Chapter 111

Flementary Properties and Examples of
Analytic Functions

§1. Power series

In this section the definition and basic properties of a power series will
be given. The power series will then be used to give examples of analytic

functions. Before doing this it 18 necessarv to aive some elementarv facts on
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infinite series in C whose statements for infinite series in R should be well

known to the reader. If g, is in C for every n = 0 then the series Z a,
n=0
converges to z iff for every ¢ > 0 there is an integer N such that | Z a,—z| < e
n=0
whenever m > N. The series Y, a, converges absolutely if Y. |a,| converges.

1.1 Proposition. If Y a, converges absolutely then Y a, converges.
Proof. let ¢ > 0 and put z, = ay+a;,+...+d4, Since Y |a,| converges
o0
there is an integer N such that Y |a,| < e. Thus, if m > k > N,
n=N

m ©
lzm—zk] = I _z an! < -—Z.LI Ianl < Z lanl < e

n=L+1 a=N
r=k+1 -1 n=N

That is, {z,} is a Cauchy sequence and so there is a z in C with z = lim z,.
Hence ) a, = z.

Also recall the definitions of limit inferior and superior of a sequence in
R. If {a,} is a sequence in R then define

lim Infn = lim hnf fa.a 11
23432 : s Qi = ¢ 0 53

lim sup a, = lim [sup {a,, @y:+1,--.}]

n-w
An alternate notation for lim inf a, and lim sup q, is lim @, and im a,. If
b, =inf {a,, a,,, - - .} then {b,} is an increasing sequence of real numbers

— + 141, 1t axy lan Cismnilanler
or { %“} Hence, hm infa a, a.lv'v'a._yS exists au110u5u it may ove + ©o. Similarly

lim sup a, always exists although it may be + co.
A number of properties of lim inf and lim sup are included in the exercises
of this section.

A power series about a is an infinite scrics of the form Z a,(z—a)". One
of the casiest examples of a power series (and one of the mosl uscful) is the
o
geometric series Y z". For which values of z docs this series converge and
n-0 .

LYY
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when does it diverge? It is easy to see that 1 —2z"*! = (1—2) (1 +2z+...+2"),

SO -.uuo.

1 _Zn+1
1.2 I+z4+... 42" = —-
-z
If |z] < 1 then 0 = lim z" and so the geometric series is convergent with
S 0 _ ]
o T 1-

If |z| > 1 then lim |z|" = oo and the series diverges. Not only is this result
an archetype for what happens to a general power series, but it can be used
to explore the convergence properties of power series.

1.3 Theorem. For a given power series 7 a(z—a)" define the number R,
0 < R<ooby n=0

1

— = lim sup |a,|'/™,

gl up |a,|
then:

(@) if |z—a| < R, the series converges absolutely:

(b) if |z—a| > R, the terms of the series become unbounded and so the
corine dinorapc:
series diverges;

() if 0 < r < R then the series converges uniformly on {z: |z| < r}
Moreover, the number R is the only number having properties (a) and (b).

Proof. We may suppose that a = 0. If |z| < R thereisan r with [z] < r < R.

1 1
Thus, there is an integer N such that |a,|!/" < = for aln = N ( because - >
¥

1 1
R) But then |q,| < - and so |a,z"| < <I l) for all n > N. This says that

0 z n
the tail end ) a,z" is dominated by the series ), L , and since — l l
n=N r

the power series converges absolutely for each |z] < R.
Now suppose » < R and choose p such that r < p < R. As above, let

1 n
N be such that |a,| < — for all n > N. Then if |z| < r, |a,2"] < <£) and
o P

r . . .
<—) < 1. Hence the Weierstrass M-test gives that the power series converges
14

uniformly on {z: |z]| <

n {z r}. This proves parts (a) and (c).
oS P r \*>7 \“/

Pr

< | |
To prove (b), let |z] > R and choose r with |z| > > R. Hence - < — ;
from the definition of lim sup, this gives infinitely many integers n with
1 z[\" . z

< |a,|'™. Tt follows that |a,z"| > (l I) and, since (' I) > 1, these terms
r ¥ r

become unbounded. J§
The number R is called the radius of convergence of the power serics.
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1.4 Proposition. If Y a(z—a)" is a given power series with radius of con-
vergence R, then

R = lim |a,/a, |
if this limit exists.

