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The Change of Variables 
Formula and Applications 
of Integration 

The change of variables formula is one of the most powerful integration methods 
in single-variable calculus; it enables us to evaluate integrals such as 

by using the substitution, or change of variables u = x2, which reduces the problem 
to the easy task of integrating eu with respect to u. In this chapter, we develop the 
multidimensional change of variables formula, which is especially important and 
useful in evaluating multiple integrals in polar, cylindrical, and spherical coordinates. 

One of the key ingredients in the change of variables formula is how to change 
variables in multidimensions. This involves the notion of mapping, which occurs 
in various interesting situations. For example, consider a deforming object, such 
as a swimming fish. As it changes its shape, one can imagine the instantaneous 
correspondence between points on the fish in its rest state and in its current shape. 
This type of correspondence is, in fact, the main idea behind a change of variables, 
in this case, of one three-dimensional region (the fish in its rest state) to another (the 
fish in its current shape). 

If you are stuck in a calculus problem and don't know what else to do, try 
integrating by parts or changing variables. 

Jerry JCazdart 

If that fails, go away, have a cup of coffee, and think! 
(Ute Müller 
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The first section in this chapter describes the key concepts for mappings between 
regions of the plane. It goes on to develop the change of variables technique for double 
and then triple integrals. The chapter also includes some of the important physical 
applications of the integral. 

6.1 The Geometry of Maps from M2 to M2 

In this section, we shall be interested in maps from subsets of R2 to R2. The resulting 
geometric understanding will be useful in the next section, when we discuss the change 
of variables formula for multiple integrals. 

Maps of One Region to Another 
Let D* be a subset of R2; suppose we consider a continuously differentiable map 
T: D* R2, so T takes points in D* to points in R2. We denote the set of image 
points by D or by T(D*)\ hence, D = T(Z)*) is the set of all points (x, y) e R2 such 
that 

(je, y) = T(x*, y*) for some (x*, y*) e D*. 

One way to understand the geometry of a map T is to see how it deforms or changes 
D*. For example, Figure 6.1.1 illustrates a map T that takes a slightly twisted region 
into a disk. 

CjD 
x 

Figure 6.1.1 A function T from a region D* to a disk D. 

Let D* C R2 be the rectangle D* = [0, 1] x [0, 2TT]. Then all 
points in D* are of the form (r, 0), where O < r < l , O < 0 < 2 7 r . Let T be the 
polar coordinate "change of variables" defined by T(r, 6) = (r cos 0, r sin 6). Find 
the image set D. 

SOLUTION Let (*,>>) = (r cos0, r sin6). Because of the identity x2 + y2 = 
r2 cos2 6 + r2 sin2 0 = r2 < 1, we see that the set of points (x, y) e R2 such that 
(x,y) e D has the property that x2 + y2 < 1, and so D is contained in the unit disk. 
In addition, any point (x, y) in the unit disk can be written as (r cos6, r sin6) for 
some 0 < r < 1 and 0 <6 <2n. Thus, D is the unit disk (see Figure 6.1.2). • 
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T: (r, 6) h—^ (r cos 6, r sin 0) = (je, y) 

r 

Figure 6.1.2 T gives a change of variables between Euclidean and polar 
coordinates. The unit circle is the image of a rectangle. 

E X A M P L E 2 Let T be defined by T(x, y) = ((x + y)/2, (x - y)/2) and let 
D* = [— 1, 1 ] x [— 1, 1 ] c M2 be a square with side of length 2 centered at the origin. 
Determine the image D obtained by applying T to D*. 

S O L U T I O N Let us first determine the effect of T on the line ci ( 0 = (t, 1), where 
- 1 < t < 1 (see Figure 6.1.3). We have r ( c i ( 0 ) = (it + l) /2, (t - l)/2). The map 
t I-» r ( c i ( 0 ) is a parametrization of the line — 1,0<JC < 1, because (t — 1)/ 
2 = (f + l ) /2 — 1. This is the straight line segment joining (1, 0) and (0, —1). 

u 
Figure 6.1.3 Domain for the transformation T of 
Example 2. 

Let 

c 2 (0 = ( U ) , 

c 3 (0 = - 1 ) , 

c 4 (0 = ( - U ) > 

-1 < t < 1 

-1 < t < 1 

- 1 < r < 1 

be parametrizations of the other edges of the square D*. Using the same argument 
as before, we see that T o is a parametrization of the line y = I — x , 0 < x < l 
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[the straight line segment joining (0, 1) and (1, 0)]; T o C3 is the line y = x + 1 , - 1 < 
x < 0 joining (0, 1) and (—1, 0); and T o C4 is the line y = — x — 1 , - 1 < x < 0 
joining (—1,0) and (0, —1). By this time it seems reasonable to guess that T "flips" 
the square £>* over and takes it to the square D whose vertices are (1,0), (0, 1), 
( -1 ,0 ) , ( 0 , - 1 ) (Figure 6.1.4). 

M 

^ x Figure 6.1.4 The effect of T on the region D*. 
= (1,0) 

• V ) 

To prove that this is indeed the case, let — 1 < a < 1 and let La (Figure 6.1.3) be 
a fixed line parametrized by c(/) = (a, t), - 1 < / < 1; then T(c(t)) = ((a + t)/2, 
(a — t)/2) is a parametrization of the line y = — x + a, {a — l)/2 < x < (a + l)/2. 
This line begins, for t = — 1, at the point ((a — l)/2, (1 + a)/2) and ends at the point 
((1 + a)/2, (a — l)/2); as is easily checked, these points lie on the lines T oc3 and 
F o c i , respectively. Thus, as a varies between — 1 and 1, La sweeps out the square D* 
while ^(Lq,) sweeps out the square/) determined by the vertices (—1, 0), (0, 1), (1, 0), 
and (0 , -1 ) . • 

Images of Maps 
The following theorem is a useful way to describe the image T(D*). 

T H E O R E M 1 Let A be a 2 x 2 matrix with det A / 0 and let T be the linear 
mapping of R2 to R2 given by T(x) = Ax (matrix multiplication). Then T transforms 
parallelograms into parallelograms and vertices into vertices. Moreover, if T(Z)*) is 
a parallelogram, D* must be a parallelogram. 

The proof of Theorem 1 is left as Exercise 10 at the end of this section. This 
theorem simplifies the result of Example 2, because we need only find the vertices of 
T(D*) and then connect them by straight lines. 

One- to -One Maps 
Although we cannot visualize the graph of a function T: R2 R2, it does help 
to consider how the function deforms subsets. However, simply looking at these 

( a - 1 a + l\ 
2 ' 2 / 

7X-1,-1) = (-1,0) 
T{ c4) 

7X-1,1) = (0,-1) 
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deformations does not give us a complete picture of the behavior of T. We may 
characterize T further by using the notion of a one-to-one correspondence. 

DEFINITION A mapping T is one-to-one on D* if for (w, v) and (u\ v') e £>*, 
T(u, v) = T(u', v') implies that u = u' and v = v'. 

This statement means that two different points of D* are not sent into the same 
point of D by T. For example, the function T(x,y) = (x2 + y2, y4) is not one-to-one, 
because T( 1, - 1 ) = (2, 1) = T( 1, 1) and yet (1, - 1 ) ^ (1, 1). 

Consider the polar coordinate mapping function T: M2 —>• M2 

described in Example 1, defined by 6) — (r cos 0, r sin^). Show that T is not 
one-to-one if its domain is all of M2. 

S O L U T I O N If 0i / 02, then T(0, 0{) = T(0, 02\ and so T cannot be one-to-one. 
This observation implies that if L is the side of the rectangle D* = [0, 1] x [0, 27T] 
where 0 < 0 < 2n and r = 0 (Figure 6.1.5), then T maps all of L into a single point, 
the center of the unit disk D. However, if we consider the set S* = (0, 1] x [0, In), 
then T: S* S is one-to-one (see Exercise 1). Evidently, in determining whether a 
function is one-to-one, the domain chosen must be carefully considered. A 

Figure 6.1.5 The 
polar-coordinate 
transformation T takes 
the line L to the point 
(0,0). 

E X A M P L E 4 Show that the function T\ W W of Example 2 is one-to-one. 

S O L U T I O N Suppose T(x, y) = T(x\ / ) ; then 

fx+y x - y\ _ fx' +/ x'-y'\ 

and we have 

x — y = x' — y'. 
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Adding, we have 

2x = 2xr. 

Thus, x =x' and, similarly, subtracting gives y = y', which shows that T is one-to-
one (with domain all of R2). Actually, because T is linear and T(x) = Ax, where A 
is a 2 x 2 matrix, it would also suffice to show that det A ± 0 (see Exercise 8). A 

Onto Maps 
In Examples 1 and 2, we have been determining the image D = T(D*) of a region 
D* under a mapping T. What will be of interest to us in the next section is, in part, 
the inverse problem: Namely, given D and a one-to-one mapping T of R2 to R2, find 
£>* such that T(D*) = D. 

Before we examine this question in more detail, we introduce the notion of "onto." 

DEFINITION The mapping T is onto D if for every point (x,y) e D there exists 
at least one point (u, v) in the domain of T such that T(u, v) = (x, y). 

Thus, if T is onto, we can solve the equation T(u, v) = (x, y) for (u, v), given 
(x, y) e D. If T is, in addition, one-to-one, this solution is unique. 

For linear mappings T of R2 to R2 (or W1 to W1) it turns out that one-to-one and 
onto are equivalent notions (see Exercises 8 and 9). 

If we are given a region D and a mapping T, the determination of a region D* 
such that T(D*) = D will be possible only when for every (x,y) e D there is a (w, v) 
in the domain of T such that T(u, v) = (x, y) (that is, T must be onto D). The next 
example shows that this cannot always be done. 

L e t T'. R2 —• R2 be given by T(u, v) = (u, 0). Let D be the 
square, D = [0, 1] x [0, 1]. Because T takes all of R2 to one axis, it is impossible to 
find a D* such that T(D*) = D. A 

Let us revisit Example 2 using these methods. 

l ^ j M ^ I U I S y l Let T be defined as in Example 2 and let D be the square whose 
vertices are (1, 0), (0, 1), ( - 1 ,0 ) , (0, - 1 ) . Find a D* with T(D*) = D. 

S O L U T I O N Because T is linear and 7(x) = Ax, where A is a 2 x 2 matrix 
satisfying det A ^ 0, we know that T: R2 R2 is onto (see Exercises 8 and 9), 
and thus D* can be found. By Theorem 1, D* must be a parallelogram. In order 
to find D*, it suffices to find the four points that are mapped onto vertices of D; 
then, by connecting these points, we will have found D*. For the vertex (1,0) of 
D, we must solve T(x,y) = (1, 0) = ((x + y)/2, (x - y)/2), so that (x + y)/2 = 1, 
(x — y)/2 = 0. Thus, (x, y) = (1, 1) is a vertex of D*. Solving for the other vertices, 
we find that D* = [— 1, 1] x [— 1, 1]. This is in agreement with what we found more 
laboriously in Example 2. A 
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E X A M P L E 7 Let D be the region in the first quadrant lying between the arcs 
of the circles x2 + y2 = a2, x2 + y2 = b2, 0 < a < b (see Figure 6.1.6). These cir-
cles have equations r = a and r = b in polar coordinates. Let T be the polar-
coordinate transformation given by T(r, 6) = (r cos 0, r sin 6) = (x, y). Find D* such 
that 7(D*) = D. 

Figure 6.1.6 We seek a region D* in the Or plane whose image 
under the polar-coordinate mapping is D. 

