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Aims and Objectives

Notion of derivative and its interpretations: slope of the graph
and rate of change of the function.
Identifying the relation between derivative and increasing
and decreasing functions.
Applying the derivative to business applications
Introducing the symbolics for the derivative
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Rate of Change of a Function
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(x0 + h, f (x0 + h))

Figure: The graph of f (x) with the
secant line through P(x0, f (x0)) and
Q(x0 + h, f (x0 + h)).

Average rate of change of a
function:

vave =
f (x0 + h)− f (x0)

h

Instanteneous rate of
change:

v = lim
h→0

f (x0 + h)− f (x0)
h
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Slope of the Tangent Line of a Curve
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Figure: As h→ 0 the secant line
tends toward the tangent line
through P.

Slope of the secant line
through P, Q:

msec =
f (x0 + h)− f (x0)

(x0 + h)− x0

=
f (x0 + h)− f (x0)

h

Slope of the tangent line:

mtan = lim
h→0

msec

= lim
h→0

f (x0 + h)− f (x0)
h
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Notion of the Derivative of a Function

The Derivative of a Function
The derivative of a function f (x) with respect to x
is the function f ′(x) given by

f ′(x) = lim
h→0

f (x + h)− f (x)

h ,

and the process of computing the derivative is called
differentiation.
We say that f (x) is differentiable at x0 if f ′(x0) exists.
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The Derivative. Slope. Rate of Change

Slope. Rate of Change
The slope of the tangent line to the curve y = f (x)
at the point (x0, f (x0)) is given by mtan = f ′(x0).
Instantaneous rate of change of the quantity f (x)
with respect to x when x = x0 is equal to f ′(x0).
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Example of an Equation of a Tangent Line

Example
Compute the derivative of f (x) = x2,
then use it to find the slope of the curve at the point x = −1.
What is the equation of the tangent line at this point?
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Example of an Equation of a Tangent Line. (Continued)

Solution. . .
According to the definition of the derivative

f ′(x) = lim
h→0

f (x + h)− f (x)

h = lim
h→0

(x + h)2 − x2
h

= lim
h→0

(x2 + 2xh + h2)− x2
h = lim

h→0
2xh + h2

h

= lim
h→0

h(2x + h)
h = lim

h→0
(2x + h) = 2x .

The slope of the tangent line to the curve y = x2
at the point x = −1:

f ′(−1) = 2(−1) = −2
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The Graph of y = x 2
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Figure: The tangent line to the curve y = x2 at the point (−1, 1).
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Example of an Equation of a Tangent Line. (Continued)

. . . Solution.
Find the y -coordinate at the point of tangency:

y = f (−1) = (−1)2 = 1.

The tangent line passes through the point (−1, 1) with slope −2.
Its equation:

y − 1 = (−2)[x − (−1)]
y = −2x − 1.
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Example of a Business Application

Example
A manufacturer estimates that when x units of a commodity
are produced and sold the revenue derived will be
R(x) = 0.5x2 + 3x − 2 thousand euros.
At what rate is the revenue changing with respect to
the level of production x when 3 units are being produced?
Is the revenue increasing or decreasing at this point?
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Example of a Business Application. (Continued)

Solution. . .
For x ≥ 0, the difference quotient of R(x) is

R(x + h)− R(x)

h

=
[0.5(x + h)2 + 3(x + h)− 2]− [0.5x2 + 3x − 2]

h

=
[0.5(x2 + 2xh + h2) + 3x + 3h − 2]− 0.5x2 − 3x + 2

h

=
xh + 0.5h2 + 3h

h = x + 0.5h + 3.
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Example of a Business Application. (Continued)

. . . Solution.
Thus, the derivative of R(x) is

R ′(x) = lim
h→0

R(x + h)− R(x)

h = lim
h→0

(x + 0.5h + 3) = x + 3,

and since
R ′(3) = 3 + 3 = 6,

it follows that the revenue is changing at the rate 6, 000 C per unit
when 3 units are being produced.
Since R ′(3) = 6 > 0; i.e. since R ′(3) is positive,
the tangent line at the point on the graph of the revenue function
where x = 3 must be sloped upward.
This observation suggests that revenue is increasing when x = 3.
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The Graph of the Revenue Function
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Figure: The graph of R(x) = 0.5x2 + 3x − 2, for x ≥ 0, with tangent line
at the point where x = 3.
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Derivative Notation

The derivative f ′(x) of y = f (x) is sometimes written as dy
dx ,

and the value of the derivative at x = c (i.e., f ′(c)):
dy
dx

∣∣∣∣
x=c
.

For example, if y = x2, then
dy
dx = 2x .

Sometimes a statement such as

"if y = x2, then dy
dx = 2x"

is shortened by simply writing
d
dx (x2) = 2x .
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Derivative Notation
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Differentiability and Continuity

If a function is differentiable at a point P(x0, f (x0)),
then its graph has a nonvertical tangent line at P,
and all points on the graph "near" P are "close" to the tangent.

Intuitively, this suggests that a function
must be continuous at any point where it is differentiable,
since the graph cannot have a "hole" or "gap"
at any point where a tangent can be drawn.

But, the converse is not true;
i.e., a continuous function need not be everywhere differentiable.
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For Further Reading

http://fberisha.netfirms.com

Homework: Exercises from teaching materials
L. D. Hofmann, G. L. Bradley, Calculus – for business,
economics and life sciences, pp. 98–109.
F. M. Berisha, M. Q. Berisha, Matematikë – për biznes
dhe ekonomiks, pp. 153–161.
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Summary

Secant line; tangent line
Derivative: f ′(x) = lim

h→0
f (x+h)−f (x)

h

Interpretations:
Geometric: [Derivative]=[Slope of the tangent line]
Change: [Derivative]=[Rate of change]

Differentiable functions
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