Chapter IV

Complex Integration

In this chapter results are derived which are fundamental in the study of
analytic functions. The theorems presented here constitute one of the pillars
of Mathematics and have far ranging applications.

§1. Riemann-Stieltjes integrals

We will begin by defining the Riemann-Stieltjes integral in order to
define the integral of a function along a path in C. The discussion of this
integral is by no means complete, but is limited to those results essential to

a cogent exposition of line integrals.

1.1 Definition. A function y: [a, b] — C, for [a, b] < R, is of bounded variation
if there is a constant M > 0 such that for any partition P = {a = 5 < 1,
<...<t, = b} of [a, b]

u(y; P) = k{; (t) —y(t-Dl < M.

The total variation of y, V(y), is defined by
V(y) = sup {v(y; P): P a partition of [a, b]}.

Clearly V{y) < M < .

It is easily shown that y is of bounded variation if and only if Re y
and Im y are of bounded variation. If y is real valued and is non-decreasing
then .y is of bounded variation and V(y) = y(b)—(a). (Exercise 1) Other
examples will be given, but first let us give some easily deduced properties of
these functions.

1.2 Proposition. Let y: [a, b] — C be of bounded variation. T} hen:
(@) If P and Q are partitions of [a, b] and P < Q then v(y; P) < uv(y; 0);
(b) If o: [a, b] — C is also of bounded variation and «, B € C then ay+fBo
is of bounded variation and V (ay +Bo) < |o| V(y)+ 8] V(o).
The proof is left to the reader.
The next prgpnciﬁnn givec a wealt_h_y collection of functions of bounded
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variation. In actuality this is the set of functions which is of principal concern
to us.

1.3 Proposition. If y:[a.b]—>C is piecewise smooth then v is of bounded
variation and

b
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I?(OQf._Assgme that vy is smooth (the complete proof is easily deduced from

this). Recall that when we say that y 13 smooth this means y’ is continuous.
Let P={a=1t,<t,<...<t,=b}. Then, from the definition,

i [¥(t) = ¥(ti- DI
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Hence V(y) < j’; [y’(#)| dt, so that y is of bounded variation.

Since y” is continuous it is uniformly continuous; so if ¢ > 0 is given we
can choose 8, > 0 such that |s—¢| < 8, implies that |y'(s)—y'(2)] < e Also,
we may choose 6, > 0 such that if P = {a =1, < t;<...<t, = b} and
1P| = max {(tz—t,-,): 1 <k < m} < 8, then

b
f ly' (Ol dt — kzl [y’ ()l (e —ti-1)| < €
where 7, is any point in [#,_,, #}. Hence

b
[old < e+ 3 b6l Gt
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i

= e + kgl 'kf.l y'(7) dt
<e+ ki 'f [y'(r) —v' (O] dt| + ki ' f /(1) dt

If |P||<8=min(8,,8,) then |y'(r,) — ¥'(#)| <e for ¢ in [t,_,, 1] and

m
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Letting e — 0+, gives
b
[ @t < ve),

which yields equality. Il

1.4 Theorem. Let y: [a, b] — C be of bounded variation and suppose that
f: [a, b] — C is continuous. Then there is a complex number I such that for
every € > O there is a 8 > 0 such that when P= {to <ty <...<tn}isa
partition of [a, b] with ||P|| = max {(t,—ti—): 1 <k < m} <8 then

- z F) Bt = yite- )]

< €

for whatever choice of poinls 7y, {1 < Ty < L.
This number I is called the integral of f with respect to y over [a, b] and
is designated by

I= j fy = J £(1) d).

Proof. Since f is continuous it is uniformly continuous; thus, we can find
(inductively) positive numbers 3; > 8, > 83 >... such that if [s—1| < 8,,

| A () =/} < l For each m > 1 let 2,, = the collection of all partitions P
m

of [a, b] with ||P]| < 3,,; so P, > P, > ---. Finally define F, to be the
closure of the set:

15 {5 S0l =l PePu and foy 7 < 4.
=1

The following are claimed to hold:

Fl 2 Fz Do and
(5 =

If this is done then, by Cantor’s Theorem {II. 3.7), there is exactly one com-
plex number 7 such that 7 e F,, for every m = 1. Let us show that this will
complete the proof. If e > 0 let m > (2/¢) V(y); then e > (2/m) V() 2
diam F,,. Since I € F,,, F,, < B(I;¢). Thus, if 8 = 8, the theorem is proved.

Now to prove (1.6). The fact that F; > F, >... follows triviaily from

2 .
the fact that #, © &, >... . To show that diam F,, < - V(y) it suffices

2 .. .
to show that the diameter of the set in (1.5) is < m V(y). This is done in two

tasee cachk of whish
SMagch, Cavi o ow

W P={t,« ... 1,}1sapartition we will denote by S(P)a sum of the

form > f(rly(r,) vt )] where 7, 15 any pomt with |- 10" 1.

which is casy although the firstis tedious.
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Fix m=1and let P € 2, ; the first step will be to show that if P < Q (and
hence Q € 2,)) then [S(P)—S(Q)|< % V (y). We only give the proof for
the case where Q is obtained by adding one extra partition point to P. Let

1< p<mandlets, ,<t*<t,; suppose that PU{'}=Q.Ifz,_, <o <1¥,
t*< ¢'<t, and

5(Q)= 2 fled[ () —y(t_)]+f(@[y() = v(1,_,)]

k+#p
+f(a)[v() = (%)), ’
then, using the fact that | f(7)—f(0)| < % for |r—a| <8,
IS(P)-S(Q)|= L;, Um0 = el i) — (- D1 +1(7p) [y(e,) =7t 1))

—f(@) H(t*) =t~ D1 =S(") [(t,) — (M)}

1

= 2 8=t D)+ |G p) = ()] IAt*) — (2, -]
mks*p

+[f(rp) —f &)} [A2,) —y(t¥)]

i i .
r;k;, A8 =7t )| + — () = t- 1))

IA

IA

1
+ - [oAt) =¥

1
<= V()
1{{]

For the second and final stage let P and R be any two partitions in £2,,. Then
Q = P U R is a partition and contains both P and R. Using the first part
we get

IS(P)=S(R)| <IS(P)=S(Q)|+]S(Q)=S(R) <=V ().
It now follows that the diameter of (1.5) is < r% Viy). R

The next result follows from the definitions by a routine e —& argument.

1.7 Proposition. Let f and g be continuous functions on [a, b] and let v and o
be functions of bounded variation on [a, b]. Then for any scalars « and B:

(= (bo £ 0N A, — . (bt 0 (b 51

\QA) Jog\YTRE)UY = & JgJUuy TP Jg 5YY

(b) [, fdloy+Po) = «f fdy+B | fdo.

The following is a very useful result in calculating these integrals.

1.8 Proposition. Let v: [a, b] — C be of bounded variation and let [ [a, b] — C
be continuous. If @ =ty < t, <---< t,=b then

;[‘fdy ) ‘Zl t.J:. fd)'
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The proof is left as an exercise.

As was mentioned before, we will mainly be concerned with those y
which are piecewise smooth. The following theorem says that in this case
we can find [fdy by the methods of integration learned in calculus.

1.9 Theorem. If y is piecewise smooth and f:[a,b]—C is continuous then

Proof. Again we only consider the case where y is smooth. Also, by
looking at the real and imaginary parts of y, we reduce the proof to the
case where y([a,b]) =R. Let €>0 and choose 8 >0 such that if P={a=1,
<...<t,=b} has | P||< 8 then

b n
110 [ fay = ¥ Fn) @) =) < 3e
and
b n
1.11 l Jf f@Oy @ dr = Y fm)y () (tk—tk-o! < 3e
2 k=1

for any choice of 7, in [t,_ 4, #]. If we apply the Mean Value Theorem for
derivatives we get that there is a 7 in [f,—,, #] With ¥'(7) = [¥(t) —(t- )]
(fy—t-1)~". (Note that the fact that y is real valued is needed to apply the
Mean Value Theorem.) Thus,

DI CAIZ AN B SR TR )

Combining this with inequalities (1.10) and (1.11) gives

b b
IJ far = [ fey @) dt‘l <e

Since ¢ > 0 was arbitrary, this completes the proof of the theorem. Il

We have already defined a path as a continuous function y: [a, b] - C.
If y: [a, b] — C is a path then the set {y(¢): @ < ¢ < b} is called the zrace of y
and is denoted it by {y}. Notice that the trace of a path is always a compact
set. v is a rectifiable path if y is a function of bounded variation. If P is a
partition of [a, b] then u(y; P) is exactly the sum of lengths of line segments
connecting points on the trace of y. To say that y is rectifiable is to say that
y has finite length and its length is ¥(y). In particular, if y is piecewise
smooth then y is rectifiable and its length is [ |y'] dr.

If y: [a. b} — C is a rectifiable path with {y} < £ < C and f: E~»C
is a continuous function then f«y is a continuous function on [a. b]). With
this in mind the following definition makes sense.

el
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1.12 Definition. If y: [a, b] — C is a rectifiable path and f is a function
defined and continuous on the trace of y then the (line) integral of f along v is

b
[ 702 o).

This line integral is also denoted by [, f = [, Az) dz.
0 b

As an example let us take y: [0, 2»] - C t

be ¥(t) = e* and define

AR g ] r\*J

I
flz) = . for z # 0. Now v is differentiable so, by Theorem 1.9 we have

1 o
j,} dz = [2* e "(ie") dt = 2ni.

) ijsﬁng Eh_e same definition of y and letting m be any integer > 0 gives
jzz".‘dz=j(‘,“’e"“’“(ie”)dt=ij"f,’” exp (i(m+1)t) dt=if3" cos (m+1)t dt—
fo"sin(m+ 1)tdt=0.

Now let a,b C and put y(£)=tb+(1—1t)a for 0=t <1. Then y()=b
—a, and using the Fundamental Theorem of Calculus we get that for

n=0, |, 2" = (b—a) [} tb+(1—1)a] dt = % @+ —arthy.
n

) There are more examples in the exercises, but now we will prove a certain
“invariance” result which, besides being useful in computations, forms the
basis for our definition of a curve.

If y: [a, 8] — C is a rectifiable path and ¢: [c, d] — [a, b] is a continuous
non-decreasing function whose image is all of [a, 8] (i.e., @(¢) = a and
@(d) = b)then y o ¢: [c, d] — C is a path with the same trace as y. Moreover,
y o @ is rectifiable because if ¢ =5, <5, <-'-< 5, =d then a = ¢(s,) <

o(s)) <+ < g(s,) = b is a partition of [a, b]. Hence

D) i D) < V)

so that V(y o) < V(y) < co. So if f is continuous on {y} = {yo ¢} then
§yoo fis well defined. 7o}

?.13 Proposition. If v: [a, b} — C is a rectifiable path and ¢: [c, d] — [a, b)
is a continuous non-decreasing function with o(c) = a, o(d) = b; then for any

Junction f continuous on {y}
[r=11

Yoo

Proqf: Let ¢ > 0 and choose 8; > 0 such that for {s, <5, <---<35,} a
partition of [c, d] with (s,~s;-,) < 8,, and s;,_, < o, < s, we have

1.14 < e

[ =3 oo sl Iy o o) =7 - 9(si- )

Similarly choose 8, > 0 such that if {r, < 1; <---< 1,} is a partition of
[a, By with (r,—1, ) < d,and 1, | -5 7, = 1. then
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n
‘},'r Jf - kgl Jf‘\‘y(‘[k)) [’lv(tl'\- 1 zl

{ ]

15 l
But ¢ is uniformly continuous on [c, d]; hence there isa 8 > 0, which can be
chosen with 8 < &, such that |p(s)—¢(s')] < 8, whenever [s—s'| < 8. Soif
{so < 8 <'++< s,} is a partition of [c, d] with (sp=85—1) < 8 < 8, and
t, = o(s), then {to < ¢, <---<t,}isa partition of [a, 8] with (t,—#% )

< 8,. If 5,_, < o < 5, and 7, = (o) then both (1.14) and (1.15) hold.