(b, 0) 

S O L U T I O N In the region D, a2 < x2 + y2 < b2; and because r2 = x2 + y2, we 
see that a <r < b. Clearly, for this region 6 varies between 0 < 0 < it¡2. Thus, if 
D* = [a, b] x [0, TT/2], we have T(D*) = D and T is one-to-one. • 

R E M A R K The inverse function theorem discussed in Section 3.5 is relevant to the 
material here. It states that if the determinant of vo) [which is the matrix of 
partial derivatives of T evaluated at (w0, v0)] is not zero, then for (u, v) near (w0, ^o) 
and (x, y) near (xo, yo) = T(uo, vo), the equation T(u, v) = (x, y) can be uniquely 
solved for (w, v) as functions of (x, y). In particular, by uniqueness, T is one-to-one 
near (w0, vo); also, T is onto a neighborhood of (x0, yo), because T(u, v) = (x, y) is 
solvable for (w, v) if (x, y) is near (xo, .yo)-

However, even if T is one-to-one near every point, and also onto, T need not be 
globally one-to-one. Thus, one must exercise caution (see Exercise 12). 

Surprisingly, if D* and D are elementary regions and T: D* D has the prop-
erty that the determinant of D7(m, V) is not zero for any (w, u) in D* and if T maps 
the boundary of D* in a one-to-one and onto manner to the boundary of D, then T is 
one-to-one and onto from D* to D. (This proof is beyond the scope of this text.) 

In summary, we have: 

One- to -One and O n t o Mapp ings A mapping T: D* D is one-to-one 
when it maps distinct points to distinct points. It is onto when the image of 
D* under T is all of D. 

A linear transformation of M" to W1 given by multiplication by a matrix A 
is one-to-one and onto when and only when det A ^ 0. 
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E X E R C I S E S 

1. Let S* = (0, 1] x [0, 2n) and define T(r, 0) = (r cos r sin#). Determine the image 
set S. Show that T is one-to-one on S*. 

Show that T rotates the unit square, D* = [0, 1] x [0, 1]. 

3. Let D* = [0, 1] x [0, 1] and define T on D* by T(u, v) = ( - M 2 + 4M, V). Find the 
image D. Is T one-to-one? 

4. Let D* be the parallelogram bounded by the lines y = 3x — 4, y = 3JC, y = and 
y = l{x+ 4). Let D = [0, 1] x [0, 1]. Find a T such that D is the image of D* under T. 

5. Let D* = [0, 1] x [0, 1] and define T on D* by T(x*, y*) = (.x*y*, x*). Determine the 
image set D. Is T one-to-one? If not, can we eliminate some subset of D* so that on the 
remainder T is one-to-one? 

6. Let D* be the parallelogram with vertices at (— 1, 3), (0, 0), (2, — 1), and (1,2), and D be 
the rectangle D = [0, 1] x [0, 1]. Find a T such that D is the image set of D* under T. 

7. Let T\ E 3 —• IR3 be the spherical coordinate mapping defined by (p, 0 , 0) (x, y, z), 

Let D* be the set of points (p, <p, 6) such that 0 e [0, TT], 0 e [0, 2TT], p € [0, 1]. Find 
D = T(D*). Is T one-to-one? If not, can we eliminate some subset of D* so that, on the 
remainder, T will be one-to-one? 

In Exercises 8 and 9, let T(x) = Ax, where A is a 2 x 2 matrix. 

8. Show that T is one-to-one if and only if the determinant of A is not zero. 

9. Show that det A ^ 0 if and only if T is onto. 

10. Suppose T: R2 —• IR2 is linear and is given by T(x) = Ax, where A is a 2 x 2 matrix. 
Show that if det A ^ 0, then T takes parallelograms onto parallelograms. [HINT: The general 
parallelogram in IR2 can be described by the set of points q = p + Av + /xw for A, ¡i e (0, 1) 
where p, v, w are vectors in IR2 with v not a scalar multiple of w.] 

11. Suppose T: IR2 -> IR2 is as in Exercise 10 and that T(P*) = P is a parallelogram. Show 
that P* is a parallelogram. 

12. Consider the map T: D -> Z), where D is the unit disk in the plane, given by 

2. Define 

where 
x = p s in0cos0 , y = p s in0 sin#, z = pcos(p. 

T(r cos0, r sin#) = (r2 cos 20 , r 2 sin20). 
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Using complex notation, z — x iy, the map T can be written as T(z) — z1. Show that the 
Jacobian determinant of T vanishes only at the origin. Thus, away from the origin, T is 
locally one-to-one. However, show that T is not globally one-to-one on IR2 minus the origin. 

6*2 The Change of Variables Theorem 
Given two regions D and D* in R2, a differentiable map T on D* with image Z), that 
is, T(D*) = D, and any real-valued integrable function f : D M, we would like 
to express f f D f(x9 y) dA as an integral over D* of the composite function / o T. In 
this section we shall see how to do this. 

Assume that D* is a region in the uv plane and that D is a region in the xy plane. 
The map T is given by two coordinate functions: 

T(u, v) = (*(«, u), y(u, v)) for (m, v) e D*. 

At first, one might conjecture that 

j j f(x,y)dxdy= j j f(x(u9v)9y(u9v))dudv9 (1) 

where / o T(u, v) = f(x(u9 v)9y(u9 v)) is the composite function defined on D*. 
However, if we consider the function / : D M2 where f(x9y) = 1, then equation 
(1) would imply 

A(D) = j j dxdy= j j dudv = A(D*). (2) 

But equation (2) will hold for only a few special cases and not for a general map T. 
For example, define T by T(u9 v) = (—u2 + 4u9 u). Restrict T to the unit square; that 
is, to the region D* = [0, 1] x [0, 1] in the uv plane (see Figure 6.2.1). Then, as in 
Exercise 3, Section 6.1, 7 takes D* onto D = [0, 3] x [0, 1]. Clearly, A(D) ^ A(D*), 
and so formula (2) is not valid. 

(0, l), (0, l ) i 

D D 

(1,0) 
u 

(3,0) 
JC 

Figure 6.2.1 The map T: (u9 v) (-u2 + 4 u 9 v ) takes the square D* onto the 
rectangle D. 
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Jacobian Determinants 
To rectify the incorrect formula (1), we need a measure of how a transformation 
T: M2 M2 distorts the area of a region. This is given by the Jacobian determinant, 
which is defined as follows. 

DEFINITION: Jacobian Determinant Let T: £>* c M 2 ^ M2 be a C1 

transformation given by x = x(u, v) and y = y(u, u). The Jacobian determi-
nant of T, written 9(x, y)/3(u, v), is the determinant of the derivative matrix 
DT(u,v) o f 7 : 

3x 3x 
dv 
dy 
dv 

The function from M2 to M2 that transforms polar coordinates into 
Cartesian coordinates is given by 

x = r cos0, y = rsinO 

and its Jacobian determinant is 

Hr,6) 

cos 0 —r sin 0 
sin 6 r cos 6 

= r(cosz 0 + sin2 0) = r. 

Under suitable restrictions on the function T, we will argue below that the 
area of D — T(D*) is obtained by integrating the absolute value of the Jacobian 
d(x,y)/d(u, v) over D*\ that is, we have the equation 

A W - f j â . é y - f l \d(x>y) 
I 3(M, V) 

du dv. (3) 

To illustrate: From Example 1 in Section 6.1, take T\ D* —>• D, where D = 
T(D*) is the set of (x, y) withx2 + y2 < 1 and D* = [0, 1] x [0, 2TT], and = 
(r cos r sin 6). By formula (3), 

A(£)) IL \d(x,y) 
I a(r,e) 

J r -iL r dr dO (4) 



408 The Change of Variables Formula and Applications of Integration 

(here r and 6 play the role of u and v). From the preceding computation it follows 
that 

C C C2jt C1 f 2 n Tr 2 ! 1 1 i2jT 

¡1 rdrdO = \ I rdrdO = I I — d0 = - dO = n 
J JD* JO JO Jo L 2 Jo 2 J0 

is the area of the unit disk D, confirming formula (3) in this case. In fact, we may 
recall from first-year calculus that equation (4) is the correct formula for the area of 
a region in polar coordinates. 

It is not so easy to rigorously prove assertion (3). However, looked at in the 
proper way, it becomes quite plausible. Recall that A(D) = f f D dx dy was obtained 
by dividing up D into little rectangles, summing their areas, and then taking the limit 
of this sum as the size of the subrectangles tended to zero. The problem is that T may 
map rectangles into regions whose area is not easy to compute. The solution is to 
approximate these images by simpler regions whose area we can compute. A useful 
tool for doing this is the derivative of T, which we know (from Chapter 2) gives the 
best linear approximation to T. 

Consider a small rectangle D* in the uv plane as shown in Figure 6.2.2. Let T' 
denote the derivative of T evaluated at (w0, vq), so T' is a 2 x 2 matrix. From our 
work in Chapter 2, we know that a good approximation to T(u, v) is given by 

a dx . . 
Av — ì + 

dv 

Ai'j D* 

("o, uo) Atti 

T(u0,v0) + T\D*) 

' N 

OWo ) 

T(D*) 

••T(u0,v0) N^a* i + A „ | V j 
du du 

Figure 6.2.2 The effect of the transformation T on a small rectangle D*. 

where Au = u — uq and Av = v — vo. This mapping T' takes D* into a parallelogram 
with vertex at T(UQ, V0) and with adjacent sides given by the vectors 

dx dx dx 
du dv r Au = Au du = AuTu 
du dv L « J = Au du = AuTu dy dy L « J dy 

_ du dv _ _ du _ 



6.2 The Change of Variables Theorem 3 7 9 

and 

T'(Avi) : 

dx dx 
du dv 

dy dy 
_ du dv _ 

where 

T„ = 
dx. 
du 

L.dy-
du 

and 

Av 

dx 
~dv 
dy 

L dv 

= Ai;Tv, 

dx dy 
av dv 

are evaluated at (M0, ^O)-
Recall from Section 1.3 that the area of the parallelogram with sides equal to the 

vectors ai + b] and ci + d\ is equal to the absolute value of the determinant 

a b a c 
c d b d 

Thus, the area of T(D*) is approximately equal to the absolute value of 

dx dx 
— A u —Av 
du dv 
dy 
du 

Au 
dy 
dv* 

Av 

dx dx 
du dv 

dy dy 
du dv 

d(x ,y) 
Au Av = Au Av 

d(u, v) 

evaluated at (UQ, VQ). 
This fact and a partitioning argument should make formula (3) plausible. In-

deed, if we partition D* into small rectangles with sides of length Au and Av, the 
images of these rectangles are approximated by parallelograms with sides Tu Au 
and Tu Av, and hence with area |3(x, y)/d(u, Au Av. Thus, the area of D* 
is approximately ^AuAv, where the sum is taken over all the rectangles R in-
side D* (see Figure 6.2.3). Hence, the area of T(D*) is approximately the sum 

approximately \d(x, y)/d(u, v)\AuAv. 
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J2 y)/d(u, Au Av. In the limit, this sum becomes 
I d(x,y) IL dudv. 
I d(u, v) 

Let us give another informal argument for the special case (4) of formula (3), 
that is, the case of polar coordinates. Consider a region D in the xy plane and a 
grid corresponding to a partition of the r and 0 variables (Figure 6.2.4). The area 
of the shaded region shown is approximately (Ar)(rjk AO), because the arc length 
of a segment of a circle of radius r subtending an angle 0 is r<p. The total area is 
then the limit of J ] rjk Ar AO \ that is, ffD* r dr dO. The key idea is thus that the jkth 
"polar rectangle" in the grid has area approximately equal to rjk Ar AO. (For n large, 
the jkth polar rectangle will look like a rectangle with sides of lengths rjk AO and 
Ar). This should provide some insight into why we say the "area element dx dy " is 
transformed into the "area element rdr dO." 

rjk A r 

Figure 6.2.4 D* is mapped to D under the polar-coordinate mapping T. 