Proof. Again assume that @ = 0 and let « = lim |a,/a,. |, which we suppose
to exist. Suppose that |z| < r < « and find an integer N such that r<
|an/a,+ ] for all n > N Let B= ]aNIr ; then |0N+1]" = |ays, " <
laylr" = B; |ay 2l % = lay4alrr® ¥ < |ay. PVt < B; continuing we get

la,r"| < Bforalln > N. But then |a,2"| = |a,r l A < B[ Al for alln > N.
r"
Since |z| < r we get that Z |a,z"| is dominated by a convergent series and

hence converges. Since r < o was arbitrary this gives that « < R.
On the other hand if |z] > r > «, then |a,| < rl|a,.| for all n larger than
some integer N. As before, we get |a,"| = B = |ayr™| for n > N. This

2"
|r|”

and so R < a«. Thus R = «. K

n

gives |a,z"| = B which approaches oo as n does. Hence, Y, a,z" diverges

z .- . .
Consider the series 7 ; by Proposition 1.4 we have that this series
n=0H

has radius of convergence co. Hence it converges at every complex number
and the convergence is uniform on each compact subset of C. Maintaining a
parallel with calculus, we designate this series by

z"
e J—
“oont’

the exponential series or function.
Recall the following proposition from the theory of infinite series (the
proof will not be given).

1.5 Proposition. Let Y a, and Y, b, be two absolutely convergent series and put
Cn = Z akb,,_ ke

k=0

Then Y c, is absolutely convergent with sum

X a) (X ).

1.6 Proposition. Ler Y a(z—a)' and Y b,(z—a)" be power series with radius
of convergence >r > 0. Put

n

Cy = Z ab, s
P}

then both power series Z (a,+h,) (—a)" and Z c(z—a)" have radius of con-
rergence =, and
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Y (a,+b,) (z—a) [Y a(z—a)+Y b(z—a)"]

Y ez—ay = [¥ az—ay] [T bz—a)]

for |z—a] < r.

Proof. We only give an outline of the proof. If 0 < s < r then for |z| < s

we get ) la,+b,| 2" < 3 lals"+ Y [byls" < o0 3 ol 2" < (X lals")
(X |b,ls") < co. From here the proof can easily be completed. ll

Exercises

1. Prove Proposition 1.5.

2. Give the details of the proof of Proposition 1.6.

3. Prove that lim sup (a +b,,) < lim sup a,+lim sup b, and lim inf (a,,+b,,)
> {im inf g,+1im inf &, for {g,} and {§,} sequences of real num .
4. Show that lim inf @, < lim sup g, for any sequence in R.
5. If {a,} is a convergent sequence in R and a = lim g,, show that ¢ = lim
inf a, = lim sup a,.

6. Find the radius of convergence for each of the following power series:
(@) V a'z", aeC; (b) T a’z", aeC; (c) Y k"z", k an integer #0; (d) 7 "

n= 0 = n=0
7. Qhow that the radius of convergence of the power series

Z (=1 n(n+1)
n=1 n

is 1, and discuss convergence for z = 1, —1, and i. (Hint: The nth co-
efficient of this series is not (—1)"/n.)

§2. Analytic functions

In this section analytic functions are defined and some examples are
given. It is also shown that the Cauchy-Riemann equations hold for the real
and imaginary parts of an analytic function.

2.1 Definition. If G is an open set in C and f: G—C then f is differentiable
at a point a in G if i

i f@+h)—1(a)

B0 h
exists; the value of this limit is denoted byf'(a) and is called the derivative of
S at a. iIf fis differentiable at each point of G we say that fis uyjerem‘tawc
on G. Notice that if f is differentiable on G then f"(a) defines a function
/"1 G ->C. If £ is continuous then we say that f'is continuously differentiable.
If /7 is differentiable then fis nwice differentiable; continuing, a differentiable
function such that cach successive derivative is again differentiable is called
infinitely differentiable.