Moreover, the right hand parts of these two differences are equal! It follows

that
[r-]1

Yo@

< €

Since ¢ > 0 was arbitrary, equality is proved. li

We wish to define an equivalence relation on the collection of rectifiable
paths so that each member of an equivalence class has the same trace and
so that the line integral of a function continuous on this trace is the same for
each path in the class. It would seem that we should define ¢ and y to be
equivalent if ¢ = y o ¢ for some function ¢ as above. However, this is not
an equivalence relation!

1.16 Definition. Let o: [c, d]— C and y: [a, b] - C be rectifiable paths.
The path o is equivalent to  if there is a function ¢: [c, d] — [a, b] which is
continuous, strictly increasing, and with ¢(c) = a, ¢(d) = b; such that
o = y o @. We call the function ¢ a change of parameter.

A curve is an equivalence class of paths. The trace of a curve is the trace
of any one of its members. If fis continuous on the trace of the curve then the
integral of f over the curve is the integral of f over any member of the curve.

A curve is smooth (piecewise smooth) if and only if some one of its
representatives is smooth (piecewise smooth).

Henceforward, we will not make this distinction between a curve and its
representative. In fact, expressions such as “let y be the unit circle tra-
versed once in the counter-clockwise direction” will be used to indicate a

curve. The reader is asked to trust that a result for curves which is, in fact,
a result only about paths will not be stated.
Let y: [a, b] - C be a rectifiable path and fora <t < b, let |y| (¢) be

V{y; [a, t]). That is,

) 0s - -+ » 15} is a partition of [g, t]! .

=1 )
Clearly |y] (¢) is increasing and so |y|: [, b] - C is of bounded variation. If
fis continuous on {y} define

N
~
~—

4
H

b
[r1de) = [ ooy divl (.

Y “

ff 5 is a rectifiable curve then denote by y the curve defined by ¢ ¥) (1)

[ R
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y(—1) for —b < t < —a. Another notation for this is y~!. Also if ceC
let y+c¢ denote the curve defined by (y+¢) (f) = y(t)+c. The following
proposition gives many basic properties of the line integral.

1.17 Proposition, Let y be a rectifiable curve and suppose that f is a function
continuous on {y}. Then:

(a) ny‘: - .r—yf;

®) [, /1 < [, 1f11dz} < Vysup[[f(2)]: z € {¥}];
(¢) If ce C then [, f(z) dz = jy+cf(z—c) dz.

The proof is left as an exercise.

The next result is the analogue of the Fundamental Theorem of Calculus
for line integrals.

1.18 Theorem. Let G be open in C and let v be a rectifiable path in G with

initial and end points o and B respectively. If f: G — C is a continuous function
with a primitive F: G — C, then

[7=F@-F@

¥

(Recall that Fis a primitive of f when F' = f)).

The following useful fact will be needed in the proof of this theorem.

1.19 Lemma. /f G is an open set in C, y:(a,b]—G is a rectifiable path, and
f:G—>C is continuous then for every € >0 there is a polygonal path T in G
such that T(a)=y(a), I'(b)=y(b), and |[, f— |+ fI<e.

Proof. Case 1. Suppose G is an open disk. Since {y} is a compact set,

d=dist({y}, 3G)>0. It follows that if G= B(c;r) then {y} < B(c;p) where

p=r— %d. The reason for passing to this smaller disk is that f is uniformly

continuous in B(c;p)<=G. Hence without loss of generality it can be

assumed that f is uniformly continuous on G. Choose § >0 such that

| f(z)—f(w)| <e whenever |z—-w|<4. If y:[a,b]—>C then y is uniformly
M T +h

: Qg a mantiti~
COontinuous 8o tnecrc is a yarutlu 1 {f0< tl <...< f"} of {(i,b] sucn tinat

119 ly(s)— y(1)]| <8

if 1, _<s,1<t; and such that for 7, _, <7, <t, we have

n
1.20 [ E 160010 )] <e
Yy k=1 |
Define I":[a.b]—C by
. i
()= -— —'[(’A Oy, D+-—4 I)Y(’A)]
/O PR

iy =t So on [, ) () traces out the straight line segment
from y(s, ) to y(r,). that s, 1" 18 a polygonal path in . FFrom (1.19a)
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1.21 [T —y(r )l <8 fore, <1<y,

Since [ f= [Sf(T(1))I'(¢)dt it follows that

f é Y\tk) Y(tk~1) I f(I‘(t))a’t

ey Lo

i f(Y(Tk))[Y(tk)_Y(tk~l)]_’/I.‘f'

k=1

<f+2|7(tk) Yt DI — tk~l)*l (I‘(t)) f(y(z)lat.

k=1

Applying (1.21) to the integrand gives

_frf

Sete D v ()= y(h ) <e(1+V (7).
k=1

The nroof of Case T now follows.

11w }Jl\lvl V1 Wwdow & l\.l

Crce 1T e arbitrarmy Since {+) is compact there is a number r with
Wy 11 T WD wruiiiwr o WILLIVA l IJ 10 \i\ll‘ L daadd L7 %

0<r<dist({y},0G oose 6 >0 such that |y(s)— y(?)| <r when |s — | <

s, If P={1,<y, < <t} is a partition of [a,b] with || P[|<& then
lY()—y(t_DI<r for 4 <t<t. Thatis if v, :[5_,,4]—>G is defined by
¥, (£)=y(#) then {yk}c:B(y(tk );r) for 1<k<n. By Case I there is a
polygonal path I, : [’k—l”k]”B(Y(fk—l) r) such that T, (4 _)=v(%_ 1)
T (i)=7v({%), and ifykf “‘J\t/ n If T(&)=T,(t) on {# _,%] then I has
the required properties. Il

Proof of Theorem 1.18. Case I. y:[a,b]—C is piecewise smooth. Then [, f=

BfypyyOd = [PE(y@)yyde = [(FeyY(Ddt = F(y(b)) -
F(y(a)) F(B)— F(a) by the Fundamental Theorem of Calculus.

1 41 ~

Case 11 The General Case. If € >0 then Lemma 1.19 implies there is a
polygonal path I" from a to f such that |/ f— [rf|<e. But T'is p ewise
smooth, so by Case I [, f=F(fB)— F(a). Hence I/ f—[F(B)— F(a)]|<e
since € >0 is arbitrary, the desired equality follows. ll

The use of Lemma 1.19 in the proof of Theorem 1.18 to pass from the
piecewise smooth case to the rectifiable case is typical of many proofs of
results on line integrals. We shall see applications of Lemma 1.1¥ 1 the
future.

A curve y: [a, b] — C is said to be closed if y(a) = v(b).

1.22 Corollary. Let G, y, and f satisfy the same hypothesis as in Theorem
1.18. If y is a closed curve then

J’ £

!

IS 0t A -Gt
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The Fundamental Theorem of Calculus says that each continuous
function has a primitive. This is far from being true for functions of a
complex variable. For example let f(z) = |z|> = x>+ % If F is a primitive
of f then F is analytic. So if F = U+iV then x?+)? = F'(x+iy). Now,
using the Cauchy-Riemann equations,

oU oV oU or

x a d —_ = = O
ox 8y +y° an oy  ox

oUu
But 5 = 0 implies that U(x, y) = u(x) for some differentjable function u.

But this gives x*+ )% = o u'(x), a clear contradiction. Another way to

see that |z|? does not have a primitive is to apply Theorem 1.18 (see Exercise

8).

Exercises

1. Let y: [a, ] — R be non decreasing. Show that y is of bounded variation
and V(y) = y(b)—v(a).

2. Prove Proposition 1.2.

3. Prove Proposition 1.7,

4. Prove Proposition 1.8 (Use induction).

5. Let y(f) = exp ((— 1+ for 0 < ¢ < I and ¥(0) = 0. Show that y is
a rectifiable path and find ¥(y). Give a rough sketch of the trace of y.

6. Show that if y; [a, b] — C is a Lipschitz function then y is of bounded
variation.

1
7. Show that y: [0, 1] — C, defined by y(f) = t+it sin ; for ¢ # 0 and

y(0) = 0, is a path but is not rectifiable. Sketch this path.
8. Let y and ¢ be the two polygons [1, i] and [1, 1+, i]. Express y and ¢ as
paths and calculate [, f and {, f where f(z) = |z|%

9. Define y: [0, 2] — C by y(2) = exp (inf) where n is some integer (positive,

I
negative, or zero). Show that | - dz = 2#in.
Y
10. Define y(#) = €' for 0 < ¢ < 2« and find [, z" dz for every integer n.
11. Let y be the closed polygon [1—i, 1+i, —1+i, —1—i, 1—i]. Find

r ldzg

J,z

Y
iz

12. Let () = | ¢ dz where y: [0, m] — C is defined by () = re'. Show
zZ

Y
that tim /(r) = 0.

13. Find f, z~ Y (= where: (a) y is the upper half of the unit circle from
+ Fto —1: (b) yis the fower half of the unit circle from + 1 to = 1§,
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14. Prove that if ¢: [a, b] —[c, d] is continuous and ¢(a) = ¢, o) =4d
then ¢ is one-one iff g is strictly increasing.

15. Show that the relation in Definition 1.16 is an equivalence relation.
16. Show that if y and ¢ are equivalent rectifiable paths then V(y) = V(o).
17. Show that if y: [@, b] — C is a path then there is an equivalent path
g: [0, 11—+ C.

18. Prove Proposition 1.17.

19. In the proof of Case I of Lemma 1.19, where was the assumption that y
lies in a disk used?

20. Let y(f) = 1+¢” for 0 < t < 27 and find §, (2-1)"" 4=

21. Let y(f) = 2¢" for —m < t < = and find |,@-1)""dz.

22. Show that if F, and F, are primitives for f: G —C and G is connected
then there is a constant ¢ such that F,(z) = ¢+ F,(2) for each z in G.

23. Let y be a closed rectifiable curve in G and a ¢ G. Show that for n = 2,
f,¢—a)"dz = 0. :

24. Prove the following integration by parts formula. Let f and g be analytic
in G and let ¥ be a rectifiable curve from a to b in G. Then _fy fg' = f(b)g(b)—

fla)g@-§, /e

§2. Power series representation of analytic functions

In this section we will see that a function £, analytic in an open set G,
has a power series expansion about each point of G. In particular, an analytic

function is infinitely differentiable.
We begin by proving Leibniz’s rule from Advanced Calculus.

2.1 Proposition. Let ¢: [a, bl x[c, d] - C be a continuous function and define
g:le,d]—Cby

b
2.2 o(f) = f s, £) ds.

a

op .
Then g is continuous. Moreover, if % exists and is a continuous function on

[a, b1 X [c, d] then g is continuously differentiable and

®
R3]

b
r
2.3 g = J

Proof. The proof that g is continuous is left as an exercise. Notice that if we
prove that g is differentiable with g’ given by formula (2.3) then it will follow

from the first part that g’ is continuous since at is continuous, Hence, we
[%
need only verify formula (2.3).

B e - T PP
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Fix a point #, in [c, d] and let € > 0. D g i

o ) € > 0. Denote " by @,; it follows

that ¢, must be uniformly continuous on [a, b] x [¢, d]. Thus, there is a & > 0

such that lpa(s’, t)—@a(s, ?)| < € whenever (s—s5)24+(t—1)? < 8% In
particular

24 |§D2(s9 t)—‘Pz(S, To)l < €
whenever |r—1,| < 8 and a < s < b. This gives that for |t—¢,| < § and
a<s<hb,

2.5 [ eals, D=gals, t)l dr| < elt~1,].