E X A M P L E 2 Let the elementary region D in the xy plane be bounded by the 
graph of a polar equation r = f(0), where Oo < 0 < 6\ and f(0) > 0 (see Fig-
ure 6.2.5). In the rO plane we consider the r-simple region D* where 0Q < 0 < 0\ 

D 
r = m 

r = m 

Figure 6.2.5 The effect on the region D* of the polar-coordinate mapping. 
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and 0 < r < / (#) . Under the transformation x = r cos 0, y = r sin 0, the region D* 
is carried onto the region D. Use equation (4) to calculate the area of D. 

S O L U T I O N 

-IL 
I 0) 

rdr dO 

dr dO 

Ie0 \_fo 
rex r 2 - 1 m re 
/ T d 0 = 

Jeo L 2 Jo A) 

m 
r dr 

urn2 

de 

de 

This formula for A(D) should be familiar from one-variable calculus. 

Change of Variables Formula 
Before stating the two-variable change of variables formula, which is the culmination 
of this discussion, let us recall the corresponding theorem from one-variable calculus 
that goes under the name the method of substitution: 

fb dx Cx{fj) 

/ f(x(u))--du= f(x)dx, (5) 
J a a u J x(a) 

where f is continuous and u i-> x(u) is continuously differentiate on [a, b]. 

PROOF Let F be an antiderivative of / ; that is, F' = / , whose existence is guar-
anteed by the fundamental theorem of calculus. The right-hand side of equation (5) 
becomes 

rx(b) 

/ f(x)dx = F(x(b))-F(x(a)). 
J x (a) 

To evaluate the left-hand side of equation (5), let G(u) = F(x(u)). By the chain rule, 
G'(u) = F\x{u))x'{u) = f{x(u))x'(u). Hence, again by the fundamental theorem, 

b pb 
f(x(u))x'(u)du = / G'(u)du = G{b) - G(a) = F(x(b)) - F(x(a)), 

J a 

as required. • 

Suppose now that we have a C1 function u H> X(U) that is one-to-one on [a, b]. 
Thus, we must have either dx/du > 0 on [a, b] or dx/du < 0 on [a,b].1 Let /* 
denote the interval [a, b]7 and let / denote the closed interval with endpoints x(a) 

I 

!If dx/du is positive and then negative, the function x = x{u) rises and then falls, and thus is not one-to-one; a similar 
statement applies if dx/du is negative and then positive. 
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and x(b). (Thus, / = [x(a), x(&)] if u m» x(u) is increasing and / = [x(&), x(a)] if 
u x(u) is decreasing.) With these conventions we can rewrite formula (5) as 

L dx 
du du I f(x)dx. 

This formula generalizes to double integrals, as was already given informally in for-
mula (3): /* becomes £)*, / becomes D, and \dx/du \ is replaced by |3(x, y)/3(u, 
Let us state the result formally (the technical proof is omitted). 

T H E O R E M 2: Change of Variables: Doub le Integrals Let D and 
£>* be elementary regions in the plane and let T: D* D be of class C1; suppose 
that T is one-to-one on £>*. Furthermore, suppose that D = 7(D*). Then for 
any integrable function f:D-> R, we have 

jj^ f ( x > y) dx dy = jj^ . f(x(u, v),y(u, v)) d(x,y) 
3(w, u) 

Jw dv. (6) 

One of the purposes of the change of variables theorem is to supply a method 
by which some double integrals can be simplified. One might encounter an integral 
f f D f dA for which either the integrand / or the region D is complicated and for 
which direct evaluation is difficult. Therefore, a mapping T is chosen so that the 
integral is easier to evaluate with the new integrand f oT and with the new region 
D* [defined by T(D*) = D]. Unfortunately, the problem may actually become more 
complicated if T is not selected carefully. 

E X A M P L E 3 Let P be the parallelogram bounded by y = 2x,y = 2x — 2, 
y = x, and y = x + 1 (see Figure 6.2.6). Evaluate Jfpxy dx dy by making the 

(0,0) 0,0) 

(0,-2), •0,-2) 

Figure 6.2.6 The 
effect of T(u, v) = 
(u — v,2u — v) on 

* the rectangle P*. 
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change of variables 

x = u — v, y — 2u — v, 

that is, T(u, v) = (u — v, 2u — v). 

S O L U T I O N The transformation T has nonzero determinant and so is one-to-
one (see Exercise 8, Section 6.1). It is designed so that it takes the rectangle P* 
bounded by v = 0, v = —2, u = 0, u = 1 onto P. The use of T simplifies the region 
of integration from P to P*. Moreover, 

d(x9y) 
det 

3(w, v) 

Therefore, by the change of variables formula, 

1 - 1 
2 - 1 

= 1. 

j j xydxdy = j j (u — v)(2u — v) du dv = j j (2u2 — 3vu + v2) du dv 
-2 JO 

0 

- [ - Y -

dv 

,3-jO 

- 2 

= 7 

Integrals in Polar Coordinates 
Suppose we consider the rectangle D* defined by 0 < 0 < 2n, 0 < r < a in the 
rO plane. The transformation T given by T(r, 6) = (r cos 6, r sin0) takes D* onto 
the disk D with equation x2 + y2 < a2 in the xy plane. This transformation repre-
sents the change from Cartesian coordinates to polar coordinates. However, T does 
not satisfy the requirements of the change of variables theorem, because it is not 
one-to-one on D*: In particular, T sends all points with r = 0 to (0, 0) (see Figure 
6.2.7 and Example 3 of Section 6.1). Nevertheless, the change of variables theorem is 
valid in this case. Basically, the reason for this is that the set of points where T is not 
one-to-one lies on an edge of D*, which is the graph of a smooth curve and therefore, 
for the purpose of integration, can be neglected. In summary, the formula 

Change of Variables—Polar Coordinates 

j j f(x,y)dxdy = j j f(r cos0, r sin0)r dr dO (7) 
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r = 0 

Figure 6.2.7 The image 
of the rectangle D* under 
the polar-coordinate 
transformation is the 
disk D. 

is valid when T sends D* onto D in a one-to-one fashion except possibly for points 
on the boundary of D*. 

BESv 5 ' i n ifl Evaluate f f D log (x2 + y2) dx dy, where D is the region in the first 
quadrant lying between the arcs of the circles x2 + y2 = a2 and x2 + y2 = Z?2, where 
0 < a < b (Figure 6.2.8). 

Figure 6.2.8 The 
polar-coordinate mapping 
takes a rectangle D* onto 
part of an annulus D. 

S O L U T I O N These circles have the simple equations r = a and r — b in polar 
coordinates. Moreover, r2 = x2 + y2 appears in the integrand. Thus, a change to 
polar coordinates will simplify both the integrand and the region of integration. From 
Example 7, Section 6.1, the polar-coordinate transformation 

x = r c o s 0 , j; = r s in0 



6.2 The Change of Variables Theorem 3 8 5 

sends the rectangle D* given by a < r < b, 0 < 0 < n/2 onto the region D. This 
transformation is one-to-one on D* and so, by formula (7), we have 

rr r° pn/z 
/ / log(x 2 +y2)dxdy = / / r\ogr2dQdr 

J JD Ja Jo 

n f b
 2 7t f b 

= — I rlogr dr = — / 2 r log r dr. 
2 Ja 2 Ja 

Applying integration by parts, or using the formula 

/ 2 2 
x logx dx = — logx —— 

from the table of integrals at the back of the book, we obtain the result 

\ l 2 H o 8 r d , ' = ï [ 
b2 log b — a2 log a — ^(b2 — a2) 

E X A M P L E 5 T h e Gaussian Integral One of the most beautiful applications 
of the change of variables formula, polar coordinates, and the reduction to iterated 
integrals is their application to the following formula, known as the Gaussian integral: 

/ OO 2 

e~x dx = yfn. 
-oo 

Not only is this formula very attractive in its own right, but it is also useful in areas 
such as statistics. It also illustrates the unity of the transcendental numbers e and TT 
nearly as well as does the classic formula elJl = —1. 

To carry out the integration of the Gaussian integral,2 we first evaluate the double 
integral 

jj e-^Uxdy, 

2The method that follows is admittedly not straightforward but requires a trick. The trick is to start with the desired formula 
and square both sides. You will then observe that the left-hand side resembles an iterated integral. There are several 
other ways to evaluate the Gaussian integral, but all of them require some nonobvious method. For the use of complex 
variables to evaluate it, see, for example, J. Marsden and M. Hoffman, Basic Complex Analysis, 3rd ed., W. H. Freeman, 
New York; 1998. 
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where Da is the diskx2 + y2 < a2. Because r2 — x2 + y2, and dx dy = r dr d6, the 
change of variables formula gives 

iJüa 
~(x2+y2) dxdy = jf * e~r2r drd6 = j j 

Ai 
dO 

(e~a - 1) dO = t t ( 1 -e~a ). 

If we let a —> oo in this expression, we give meaning to the improper integral 
and get 

/ / • 
J J R2 

dx dy = 7r. 

Assuming (as shown in the Internet supplement) that we can also evaluate this im-
proper integral as the limit of the integrals over the rectangles Ra = [—a, a] x [—a, a] 
as a —>• oo, we get 

lim i f e-{ x 2 + y 2 )dxdy = 7T. 
J JRa 

By reduction to iterated integrals, we can write this as 

r f a 2 ca 2 ~ ca 

lim / e~x dx / e~y dy = lim / e~y 
a-*oolJ_a J_Q J \_a^ooJ_a 

dx = 71. 

That is, 

e x dx = 7X. 

Thus, taking square roots, we arrive at the desired result. 
Here is a variant of the Gaussian integral. Evaluate 

r 
J—c 

e~2x dx. 

To do this, use the change of variables formula y = \flx to reduce the problem to the 
Gaussian integral just computed: 

/

oo pa nyfla J 

e~2x2dx= lim / e~2xldx= lim / e~y2 

•oo a-*°°J-V2a V2 
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Change of Variables Formula for Triple Integrals 
To state this formula, we first define the Jacobian of a transformation from 
M3—it is a simple extension of the two-variable case. 

to 

DEFINITION Let T: W C M3 M3 be a C1 function defined by the equations 
x = x(u, v, w), y = I>, if), z = z(u, i>, if). Then the Jacobian of T, which is 
denoted 9(jt, z)/9(w, u, if), is the determinant 

dx dx dx 
du dv 3if 
8y 3 y 9y 
du dv 3if 
dz dz 3 z 
du dv dw 

The absolute value of this determinant is equal to the volume of the parallelepiped 
determined by the three vectors 

dx 3 v 3z 
Tw = — i + — j + —k, 

u 1 J 1 r\ ' 
au au 3 u 
3A: 3 v 3z 

T„ = — i + + —k, 
3i> 3i> 3f 

_ dx . 3v . 3z. 
3if 3if 3 if 

Just as in the two-variable case, the Jacobian measures how the transformation T 
distorts the volume of its domain. Hence, for volume (triple) integrals, the change of 
variables formula takes the following form: 

Change of Variables Formula: Triple Integrals 

JJJ f(x,y,z)dxdydz 

f(x(u, v, w), y(u, v, w), z(u, v, if)) III 3 (x,y,z) 
3(u, v, i f ) 

(8) 

JU JIf , 

where W* is an elementary region inuvw space corresponding to W in xyz space, 
under a mapping T: (u, i>, if) (.x(u, u, u;), u, if), z(u, v, u;)), provided T 
is of class C1 and is one-to-one, except possibly on a set that is the union of graphs 
of functions of two variables. 