(Menceforward, all functions will be assumed to take their vaiues in €

unless it is stated to the contrary.)
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The following was surely predicted by the reader.

2.2 Proposition. If f: G — C is differentiable ai a point a in G ther

continuous at a.

Proof. In fact,

lim | f(2)—f(a)| = [lim V—(E%a)l] - [lim [z—al] =f(a)0=0H
2.3 Definition. A function f: G—C is analytic if f is continuously differen-
tiable on G.

It follows readily, as in calculus, that sums and products of functions
analytic on G are analytic. Also, if f and g are analytic on G and G, is the
set of points in G where g doesn’t vanish, then f/g is analytic on G,.

Since constant functions and the function z are clearly analytic it
follows that all rational functions are analytic on the complement .of the
set of zeros of the denominator.

Moreover, the usual laws for differentiating sums, products, and
quotients remain valid.

2.4 Chain Rule. Let f and g be analytic on G and ) respectively and suppose
f(G)= K. Then gof is analytic on G and

(gof)(2)=g'(f(2)f(2)
for all z in G.

Proof. Fix z, in G and choose a positive number r such that B(zy;r)=G.
We must show that if 0< |A,|<r and lim/,=0 then lim{A, '[g(f(zo+4,))
—g(f(zo)]} exists and equals g'(f(2¢))f'(z,). (Why will this suffice for a

Case 1 Suppose f(z,) 7 f(zo+h,) for all n.
In this case

gof(zo+h)—gof(z0) _ &(f(zo+h,)—8(f(20) [f(zo+h,)—f(2)
h, T St h) = f(20) h, '
Since im[f(z,+ h,) — f(2,)]=0 by (2.2) we have that
limh,'[ g°f (zo+ k) —8°f (20) ] =&'(f(20)).f (20)

Case 2 f(z9)=f(zo+ h,) for infinitely many values of .

Write {A,} as the union of two sequences {k,} and {/,} where f(z5)7
f(zo+k,) and f(zy)=f(zo+1,) for all n. Since f 1s differentiable, f'(zg)=
Hm L [ f(zo+ L) — f(zg)]=0. Also liml,~'[gof(zo+1,)— g°f(29)]=0. By
Case 1, limk-'[gof(zo + k,) — g°f(20)] = '(f(20))f (20) = 0. Therefore
limh, [ gof (2 + hy) — 82 (201 =0=g (F(z) [ (20)-

The general case easily follows from the preceding two. i

In order to define the derivative, the function was assumed to be defined
on an open set. 1f we say fis analytic on a set 4 and A4 is not open, we mean
that fis analytic on an open sct containing 4.

N
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Perhaps the definition of analytic function has been anticlimatic to many
readers. After seeing books written on analytic functions and year-long
courses and seminars on the theory of analytic functions, one can excuse a
certain degree of disappointment in discovering that the definition has
already been encountered in calculus. Is this theory to be a simple generaliza-
tion of calculus? The answer is a resounding no. To show how vastly different
the two subjects are let us mention that we will show that a differentiable
Junction is analytic. This is truly a remarkable result and one for which there

is no analogue in the theory of functions of a real variable (e.g., consider
1 . e

x? sin > . Another equally remarkable result is that every analytic function
x

is infinitely differentiable and, furthermore, has a power series expansion
about each point of its domain. How can such a humble hypothesis give
such far-reaching results? One can get come indication of what produces
this phenomenon if one considers the definition of derivative.