But for a fixed s in ‘[af bl ©(1) = (s, 1)—te,(s, t,) is a primitive of ¢,(s, )—
pa(s, ‘to). By combining the Fundamental Theorem of Calculus with in-
equality (2.5), it follows that

(s, D) —@(s, 1) —(t—to)p2(s, to)] < € t~1,)

for any s when |t—¢,] < 8. But from the definition of g this gives

(H—g(t 4
%o_) _ f @25, to) ds| < (b—a)

when 0 < |t—¢o| < 8.

This result can be used to prove that

2n

eis
f ds =2m if |z| < 1.
]

A mtannller  coee o011 PR . PUIE D] . Fal
Actually, we will need this formula in the proof of the next proposition

Let ¢(s, 1) = e for0 <t < 1,0 < s < 2m; (Note that ¢ is continuously

d%iferent?able because |z] < 1.) Hence g(r) = (3" ¢(s, f) ds is continuously
differentiable. Also, g(0) = 2=; so if it can be shown that g is a constant,
then 27 = g(1) and the desired result is obtained.

Now
2n .
, zels
D= |——g-
g j(e"—tz)z ds;
0

bult £or t_?xed, O(s) = zi(e"—12)"' has D'(s) = —zi(e" —12)" ¥(ie") =
ze™(e" —12)" %, Hence g'(f) = ®(2n)--0(0) -~ 0, so g must be a constant.
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The next result, although very important, is transitory. We will see a
much more general result than this—Cauchy’s Integral Formula; a formula
which is one of the essential facts of the theory.

2.6 Proposition. Let f: G — C be analytic and suppose B(a; r) < G(r > 0).
If () = a+re’, 0 < t < 2m, then

1 f(w)
- dw
2mi

@) =

w—2z
b4

Sfor |z—a| < r.

1
Proof. By considering G, = {- (z—a): z € Gl and the function g(z) = fla+
r J

rz) we see that, without loss of generality, it may be assumed that a = 0
and r = 1. That is we may assume that B(0; 1) < G.

Fix z, |z] < 1; it must be shown that

1) = 1 (f(w) dw
211'1J w—z
f(els)els
2-rr e —
[}
that is, we want to show that
2n A .
is is
Y G L R

e*—z

2r
P e isy is

[l e

We will apply Leibniz’s rule by letting

flz+ie*—z)e"
o(s, t) = B - ),

for 0 <t<1 and 0 < s < 2n. Since |z+1e"~2)| = |z(1—t)+te"| <1,
@ is well defined and is continuously differentiable. Let g(7) = I ofs, 1) ds;
so g has a continuous derivative.

The proposition will be proved if it can be shown that g(1) = 0; this is
donc by showing that g(0) = 0 and that g is constant. To see that g(0) = 0

|
‘
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compute:

2n
20) = [ #(s,0)ds
0

2n R
= rf(.f)el -f(z)_l ds
JLe—z 7]
—27f(2)
=0,

since we showed that j ———ds = 2= prior to the statement of this pro-
-z

o eis
position,

To show that g is constant compute g’. By Leibniz’s rule, g'() = §5"
(s, 1) ds where

12 wiills

@.(s, £) = e¥f"(z+t(e*—2)).

However, for 0 < ¢ < 1 we have that ®(s) = —it”'f(z+1(e*~2)) is a
primitive of ¢,(s, #). So g'(¢t) = ®2#)—0(0) = 0 for 0 < ¢t < 1. Since g’ is
continuous we have g” = 0 and g must be a constant. i}

How is this result used to get the power series expansion? The answer is
that we use a geometric series. Let |z—a| < r and suppose that w is on the
circle [w—a| = r. Then

1 1 1

w—z w—a Fz—al a)
1- n
w—a

since [z—a] < r = |w—a|. Now, multiplying both sides by [f(w)/2ni] and
integrating around the circle y: |w—a| = r, the left hand side yields f(z) by the
preceding proposition. The right hand side becomes—what? To find the
answer we must know that we can distribute the integral through the infinite
sum.

n

zZ2—a

(=2
\w-a/

I
[M]s

[
<

2.7 Lemma. Let y be a rectifiable curve in C and suppose that F, and F are
continuous functions on {y}. If F = u—lim F, on {y} then

[F=1im[F,
Y Y
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Proof. Let € > 0; then there is an integer N such that IF,,'(w) —Fw)| < /V(y)
for all won {y} and n > N. But this gives, by Proposition 1.17(b),

[F-[F|=|[F-F)

IA

[ 1EG) —F, )] law]

< €
whenever n > N. B

2.8 Theorem. Let [ be analytic in B(a; R); then f(z) = S afz—a) for

n=0

1 . . .
|z—a| < R where a, = —'f ")) and this series has radius of convergence > R.
n!

Proof. Let 0 < r < R so that B(a; r) < B(a; R). If (1) = a+ret,0<t<2m,
then by Proposition 2.6,

fl2) = i [}—r(w—)zdw

for |z—a| <.
2mi J w—
7

. - f ) F] . +1 LI B SR |
But, since |z—a| < r and w is on the circle iy},

ool leat 1zl

lw—al"*t = r r

where M = max {|f(w)|; |w—a| = r}. Since | < 1, the Weierstrass

z—a|
r

M-test gives that ¥ f(w) z—a)/(w—a)""" converges uniformly for w on
{y}. By Lemma 2.7 and the discussion preceding it

<[ 1 Sw) o
209 f(Z) = ;[E}J‘(W_a)rvkl dW](Z a)
If we set
T S B L S
" 2mi J (w—a)'tt

b4

then a, is independent of z, and so (2.9) is a power series which converges
for |z—a| < r.

1
It follows (Proposition 111. 2.5) that a, = ;—'f(")(a\, so that the value of q,

is independent of y; that is, it is independent of r. So

2.10 2 Y afz—a)
n-0

for |z -a| « r. Since r was chosen arbitrarily, r < R, we have that (2.10)
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holds for |z—a| < R; giving that the radius of convergence of (2.10) must
be at least R. |

2.11 Corollary. If f: G — C is analytic and a € G then f(z) = Y a,(z—a)" for
|z—a| < R where R = d(a, 2G). 0

Proof. Since R = d(a, 2G), B(a; R) = G so that f is analytic on B(a; R).
The result now follows from the theorem. Jij

2.12 Corollary. If f: G — C is analytic then f is infinitely differentiable.
2.13 Corollary. If f: G — C is analytic and B(a; r) < G then

SYSNI L i GO
f™a) = 27 ) (w—a)" ™!

¥

where y(t) = a+re'', 0 < t < 2m.

2.14 Cauchy’s Estimate, Lef f be analytic in B(a; R) and suppose |f(2)| < M
Jor all z in B(a; R). Then

n'M
(n)
ro@) <=M,
Pronf Since Caorollarvy 2 13 annlies wit ry <« R Pranosition 1 17 1mnlieg
£ 7007, SINCC LOrdunary «.i2 app:cs wiiid r < &, JTroposiiion 1.a17 IMpiics
that
n\ M n!
]f("’(a)] < ey . 211’7' = —
27 /" r

Since r < R is arbitrary, the result follows by letting r — R—. |l
We will conclude this section by proving a proposition which is a special
case of a more general result which will be presented later in this chapter.

2.15 Proposition. Let f be analytic in the disk B(a; R) and suppose that v is a
closed rectifiable curve in B(a; R). Then

ff=a

Proof. This is proved by showing that f has a primitive (Corollary 1.22).
Now, by Theorem 2.8, f(z) = Y a,(z—a)" for |z—a| < R. Let

S an n+ < n
F(z) = Z;<n+l) (z—a)y"t! = (z—a)?(n_l_ )(z—a) .

n=

Since lim (n+1)"/" = 1, it follows that this power series has the same radius
of convergence as Y. a,(z—a)". Hence, F is defined on B(a; R). Moreover,
F@)=f(z)for |z—a]| < R. N

Exercises

1. Show that the function defined by (2.2) is continuous.,
2. Prove the following analogue of leibniz’s rule (this exercise will be
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frequently used in the later sections.) Let G be an open set and let y be a
rectifiable curve in G. Suppose that ¢: {y}x G — C is a continuous function
and define g: G — C by

gl = f p(w, z) dw

Y
0
then g is continuous. If ;qu exists for each (w, z) in {y}x G and is continuous
0z
then g is analytic and
0
g = Jf (w, z) dw.
0z
Y

3. Suppose that v is a rectifiable curve in C and ¢ is defined and continuous
on {y}. Use Exercise 2 to show that

£) = J ¢w)
Z
Y
is analytic on C— {y} and
" (W)
g( )(Z) — ! J“ )n+1 /’u).

4. (a) Prove Abel’s Theorem: Let Y a, (z—a)" have radius of convergence 1
and suppose that ) a, converges to 4. Prove that
lim ) a,r" = A.
r+1-
(Hint: Find a summation formula which is the analogue of integration by
parts.)
(b) Use Abel’s Theorem to prove that log 2 = 1—-3+3—
5. Give the power series expansion of log z about z = i and ﬁnd its radius of
convergence
. Give the power series expansion of /z about z = 1 and find its radius of

cont
convergence.

7. Use the results of this section to evaluate the following integrals:

PR
iz
e

@ |79 Y1) = €, 0 <t<2m
Y
(b) & ; We) = a+re’, 0 <t<2m
; zZ—a
© S“msz’ dz, wWt) = e, 0<t< 2
.;' z
() ]0.,: dz, PO - T+ et 0Ot 2rand n ™~ 0.

~e
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8. Use a Mobuis transformation to show that Proposition 2.15 holds if the
disk B(a; R} is replaced by a half plane.

9. Use Corollary 2.13 to evaluate the following integrals:

(a) ee dz where n is a positive integer and y(f) = €%, 0 < t < 2n;
7

o dz

(b) ] (z—f)" where n is a positive integer and y(f) = ¢, 0 < t < 2m;
Y
[ dz .

© U e where y(f) = 2¢", 0 < t < 2=. (Hint: expand (z2+1)"! by

Y
means of partial fractions);

IA

t < 2nm;

in
() f S‘—Z—Z dz where y(f) = ", 0

Zl/m
(e) [ 1)’" dz where y(f) = 14+1e”, 0 < t < 2,

b4

[ 241 .
10. EvaluateJ Y Yy dz where (1) = re”, 0 <t < 2m, for all possible

valuesofr,0<r <2and 2 <r < oo.
11. Find the domain of analyticity of

1 /1+ zz\
lo
1) = 5, log (1=
also, show that tan f(z) = z (i.e,, fis a branch of arctan z). Show that
2k+ 1
1) = z (=1 for l2] < 1
k=
(Hint: see Exercise I11. 3.19.)
12. Show that
secz = 1 +z Ea o
= (2!

for some constants E,, E,,---. These numbers are called Euler’s constants.

What is the radius of convergence of this series? Use the fact that 1 = cos z
sec z to show that

- [ 20 . 2n 2
LG (2”__2) L.’n—2+( "— 4)[‘11 4+ ( l)"( ") E2+(_l)"=0'

Evaluate £y, By E,. By (B, 50821 and I'.‘,: 2702765).
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e—1 .. .
about zero and determine its radius

13. Find the series expansion of

z

of convergence. Consider f(z) = 1 and let

eZ

o]

)=

be its power series expansion about zero. What is the radius of convergence?