3 8 8 The Change of Variables Formula and Applications of Integration 

C y l i n d r i c a l C o o r d i n a t e s 

Let us apply formula (8) to cylindrical and then to spherical coordinates. First, we 
compute the Jacobian for the map defining the change to cylindrical coordinates. 
Because 

we have 

x=rcos6, y = rsinO, z = z, 

d(x,y,z) 
B(r,0,z) 

Thus, we obtain the formula 

cos0 — rsinO 0 
sin 6 r cos 6 0 

0 0 1 

Change of Variables—Cylindrical Coordinates 

j j j f(x,y,z)dxdydz = j j j f(r cos0, r sin0, z)r dr dO dz. (9) 

S p h e r i c a l C o o r d i n a t e s 

Next we consider the spherical coordinate system. Recall that it is given by 

x = p sin0cos0, y = p sin0 sin#, 

Therefore, we have 

z = p cos 0. 

3(x, y, z) 

Expanding along the last row, we get 

sin (p cos 6 — ps in0s in0 pcos</>cos0 
sin (p sin 0 p sin 0 cos 6 p cos 0 sin 0 

cos 0 0 —psin0 

3(x, y, z) 
d(p,e,4>) 

= cos (p —p sin 0 sin 6 pcos0cos0 
p sin 0 cos 0 p cos 0 sin 6 

—p sin0 sin 0 cos 0 — ps in0s in0 
sin 0 sin 0 p sin 0 cos 6 

—p cos 0 sin 0 sin 6 — p cos 0 sin 0 cos 6 
—p2 sin3 0 cos2 6 — p2 sin3 0 sin2 6 

—pL cosz 0 sin0 — p2 sin3 0 = —pL sin0. 
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Thus, we arrive at the formula: 

3 8 9 

Change of Variables—Spherical Coordinates 

f(x,y, z)dx dydz 
w 

(10) 

I I In f(p sin 0 cos 6, p sincpsin 0, p cos 0)p sin (j)dpd6 d(p. 
w* 

To prove formula (10), one must show that the transformation S on the set W* is 
one-to-one except on a set that is the union of finitely many graphs of continuous 
functions. We shall leave this verification as Exercise 34. 

E X A M P L E 6 Evaluate 

j j j exp (x2+y2+z2f/2dV, 
fw 

where W is the unit ball in M?. 

S O L U T I O N First note that we cannot easily integrate this function using iterated 
integrals (try it!). Hence (employing the strategy in the quote that opened this chapter), 
let us try a change of variables. The transformation into spherical coordinates seems 
appropriate, because then the entire quantity x2 + y2 + z2 can be replaced by one 
variable, namely, p2. If W* is the region such that 

0 < p < 1, 0 <6 <2tt, 0 < 0 < TT, 

we may apply formula (10) and write 

I f f exp (x2+y2+z2f,2dV = f f f p 2 / sin (j)dpd6 d(p. 

JJJw JJJw* 

This integral equals the iterated integral njz i*2n /»I pit 
/ ep3p2 sin(pd6d(j) dp = 2n / ep'p2 sin0 d(p dp 

Jo Jo Jo = -271 f pzepJ [cos (¡)fQ dp 
Jo 
•1 . A r\ 

471 f ep3p2dp = -7t f ep3(3p2)dp 
Jo 3 J o 

[Mi-!"-1»-4 
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I ^ V i i a i a H Let W be the ball of radius R and center (0, 0, 0) in M3. Find the 
volume of W. 

S O L U T I O N The volume of W is JJJW dx dy dz. This integral may be evaluated 
by reducing it to iterated integrals or by regarding W as a volume of revolution, but 
let us evaluate it here by using spherical coordinates. We get 

r p p p71 71 pR p71 p 
/ / / dx dydz = I I I p2 sin 0 dp d6 d(p = — / / sin (pdOdcj) 

JJJw Jo Jo Jo 3 J o Jo 
2 7 t R 3 r • , , , 2 7 t R \ r , , ^ 4 j t R 3 

= J^ Sin0 J 0 = — y { - [ C O S ( T T ) - cos(0)]} = - y - , 

which is the standard formula for the volume of a solid sphere. • 

E X E R C I S E S 

1. Let D be the unit disk: x2 + y2 < 1. Evaluate 
exp(x2 + y2)dxdy IL JD 

by making a change of variables to polar coordinates. 

2. Let D be the region 0 < y < x and 0 < x < 1. Evaluate 

(x + y) dx dy IL< 
by making the change of variables x = u + v,y = u — v. Check your answer by evaluating 
the integral directly by using an iterated integral. 

3. Let T{u, v) = (x(u, v), y(u, v)) be the mapping defined by T(u, v) = (4u, 2u + 3i>). Let 
D* be the rectangle [0, 1] x [1, 2]. Find D = T(D*) and evaluate 

(a) j j xydx dy (b) J j (x -y)dx dy 

by making a change of variables to evaluate them as integrals over D*. 

4. Repeat Exercise 3 for T{u, v) = (u,v( 1 + u)). 

5. Evaluate 

dx dy LL y r r r + 2 y 

where D = [0, 1] x [0, 1], by setting T(u, v) — (u, v/2) and evaluating an integral over D*, 
where T(D*) = D. 

6. Define T(u, v) = (u2 - v2, 2uv). Let D* be the set of (u, v) with u2 + v2 < 1, u > 0, 
v > 0. Find T(D*) = D. Evaluate f f D dx dy. 
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7. Let T(u, v) be as in Exercise 6. By making a change of variables, "formally" evaluate the 
"improper" integral 

IL dx dy 
D Jx2 + y2 ' 

[NOTE: This integral (and the one in the next exercise) is improper, because the integrand 
1 /-yjx2 + y2 is neither continuous nor bounded on the domain of integration. (The theory of 
improper integrals is discussed in Section 6.4.)] 

8. Calculate f f dy dx, where R is the region bounded by x = 0, y = 0, x + y = 1, 
JJR x + y 

x + y = 4, by using the mapping T(u, v) = (u — uv, uv). 

9. Evaluate jj (x2 + y2)3/2 dx dy where D is the disk x2 + y2 < 4. 

10. Let D* be a t>-simple region in the uv plane bounded by v — g(u) and v = h(u) < g(u) 
for a < u < b. Let T: E2 IR2 be the transformation given by jc = u and y = \l/(u, v), 
where ^ is of class C1 and dijr/dv is never zero. Assume that T(D*) = D is a ^-simple 
region; show that if / : D E is continuous, then 

jjj(x,y)dxdy = j j f(u, lfr(M, U)) 
D* 

df du dv. dv 

11. Use double integrals to find the area inside the curve r = 1 + sin#. 

12. (a) Express / J /0* xy dy dx as an integral over the triangle Z)*, which is the set of (w, v) 
where 0 < M < 1 , 0 < I > < M . (HINT: Find a one-to-one mapping T of D* onto the given 
region of integration.) 

(b) Evaluate this integral directly and as an integral over D*. 

13. Integrate ze*2+y2 over the cylinder x2 + y2 < 4, 2 < z < 3. 

14. Let D be the unit disk. Express II (1 + x2 + y2)3/2 dx dy as an integral over 
[0, 1] x [0, 2TT] and evaluate. J J d 

15. Using polar coordinates, find the area bounded by the lemniscate (x2 + y2)2 = 
la2 (x2 - y2). 

16. Redo Exercise 11 of Section 5.3 using a change of variables and compare the effort 
involved in each method. 

17. Calculate f f ( x + y f ? ~ y d x d y w h e r e R 

is the region bounded by x + y = 1, 
x + y = 4, x — y = — 1, and x — y — 1. 

18. Let T: M3 M3 be defined by 

T(u, v, w) = (u cos v cos w, u sin v cos w, u sin w). 
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(a) Show that T is onto the unit sphere; that is, every (x, y, z) with x2 + y2 + z2 = 1 
can be written as (x,y,z) = T(u, v, w) for some (u, v, w). 

(b) Show that T is not one-to-one. 

19. Integrate x2 + y2 4- z1 over the cylinder x2 + y2 < 2, — 2 < z < 3. 

20. Evaluate /0°° e~4*2 dx. 

21. Let B be the unit ball. Evaluate 
dx dy dz 

!B yjl + x2+y2+z2 

by making the appropriate change of variables. 

22. Evaluate J j [ \/(x2 + y2)2] dx dy where A is determined by the conditions x2 + y2 < 1 

and x + y > 1. 

23. Evaluate i f f — dxdydz ^ where W is the solid bounded by the two spheres 
J J Jw (x2+y2+z2f/2 

x2 + y2 + z2 = a2 and x2 + y2 + z2 = b2, where 0 < b < a. 

x2 + y2 < j IL 24. Evaluate I x2 dx dy where D is determined by the two conditions 0 < x < y and 

25. Integrate ^/x2 + y2 + z2 e (x2+y2+z2) over the region described in Exercise 23. 

26. Evaluate the following by using cylindrical coordinates. 

(a) J J j z dxdydz where B is the region within the cylinder x2 + y2 = \ above the 

xy plane and below the cone z = (x2 y2)l/2. 

(b) J J j (x2 -f y2 + z2)-1 / 2 dx dy dz where W is the region determined by the 

conditions \ < z < 1 and x2 + y2 + z2 < 1. 

27. Evaluate j j (x + y) dx dy where B is the rectangle in the xy plane with vertices at 

(0, 1),(1,0), (3, 4), and (4, 3). 

28. Evaluate / / (x + y) dx dy where D is the square with vertices at (0, 0), (1, 2), (3, 1), 
and (2 , -1 ) . J J d 

29. Let E be the ellipsoid {x2/a2) + (y2/b2) + (z2/c2) < 1, where a, and c are positive. 

(a) Find the volume of E. 

(b) Evaluate j j j [(x2/a2) + ( y 2 / b 2 ) + (z2/c2)] dx dy dz. (HINT: Change variables 

and then use spherical coordinates.) 

30. Using spherical coordinates, compute the integral of f(p,(p,6)= 1 /p over the region in 
the first octant of M3, which is bounded by the cones 0 = 7r/4, </> = arctan 2 and the sphere 
p = V6. 
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31. The mapping T(u, v) = (u2 — v2, 2uv) transforms the rectangle 1 < w < 2, I <v <3 
of the uv plane into a region R of the xy plane. 

(a) Show that T is one-to-one. 
(b) Find the area of R using the change of variables formula. 

32. Let R denote the region inside x2 + y2 = 1, but outside x2 + y2 = 2y with 
x > 0,y > 0. 

(a) Sketch this region. 
(b) Let u = x2 + y2, v = x2 + y2 — 2y. Sketch the region D in the uv plane, which 

corresponds to R under this change of coordinates. 

(c) Compute j j xey dx dy using this change of coordinates. 

33. Let D be the region bounded by x3/2 + y3/2 = a3/2, for x > 0, y > 0, and the coordinate 

axes x = 0, y = 0. Express J j f(x,y) dx dy as an integral over the triangle £>*, which is 

the set of points 0<u<a,0<v<a — u. (Do not attempt to evaluate.) 

34. Show that S(p, 6, 0) = (p sin 0 cos 0, p sin (p sin 0, p cos <p), the spherical change-of-
coordinate mapping, is one-to-one except on a set that is a union of finitely many graphs of 
continuous functions. 

6.3 Applications 
In this section, we shall discuss average values, centers of mass, moments of inertia, 
and the gravitational potential as applications. 

Averages 

lfx\,...,xn are n numbers, their average is defined by 

_ * ! + • • •+*« _ 1 y ^ 
LaJJav — — / n n ' i=l 

Notice that if all the happen to have a common value c, then their average, of 
course, also equals c. 

This concept leads one to define the average values of functions as follows. 

Average Values The average value of a function of one variable on the interval 
[«, b] is defined by 

r f l _ fa f(*)dx 
IJ Jav — , b — a 

Likewise, for functions of two variables, the ratio of the integral to the area of D, 

_ f f D f(x, y) dx dy 
U Jav — r r J J » 

j]D
 dx dy 
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is called the average value of / over D. Similarly, the average value of a function 
/ on a region W in three space is defined by 

^ = f f f w f(x, y, z)dx dy dz 

f f f w d x d y d z 

Again, notice that the denominator is chosen so that if / is a constant, say c, then 
[ / ] a v = C . 