In the complex variable case there are an infinity of directions in which a
variable can approach a point a. In the real case, however, there are only two
avenues of approach. Continuity, for example, of a function defined on R
can be discussed in terms of right and left continuity; this is far from the
case for functions of a complex variable. So the statement that a function of
a complex variable has a derivative is stronger than the same statement about
a function of a real variable. Even more, if we consider a function f defined
on G < C as a function of two real variables by putting g(x, ) = f(x+iy)
for (x, y) e G, then requiring that f be Frechet differentiable will not ensure
that f has a derivative in our sense,

In an exercise we ask the reader to show that f(z) = |z|? has a derivative
anly at 2 — 0 bt of ¥y ) — Ay Livy = v2 112 j¢ Erachat differantiahla
Ulll_y aL < U, Uul., 6\/\, y, J \A s l.}/} A T.}’ FYs BN S S Wi B) § Lw) MlIvIViILIA Vi,

.
That differentiability implies analyticity is proved in Chapter 1V; but
right now we prove that power series are analytic functions.

2.5 Proposition. Let f(z) = ) afz—a)" have radius of convergence R > 0,
Then: n=0
(@) For each k = 1 the series
2.6 Y an-1)...(n—k+Da(z—a)"*
n=k
has radius of convergence R;
(b) The function f is infinitely differentiable on B(a; R) and, furthermore,
S®(2) is given by the series (2.6) for all k > 1 and |z—a| < R;
(¢) Forn > 0,

1
2.7 a, = — " a).
n!
Proof. Again assume that ¢ = 0.
oY W et smnsavneol dhoit 800 0 mecvarandd Fisw I 1 tbhagnmtbhn nncac - — 9
W) YV U JIEDLU TCHRLAE N LR U L) iD "ll’VL\l TOE A — § UHIVITLIICCADNI A — L, .00
will follow. In fact, the case & 2 can be obtamed by applying part (a) for
A 1tothe series Y nafz @) ' We have that B 1 lim sup o, /"7 we
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wish to show that R™! = lim sup |na,|'/*~ 1. Now it follows from I'Hopital’s

rule that lim pd A 0, so that lim n'/®~1 = 1. The result will follow from

nroo n-r o
Exercise 2 if it can be shown that lim sup |a,|"/""""=R
Let (R )‘ =lim sup |a,|'"/®""; then R’ is the radius of convergence of

Z Za,,Hz Noticethatz ¥ a,, 2" +ao = 3, a,2"; henceif |z] < R’

then Y laz | laol +12) Y la,+12"] < 0. ThlS gives R' < R. If |z] < Rand

z # 0 then ) |a,z"| < o0 and }, |a,+,2"| < Zlazl+l Z]

that R < R’. This gives that R R’ and completes the proof of part (a)
(b) For |z] < Rputg(z) = Z na,z"" 1, 5,(2) = Z az*, and R(2) = Z

k=n+1

lao| < o, so

a,z*. Fix a point w in B(0; R) and fix r with |w| < r < R; we wish to show
that f"(w) exists and is equal to g(w). To do this let 8 > 0 be arbitrary except
for the restriction that B(w; 8) = B(0; r). (We will further restrict & later in
the proof.) Let z € B(w; 8); then

28 12TV _ o - [S@)s‘”’ sxw]+{awo—awﬂ
) z—w zZ—w
R, (2)— R, (w
+|: (2) =R )]
zZ—w
Now .
R.(2) = R,(w) _ Z a2 —wh)
z—w Z—Wk=n+1
Z <z"—w")
k=n+1 z—w
But
k k
=wi _ |2 42 2wzt T < kT
| z—w |
Hence,
Z |aklkrk_1
Z—Ww k=n+1

Since r < R, Z |ay)kr*~ 1 converges and so for any ¢ > 0 there is an integer

N, such that for n =N,

R (2)— R (w €
R(2) = Rw) < (z € B(w; 9)).
Z—W
: fatawne A ool that le/fu) — ofu)] < €
Also, lim \,,(u) = g{w) so there is an integer N, such that 5,0w) —gW)) < 3

[~
Z

whenever #n+ N,. Let n the maximum of the two integers Ny an
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Then we can choose 6 > 0 such that