Show that
n+1 n+1
0—-a0+( 1 )a1+ +( a,
Using the fact that f(z)+4z is an even function show that g, = 0 for k odd

and k > 1. The numbers B,, = (—1)""'a,, are called the Bernoulli numbers
for n = 1. Calculate B,, By, " Bo- ‘

14. Find the power series expansion of tan z about z = 0, expressing the
coefficients in terms of Bernoulli numbers. (Hint: use Exercise 13 and the

formula cot 2z = 4 cot z—% tan z.)
§3. Zeros of an analytic function

If p(z) and g(z) are two polynomials then it is well known that
p(2) = 5 (2)g(z)+r(z) where s(z) and r(z) are also polynomials and the degree
of r(2) is less than the degree of ¢(2). In particular, if @ is such that p(a) =0
then choose (z—a) for g(z). Hence, p(z) = (z—a)s(z)+r(z) and r(z) must
be a constant polynomial. But letting z = a gives 0 = pla) = r(a). Thus,
p(2) = (z—a)s(z). If we also have that s(a) = 0 we can factor (z—a) from
s(z). Continuing we get p(z) = (z—a)™ #(z) where 1 < m < degree of p(z),
and #(z) is a polynomial such that #a) # 0. Also, degree #(z) = degree
p(z)—m.

3.1 Definition. If f: G — C is analytic and a in G satisfies f(a) = 0 then a
is a zero of f of multiplicity m > 1 if there is an anaiytic function g: G - C
such that f(z) = (z—a)"g(z) where g(a) # 0. o

Returning to the discussion of polynomials, we have that the multlphc'lty
of a zero of a polynomial must be less than the degree of the polynorryal.
If n = the degree of the polynomial p(z) and ay, . .., @ are all the distm'ct
zeros of p(z) then p(z) = (z—a,)™ - - (z—a)™s(z) where s(z) isa polynf)mlal
with no zeros. Now the Fundamental Theorem of Algebra says that a
polynomial with no zeros is constant. Hence, if we can prove this result we
will have succeeded in completely factoring p(z) into the product of first
degree polynomials. The reader might be pleasantly surprised to know that
after many years of studying Mathematics he is right now on the threshold
of proving the Fundamental Theorem of Algebra. But first it is necessary to
pr(;vc a famous result about analytic functions. Tt is also convenient to
introduce some new terminology.
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3.2 Definition. An entire function is a function which is defined and analytic
in tha whala ramnlay nlana O (Tha tarm “imtaoral finotian®? 1¢ alaen 11gaad )
111 Lviiv yviauvio L/Ullll.}l\vl\ ljldll\v Nvse \111\4 (AN ey llll\vslal dUliviivil 10 aldowvw uo\-u.)

The following result follows from Theorem 2.8 and the fact that C
contains B(0; R) for arbitrarily large R.

3.3 Proposition. If f is an entire function then f has a power series expansion

o
f@= Y az"
n=0
with infinite radius of convergence.

In light of the preceding proposition, entire functions can be considered
as polynomials of “infinite degree”. So the question arises: can the theory of
polynomials be generalized to entire functions? For example, can an entire
function be factored? The answer to this is difficult and is postponed to

Section VII. 5. Another property of polynomials is that no non constant
polynomial is bounded. Indeed, if p(z) = z"+a,_ 2" '+ +a, then
lim p(z) = lim z" [1+a,_,z '+ +agz "] = . The fact that this also

Z—> 00 Z—»0

holds for entire functions is an extremely useful result.

tire funct
niire 4

3.4 Liouville’s Theorem. If f is a bounded en nstant.
Proof. Suppose |f(z)] < M for all z in C. We will show that f'(z) = 0 for
all z in C. To do this use Cauchy’s Estimate (Corollary 2.14). Since f is
analytic in any disk B(z; R) we have that |f'(z)| < M/R. Since R was arbi-
trary, it follows that f'(z) = 0 for each z in C. |}

The reader should not be deceived into thinking that this theorem is
insignificant because it has such a short proof. We have expended a great
deal of effort building up machinery and increasing our knowledge of analytic
functions. We have plowed, planted, and fertilized; we shouldn’t be surprised
if, occasionally, something is available for easy picking.

Liouville’s Theorem will be better appreciated in the following applica-
tion.

fe ronctant
S Consia

3.5 Fundamental Theorem of Algebra. If p(z) is a non constant polynomial
then there is a complex number a with p(a) = 0.

Proof. Suppose p(z) # 0 for all z and let f(z) = [p(z)]~*; then f is an entire
function. If p is not constant then, as was shown above, lim p(z) = oo;

zZ >0
so lim f(z) = 0. In particular, there is a number R > 0 such that |f(2)| < 1
Z—>0
if [z] > R. But fis continuous on B(0; R) so there is a constant M such that

co

|f(2)| < Mfor|z| < R.Hence fis bounded and, therefore, must be constant
by Liouville’s theorem. It follows that p must be constant, contradicting our
assumption. [l

3.6 Corollary. If p(z) is a polynomial and a,, ..., a, are its zeros with a;
having multiplicity k ; then p(z) - c(z—a )+ - -(z—a,)* for some constant ¢
and k+ - tk,, is the degree of p. '

Returning to the analogy between entire functions and polynomials, the
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reader should be warned that this cannot be taken too far. For example, if p
is a polynomial and a € C then there is a number z with p(z) = a. In fact,
this follows from the Fundamental Theorem of Algebra by considering the
polynomial p(z)—a. However the exponential function fails to have this
property since it does not assume the value zero. (Nevertheless, we are able
to show that this is the worst that can happen. That is, a function analytic
in C omits at most one value. This is known as Picard’s Little Theorem and
will be proved later.) Moreover, no one should begin to make an anajogy
between analytic functions in an open set G and a polynomial p defined on
C; rather, you should only think of the polynomials as defined on G.

For example, let
f2) = cos(——l'”), lz] < 1.
1—2z

\ 4

1
Notice that 1_+_z maps D = {z:]z] < 1} onto G = {z: Rez > 0}. The zeros
-z

nm+2
However, as n — oo the zeros approach 1 which is not in the domain of

analyticity D. This is the story for the most general case.

of f are the points {n-n——2: n is odd}; so f has infinitely many zeros.

3.7 Theorem. Let G be a connected open set and let f: G — C be an analytic
function. Then the following are equivalent statements:

(@ f=0;

(b) there is a point a in G such that f™(a) = 0 for each n = 0;

(c) {z€G: f(z) = 0} has a limit point in G.

Proof. Clearly (a) implies both (b) and (c). (c) implies (b): Let ae G and a
limit point of Z = {z € G: f(z) = 0}, and let R > O be such that B(a; R) <
G. Since a is a limit point of Z and f'is continuous it follows that f(a@) = 0.
Suppose there is an integer n 2 1 such that f(@) = f"(@) == " Na)
= 0 and f®™(a) # 0. Expanding f in power serics about @ gives that

flo) = kz a(z—a)
for |z—a] < R If

a(z—a)™"

M8

g2) =
k=n

then g is analytic in B(a; R), f(z) = (z—a)'g(z), and g(a) = a, # 0. Since

g is analytic (and therefore continuous) in B(a; R) wecan findanr, 0 <r <

R, such that g(z) # O for |z—a| < r. But since « is a limit point of Z there

is a point b with f() = 0 and 0 < |b—a| < r. This gives 0 = (b—a)"g(b)

and so g(b) = 0, a contradiction. Hence no such integer n can be found;

Laie amee
his proves part (b).

(b) implies (a): Let A = {z G: f"™z) =0 for all . > 0}, From the
hypothesis of (b) we have that 4 4 [ 1. We will show that A is both open

N
L

Zeros of an analytic function 79

and closed in G; by the connectedness of G it will follow that 4 must be G
and so = 0. To sce that A is closed let ze A and let 2, be a sequence in
A such that z = lim @, Since each f™ is continuous it follows that
f®(2) = lim f"(z,) = 0. So ze 4 and 4 is closed.

To see that 4 is open, let ae 4 and let R > 0 be such that B(a; R) < G.
Then f(z) = X a,(z—a)" for |z—a| < R where a, = i'f("’(a) = 0 for each
n!

n=0. chce f(2) = O for all z in B(a; R) and, consequently, B(a; R) < A.
Thus A4 is open and this completes the proof of the theorem. I

3.8 Corollary. If f and g are analytic on a region G then f = g iff {zeG:
f(2) = g(2)} has a limit point in G.

. This follows by applying the preceding theorem to the analytic function
/=&

3.9 Corollary. If f is analytic on an open connected set G and f is not identi-
cally zero then for each a in G with f(a) = O there is an integer n > 1 and an
analytic function g: G — C such that g(a) # 0 and f(2) = (z—a)"g(z) for all
z in G. That is, each zero of f has finite multiplicity.

D, ~

~m T 4 L T . v d Jead o ~.
roof. Let n be ihe largest integer (= 1) such that /™

= 0 and define
PN P N —RL7 LN £ - PR l Al ) N e

8(z) = (z—a) *f(z) for z # a and g(a) = o fY(a). Then g is clearly analytic

%n G— {g}; to see that g is analytic in G it need only be shown to be analytic

in a neighborhood of a. This is accomplished by using the method of the

proof that (c) implies (b) in the theorem. i

3.10 Corollary. If f: G — C is analytic and not constant, a€ G, and f(a) = 0
then there isan R > Osuch that B(a; R) < Gandf(z) # Ofor0 < |z—a| < R.

Proof. By the above theorem the zeros of f are isolated. i

There is one instance where the analogy between polynomials and analytic
funpﬂons works in reverse. That is, there is a property of analytic functions
which is not so transparent for polynomials.

3.11 Maximum Modulus Theorem. If G is a region and f- G — C is an analytic
Sfunction such that there is a point a in G with | f(a)| = |f(2)| for all z in G, then
[fis constant.

Proof. Let B(a; r) = G, y(f) = a+re** for 0 < ¢ < 2r; according to Pro-
position 2.6

f@ = = [ L. 4,
27i | w—a

n

- 21 J Sfla+re'ydt



80 Complex Integration
Hence
2n
1 )
@) = . [ sl ar <1
0

since | f(a+re")| < |f(a)| for all «. This gives that
0 = [ [If(@]~|/(a+re dr;
0

but since the integrand is non-negative it follows that lf(@)| = |fla+re)|
for all . Moreover, since r was arbitrary, we have that f maps any disk
B(a; R) < G into the circle |z| = |« where o = £(a). But this implies that f
is constant on B(a:; R) (Exercise III. 3.17). In particular f(z) = « for |z—a]
< R. According to Corollary 3.8, f = «. Il

According to the Maximum Modulus Theorem, a non-constant analytic
function on a region cannot assume its maximum modulus; this fact is far
from obvious even in the case of polynomials. The consequences of this
theorem are far reaching; some of these, along with a closer examination of
the Maximum Modulus Theorem, are presented in Chapter V1. (Actually,

the reader at this point can proceed to Sections V 1,1 and VI 2)

Exercises

1. Let f be an entire function and suppose there is a constant M, an R > 0,
and an integer n > 1 such that [f(2)| < M|z|" for lz] > R. Show that fis a

gra

polynomial of degree < a.

2. Give an example to show that G must be assumed to be connected in
Theorem 3.7.

3. Find all entire functions £ such that f(x) = €* for x in R.

4. Prove that &% = ¢%¢” by applying Corollary 3.8.

5. Prove that cos (a+b) = cos a cos b—sin a sin b by applying Corollary 3.8.
6. Let G be a region and suppose that /1 G ~C is analytic and a € G such
that |f(a)| < |f(2)] for all z in G. Show that either f(a) = 0 or fis constant.
7. Give an elementary proof of the Maximum Modulus Theorem for
polynomials.

8. Let G be a region and let £ and g be analytic functions on G such that
f(2)g(z) = 0 for all a in G. Show that either f= O0org = 0.
9. Let U: C — R be a harmonic function such that U{z) = € £
prove that U is constant.