E X A M P L E 1 Find the average value of f ( x , y) = x sin2(xj;) on the region D 
[0,7r] x [0,7r]. 

S O L U T I O N First, we compute 

11 f(x,y)dxdy= I j x sin2(xy)dxdy 
J JD JO Jo 

— cos(2xj^) air- 2 
r l y sin(2xj) 

x dy dx 

-a 
=a 

2 4x 

71X sin(27TX) 

dx 
y=0 

dx = 7CX COS(2TTX) 
~ 4 ~ + SJT 

_ 7r3 cos(27T2) - 1 

~ T + Stt ' 

Thus, the average value of / , by formula (1), is 

7T /4 + [C0S(2TT2) - l]/87r 71 C0S(2TT2) - 1 
— — y - T - 1 — = - + — V " T ^ 0.7839. 

7T 4 Stt 

T h e temperature at points in the cube W = [ - 1 , 1] x [ - 1 , 1] x 
[—1, 1] is proportional to the square of the distance from the origin. 

(a) What is the average temperature? 

(b) At which points of the cube is the temperature equal to the average temperature? 

S O L U T I O N (a) Let c be the constant of proportionality so T = c(x2 + y2 + z2) 
and the average temperature is [T]av = ^ f f f w T dx dy dz,because the volume of the 
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cube is 8. Thus, 

[T] av = ^ j J J {x2+y2+z2)dxdydz. 

The triple integral is the sum of the integrals of x2 , y2, and z2. Because x, y, and z 
enter symmetrically into the description of the cube, the three integrals will be equal, 
so that 

[TU = \ f j j z2dxdydz = ^ - j z2 j dxdy^jdz. 

The inner integral is equal to the area of the square [—1, 1] x [—1, 1]. The area of 
that square is 4, and so 

(b) The temperature is equal to the average temperature at all points satisfying c(x2 + 
y2 + z2) = c, that is, which lie on the sphere x2 + y2 + z2 = 1, which is inscribed in 
the cube W. • 

Centers of Mass 

*3 

If masses m\,...,mn are placed at points x\,..., xn on the x axis, their center of 
mass is defined to be 

i = (2) 

This definition arises from the following observation: If one is balancing masses on a 
lever (Figure 6.3.1), the balance point x occurs where the total moment (mass times 
distance from the balance point) is zero, that is, where J2mi(xi — x) = 0. A physical 
principle, going back first to Archimedes and then in this generality to Newton, states 
that this condition means there is no tendency for the lever to rotate. 

m3 

x2 

\ 
m \ 

J 
m2 

Figure 6.3.1 The lever is 
balanced if £(x; — x)mi = 0. 

For a continuous mass density <5(x) along the lever (measured in, say, grams/cm), 
the analog of formula (2) is 

_ = fx8(x)dx ^ 
/ 8(x)dx 
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For two-dimensional plates, this generalizes to: 

The Center of Mass of Two-Dimensional Plates 

_ = ffDx8(x, y) dx dy ^ _ = ffDy8(x, y)dx dy 
ffD8(x,y)dxdy y ffD8(x,y)dxdy 9 

where again <S(x,y) is the mass density (see Figure 6.3.2). 

Plate 

Figure 6.3.2 The plate balances when supported at its center of mass. 

E X A M P L E 3 Find the center of mass of the rectangle [0, 1] x [0, 1] if the mass 
density is ex+y. 

SOLUTION First we compute the total mass: 

f f ex+ydxdy = f l f ex+ydxdy= f\ex+y\]
x=0)dy = f (ex+y-ey)dy 

JJD JO JO JO JO 

= (el+y - ey)\l
y=0 = e2-e-(e-\) = e2-2e+\. 

The numerator in formula (4) for x is 

n\<?+y dx dy = f\xex+y - ex+y)\l
x=0 dy = f\ei+y - e]+y - (0ey - ev)l dy 

Jo Jo 
= f eydy = ey\l=0 = e-\, 

Jo 

so that 

e-\ e — 1 1 
x = — = = % 0.582. e2-2e+\ (e-l)2 e-1 

The roles of x and y may be interchanged in all these calculations, so that y = 
l / ( e - 1) ^ 0.582 as well. A 
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For a region W in space with mass density <5(x, y, z), we know that 

volume = j j j dx dy dz, (5) 

mass = j j j <5(x, y, z) dx dy dz. (6) 

If one denotes the coordinates of the center of mass by (x, y, z), then the generalization 
of the formulas in the preceding box are as follows. 

Coordinates for the Center of Mass of Three-Dimensional Regions 

f f f w x 8 ( x , y, z)dx dy dz 
mass 

- _ fffwy8(x,y,z)dxdydz 
^ mass 

- Iffw z8(x,y,z)dxdydz 
z = . 

mass 

E X A M P L E 4 The cube [1, 2] x [1, 2] x [1, 2] has mass density given by 
8(x, y, z) = (1 + x)ezy. Find the total mass of the box. 

S O L U T I O N The mass of the box is, by formula (6), 

j j^ j (1 + x)ezy dx dy dz = j^ j^ + ezyj dy dz 

n2 5 z*2 15 r i 5 l z = 2 15 

2*"»*-J, T̂ L̂T̂L = 4 

If a region and its mass density are reflection-symmetric across a plane, then the 
center of mass lies on that plane. For example, in formula (7) for x, if the region and 
mass density are symmetric in the yz plane, then the integrand is odd in x, and so 
x = 0. This kind of use of symmetry is illustrated in the next example. 
E X A M P L E 5 Find the center of mass of the hemispherical region W defined by 
the inequalities x2 + y2 + z2 < 1, z > 0. (Assume that the density is unity.) 

S O L U T I O N By symmetry, the center of mass must lie on the z axis, and 
so x=y = 0. To find z, we must compute, by formula (7), the numera-
tor / = J f f w z dx dy dz. The hemisphere is an elementary region, and thus the 
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integral becomes 

p\ çy/l-z2 ç^/\-yL-zA 

JO J-VÏ^Z1 J-y/T-
zdx dydz. 

Because z is a constant for the x and y integrations, we can remove it from the first 
two integral signs, to obtain 

r1 / rV l~ z 2 r^-y2~z2 \ 
1= z[ / dxdyjdz. 

Jo \ J-VT^? J-J\-y2-Z2 I 

Instead of calculating the inner two integrals explicitly, we observe that they equal the 
double integral f f D dx dy over the disk x 2 + y2 < 1 — z2, considered as an x-simple 
region in the plane. The area of this disk is jt(1 — z2), and so 

= 7T I z(l — z2)dz = 71 / (z - z3)dz — n 
Jo Jo 

41 Tt 
4 ' 

The volume of the hemisphere is \tz, and so z = (n/4)/(^n) = 

It is common knowledge that Archimedes observed the principle of the lever. 
Perhaps less known is that he was also responsible for discovering the 
concepts of center of mass and center of gravity. Only two of his works on 
mechanics have been handed down to us: On Floating Bodies and On the 
Equilibrium and Centers of Mass of Plane Figures. Both were translated into 
Latin by Niccolo Tartaglia, circa 1543. 

In Equilibrium..., Archimedes began the field of applied mathematics, 
doing for mechanics what Euclid had accomplished for geometry. In this 
work he describes the principles behind all the machines of antiquity, 
including the lever, inclined plane, and pulley system. 

Surprisingly, Archimedes never carefully defined the center of mass; the 
first proper definition was given by Pappus of Alexandria in 340 C.E. The 
concept of equilibrium was to have a profound effect on the development of 
mechanical engineering (through the introduction of gears), architecture, 
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and in art, permitting the construction of complex machines, large-scale 
buildings, and sculptures. Figure 6.3.3 shows sketches by Leonardo 
DaVinci, illustrating equilibrium positions of the human body. 

Figure 6.3.3 Equilibrium positions of the human body, to be observed by 
the painter. The center of mass should be supported to maintain equilibrium. 
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M o m e n t s of I n e r t i a 

Another important concept in mechanics, one that is needed in studying the dynamics 
of a rotating rigid body, is that of moment of inertia. If the solid W has uniform density 
8, the moments of inertia Ix, Iy, and Iz about the x, y, and z axes, respectively, are 
defined by: 

Moments of Inertia About the Coordinate Axes 

Ix= i f f (y2 +z2)8dxdydz, Iy = f f f (x2 + z2) 8 dx dy dz, 
JJJw JJJw /ox 

i f f 2 2 ( ) 

Iz = I I I (x +y)8dxdydz. 

The moment of inertia measures a body's response to efforts to rotate it; for example, 
as when one tries to rotate a merry-go-round. The moment of inertia is analogous to 
the mass of a body, which measures its response to efforts to translate it. In contrast to 
translational motion, however, the moments of inertia depend on the shape and notjust 
the total mass. It is harder to spin up a large plate than a compact ball of the same mass. 

For example, Ix measures the body's response to forces attempting to rotate it 
about the x axis. The factory2 + z2, which is the square of the distance to the x axis, 
weights masses farther away from the rotation axis more heavily. This is in agreement 
with the intuition just explained. 

E X A M P L E 6 Compute the moment of inertia Iz for the solid above the xy plane 
bounded by the paraboloid z = x2 + y2 and the cylinder x2 + y2 = a2, assuming a 
and the mass density to be constants. 

S O L U T I O N The paraboloid and cylinder intersect at the plane z = a2. Using 
cylindrical coordinates, we find from equation (8), 

nln pr2 pa p2n pr2 

/ 8r2 -rdzdOdr = 8 / / r3dzd0dr 
Jo Jo Jo Jo 

n8a6 

G r a v i t a t i o n a l Fie lds of Sol id O b j e c t s 

Another interesting physical application of triple integration is the determination of 
the gravitational fields of solid objects. Example 6, Section 2.6, showed that the 
gravitational force field F(x, y, z) of a particle is the negative of the gradient of a 
function V(x, y, z) called the gravitational potential. If there is a point mass M at 
(x,y, z), then the gravitational potential acting on a mass m at (x\, y\, z\) due to this 
mass is —GmM[(x — x\)2 + (y — y\)2 + (z — zi) 2] - 1 / 2 , where G is the universal 
gravitational constant. 
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If our attracting object occupies a domain W with mass density 8(x, y, z), we 
may think of it as made of infinitesimal box-shaped regions with masses dM 
8(x, y,z)dx dy dz located at points (x, y, z). The total gravitational potential V for 
W is then obtained by "summing" the potentials from the infinitesimal masses. Thus, 
we arrive at the triple integral (see Figure 6.3.4): 

V(xi,yuzi) = -Gm 
8(x, y, z)dx dy dz 

xtf + i y - y\)2 + {z-z\)2 
(9) 

(xl,yl ,zj ) 

Figure 6.3.4 The gravitational potential that produces a force 
acting on a mass m at (xi, y\, z\) arising from the mass dM = 
<5(x, y, z)dxdy dz at (x, y, z) is —\Gm8(x, y, z)dx dydz]/r. 

(x, y, z) 

The theory of gravitational force fields and gravitational potentials was 
developed by Sir Isaac Newton (1642—1727). Newton withheld publication 
of his gravitational theories for quite some time. The result that a spherical 
planet has the same gravitational field as it would have if its mass were all 
concentrated at the planet's center first appeared in his famous Philosophiae 
Naturalis Principia Mathematica, the first edition of which appeared in 1687. 
Using multiple integrals and spherical coordinates, we shall solve Newton's 
problem here; remarkably, Newton's published solution used only Euclidean 
geometry. 