@5 _ o e

z—w 3
whenever 0 < |z—w| < 8. Putting these inequalities together with equation
(2.8) we have that
lf—‘({—)————f‘(w) — o(w\] <
| z—w b\"l| -~
for 0 < |z—w| < 8. That is, f'(w) = g(w).
(c) By a straightforward evaluation we get f(0) = f(90) = ag,. Using
(2.6) (for a = 0), we get f®(0) = k!a, and this gives formula (2.7).
29 Corouary If the series L a,(z—a)" has radius of convergence R > 0 then
f(z) = Z az—a)" z's analytzc in B(a; R).
n=0
Hence, expz= Z z"/n! is analytic in C. Before further examining the
n=0
exponential function and defining cosz and sinz, the following result must

be proved.

2 10 Praonasition Jf (G i¢ anen

z 1 d Aanmmaontod Agnd £ o 0 o A e ozattal]
BV A AUPUSILRULE. 1] T s vpern ana connecltea i f T T LY dLjerentiaoie
with f'(z) = 0 for all z in G, then f is constant.

Proof. Fix zoin G and let wy = f(zg). Put 4 = {2z G: f(2) = wq}; we will
show that A = G by showing that A is both open and closed in G. Let ze G
and let {z,} < 4 be such that z = lim z,. Since f(z,) = w, for each n > 1
and f'is continuous we get f(2) = w,, or z € A. Thus, 4 is closed in G. Now
fix a in A4, and let € > 0 be such that B(a; €) < G. If z ¢ B(a; ¢), set g(t)=
Stz+(1-0a), 0 < t < 1. Then

211 80)—gs) __8W)—gls) (t=s)z+(s—1a
t—s (t—95)z+(s—ta t—s '
Thus, if we let 7—»s we get (A4(b), Appendix A)
I —
im #0789 _ i (1= 90)-z—a) = 0.

ts t—s

That is, g’(s) = 0 for 0 < s < 1, implying that g is a constant. Hence,
f@) = g(1)=g(0) = f(a) = w,. That is, B(a; €) = A and A4 is also open. ;i

Now differentiate f{z) = ¢*; we do this by Proposition 2 This gives

differentiate f(z this by Proposition 2.5. This giv
that
w o0 o0
W= hen oS e S e
S “ n! (n—l)' n! =/
n=1

Thus the complex exponential Iunclmn has the same property as its real
counterpart. That is

2.12 d s

- d:
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Put g(z) = €°¢"~* for some fixed a in C; then g'(z) = €°¢"~*+e*(—¢e*"*) = 0.
Hence g(z) = w for all z in C and some constant w. In particuiar, using

e® = 1 we get w = g(0) = €% Then e%®~* = ¢° for all z. Thus e**? = e%”’
for all @ and b in C. This also gives 1 = e%¢™* which implies that e* # 0
for any z and e™7 = 1/e°. Returning to the power series expansion of €,
since all the coefficients of this series are real we have exp z = exp z. In
particular, for 8 a real number we get |¢|? = e’ = ¢® = 1. More
generally, |e?|? = e%¢ = e**% = exp (2 Re z). Thus,

2.13 lexp z] = exp (Re z).

We see, therefore, that e* has the same properties that the real function e
has. Again by analogy with the real power series we define the functions

tha nAawwar o a

mme = arnd gin ~ ke ar cariag
COS 2 alil Sill £ Uy LbC puUyLlL dulivs

2 4 2n
-2 42 4 4+(=1y
cosz=1—-—+4+— -
21 4 (2n )v
3 5 2n+1
z z o
sinz=z——+ —+...+(-1) —— +
3t 5! (2n+1)!
Each of the series has infinite radius of convergence and so cos z and sin z
; .
are analytic in C. By using Proposition 2.5 we find that (cos z)’ = —sin z

and (sin z)’ = cos z. By manipulating power series (which is justified since
these series converge absolutely)

o _ 1.
2.14 cos z = J(e*+e ") sin z = zfi(e“—e )
This gives for z in C, cos® z+sin’ z = 1 and

2.15 e = cos z+isinz.