10. Show that if f and g are analytic functions on a region G such that fg is

analytic then either f is constant or g =0.

rallzinC

§4. The index of a ciosed carve

hd
We have already shown s

that (= a) "de=2mnaf y(n)=a+e
s ale .

1 it s snr s the o h v

Cauchy’s Theorem 8
1

4.1 Proposition. If v:[0, 11>C is a closed rectifiable curve and a ¢ {v} then
1 [ d

27i ) z—a
Y

is an integer.

Proof. This is only proved under the hypothesi i
' esis that 1
case define g:[0, 1]—>C by P v 15 smooth. In this

_ (e
s fOY(S)—ads

Hence, g(0)=0and g(1)=/,(z—a)~'dz. We also have that
v'(1)

g(t)=——— for 0<t<l.
Y()-a :
But this gives

d _
¢ f(y—a)=e ¥y —g'e ¥(y—a)

=e 5[y —y(y=a) (v—a)]
S O
0 e #(y—a) is the constant function e 8@(v(Q =
o Dy~ . Since ot v ( )—a)=y(0)—a=
. y(0)=vy(1) we have that ¢ #(V= =2
for some integer k. W ‘ tor that g(=2mik

4.2 Definiti 1 if1
4.2 Definition. If v is a closed rect

1s called the‘ index of v with respect to the point a. It is also sometimes
called the winding number of y around a.

Recall that if v:10. 1 ; -1
all that if y:[0, 11>C is a curve, —y or y~ ' is the curve defined by

(— 7)({)= v(1— t). (this is actually a reparametrization of the original
deflmtlon)..Also if y and o are curves defined on [0, 1] with y(1)=0(0)
thex? yl+o is the curve (y+o)(0)=vy(20) if 0<r<1 and (y+o)()=0(] —
20) if 3 <t <1. The proof of the following proposition is left to the reader.

4.3 Proposition. If v and o are closed rectifiabl,
initial points then

(@) n(y;a)=—n(—v:a) for every a ¢ {y);

(b) n(yfo;a)= n(y:a)+n(o:a) for every a ¢ {y}u{o}.

Why is n(y:a) c;)xlled the winding number of y about a? As was said
before f y(1=a+ e for 0<1 <1 then n(y:a)=n. In fact if (b—a)<l
then "(Yib)="-’ and if !b* ('.I -1 then (v M =0 This can b 1.
Dl " ‘ @ N /MY .0p=u. 1nis can b snown

y or one can mvoke Theorem 4.4 below. So at least in this case
n(y:h) measures the number of tmes y wraps around b - with the nunus

Aterty amvedasiontagenss e ind 0heie srrnw som imeeeese  wat 1.1 1
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The following discussion is intuitive and mathematically imprecise.
Actually, with a little more sophistication this discussion can be corrected
and gives insight into the Argument Principle (V.3).

If v is smooth then

f(z-a)7ldz=f' r(2) dt.
Y o Y(1)—a
Taking inspiration from calculus one is tempted to write [ z—a)” Tdx =
log[y(t)—al|\=}. Since y(1)=v(0), this would always give zero. The diffi-
culty lies in the fact that y(7)—a is complex valued and unless y(¢)—a lies
in a region on which a branch of the logarithm can be defined, the above
inspiration turns out to be only so much hot air. In fact if ¥ wraps around
the point a then we cannot define log(y(#)—a) since there is no analytic
branch of the logarithm defined on C— {a}.

Nevertheless there is a correct interpretation of the preceding discus-
sion. If we think of logz =log|z|+iargz as defined then

f(z—a)"dz=log[y(l)—a]—10g[y(0)—a]=
{logly(1)— a| —log|y(0)—a| } + i {arg[ v(1)—a] —arg[ v(0)—a]}.

Since the difficulty in defining logz is in choosing the correct value of
argz, we can think of the real part of the last expression as equal to zero.
Since y(1)=y(0) it must be that even with the ambiguity in defining argz,
arg[y(1)—a]—arg[y(0)—a] must equal an integral multiple of 2#, and
furthermore this integer counts the number of times y wraps around a.

Let v be a closed rectifiable curve and consider the open set G=C-
{v}. Since {y} is compact {z:]z|> R} < G for some sufficiently large R.
This says that G has one, and only one, unbounded component.

4.4 Theorem. Let y be a closed rectifiable curve in C. Then n(y;a) is
constant for a belonging to a component of G=C— {v). Also, n(y;a)=0 for
a belonging to the unbounded component of G.

Proof. Define f: G—C by f(a)=n(y;a). It will be
ous. If this is done then it follows that f(D) is connected for each
component D of G. But since f(G) is contained in the set of integers it
follows that f(D) reduces to a single point. That is, f is constant on D.
To show that f is continuous recall that the components of G are open

(Theorem I1. 2.9). Fix a in G and let r=d(a,{v}). If |a —b| <8< ;r then
l f[(z—a)fl—(z—b)fl]dz
Y

|f(a)—f(B)= 5~
(a=b) .
: (z —alz b)

dz|

g|u h|
T da |z )|z A
T

<chawn th
AYEINT AV

27

o e g e e
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But for |a—b|<ir and z on {y} we have that |z—a|>r>3r and

2= b]>Lr. It follows that |f(a)—f(b)|< =2 V(y). So if €>0 is given
T

then, by choosing & to be smaller than 17 and (7r%)/28V (y), we see that f

must be continuous. (Also, see Exercise 2.3.)

Now let U be the unbounded component of G. As was mentioned
before the theorem there is an R >0 such that U>{z:|z|>R}. If €>0
choose a with |a|>R and |z—a|>(@27) 'W(y) uniformly for z on {y};
then |n(y;a)|<e. That is, n(y;a)—0 as a—co. Since n(y;a) is constant on
U, it must be zero. B

Exercises

1. Prove Proposition 4.3.

2. Give an example of a closed rectifiable curve vy in C such that for any
integer k there is a point a ¢ {y} with n(y;a)= k.

3. Let p(z) be a polynomial of degree n and let R >0 be sufficiently large
so that p never vanishes in {z:|z] > R}. If y(1)= Re”, 0 <t <27, show that
{ p'(2)
sy p(2)

4. Fix w=re50 and let y be a rectifiable path in C— {0} from 1 to w.
Show that there is an integer k such that [,z 'dz=logr+if+2mik.

dz =2min.

§35. Cauchy’s Theorem and Integral Formula

We have already proved Cauchy’s Theorem for functions analytic 1n a
disk: if G is an open disk then [ f=0 for any analytic function f on G and
any closed rectifiable curve y in G (Proposition 2.15). For which regions G
does this result remain valid? There are regions for which the result is
false. For example, if G=C—{0) and f(z)=z ' then y(z)=¢" for 0= <
27 gives that [ f=2xi. The difficulty with C— {0} is the presence of a hole
(namely {0}). In the next section it will be shown that [ f=0 for every
analytic function f and every closed rectifiable curve y in regions G that
have no “holes.”

In the present section we adopt a different approach. Fix a region G
and an analytic function f on G. Is there a condition on a closed rectifiable
curve y such that /. f=0? The answer is furnished by the index of y with
respect to points outside G. Before presenting this result we need the
following lemma. (This has already been seen in Exercise 2.3.)

5.1 Lemma. Let y be a rectifiable curve and suppose ¢ is a function defined
and continuous on {v}. For each m=1 let F, (z)=[ @(w)w—2z)""dw for
z¢{v). Then each F,, is analvtic on C - {vy} and F, (z)=mF, , (2).

Proof. We first claim that each £, 1s continuous. In fact, this follows in the
same way that we showed that the mdex was contimuous (see the proof of
Theorem 4.4). One need only observe that, sinee {y} s compact, g s
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bounded there: and use the factorization.

R S S S R A N I 1
(w=2)"  (w—a)" [w—z w—a]gl(w—z)"”‘(w—a)“
I 1
5.2 =(z—a + S+
( )[ (w=2)"(w=a) (w-2)""'(w=-a)

1

(w—z)(w—a)
The details are left to the reader.
Now fix @ in G=C—{y) and let z € G, z#a. It follows from (5.2) that
Fa(5)=Fy(a) _ po@w=a)' ce(nw-a)”
v (w— z)'" .ly w—z
Since a ¢ {v}, p(w)(w — a)~* is continuous on {vy} for each k. By the first
part of this proof (the part left to the reader), each integral on the right

hand side of (5.3) defines a continuous function of z,z in G. Hence letting
z—>a, (5.3) gives that the limit exists and

- r__(pﬂ)__du;+...+ r—givl—dw
J, (w=a)"*!

- dw
9.3 aw
z—a

5.4 Cauchy’s Integral Formula (First Version). Ler G be an open subset of

the plane and f: G—C an analytic function. If v is a closed rectifiable curve
i €7 ennl that wl~wN=0 for all win C— G then for a in G- {y}
LI AT JUCTL LIl 1L\ |5 'V )} VU Geee V¥ LI g o J VS

A

n(via)f(a)=~5_—- | 7— 4=

27 z—a
Y

Proof. Define ¢ : G X G—C by ez, w)=[f(D)—fW]/(z—w) if ZFW and
¢(z,2)=f"(z). It follows that ¢ is continuous; and for each w n G,
z—@(z,w) is analytic (Exercise 1). Let H={we C:n'(y; w)y=0}. Since
n(y;w) is a continuous integer-valued function of w, H is open. Moreover
Hu G=C by the hypothesis.

Define g:C—C by g(2)=/,p(z,w)dw if zeG and g(z)=/,(w—
) f(wydw if ze H. If ze GNH then
rfwy—f(2)

aw

}:‘/?ﬁ(z,w)a'w=}y

-,

= ( [(——W) dw.
Jow

w—2
f(fz dw—f(zn(y:z)2mi

Henee g 1s a well-defined function.

lv
.
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By Lemma 5.1 g is analytic on C; that is, g is an entire function. But
Theorem 4.4 implies that H contains a neighborhood of oo in C . Since f

is bounded on {v} and zlir?o(w—z)"=0 uniformly for w in {v},
. . f(w)
5.5 Jim g(2)= lim f Wz =0

a mamtintilaon 8 &Y femasmline tlhhnwn 2o ne D SN ciiale sl | N o1 £
i parucuidar {9.0) impiies ui€rc i8S an [ >V sucn wndi | giz) =1 101
|z| = R. Since g is bounded on B (0; R) it follows that g is a bounded entire
function. Hence g is constant by Liouville’s Theorem. But then (5.5) says

that g=0. That is, if @ e G—{y} then
z)—f(a
_(f0-f@)

7 — 7
&

Jy -
f(2) dz
= dz—f(a .
f z—a f(a) z—a
Y Y
This proves the theorem. Il
Often there is a need for a more general version of Cauchy’s Inte
Formula that involves more than one curve. For example in dealing with
an annulus one needs a formula involving two curves.

0

5.6 Cauchy’s Integral Formula (Second Version). Let G be an open subset of
the plane and f: G— C an analytic function. If y,,...,v,, are closed rectifiable
curves in G such that n(y;;w)+--- +n(y,:;w)=0 for all w in C— G, then
Jor a in G—{v}

1 J2)
f@ 2 nta= 2 o5 [ e
k=1 Ya
Proof. The proof follows the lines of Theorem 5.4. Define g(z,w) as it was
done there and let H={w:n(y,;;w)+ -+ +n(y,;w)=0}. Now g(z) is
defined as in the proof of (5.4) except that the sum of the integrals over
Y1+« Yn 18 Used. The remaining details of the proof are left to the reader.

Though an easy corollary of the preceding theorem, the next result is
very important in the development of the theory of analytic functions.