E X A M P L E ? Let W be a region of constant density and total mass M. Show that 
the gravitational potential is given by 

V(xuyi,zi) 
1 
r 

GMm, 
-lav 

where [l/r]av is the average over W of 

f ( x , y , z ) 
1 

y/(x - xi)2 + (y - yi)2 + ( z - zi)2 
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SOLUTION According to formula (9), 

V(xi,yi,zi) Gm 
8 dx dy dz 

w x\)2 + (y-y\Y + (z 2 Zl) 2 

Gm8 
dx dy dz 

W -Xi)2 + (y -y\)2 + (z -Zl)2 

Gm[8 volume (W)] 

dx dy dz 
w X x\)2 + (y - yi)2 + ( z 2 2 

volume ( W) 

Gm M 
1 
r av 

are required. 

Let us now use formula (9) and spherical coordinates to find the gravitational 
potential V(x\, y\, z\) for a region W with constant density between the concentric 
spheres p — p\ and p = p2, assuming the density is constant. Before evaluating the 
integral in formula (9), we make some observations that will simplify the computation. 
Because G, m, and the density are constants, we may ignore them at first. Because 
the attracting body, W, is symmetric with respect to rotations about the origin, the 
potential V{x\, y\, z\) should itself be symmetric—thus, V(x\, y\, z\) depends only 
on the distance R = Jx\ + y2 ~\~z2 from the origin. Our computation will be simplest 
if we look at the point (0, 0, R) on the z axis (see Figure 6.3.5). Thus, we need to 
evaluate the integral 

_ ^ . dxdydz 
V(0, 0, R) 7 

x2 4- y2 + (z - R)2 

(0, 0, R) 

Figure 6.3.5 The gravitational potential at (x\, y\, z\) is the same 

y 
as at (0, 0, R), where R 2 2 2 x\ + y\ + zi-
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In spherical coordinates, W is described by the inequalities p\ < p < P2,0 < 0 < 2n, 
and 0 < 0 < n9 and so 

V(0, 0, R) 
Pi /*27T JI p sin 4>d0 d(pdp 

Pl JO JO /p2sin2 0(cos26) + sin2m + /pcos0_i?)2 

Replacing cos2 0 + sin2 0 by 1, so that the integrand no longer involves 6, we may 
integrate over 0 to get 

V(0, 0, R) = 2n 
Pl pn p z sin (j)d(j)dp 

pl Jo - p2 sin2 0 + (p cos 0 - /?)2 

27T I p 
p l

 2 I f * s in0J0 

Pl vV - 2Rpcos(p + /?2 
dp. 

The inner integral over 0 may be evaluated using the substitution w = —2 Rp cos 0 
We get 

1 r2Rp 

2 Rp 2 Rp 
(p2+u + /?2r1/2 jw = — ( p 2 + u + /?2)1/2 

2Rp 

2Rp 

2 Rp 

[(p2 + 27?p + R2)l/2 - (p2 - 2Rp + tf2)1/2 

1 {[(P + ^ ) 2 ] I / 2 - [ ( p - ^ ) 2 ] 1 / 2 l Rp 

1 

The expression p + Ris always positive, but p — R may not be, so we must keep the 
absolute value sign. Substituting into the formula for V, we get 

/ P2p2 _ 2ti rp2 

pi Rp ' " " ^ 
F(0, 0, R) = 2tt -7—(p + fl - IP - = — / p(p + - |p -

We consider two possibilities for , corresponding to the gravitational potential for 
objects outside and inside the hollow ball PT. 

Case 1. If R > pi [that is, if (x\,y\,z\) is outside W\ then |p — = R — p for all 
p in the interval [p 1, P2 ], so that 

2tz CPl 4TT Cpl 1 4n 
V(0, 0 , R ) = y J p[p + R - {R - P)]dp = — J p2dp = - y ( p 2 - Pi)-

Pi 



404 The Change of Variables Formula and Applications of Integration 

The factor (4tt/3)(p| — p\) equals the volume of W. Putting back the constants G, m , 
and the mass density, we find that the gravitational potential is —GmM/ R, where M 
is the mass of W. Thus, V is just as it would be if all the mass of W were concentrated 
at the central point 

Case 2. If R < p\ [that is, if (x\, yi, z\) is inside the hole], then \p — R\ = p — R 
for p in [p\, pj\, and so 

2n Cp2 fp2 

F(0, 0, R) = (Gm)— / p[p + R ~ (ß ~ R)] dp = (Gm)4n / pdp 
R Jpi Jp\ 

0 9 
(Gm)2n(p2 — px). 

The result is independent of R, and so the potential V is constant inside the hole. 
Because the gravitational force is minus the gradient of V, we conclude that there is 
no gravitational force inside a uniform hollow planet! 

We leave it to the reader to compute V(0, 0, R) for the case p\ < R < pi-
A similar argument shows that the gravitational potential outside any spherically 

symmetric body of mass M (even if the density is variable) is V = GMm/R, where 
R is the distance to its center (which is its center of mass). 

E X A M P L E 8 Find the gravitational potential acting on a unit mass of a spherical 
star with a mass M = 3.02 x 1030 kg at a distance of 2.25 x 1011 m from its center 
(G = 6.67 x 10~n N • m2/kg2). 

SOLUTION The negative potential is 

V 
GM 6.67 x IO"11 x 3.02 x IO30

 o ^ o ? 
= 8.95 x 108 m /s . 

R 2.25 x 1011 

EXERCISES 
1. Find the average of f(x,y) = y sinxj; over D = [0, n] x [0, n]. 

2. Find the average of f(x,y) = ex+y over the triangle with vertices (0, 0), (0, 1), and (1, 0). 

3. Find the center of mass of the region between y = x2 and y = x if the density is x + y. 

4. Find the center of mass of the region between y = 0 and y = x2, where 0 < x < \. 

5. A sculptured gold plate D is defined by 0 < x <2n and 0 < y < n (centimeters) and 
has mass density 6(x, y) = y2 sin2 4x + 2 (grams per square centimeter). If gold sells for $7 
per gram, how much is the gold in the plate worth? 

6. In Exercise 5, what is the average mass density in grams per square centimeter? 
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7. (a) Find the mass of the box [0, x [0, 1] x [0, 2], assuming the density to be uniform 
(b) Same as part (a), but with a mass density y, z) = x2 -f 3y2 + z + 1. 

8. Find the mass of the solid bounded by the cylinder x2 + y2 = 2x and the cone 
z2 = x2 + y2 if the density is <5 = Jx2 + y2. 

9. Find the center of mass of the region bounded by* + y + z = 2, x = 0, >> = 0, and 
z = 0, assuming the density to be uniform. 

10. Find the center of mass of the cylinder x2 + y2 < 1,1 < z < 2 if the density is 
8 = (x2+y2)z2. 

11. Find the average value of sin2 nz cos2 nx over the cube [0, 2] x [0,4] x [0, 6]. 

12. Find the average value of e 2 over the ball x2 + y2 + z2 < 1. 

13. A solid with constant density is bounded above by the plane z = a and below by the cone 
described in spherical coordinates by (p = k, where & is a constant 0 < k < n/2. Set up an 
integral for its moment of inertia about the z axis. 

14. Find the moment of inertia around the y axis for the ball x2 + y2 + z2 < R2 if the mass 
density is a constant 8. 

15. Find the gravitational potential on a mass m of a spherical planet with mass 
M = 3 x 1026 kg, at a distance of 2 x 108 m from its center. 

16. Find the gravitational force exerted on a 70-kg object at the position in Exercise 15. 

17. A body W in xyz coordinates is called symmetric with respect to a given plane if for 
every particle on one side of the plane there is a particle of equal mass located at its mirror 
image through the plane. 

(a) Discuss the planes of symmetry for an automobile shell. 
(b) Let the plane of symmetry be the xy plane, and denote by W+ and W~ the portions 

of W above and below the plane, respectively. By our assumption, the mass density 8(x,y,z) 
satisfies y, —z) = 5(jc, y, z). Justify the following steps: 

w J J JW 
8(x, y, z)dx dy dz = III z8(x, v, z)dx dy dz 

W+ J J JW 
z8{x, y, z)dx dy dz + III z8(x, v, z)dx dy dz 

W+ J J JW+ 
z8(x, y, z)dx dy dz + / // —w8(u,v,—w)dudvdw 

0. 

(c) Explain why part (b) proves that if a body is symmetrical with respect to a plane, 
then its center of mass lies in that plane. 
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(d) Derive this law of mechanics: If a body is symmetric with respect to two planes, then 
its center of mass lies on their line of intersection. 

18. A uniform rectangular steel plate of sides a and b rotates about its center of mass with 
constant angular velocity a>. 

(a) The kinetic energy equals \ (mass)(velocity)2. Argue that the kinetic energy of any 
element of mass <5 dx dy (8 = constant) is given by S(co2/2)(x2 + y2) dx dy, provided the 
origin (0, 0) is placed at the center of mass of the plate. 

(b) Justify the formula for kinetic energy: 

- 2 . _.2 K.E. = II 8—(xz+yz)dxdy. 
plate 2 

(c) Evaluate the integral, assuming that the plate is described by the inequalities 
a/2 <x < a/2, -b/2 <y< b/2. 

. As is well known, the density of a typical planet is not constant throughout the planet 
Assume that planet C.M.W. has a radius of 5 x 108 cm and a mass density (in grams per 
cubic centimeter) 

p(x,y, z)=\ r 

3 x 104 

—, r > l(r cm, 

3, r < 104 cm, 

where r = ^x2 + y2 + z2. Find a formula for the gravitational potential outside C.M.W. 

6,4 Improper Integrals 
In this section, we study improper integrals—that is, integrals in which the function 
may be unbounded or the region of integration is unbounded. We shall first recall the 
situation for functions of one variable. 

One-Variable Improper Integrals 
In the study of integrals of functions of one variable, one encounters various types of 
"improper" integrals; that is, integrals of unbounded functions defined on intervals 
or integrals of functions over unbounded intervals. For example, 

I 
M f°° dx 

—= dx and / — 
<sjx J J xl 

are improper integrals. They are evaluated using a limiting process; for instance, 

dx — lim f — d x = lim Î2^/x 1 ) = lim (2 — 2+Ja) — 2 
o \/x Ja V5F a 

û—>0 
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and 

00 dx rb dx / 1 
lim / —— = lim 

X2 b—>oo .'i X2 ¿>->00 \ X 
lim I I — — 1 = 1 

b^oo \ b 

If, in such a limiting process, the limit does not exist (or is infinite), we say that the 
integral does not exist (or that the integral diverges). 

Improper Integrals in the Plane 
Next, we describe three types of improper integrals of two variables over a region 
D. The first two types are described in the text below, and the third type (integrals 
over unbounded regions) is left to the exercises. We will evaluate all integrals using 
a limiting process, as in the one-variable case. 

For simplicity of exposition, we first restrict ourselves to nonnegative functions 
/—that is, f(x,y) > 0 for all points (x, y) e D—and to j;-simple regions described 
as the set of (x, y) such that 

a < x < b, 0i(x) < y < 02(x), 

as in Figure 6.4.1. 

yk 
y = to 

y = to 

a 

D 

Figure 6.4.1 A j;-simple domain 

X 
b 

In the first case we wish to consider, let's assume that / : D R is continuous 
except for points on the boundary of D. Consider, for example, 

1 
x 2 y 2 

where D is the unit disk D {(x, v)|x2 +V2 1}. Clearly, / is not defined on the 
boundary of D, where x2 + y2 1; yet it will be of practical interest to be able 
to evaluate f f D /(x, y)dA, because this integral represents the area of the upper 
hemisphere of the unit sphere in three space. 
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Exhausting Regions 
Our basic idea will be to integrate such an / over a smaller region D\ where we 
know the integral exists, and then let D' "tend" to D; that is, "exhaust" D and see 
if f f D f dA tends to some limit. With this in mind, we pick a special kind of D\ as 
follows. 

