

]
and B =

[
3 −1 0
−2 3 5

]
.

Solution.

A + B =

[
1 + 3 2− 1 6 + 0
2− 2 −3 + 3 5 + 5

]
=

[
4 1 6
0 0 10

]
,

A− B =

[
1− 3 2 + 1 6− 0
2 + 2 −3− 3 5− 5

]
=

[
−2 3 6
4 −6 0

]
.
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Determinants

Determinant of Order Two
If A is a square matrix of order 2, i.e.,

A =

[
a11 a12
a21 a22

]
,

then the determinant of A is

detA =

∣∣∣∣∣a11 a12
a21 a22

∣∣∣∣∣ = a11a22 − a12a21.
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Determinants. (Continued)

Remember!
The following scheme helps remembering the way of
computing the determinant of a square matrix of order 2.

detA = a11a22 − a12a21
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Determinants. (Continued)

Example
Compute detA for matrix

A =

[
1 3
2 4

]
.
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Determinants. (Continued)

Solution.
Following the scheme

we have
detA =

∣∣∣∣∣1 3
2 4

∣∣∣∣∣ = 1 · 4− 3 · 2 = −2.
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Determinants. (Continued)

Determinant of Order Three
If A is a square matrix of order 3, i.e.,

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,
then the determinant of A is

detA = a11a22a33 + a12a23a31 + a13a21a32

− a12a21a33 − a13a22a31 − a11a23a32.
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Determinants. (Continued)

Remember!
The following scheme helps remembering the way of
computing the determinant of a square matrix of order 3.

detA = a11a22a33 + a12a23a31 + a13a21a32

− a12a21a33 − a13a22a31 − a11a23a32
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Determinants. (Continued)

Example
Compute detA for matrix

A =

1 4 7
2 5 −8
3 −6 9

 .
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Determinants. (Continued)

Solution.
Following the scheme

detA = 1 · 5 · 9 + 4 · (−8) · 3 + 7 · 2 · (−6)
− 7 · 5 · 3− 1 · (−8) · (−6)− 4 · 2 · 9 = −360.
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Cramer’s Rule

Consider a system of three equations

a11x + a12y + a13z = b1

a21x + a22y + a23z = b2

a31x + a32y + a33z = b3.
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Cramer’s Rule. (Continued)

Cramer’s Rule. . .
The unknowns x , y and z can be found from the relations

x =
d1

detA , y =
d2

detA , z =
d3

detA ,

where

detA =

∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣
is the determinant of the system matrix A,
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Cramer’s Rule. (Continued)

. . . Cramer’s Rule
while

d1 =

∣∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣∣ , d2 =

∣∣∣∣∣∣∣
a11 b1 a13
a21 b2 a23
a31 b3 a33

∣∣∣∣∣∣∣ , d3 =

∣∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣∣
are the determinants formed from the determinant of matrix A
by substituting the right hand side column b1, b2 and b3
for the appropriate coefficients column.
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Cramer’s Rule. (Continued)

Example
Now, solve the system form the example at the beginning:

25x + 62y + 54z = 2,756,000
28x + 42y + 58z = 2,695,000
45x + 53y + 56z = 3,124,000.
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Cramer’s Rule. (Continued)

Solution. . .

det A =

∣∣∣∣∣25 62 54
28 42 58
45 53 56

∣∣∣∣∣
= 25 · 42 · 56 + 62 · 58 · 45 + 54 · 28 · 53

− 54 · 42 · 45− 25 · 58 · 53− 62 · 28 · 56 = 24,630,

d1 =

∣∣∣∣∣2,756,000 62 54
2,695,000 42 58
3,125,000 53 56

∣∣∣∣∣ = · · · = 514,890,000,

Matrices. Determinants. Cramer’s Rule 22



Systems of three equations
Matrices

Determinants
Cramer’s Rule

Summary

Cramer’s Rule. (Continued)

. . . Solution.

d2 =

∣∣∣∣∣25 2,756,000 54
28 2,695,000 58
45 3,125,000 56

∣∣∣∣∣ = · · · = 289,590,000

and

d3 =

∣∣∣∣∣25 62 2,756,000
28 42 2,695,000
45 53 3,125,000

∣∣∣∣∣ = · · · = 686,175,000.
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Cramer’s Rule. (Continued)

. . . Solution.
Thus,

x =
d1

det A =
514,890,000

24,630 ≈ 20,904.99,

y =
d2

det A =
289,590,000

24,630 ≈ 11,757.61,

z =
d3

det A =
686,175,000

24,630 ≈ 27,859.32.
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For Further Reading

http://fberisha.netfirms.com

Homework: Exercises from teaching materials
D. P. Maki, M. Thompson, Finite mathematics, pp. 222-269.
S. T. Karris, Mathematics for business, science and
technology, pp. 3-1–3-36.
F. M. Berisha, M. Q. Berisha, Matematikë – për biznes
dhe ekonomiks, pp. 9-19.
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Summary

A matrix A = [aij ]

The determinant detA = |aij | of a matrix A
The ways of computing the determinants of matrices of
orders 2 and 3
Cramer’s rule

xi =
di

detA
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