5.7 Cauchy’s Theorem (First Version). Let G be an open subset of the plane

< (; ' ; od vontifiahl, a7
and f: G—C an analytic function. If v,,...,v,, are closed rectifiable curves in

G such that n(y;;w)+ -+ +n(y,;w)=0 for all win C— G then
Eff=0.
A=l i

Proof. Substitute f(z)(z — a) for f in Theorem 5.6. W
Let G={z:R, <|z|<R,} and define curves v, and v, in G by v,(1)=
rels yt)y=re M for 007 2m where R« r« ry Ry If |w| <R,
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n(y;;w)=1= —n(y,; w); if |w| = R, then n(y;;w)=n(y,; w)=0. So n(y,;;w)
+n(y,;w)=0for all win C—-G.

5.8 Theorem. Let G be an open subset of the plane and f: G—C an analytic

function. If v,,...,v,, are closed rectifiable curves in G such that n(y;w)
- +n(y,,:w)=0 for all win C— G then for a in G—{y} and k= 1

m
- f(k)( i wi~ - )7 k! ; __1_ r___f_(zl_ 7.
’ j k+1
o2 -t

Proof. This follows immediately by differentiating both sides of the for-
mula in Theorem 5.6 and applying Lemma 5.1. |l

5.9 Corollary. Let G be an open set and f: G—>C an analyttc Sfunction. If v is

a closed recn]lavte curve in G such that n\y, W)—UJUI all win C—G then

forain G—{vy}
f*(a)n(y;a =5 f (Z)kﬂ dz.
7l (z—a)

Cauchy’s Theorem and Integral Formula is the basic result of
complex analysis. With a result that is so fundamental to an entire theory
it is usual in mathematics to seek the outer limits of the theorem’s validity.
Are there other functions that satisfy [ f=0 for all closed curves y? The
answer is no as the following converse to Cauchy’s Theorem shows.

A closed path T is said to be triangular if it is polygonal and has three
sides.

5.10 Morera’s Theorem. Let G be a region and let f: G— @ be a continuous
function such that [ f=0 for every triangular path T in G; then f is analytic

inG.

Proof. First observe that f will be shown to be analytic if it can be proved
that f is analytic on each open disk contained in G. Hence, without loss of
generality, we may assume G to be an open disk; suppose G = B(a; R).

Use the hypothesis to prove that f has a primitive. For z in G define
F(2)= [}, ., Fix zy in G; then for any point z in G the hypothesis gives
that F(2)=(,. f* /., -/ Hence

R g

z—2z, z—2zy

This gives
F(2)— F(zo)

Z—2g

1 .
- fzo) = —f(z0)
Sf(zo (Z-Zo)lf f=f(zo

l r VIR a4 Y
’ [ JOw)—J zp)) dw.
(: ~ZTo

g gttt O s
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But by taking absolute values
F(z)—=F(z)
T =f(zo)| 1S (2) = f(z))l.

which shows that
F(z)=F(zy)
m —=

Z-—>2Z, Z—-ZO

=f(zo)~ n

Exercises

1. Suppose f: G—)C is analytic and define ¢:G X
Prove

f(w“(z—w\ Vi z7#wand oz 7\_ff7\
IEASS A oe TV Ass bl A Tl \«J

for each fixed w, z—>p(z,w) is analytlc

2. Give the details of the proof of Theorem 5.6.

3. Let B, =B(*1;}), G=B(0; 3)~(B,UB_). Let v,,v,,v; be curves
whose traces are [z —1|=1, |z+1|=1, and |z]| =2, respectively. Give v,,v,,
and vy orientations such that n(y;:w)+ n(y,;w)+ n(y;;w)=0 for all w in
C—

4. Show that the Integral Formula follows from Cauchy’s Theorem.

5. Let y be a closed rectifiable curve in C and a & {y}. Show that for n>2
[,(z—a) "dz=0.

6. Let f be analytic on D= B(0; 1) and suppose | f(z)| <1 for |z| <1. Show
|f ) =1

7. Let y()=1+e" for 0<1<27. Find | (
tegers #.

8. Let G be a region and suppose f,: G—C is analytic for each n> 1.
Suppose that { f,} converges uniformly to a function f: G—>C Show that f
is analytic.

9. Show that if f:C—C is a continuous function such that f is analytic off
[—1,1] then f is an entire function.

10. Use Cauchy’s Integral Formula to prove the Cayley—Hamilton Theo-
rem: If 4 is an n X n matrix over C and f(z)=det(z — A) is the characteris-
tic polynomial of 4 then f(4)=0. (This exercise was taken from a paper
by C'. A. McCarthy, Amer. Math. Monthly, 82 (1975), 390-391).

) dz for all positive in-

§6 The homotopic version of Cauchy’s Theorem and simple connectivity

This section presents a condition on a closed curve y such that [ f=0
for an analytic function. This condition is less general but more geometric
than the winding number condition of Theorem 5.7. This condition is also
used to introduce the concept of a simply connected region: in a simply
connected region Cauchy's Theorem is valid for every analytic function
and every closed rectifiable curve. Let us illustrate this condition by
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considering a closed rectifiable curve in a disk, a region where Cauchy’s
Theorem is always valid (Proposition 2.15).

Let G=B(a; R) and let y:[0, 1]>G be a closed rectifiable curve. If
0<¢<1and 0<s <1, and we put z=ta+(1—1)y(s); then z lies on the
straight line segment from a to y(s). Hence, z must lie in G. Let v,(s)=ta
+(1—1)y(s) for 0<s=<1 and 0=<r=<1. So, o=y and v, is the curve
constantly equal to a; the curves y, are somewhere in betweer}. We were
able to draw y down to @ because there were no holes. 1f a pont inside y
were missing from G (imagine a stick protruding up from the disk with its
base inside y), then as y shrinks it would get caught on the hole and could
not go to the constant curve.

6.1 Definition. Let y,,v,:[0, 1]>G be two closed rectifiable curves in a
encinn £ than ~ i¢ hamatonie taa v in G if there ic a2 continuous function
TCEIOIl U, UICIL Yo Id AUMUUpIl W [ 11 U 11 WIRIE 45 & WA/RILRes

I':[0, 11X[0, 1]>G such that

I'(s5,0)=y4(s) and T(s,1)=7v,(s) (0ss=<1)
r'0,6)=T(l,r) (0=st=1)

So if we define v,:[0, 1]>G by v,(s)=TI(s,f) then each y, is a closed
curve and they form a continuous family of curves which start at y, and go
to y,. Notice however that there is no requirement that each y, be
rectifiable. In practice when y, and y, are rectifiable (or smooth) each of
the y, will also be rectifiable (or smooth).

If y, is homotopic to v, in G write y,~7,. Actually a notation suph as
Yo~7¥,(G) should be used because of the role of G. If the range of I' is not
required to be in G then, as we shall see shortly, all curves would b:
homotopic. However, unless there is the possibility of confusion, we will
only write yo~v,-.

It is easy to show that “~” is an equivalence relation. Clearly any
curve is homotopic to itself. If yy~v, and T':[0, 1]X[0, 1]—>G satisfies (6.2)
then define A(s,f)=T(s,1—1¢) to see that y,~y, Finally, if y,~v, and
y,~7, with T satisfying (6.2) and A:[0, 1]1X[0, 1]>G satisfying A(s,0)=

6.2
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v1(s), A(s,1)=1v,(s), and A(0,/)=A(l,t) for all s and ¢; define P[0, 1]X

(@ 11-G by

(.1 I'(s,2t) ifo<s<!
s, t)=
A(s,2e= 1) if

Then ® is continuous and shows that yy~7v,.

6.3 Definition. A set G is convex if given any two points a and b in G the
line segment joining @ and b, [a,b), lies entirely in G. The set G is star
shaped if there is a point @ in G such that for each z in G, the line segment
[a,z] lies entirely in G. Clearly each convex set is star shaped but the
converse is just as clearly false.

We will say that G is a— star shaped if [a,z]< G whenever z e G. If G is
a- star shaped and z and w are points in G then [z,a,w] is a polygon in G

connecting z and w. Hence, each star shaped set is connected.

6.4 Proposition. Let G be an open set which is a- star shaped. If y, is the

curve which is constantly equal 1o a then every closed rectifiable curve in G is
homotopic to y.

Proof. Let y, be a closed rectifiable curve in G and put I'(s,£)=ty,(s)+
(1 —1)a. Because G is a— star shaped, I'(s,) e G for 0< s, < 1. It is easy to
see that T satisfies (6.2).

The situation in which a curve is homotopic to a constant curve is one
that we will often encounter. Hence it is convenient to introduce some new
terminology.

6.5 Definition. If y is a closed rectifiable curve in G then y is homotopic to
zero (y~0) if y is homotopic to a constant curve.

6.6 Cauchy’s Theorem (Second Version). If f: G— C is an analytic function
and vy is a closed rectifiable curve in G such that y~0, then

[r=o.
)

This version of Cauchy’s Theorem would follow immediately from the
first version if it could be shown that n(y;w)=0 for all w in C— G
whenever y~0. This can be done. A plausible argument proceeds as
follows.

Let y, =7 and let y, be a constant curve such that y,~v,. Let I satisfy
(6.2) and define A(r)= n(y,; w), where y,(s)=T(s,f) for 0<s, ¢ <1 and w is
fixed in C— G. Now show that 4 is continuous on [0, 1]. Since 4 is integer
valued and 4(0)=0 it must be that 2(/)=0. In particular, n(y;w)=0 for all
winC-G.

The only point of difficulty with this argument is that for 0<¢ <1 it
may be that vy, is not rectifiable.

As was stated after Definition 6.1, in practice cach of the curves y, will
not only be rectifiable but also smooth. So there s justification in making
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this assumption and providing the details to transform the preceding

paragraph into a legitimate proof (Exercise 9). Indeed, in a course de-
signed for physicists and engineers this is probably preferable. But this is
not desirable for the training of mathematicians.

The statement of a theorem is not as important as its proof. Proofs are
important in mathematics for several reasons, not the least of which is that
a proof deepens our insight into the meaning of the theorems and gives a
natural delineation of the extent of the theorem’s validity. Most important
for the education of a mathematician, it is essential to examine other
proofs because they reveal methods.

A good method is worth a thousand theorems. Not only is this
statement valid as a value judgement, but also in a literal sense. An
important method can be reused in other situations to obtain further
results.

With this in mind a comnlete proof of Theorem 6.6 will be presented.
In fact, we will prove a somewhat more general fact since the proof of this
new result necessitates only a little more effort than the proof that
n(y;w)=0 for w in C— G whenever y~0. In fact, the proof of the next
result more clearly reveals the usefulness of the method.

6.7 Cauchy’s Theorem (Third Version). If y, and y, are two closed rectifiable
curves in G and yy~, then
f=17
[,

Yo

for every function f analytic on G.

Before proceeding let us consider a special case. Suppose I satisfies (6.2)
and also suppose T has continuous second partial derivatives. Hence

#r_ e
osét  Otds
throughout the square 72 = [0, 1]1x [0, 1]. Define
! ~
¢0) = jf(F(s, 0% s, ds
]

then g(0) = f,, f and g(1) = f,, /- By Leibniz’s rule g has a continuous

derivative,

1

gr) = j[f’(r(s, SR (O F] ds
cs 't ctes

But
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hence

ar ar
g’(t) = f(F(I’ t)) “é; (1> t)_f(r(o’ t)) V?At (05 t)'

Since I'(1, £) = T'(0, ¢) for all r we get g’(z) = O for all ¢. So g is a constant;
in particular {,, f = [,, /.
Proof of Theorem 6.7. Let I': 1 G satisfy (6.2). Sinc

3 nd T
1

amd T2 3o anmimant T i 1ini
i 1IN

and /¢ is compact, I' is uniform

OfT
subset of G. Thus

1 N
Yy continuot

&

1 Q
us

r = dI'(1%), C—G) > 0
and there is an integer » such that if (s—s")? + (¢ —')* < 4/n® then

IT¢s, )=T(s', t)| < r.
Let

n’ n
P j+1‘| I‘k k+1‘|
‘Ijk= Ty T X )
IECHEECONS B OO
/9

for 0 < j, k < n—1. Since the diameter of the square Jj, is N= it follows
n

ij=I’<j,k>,Osj,k5n
and put

that T'(J;,) < B(Z, r). So if we let P be the closed polygon [Z, Zs 1,15
Zii1.k+10 Zj kv 1> Zjxl; then, because disks are convex, Py, < B(Z, r). But
from Proposition 2.15 it is known that

6.8 [r=0

Py
for any function f analytic in G.