Let r] 0 be small enough so that a + r¡ < b-r¡. Let 8 > 0 be small enough so 
that (x) 4- 8 < (¡>2(x)-8 for all x, a X b (see Figure 6.4.2). If (t>i{x) 0100 
for some x9 no such 8 will exist, but we shall worry about this minor issue when it 
arises in our later examples. Then the region 

D T],8 {(x, y)\a + r¡ < x <b — r¡ and (p\(x) + 8 < y Mx) M 

is a subset of D, and as (rj, 8) —> 0, D^s tends to D. 

y y = 

i jc 

Figure 6.4.2 A shrunken domain for improper 
integrals. 

a a + ii 

Improper Integrals as Limits 
Because / is continuous and bounded on D^s, the integral f f D^ sf dA exists. We 
can now ask what happens as the region D^ s expands to fill the region, D—that is, 
as (r], 6) (0, 0). Provided that 

(0,0) J JD 
lim / / / dA 

exists, we say that the integral of / over D is convergent or that / is integrable over 
D, and we define f f D f dx dy to be equal to this limit. 

EXAMPLE 1 Evaluate 

dA, 
D xfiy 

where D is the unit square [0, 1] x [0, 1]. 
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S O L U T I O N D is clearly a ^-simple region. Choose rj > 0 and 8 > 0 so that 
A?,<5 C D, as in Figure 6.4.3. Then, by Fubini's theorem: 

i f —= dA = [ -±-dydx 
J JDn,t y/xy Jv Js y/xy 

= r±dxr±dy 
Jn v* Js yy 

Figure 6.4.3 The slightly shrunken unit square. 

Letting (rj, 8) (0, 0), we see that 

ff 1 ^ ^ 3 3 9 
lim I I dydx = — = -. • 

(n,S)^(0,0)JJDr]S I f i y 2 2 4 

Unfortunately, it may not always be possible to evaluate such limits so directly 
and simply. This is often the case in the most interesting examples, as with the surface 
area of the hemisphere, mentioned earlier. It's as if the "real world" always presents 
the greatest challenges to the mathematician! So let us expand a bit on our theoretical 
discussion. 

Improper Integrals as Limits of Iterated Integrals 
Suppose / is integrable over D W e can then apply Fubini's theorem to obtain 

fb-rj P4>2{X)-8 

J a + r j J(f) i(jc)+<5 

r r rb-T) r<t>2(x)-8 
fdA= / f(x,y)dydx. 

JJd„* Ja+n Jd>,(x)+S 
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Hence, if / is integrable over D, 

r r fb-r) pfcW-S 
/ / f d A = < iin?0(J / K^y)dydx. (1) 

JJD (r],8)—>(0,0) Ja+q Jfr^+S 

Now F(r8) = f f D s f dA is a function of two variables, r¡ and 8, because as we 
change r¡ and <5, we get another number. Now if / is integrable, then 

lim F(ri, 8) = L 

exists. It follows that the iterated limits 

lim lim F(ri, 8) and lim lim F(ri, <5) 
77—>-0 <5—>-0 

also exist and are both equal to L, which in our case is f f D fdA. Thus, the iterated 
limit 

rb-rj ç 
lim lim / / 

Ja+rì L 

b-r¡ f(pi(x)-8 
f(x,y)dydx 

a+T] J(¡)i(x)+8 

also exists. Conversely, if the iterated limits exist, it does not generally follow that the 
limit lim F(ri, 8) exists. 

(17,5)^(0,0) 

For example, if it were to turn out in some way that F(r¡, 8) — r¡8 f(r]2 + <52), then 
lim lim F(ri, 8) = lim lim F(r¡, 8) = 0; yet lim F(r¡, 8) does not exist, because 
F(r/, rj)= 1/2 (see Section 2.2). 

In view of this, consider expression (1) again. If / is integrable, then 

i f f(x,y)dA = lim i* " [ 
JJD (17,^(0,0) Ja+ L 

b-x] f<p2(x)-8 

f{x,y) dy dx 
(r],8)^(0,0) Ja+r} JMx)+S 

nb-r¡ p(f)2 (x)-8 

= lim lim j I f(x,y)dydx. 
,mC_>0ifl+n Jó 1! J a + r ] Jfaw+s 

Now suppose that for each x, 

r<P2[X)—o 
l i m / f(x,y)dy 

JóAxì+S 

exists. Denote this by f ^ ^ f(x,y)dy. Suppose further that 

nb-r) r<h(x) 
lim/ / f ( x , y) dy 

also exists. We denote this limit by f ^ ^ f ( x , y) dy dx. Then if all limits exist, all 
limits must be equal. Thus, / is integrable and the iterated improper integral exists, 
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then necessarily 

p p f b r(Pi(x) 
f(x,y)dA= / f(x,y)dydx. 

JJD J a J(j) I(JC) 

However, is it possible that the existence of just the iterated integrals implies the 
integrability of / ? We turn to this important question next. 

Fubini 's Theorem for Improper Integrals 
For integrals, something truly remarkable happens. Unlike the case for iterated 
limits (as in the counterexample considered earlier), the existence of the iterated 
limits does imply the integrability of / as long as / > 0. Thus, if / > 0 and if 
fa ffa(x) / ( x ' y) dy dx exists as an iterated limit, then / is integrable and 

pp rb p(j>2(x) 
f(x,y)dA= / f ( x , y) dy dx. 

JJD J a J(j) i(x) 

If D is an x-simple region with the x coordinate lying between two functions \¡/\ and 
\¡/2, and if 

if 
Jc Jrb 

d pfoiy) 
fix, y) dx dy 

My) 

exists as an improper integral, it again follows that / is integrable and 

rd pMy) 

i f f(x,y)dA= f f 
JJD Jc J ú] 

f(x,y)dx dy. 
JD Jc Jyj,x(y) 

All these results, which are the improper analogues of Theorems 4 and 4r in Section 
5.3, are known as Fubini's theorem for improper integrals, which we formally state. 

T H E O R E M 3: F u b i n i ' s T h e o r e m Let D be an elementary region in the 
plane and / > 0 a function continuous except for points possibly on the boundary of 
D. If either of the integrals 

SL f(x,y)dA, 
D 

f(x,y) dy dx, for ̂ -simple regions 
t i ( jO 

d p\¡r2{y) 
/ ( x , y) dx dy for x-simple regions 

My) ff 
Jc Jrb 

exist as improper integrals, / is integrable and they are all equal. 
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The proof of this involves advanced concepts of analysis, so we omit it here. This 
result can be quite useful in calculation, as the next example shows. 

E X A M P L E 2 Let f(pc,y)= l/y/l — x2 — y2. Show that / is integrable and 
that f f D f (x, y) dA =2n, half the surface area of the unit sphere. 

S O L U T I O N For - 1 < x < 1, we have 

iz^r y i - x 2 - y 2 J_ 

/ÏT^-8 dy 

/-Vi-*2+5 y/l — x2 — y2 

= lim sin 
S-» 0 

l n I , I 
fi^x2-5 

-yfï^X1+8 

= lim (sin"1 ( 1 - , 8 1 - sin'1 ( - 1 + , ¿ Ì 1 

Clearly, 

/ I-T? çVÏ—x* dydx f1-77 

/ = lim / tv dx = lim 7t(2 — 2r¡) = ITT. 
Thus, / is integrable. To see why this theorem is so useful, try to show directly from 
the definition that / is integrable. It is not easy to do so! A 

E X A M P L E 3 Let f ( x , y) = 1 /(x — y) and let D be the set of (x, y) satisfying 
0 < x < 1 and 0 < y < x. Show that / is not integrable over D. 

S O L U T I O N Because the denominator of / is zero on the line y = x, / is un-
bounded on part of the boundary of D. Let 0 < r] < 1 and 0 < 8 < r¡, and let 
be the set of (x, y) with r¡ <x <\ — r¡ and 8 < y < x — 8 (Figure 6.4.4). 

A 
Figure 6.4.4 The shrunken domain Dr] 8 for a triangular domain D 

Here the region D is ^-simple with 0i(x) = 0, (¡)i(x) = x, and 0i(O) = 02(0). 
To ensure that D^ s C and is depicted in the figure, we must choose 8 a bit more 
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carefully. A little geometry shows that we should choose 28 < rj. Consider 

rr r p x - 8 i 
/ / fdA= / dydx 

JJdv,s Jrj J 6 X - y 

= f \-\og(x-y)]\*-s
sdx 

Jrt 
1-17 

[-log(<5) + log(x -<5)]dx 

i nl-rj 
= [— log 5] j dx + / log(x — <5)dx 

J r] Jr) 
= _ ( i _ 2rj) log<S + [(x - 8) log(x - 5) - (x - <5)]|^. 

In the last step, we used the fact that f log u du = u logw — u. Continuing the pre-
ceding set of qualities, we have 

i f fdA = - ( l - 2 ^ ) l o g ¿ + ( l - ^ - ¿ ) l o g ( l - ^ - ¿ ) 
J JD„tS 

_ i ( i _ ^ _ 8 ) _ { r ] _ 8 ) i o g ( ? ? _ 8 ) + ( r ] _ 

As (0, 0), the second term converges to 1 log 1 = 0, and the third and 
fifth terms converge to —1 and 0, respectively. Let v = r¡ — 8. Because v log v 0 
as v —• 0 (a limit established by using L'Hópital's rule from calculus3), we see that 
the fourth term goes to zero as {r¡, 8) (0, 0). It is the first term that will give us 
trouble. Now: 

- ( 1 - 2r\) log <5 = - log <5 + 2?? log <5, (2) 

and it is not hard to see that this does not converge as (rj, 8) (0, 0). For example, 
let rj = 28; then expression (2) becomes — log <5 + 48 log <5. As before, 48 log <5 0 
as 8 0, but — log 8 +oo as 8 0, which shows that expression (2) does not 
converge. Hence, lim f f n f dA does not exist and so f is not integrable. A 

Functions Unbounded at Isolated Points 
We now consider nonnegative functions / that become "infinite" or are undefined 
at isolated points in an x-simple or ^-simple region D. For example, consider the 
function f(x,y) = 1 /yjx2 + y2 on the unit disk D = {(x, y)\x2 + y2 < 1}. Again, 
/ > 0, but / is unbounded and is not defined at the origin. 

3L' Hôpital's rule was discovered by Bernoulli and was reported in L'Hôpital's textbook. 
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Let (jto, Jo) be a point of a general region D where a nonnegative function / is 
undefined. Further, let Ds = Ds(x0, yo) be the disk of radius 8 centered at (x0, yo) 
and let D\D$ denote the region D with removed. Assume that / is continuous at 
every point of D except (x0, y0). Then ffD\Ds f dA is defined. We say that f f D f dA 
is convergent, or that / is integrable over D if 

lim f f f dA 
« - o J J d \ D s 

exists. 

flMiaiat | Show that / ( x , y) = 1 / j x 2 + y2 is integrable over the unit disk 
D and evaluate f f D f dA. 

S O L U T I O N Let D8 be the disk of radius <5 centered at the origin. Then / is 
continuous everywhere on D except at (0, 0). Thus, ffD^Ds f dA exists. To evaluate 
this integral, we change variables to polar coordinates, x = r cos 6, y = r sin 6. Then 
f(r cos 6, r s in0) = l/r, and 

p p pi p2n i pi p2n 
/ / fdA = / - / d6 dr = I / d6 dr = 2TT(1 - 8). 

J Jd\Ds J8 JO r J8 Jo 

Thus, 

ff f dA = lim f f 
JJd *-»0JJD 

f dA = 2 n. A 
D\DS 

More generally, one can, in an analogous manner, define the integral of nonnega-
tive functions / that are continuous except at a finite number of points in D. One can 
also combine both types of improper integrals; that is, one may consider functions that 
are continuous except at a finite number of points on D or at points on the boundary 
of D, and define f f D f dA appropriately. 