It can now be shown that [, f= [, f by going up the ladder we have
constructed, one rung at a time. That is, let O, be the closed polygon [Z, ,,
Ziwo-rZy) Wewill show that [ f=fo.f=[of="=[o.f=].F

7i e
ik J{iv J@n/ JTi

(one rung at a time!). To see that [, /= [, f observe that if o,(r) = y(¢) for

Iyt
n n

41 . T o 4 L. N . : P 2 4 : i,
then o;+[Z;41,0, Z0] (the + indicating that o; is to be followed by the
polygon) is a closed rectifiable curve in the disk B(Z;,; r) < G. Hence

fr=- | r= [ £

ay [Z541.0. Zy0] [Z40,2Z541.0]

r~

Adding both sides of this equation for 0 < j < nyieids §,,/ = [o, /. Similarly

jr.f" .[an'
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= ion (6.8); this gives
To see that [ 0, f=1 O f use equation (6.8); g

6.9 o_sz

P,k

Z; i

N

However, notice that the integral Jf., S includes the integral over [Z; 4,

Z;,1,k+1), which is the negative of the integral over [Z;,1,i+1, ZJ+1,k]
which is part of the integral 5 ,, . f. Also,

ZO,k = F<O, If) = F(Lk) = Zl,k
n n

so that [Zo v41s Zo.id = —[Z1 Z, i +1)- Hence, taking these cancellations
into consideration, equation (6.9) becomes

0=/ |7

Qr +1

This completes the proof of the theorem. Il
The second version of Cauchy’s Theorem immediately follows by

letting y, be a constant path in (6.7).

6.10 Corollary. If y is a closed rectifiable curve in G such that y~0 then
n(y;w)=0 for all win C—G.

The converse of the above corollary is not valid. That is, there is a
closed rectifiable curve y in a region G such that n(y;w)=0 for all w in
€ — G but y is not homotopic to a constant curve (Exercise 8).

If G is an open set and y, and v, are closed rectifiable curves in G then
n(yq; @)= n(y,; a) for each a in C— G provided y,~v,(G). Let yo(1)=e*™
and y(H)=e 2™ for 0<r= 1. Then n(y,:0)=1 and n(y,:0)= —1 so that
¥, and y, are not homotopic in C — {0}.

6.11 Definition. If y,. y,:[0. 1] »( are two rectifiable curves in (7 such that
YolO) =y, (0)y=a and y()=y,(ly=h then y, and y, are fived-end-point
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homotopic (FEP homotopic) if there is a continuous map I':/2-G such
that

ik

6.12 I'(5,0) = yols)  I'(s, 1) = 7,(s)
'O, =a I',n=5»5

forO<s,t <1,

Again the relation of FEP homotopic is an equivalence relationship on
curves from one given point to another (Exercise 3).

Notice that if y, and y, are rectifiable curves from a to b then y,—y;
is a closed rectifiable curve. Suppose I satisfies (6.12) and define y: [0, 1] > G
by y(s) = yo(3s) for 0 <s<4; ys) =b for } <5< %; and y(s) =y,
(3—3s)for 2 < s < 1. We will show that y ~ 0. In fact, define A: 1> — G by

- A i N g1
L\J\ }}u V =0 =7

A(s,t) = (I'(1—1,3s—1+2¢—-3s1) if t<s<3}
yi((3-35)(1-1) if 2<s<1.

Although this formula may appear mysterious it can easily be understood
by seeing that for a given value of ¢, A is the restriction of I" to the boundary
of the square [0, 1 —1] x [i, 1] (see the figure). It is lefi to the reader to check
that A shows y ~ 0,

0 + |
l—t

Hence, for f analytic on G the second version of Cauchy’s Theorem gives
= Jr- J r=|f
b4 71

This is summarized in the following.

6.13 Independence of Path Theorem. If v, and vy, are two rectifiable curves
in G from a to b and yy and y, are FEP homotopic then
f=17
'[Y() f
Jor any function f analytic in G.

Those regions G for which the integral of an analytic function around a
closed curve is always zero can be characterized.

6.14 Definition. An open set (s simply connected if G 1s connected and
every closed curve in G s homotopie to zero.
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6.15 Cauchy’s Theorem (Fourth Version). If G is simply connected then
[,.f=0 for every closed rectifiable curve and every analytic function f.

Let us now take a few moments to digest the concept of simple connected-
ness. Clearly every star shaped region is simply connected. Also, examine the
complement of the spiral r = 8. That is, let G = C—{fe”®: 0 < 6 < w};
then G is simply connected. In fact, it is easily seen that G is open and

connected. If one argues in an intuitive way it is not difficult to become
convinced that every curve in G is homotopic to zero. A rigorous proof will

cOIIVIIILCS: Llal © LRIV L \J LUVILVWWPIL WU LUV M glivus pPruvl Wi

be postponed until we have proved the following: 4 region G is simply
connected iff C , — G, its complement in the extended plane, is connected in C.,,.
This will not be proved until Chapter VIIL. If this criterion is applied to the
region G above then G is simply connected since C,—G consists of the
spiral r = 0 and the point at infinity.

Notice that for G = C— {0}, C—G = {0} is connected but Cp—G =
{0, oo} is not. Also, the domain of the principal branch of the logarlthm is
simply connected.

It was shown earlier in this chapter (Corollary 1.22) that if an analytic
function f has a primitive in a region G then the integral of f around every
closed rectifiable curve in G is zero. The next result should not be too sur-
prising in light of this.

6.16 Corollary. If G is simply connected and f: G— C is analytic in G then f
has a primitive in G.
Proof. Fix a point a in G and let y,, y, be any two rectifiable curves in G
from a to a point z in G. (Since G is open and connected there is always a
path from a to any other point of G.) Then, by Theorem 6.15, 0 = |, _,,
_f = JfYIJf—JfVZ f‘(whf-re '}/1 —‘}/2 IQ ﬂ'\P curve \uhlr‘h OnPQ Frnm a fn -4 a!ong A/'l
and then back to a along —y,). Hence we can get a well defined function
F: G — C by setting F(z) = |,f where y is any rectifiable curve from a to z.
We claim that F is a primitive of f.

Ifz,eGand r > 0 is such that B(z,; r) < G, then let ¥ be a path from
to z,. For z in B(zgy; r) let y, = y+[z,, z]; that is, y, is the path y followed

t frn - LI o
3 t..\. straight line segment from z, to z. Hence

F(2)-F(zo) _ 1

z—12z, (z—z4) “lz0:2] .

[ RN

Now proceed as in the proof of Morera’s Theorem to show that

F'(zg)=f(z,). B

Perhaps a somewhat less expected consequence of simple connectedness
is the fact that a branch of log f(z) where f is analytic and never vanishes,
can be defined on a simply connected region. Nevertheless this is a dircct
consequence of the preceding corollary.

6.17 Corollary. L.ci 5 he simply connected and let [:G »C be an unalytic
function such that f(z) # O for amv = in (. Then there is an analytie function
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g :G—>C such that f(z)=expg(z). If zy € G and e*°=f(z,), we may choose g

h !hn' nfv \_“',0

’

Proof. Since f never vanishes,7 is analytic on G; so, by the preceding
corollary, it must have a primitive g,. If 4(z) = exp g,(z) then A is analytic

and never vanishes. So,é is analytic and its derivative is
h(2)f"(z) = h'(2)f(2)
h(z)?

But &' = gih so that Af'—fh' = 0. Hence f/h is a constant ¢ for all z in G.
That is f(z) = ¢ exp g,(z) = exp [g,(z) +¢’] for some ¢’. By letting g(z) =
g:(z)+c"+2nik for an appropriate k, g(z,) = w, and the theorem is
proved. @l

Let us emphasize that the hypothesis of simple connectedness is a topo-
logical one and this was used to obtain some basic results of analysis. Not
only are these last three theorems (6.15, 6.16, and 6.17) consequences of
simple connectivity, but they are equivalent to it. It will be shown in
Chapter VIII that if a region G has the conclusion of each of these

theorems satisfied for everv function
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connected.
We close this section with a definition.

N {7 muncg
lytic on G, then G mus

]
3

6.18 Definition. If G is an open set then y is homologous to zero, in symbols
ya0, if n(y;w)=0for allwin C—G.

Using this notation, Corollary 6.10 says that y~0 implies y~0. This
result appears in Algebraic Topology when it is shown that the first
homology group of a space is isomorphic to the abelianization of the
fundamental group. In fact, those familiar with homology theory will
recognize in the proof of Theorem 6.7 the elements of simplicial approxi-
mation,

Exercises

1. Let G be a region and let o,, o,: [0, 1] - G be the constant curves
o,(f) = a, ox(f) = b. Show that if y is closed rectifiable curve in G and y ~ o,
then y ~ o,. (Hint: connect a and b by a curve.)

2. Show that if we remove the requirement “T'(0, 1) =
from Definition 6.1 then the curve yo(f) = ***,0 < ¢t <
the constant curve y,(r) = 1 in the region G = C—{0}.
3. Let € = all rectifiable curves in G joining a to b and show that Definition
6.11 gives an equivalence relation on €.

4. Let G = C— {0} and show that every closed curve in G is homotopic
to a ciosed curve whose trace is contained in {z: |z] = 1}

(I r) for ail ¢~
is homotopic to
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dz where y(6) = 2|cos 26| e® for 0 < 6 < 2.

241

5. Evaluate the integral [

N

¢

J
¥
6. Let p(6) = 6™ for 0 <0 <2r and ¥(f) = 47—0 for 2w < 0 < 4m.
dz
Evaluate | 77— .
+

2

V4
7. Letf(zy) = [(z—ﬂ}—i)-(z—l—%i)-(z——l—fg)-(z—%—i)]‘l and let y be the
polygon [0, 2, 24 2i, 2i, 0]. Find §, /.
8. Let G = C—{a, b}, a # b, and let y be the curve in the figure below.

(a) Show that n(y; a) = n(y; b) = 0.

(b) Convince yourself that y is not homotopic to zero. (Notice that the
word is “convince” and not “prove”. Can you prove it?) Notice that this
example shows that it is possible to have a closed curve y in a region such
that n(y; z) = 0 for all z not in G without y being homotopic to zero. That
is, the converse to Corollary 6.10 is false.
9. Let G be a region and let y, and v, be two closed smooth curves n G
Suppose y,~7y, and T satisfies (6.2). Also suppose that y,(s)=I(s,0) is
smooth for each ¢. If we C— G define A(t)=n(y,;w) and show that &:
[0, 1]>Z is continuous.

. . dz

10. Find all possible values of f

y 1+ z2
curve in C not passing_Ehrough *1.

11. Evaluate f —e—_f——dz where y is one of the curves depicted below.
Y V4
(Justify your answer.)

— -

(a) (b) ()

where y is any closed rectifiable

0

I N
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§7. Counting zeros; the Open Mapping Theorem

In this section some applications of Cauchy’s Integral Theorem are
given. It is shown how to count the number of zeros inside a curve; also,
using some information on the existence of roots of an analytic equation,
it will be proved that a non-constant analytic function on a region maps
open sets onto open sets.