If / takes both positive and negative values, one can use a more advanced inte-
gration theory, called the Lebesgue integral, to generalize the notion of convergent 
integral f f D f d A . Using this theory, it is possible to show that if f f D f dA exists, it 
can then be evaluated as an iterated integral. This latter fact is also known as Fubini's 
theorem. 

Unbounded Regions 
As was mentioned previously, we will leave consideration of unbounded regions to 
the exercise section. However, we must point out that we have already addressed the 
main idea in Example 5 of Section 6.2 on the Gaussian integral. In that example, we 
integrated exp(—x2 — y2) over all of M2 by integrating first over a disk of radius a 
and then letting a oo. 
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E X E R C I S E S 

In Exercises 1 to 4, evaluate the following integrals if they exist (discuss how you define the 
integral if it was not given in the text). 

1. / j f ; / = d A ' w h e r e D = [0. ' I x [0, 1] 

> JL 
1 dx dy, where D = {(x, y) | 0 < x < 1, 0 < y < 1, y < x] 

>/\x-y I 

(> /̂JC) i/x where D is bounded by x = 1, x = y, and x = 2y 

4. I I log x dx dy 
Jo Jo 

5. (a) Evaluate 

dA IL o ^ + y i f ! 3' 

where Z) is the unit disk in R2 

(b) Determine the real numbers X for which the integral 

[[ d A 

is convergent, where again D is the unit disk. 

6. (a) Discuss how you would define f f D f dA if D is an unbounded region, for example, 
the set of (x, y) such that a < x < oo and 0i(x) < y < where 0i < 02 are given 
(Figure 6.4.5). 

(b) Evaluate f f D xye~^2+y2) dx dy if x > 0, 0 < y < 1. 

F i g u r e 6.4.5 An unbounded region D. 

y = (pi(x) 

7. Using Exercise 6, integrate e xy for x > 0, 1 < y < 2 in two ways. Assuming Fubini's 
theorem can be used, show that 

f Jo 
• dx — log 2. 
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8. Show that the integral 

/ / (x/Ja2-y2)dydx 

exists, and compute its value. 

9. Discuss whether the integral 

li exists where D — [0, 1] x [0, 1]. If it exists, compute its value. 

10. One can also consider improper integrals of functions that fail to be continuous on entire 
curves lying in some region D. For example, by breaking D = [0, 1] x [0, 1] into two 
regions, define and then discuss the convergence of the integral 

11. Let W be the first octant of the ball x2 + y2 + z2 < a2, where x > 0, y > 0, z > 0. 
Evaluate the improper integral 

by changing variables. 

12. Let / be a nonnegative function that may be unbounded and discontinuous on the 
boundary of an elementary region D. Let g be a similar function such that fix, y) < g(x, y) 
whenever both are defined. Suppose f f D g(x, y) dA exists. Argue informally that this implies 
the existence of f f D f(x,y)dA. 

13. Use Exercise 12 to show that 

exists where D is the unit disk x2 + y2 < 1. 

14. Let / be as in Exercise 12 and let g be a function such that 0 < y) < / ( x , y) 
whenever both are defined. Suppose that f f D g(x, y) dA does not exist. Argue informally that 
f f D f(x,y) dA cannot exist. 

15. Use Exercise 14 to show that 

does not exist, where D is the set of (x, y) with 0 < x < 1 and 0 < y < x. 
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16. Let D be the unbounded region defined as the set of (x,y,z) with x2 + y2 + z2
 > 1. By 

making a change of variables, evaluate the improper integral 

JJL dx dy dz 
(x2+y2+z2)2' 

17. Evaluate 

rl ry r rl rl x 
- dy dx n- dx dy and f [ — i 

y Jo Jx y 

Does Fubini's theorem apply? 

18. In Exercise 11 of Section 5.2 we showed that 

v2 .,,2 /*i pi x2 — y2 

i So ûrk2dydx*fo I {x2 ~h y2)2 dx dy. 

Thus, Fubini's theorem does not hold here, even thought the iterated improper integrals both 
exist. What went wrong? 

R E V I E W E X E R C I S E S F O R C H A P T E R 6 

1. (a) Find a linear transformation taking the square S = [0, 1] x [0, 1] to the 
parallelogram P with vertices (0, 0), (2, 0), (1, 2), (3, 2). 

(b) Write down a change of variables formula appropriate to the transformation you 
found in part (a). 

2. (a) Find the image of the square [0, 1] x [0, 1] under the transformation T(x, y) = 
(2x, x + 3^). 

(b) Write down a change of variables formula appropriate to the transformation and the 
region you found in part (a). 

3. Let B be the region in the first quadrant bounded by the curves xy = 1, xy = 3, 
x2 — y2 = 1, and x2 — y2 = 4. Evaluate ffB(x2 + y2) dx dy using the change of variables 
u = x2 — y2, v = xy. 

4. In parts (a) to (d), make the indicated change of variables. (Do not evaluate.) 

.1 rl rJ(l-y2) ni r^/V-y^ 

I (x2 + y2)l/2 dx dy dz, cylindrical coordinates 
-l J-'s/d-y2) 

r i r\/(\-y2) r\ 

J-l J—y/(\—y2) J—A 

r(i -y2) r\/(4-x2-y2) 
(b) I I I xyz dz dx dy, cylindrical coordinates 

I I I z2 dz dx dy, spherical coordinates 
J-J2 J-Je-yl) J y/(x2+y2) 

n 1 pn/4 p2n 
(d) * I I I p3

 sin 2(j)d6 d(j) dp, rectangular coordinates 
Jo Jo Jo 

(C) 
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5. Find the volume inside the surfaces x2 + y2 = z and x2 + y2 + z2 = 2. 

6. Find the volume enclosed by the cone x2 + y2 = z2 and the plane 2z — y — 2 = 0. 

7. A cylindrical hole of diameter 1 is bored through a sphere of radius 2. Assuming that the 
axis of the cylinder passes through the center of the sphere, find the volume of the solid that 
remains. 

8. Let Ci and C2 be two cylinders of infinite extent, of diameter 2, and with axes on the x 
and y axes, respectively. Find the volume of their intersection, C\ D C2. 

9. Find the volume bounded by x/a + y/b + z/c = 1 and the coordinate planes. 

10. Find the volume determined by z < 6 — x2 — y2 and z > y/x2 + y2. 

11. The tetrahedron defined by x > 0, y > 0, z > 0, x + y + z < 1 is to be sliced into n 
segments of equal volume by planes parallel to the plane x + y + z = 1. Where should the 
slices be made? 

12. Let E be the solid ellipsoid E = {(JC, y, z) | (x2/a2) + ( y 2 / b 2 ) + (z2/c2) < 1} where 
a > 0, b > 0, and c > 0. Evaluate 

xyzdx dydz 

(a) over the whole ellipsoid; and 
(b) over that part of it in the first quadrant: 

2 2 2 

x>0, y> 0, and z > 0, ^ + 77 + ^ 5 1 . 
a1 b1 cl 

13. Find the volume of the "ice cream cone" defined by the inequalities x2 + y2 < | z 2 , and 
0 < z < 5 + y/5 — x2 — y2. 

14. Let p, 6, 0 be spherical coordinates in R3 and suppose that a surface surrounding the 
origin is described by a continuous positive function p = f(6,(p). Show that the volume 
enclosed by the surface is v=\ C jT[/(0, 0)]3 Sin(pd<l)de-
15. Using an appropriate change of variables, evaluate 

J J e x P [(y ~ x)/(y + x)] dx dy 

where B is the interior of the triangle with vertices at (0, 0), (0, 1), and (1,0). 

16. Suppose the density of a solid of radius R is given by (1 + J 3 ) - 1 where d is the distance 
to the center of the sphere. Find the total mass of the sphere. 
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17. The density of the material of a spherical shell whose inner radius is 1 m and whose 
outer radius is 2 m is 0.4d2 g/cm3, where d is the distance to the center of the sphere in 
meters. Find the total mass of the shell. 

18. If the shell in Exercise 17 were dropped into a large tank of pure water, would it float? 
What if the shell leaked? (Assume that the density of water is exactly 1 g/cm3.) 

19. The temperature at points in the cube C = {(x,y,z)\ —1 < x < 1 , - 1 < y < 1, and 
— 1 < z < 1} is 32¿/2, where d is the distance to the origin. 

(a) What is the average temperature? 
(b) At what points of the cube is the temperature equal to the average temperature? 

20. Use cylindrical coordinates to find the center of mass of the region defined by 

y2+z2<-, ( x - l ) 2 + / + z 2 < 1, x > 1. 

21. Find the center of mass of the solid hemisphere 

V = [(x, y, z) | x2 + y2 + z2 < a2 and z > 0} 

if the density is constant. 

22. Evaluate f f B e~x2~yl dx dy where B consists of those (x, y) satisfying x2 + y2 < 1 and 
y < 0. 

23. Evaluate 

dx dy dz III fe ( x 2 + / + z 2 ) 3 / 2 ' 

where S is the solid bounded by the spheres x2 + y2 + z2 = a2 and x2 + y2 + z2 = b2, where 
a > b > 0. 

24. Evaluate J J j (x2 + y2 + z2)xyz dx dy dz over each of the following regions. 

(a) The sphere D = {(x, y, z) | x2 + y2 + z2 < R2} 
(b) The hemisphere D = {(x, y, z) | x2 + y2 + z2 < R2 and z > 0} 
(c) The octant D = {(x, y, z) | x > 0, y > 0, z > 0, and z2 + y2 + z2 < 

25. Let C be the cone-shaped region {(x, y, z) \ y/x2 + y2 < z < 1} in R3 and evaluate the 

integral jJ J (1 + y/x2 + y2) dx dy dz. 

26. Find / / / f(x,y,z)dxdydz where / (x , j^ ,z ) = exp [ - ( x 2 + y2 + z2)3/2]. 
J J JRI 

27. The flexural rigidity EI of a uniform beam is the product of its Young's modulus of 
elasticity E and the moment of inertia / of the cross section of the beam with respect to a 



420 The Change of Variables Formula and Applications of Integration 

horizontal line / passing through the center of gravity of this cross section. Here 

1= f f [d{x,y)fdxdy, 
J Jr 

where d(x,y) = the distance from (x, y) to / and R = the cross section of the beam being 
considered. 

(a) Assume that the cross section R is the rectangle —1 < x < 1 , - 1 < y < 2, and / is 
the line y = 1/2. Find I. 

(b) Assume the cross section R is a circle of radius 4 and / is the x axis. Find / , using 
polar coordinates. 

28. Find, f f f R 2 f(x,y,z)dxdy dz where 

29. Suppose D is the unbounded region of R2 given by the set of (x, y) with 0 < x < oo, 
0 < y < x. Let f(x,y) = x~3/2ey~x . Does the improper integral f f D / ( x , y)dx dy exist? 

30. If the world were two-dimensional, the laws of physics would predict that the 
gravitational potential of a mass point is proportional to the logarithm of the distance 
from the point. Using polar coordinates, write an integral giving the gravitational 
potential of a disk of constant density. 

31. (a) Evaluate the improper integral 

where B is the portion of the disk of radius 2 [centered at (0, 0) in the first quadrant]. 

32. Let / be a nonnegative function on an x-simple or a j>-simple region D e l 2 , and that is 
continuous except for points on the boundary of D and at most finitely many points interior to 
D. Give a suitable definition of f f D f dA. 

33. Evaluate f f R 2 f(x,y) dx dy where f(x,y) = 1/(1 + x2 + .y2)3/2. (HINT: You may 
assume that changing variables and Fubini's theorem are valid for improper integrals.) 

f(x,y,z) = 
[1 + ( x 2 + . y 2 + z 2 ) 3 / 2 ] 3 / 2 ' 

(b) Evaluate 