In gection ? it wag chown
...... tion 3 11 was shown

tha roy at
wia at

=
T =

we could write f(z) = (z—a)"g(z) where g is analytic and g(a) # 0. Suppose
G is a region and let f be analytic in G with zeros atay, . . ., a,,. (Where some
of the g, may be repeated according to the multiplicity of the zero.) So we
can write f(z) = (z—a,) (z—a,) . . . (z—a,)g(z) where g is analytic on G and
g(z) # 0 for any z in G. Applying the formula for differentiating a product
f@ _ 1 SRS B )

@ z-ay z-a, z-a, g(@)

for z # ay,...,a, Now that this is done, the proof of the following
theorem is straightforward.

7.2 Theorem. Let G be a region and let f be an analytic function on G with
zeros ay, . . . , 4, (repeated according to multiplicity). If y is a closed rectifiable
curve in G which does not pass through any point a, and if y = 0 then

1 £ ¢
— | dz = ya
- i J o Z, i a)

Y
Proof. If g(z) # 0 for any z in G then g’'(z)/g(z) is analytic in G; since y = 0,

Cauchy’s Theorem gives J‘é:((—z)) dz = 0. So, using (7.1) and the definition of
F 4 ¥4
b
the index, the proof of the theorem is finished. [l

—~

7.3 Coroliary. Let f, G, and y be as in the preceding theorem except that
a,,...,a, are the points in G that satisfy the equation f(z)=a; then
1 [ r@
2mi ) f(2)—a
Y

dz =Y n(y;a)
k=1

. . " (2z+1
As an illustration, let us calculate J @ dz where y is the circle
z+z+1

¥
|z| = 2. Since the denominator of the integrand factors into (z —w,) (z—w,),
where w; and w, are the non-real cubic roots of 1, Theorem 7.2 gives
{ 2241 .
2 - dz = qmi.
41

I
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As another illustration, let v:[0, 1]= G be a closed rectifiable curve in
C, y~0. Suppose that f is analytic in G. Then foy=g0 is a closed rectifiable
curve in C (Exercise 1). Suppose that a is some complex number with
a¢ {o}=f({y}), and let us calculate n(o;a). We get

1 dw
n(cr; oc) - ;i [‘w—a

_ '@ 4,
2mi f (@- oc

= Z n(y; a)
k=1

where g, are the points in G with f(a,)=a. (To show the second equality
above takes a little effort, although for y smooth it is easy. The details are
left to the reader.)

Note If mav he thf ﬂ’\prn are infini

1
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equation f(z)=a. However, from what we have proved, this sequence
must converge to the boundary of G. It follows that n(y;z)#0 for at most
a finite number of solutions of f(z)=a. (See Exercise 2.)

Now if B in C—{ ¢} belongs to the same component of C— {0} as does
a, then n(o;a)=n(o;B); or,

X nly; ale)) = Y nly; 2,(B)

where z, (a) and z;( 8) are the points in G that satisfy f(z)=a and f(z)=f
respectively. If we had chosen y so that n(y:z,(a))=1 for each k, we
would have that f(G) contains the component of C— f({y}) that contains
a. We would also have some information about the number of solutions of
f(z)=B. This procedure is used to prove the following result which, in
addition to being of interest in itself, will yield the Open Mapping
Theorem as a consequence.

7.4 Theorem. Suppose f is analytic in B(a; R) and let « = f(a). If f(z) — o has
a zero of order m at z = a then there is an ¢ > 0 and 8§ > 0 such that for
[ —~a| < 8, the equation f(z) = L has exactly m simple roots in B(a; e).

A simple root of f(z) = Cis a zero of f(2)— £ of multiplicity |. Notice that
this thecorem says that f(B(a: ) > B(x: d). Also, the condition that f(z)—«
have a zero of finite muitiplicity guarantees that f1s not constant, -

———— - T
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Proof of Theorem. Since the zeros of an analytic function are isolated we
can choose € > 0 such that ¢ < 3R, f(z) = « has no solutions with 0 <
|z—a| < 2¢ and f'(z) # 0 if 0 < |z—a] < 2e. (If m = 2 then f'(a) = 0.)
Let () = a+eexp (2mit), 0 <t < 1, and put o = foy. Now « ¢ {5}; so
there is a 8 > 0 such that B(«; 8) N {o} = []. Thus, B(«; 8) is contained in
the same component of C— {c}; that is, |«—{| < 8 implies n(o; «) = n(o;

H = Z n(y; z,(£)). But since n(y; z) must be either zero or one, we have that

k=1

there are exactly m solutions to the equation f(z) = { inside B(a; ¢). Since
f(2) # 0for 0 < |z—a| < ¢, each of these roots (for { # «) must be simple
(Exercise 3).

7.5 Open Mapping Theorem. Let G be a region and suppose that f is a non
constant analytic function on G. Then for any open set U in G, f(U) is open.

Proof. If U < G is open, then we will have shown that f(U) is open if we
can show that for each a in U there is a 8§ > 0 such that B(x; §) < f(U),
where « = f(a). But only part of the strength of the preceding theorem is
needed to find an € > 0 and a 8 > 0 such that B(a; ¢) = U and f(B(a; €)) @
B(«; ). B

If X and Q are metric spaces and f: X — Q has the property that f(U)
is open in {2 whenever U is open in X, then f is called an open map. If fis a
one-one and onto map then we can define the inverse map f~': Q - X

by f~'(w) = x where f(x) = w. It follows that ™! is continuous exactly
when f is open; in fact, for U < X, (f~1)~Y(U) = AU).

7.6 Coroilary. Suppose f: G — C is one-one, analytic and f(G) = Q. Then
7 Q> C is anaiytic and (f ™) (w) = [f'(2)]"! where w = f(z).

Proof. By the Open Mapping Theorem, f ! is continuous and Q is open.
Since z = f7!(f(2)) for each z € Q, the result follows from Proposition II1.
220.1

Exercises

1. Show that if f: G—C is analytic and ¥ is a rectifiable curve in G then Sfoy

is also a rectifiable curve. (First assume G is a disk.)

2. Let G be open and suppose that y is a closed rectifiable curve in G such

that y~0. Set r—d({y} dG) and H={z ¢ C:n(y;z)=0}. (a) Show that
{2:d(2.0G)< ,r}< H.(b) Use part (a) to show that if f: G—C is analytic
then f(z)=a has at most a finite number of solutions z such that
n(y:z)#0.

3 Letfbe analytic in B(a; R) and suppose that f{a) = 0. Show thatais a

o of « i rim 1) ]
\r \I \Il llllllllllll\.ll] "I Ill [ 14
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4. Suppose that f: G — C is analytic and one-one; show that f'(z) # 0 for

any 2 in 7

aily < il \J.

5. Let X and Q be metric spaces and suppose that /> X — Q is one-one and
onto. Show that f is an open map iff /' is a closed map. (A function f'is a
closed map if it takes closed sets onto closed sets.)

6. Let P: C — R be defined by P(z) = Re z; show that P is an open map
but is not a closed map. (Hint: Consider the set F = {z: Im z = (Re z)~'
and Re z # 0}.)

7. Use Theorem 7.2 to give another proof of the Fundamental Theorem of
Algebra.

§8. Goursat’s Theorem

Most modern books define an analytic function as one which is differen-
tiable on an open set (not assuming the continuity of the derivative). In this
section it is shown that this definition is the same as ours.

Goursat’s Theorem. Let G be an open set and let f: G — C be a differentiable
Sfunction; then fis analytic on G.
Proof. We need only show that f” is continuous on each open disk contained
in G; so, we may assume that G is itself an open disk. It will be shown that
£ is analytic by an application of Morera’s Theorem (5.7). That is, we must
show that 7 f = O for each triangular path T in G.

Let T = [a, b, ¢, a] and let A be the closed set formed by T and its inside.
Notice that T = dA. Now using the midpoints of the sides of A form four
triangles A, A,, A;, A, inside A and, by giving the boundaries appropriate

¢

a

8.1 [r= > [7

Among these four paths there is one, call it 7", such that |fro f| = |f7,/]
forj = 1,2, 3, 4. Note that the length of each T, (perimeter of A )—denoted
by AT)—is 4/(T). Also diam T, = } diam T; finally, using (8.1)

=] [ A

[ER)
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Now perform the same process on T, getting a triangle T‘® with the

Taons . +3 Ry indnats n 3
analogous properties. By induction we get a sequence {T™3} of closed tri-

angular paths such that if A™ is the inside of T™ along with T™ then;

8.2 A > AQ) >

83 |[rl<4| [ 1
T T(n+1) !

8.4 AT" D) = 3AT™);

8.5 diam A®*" = 1 diam A™,

These equations imply:

A=<l ] 1

T T
8.7 AT™) = Q)¢ where ¢ = AT);
8.8 diam A® = (3)"d where d = diam A.

Since each A™ js closed, (8.2) and (8.8) allow us to apply Cantor’s
Theorem (I1. 3.6), and get that () A®™ consists of a single point z,.
n=|

Let ¢ > 0; since f has a derivative at z, we can find a 8 > 0 such that
B(zy; 8) < Gand

f(z)_f(zo) _fl(zo) < e

Z2—2Zg
whenever 0 < [z—2z,| < 8. Alternately,
8.9 [f2)=f(z0)—f(z0) (2—20)| < € |z—2|

whenever |z—z,| < 8. Choose n such that diam A® = (3)"d < 8. Since
zo € A™ this gives A™ < B(z,; 8). Now Cauchy’s Theorem implies that
0 = frwm dz = [ z dz. Hence

| [ 7] =| [ r@~feo-reo -z 4z

T T

A

¢ [ Jz=zol 1
T

< e« [diam A™) [A(T*)]
-~ «d}y



102
But using (8.6) this gives

| l f| < FedlB) = <dl.

Since ¢ was arbitrary and d and £ are fixed, [ f= 0.l

Complex Integration
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Singularities

In this chapter functions which are analytic in a punctured disk (an open
disk with the center removed) are examined. From information about the
behavior of the function near the center of the disk, a number of interesting
and useful results will be derived. In particular, we will use these results to
evaluate certain definite integrals over the real line which cannot be evaluated
by the methods of calculus.

§1. Classification of singularities

This section begins by studying the best behaved singularity—the
removable kind.

1.1 Definition. A function f has an isolated singularity at z=a if there is an
R >0 such that f is defined and analytic in B(a;R)— {a} but not in
B(a; R). The point a is called a removable singularity if there is an analytic
function g: B(a; R)—C such that g(z)=f(z) for 0<|z~a|<R.

} sinz 1 1 . . "
The functions —— , —, and exp - all have isolated singularities at z = 0.
z 'z z

sin z . . . .
However, only —— has a removable singularity (see Exercise 1). It is left to
zZ

the reader to see that the other two functions do not have removable
singularities.

How can we determine when a singularity is removable? Since the function
has an analytic extension to B(a; R), |,f = 0 for any closed curve in the
punctured disk; but this may be difficult to apply. Also it must happen that
lim f(z) exists. This is easier to verify, but a much weaker criterion is

Z—=a

available.

1.2 Theorem. If f has an isolated singularity at a then the point z = a is a
removable singularity iff

lim (z—a)f(z) = 0
Proof. Suppose f is analytic in {z: 0 < [z—a| < R}, and define g(z) =
(z—a)f(z) for z # a and g(a) = 0. Suppose lim (z—a)f(z) = 0; then g is

z—a

clearly a continuous function. 1f we can show that g is analytic then it follows
that a is a removable singularity. In fact, if g is analytic we have g(z) =
(z—a)h(z) for some analytic function defined on B(a: R) because g(a) = 0
(IV. 3.9). But then #(2) and f(2) must agree for 0 < z—q] < R, s0 that a is,
by dcefinition, a removable singularity.
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