In particular if we let z = a real number 8 in (2.15) we get e = cis 6.
Hence, for zin C

2.16 z = |z]e

where @=argz. Since e**?=¢*e? we have |e’|=exp(Rez) and arge®=
Imz.

A functlonf 1s perzodzc with pertod cif fz+c)=f(z)forallzinC. If ¢
is a period of e? then e?=¢**“=¢’ implies that e=1. Since I=|e‘|=
expRe(c), Re(c)=0. Thus ¢=if for some 6 in R. But 1= e‘=e’9=ce80+
isinf gives that the periods of e are the multiples of 2. Thus, if we
divide the plane into infinitely many horizontal strips by the lines lme
7(2k — 1), k any integer, the exponential function behaves the same In
each of these strips. This property of periodicity is one which is not present
in the real exponential function. Notice that by examining complex func-

tions we have demonstrated a relationship (2. lﬂ) between the cxponentml
function and the trigonometric functrons which was not expected from our

Loavis or smslinee s § thae rFaoisl vinase

Analytic functions 39

Now let us define log z. We could adopt the same procedure as before

and let ! 108 Z be the power series CApaublUll of the real 1ugdlluull about some

point. But this only gives log z in some disk. The method of defining the
logarithm as the integral of t™! from 1 to x, x > 0, is a possibility, but
proves to be risky and unsatisfying in the complex case. Also, since € is not
a one-one map as in the real case, log z cannot be defined as the inverse of &°.
We can, however, do something similar.

We want to define log w so that it satisfies w = ¢ when z = log w.
Now since e* # 0 for any z we cannot define log 0. Therefore, suppose € = w

and w # 0; if z = x+iy then |w| = ¢* and y = arg w+ 2=k, for some k.
Hence

2.17 {log |w|+i(arg w+2nk): k is any integer }
is the solution set for e = w. (Note that log |w| is the usual real logarithm.)

2.18 Definition. If G is an open connected set in C and f: G — C is a con-

tinuous function such that z = exp f(z) for all z in G then f is a branch of
the logarithm.

Notice that 0 ¢ G.

Suppose f is a given branch of the logarithm on the connected set G
and suppose k is an integer. Let g(z) = flz)+2xki. Then exp g(z) = exp f(2)

p R A L LCI QAR SAP &)

=z,s0 gisalso a branch of the logarlthm. Conversely, if f and g are both
branches of log z then for each z in G, f(z) = g(z)+2n=ki for some integer k,
where k depends on z. Does the same k work for each z in G? The answer is

1
yes. In fact, if A(z) = E—,[f(z)—— g(2)] then h is continuous on G and A(G)
Tl

< Z, the integers. Since @ is connected, A(G) must aiso be connected
(Theorem 11. 5.8). Hence there is a k in Z with f(z)+2nki = g(z) for all z in
G. This gives

2.19 Proposition. If G < C is open and connected and f is a branch of log z
on G then the totality of branches of log z are the functions J@)+2nki ke Z.

Naw lat o ifoatiiea ~nct miaa S,

Now let us manufacture at least one branch of wg Z On some open
connected set. Let
G=C-{z:z < 0};
that is, “slit” the plane along the negative real axis. Clearly G is connected
and each z in G can be uniquely represented by z = |z|e® where —7 < 8 < =,
For 8 in this range, define f(re'®) = log r+6. We leave the proof of con-
tinuity to the reader (Exercise 9). It follows that fis a branch of the logarithm
on G.
Is fanalytic? To answer this we first prove a general fact.

2.20 Proposition. Let G and Q) be open subsets of C. Suppose that f: G — C
and g: Q) — C are continuous functions such that f(G) = Q and g(f(2)) = z
Jor all z in G. If g is differentiable and g'(z) # 0, f is differentiable and

. i
i A £'(/(2))
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If g is analytic, f is analytic
Proof. Fix ain G and let heC such that h # 0 and a+he G. Hence a =

g(f(a)) and a+h = g(f(a+h)) implies f(a) # fla+h). Also
_ sUlath) ~g(f(@)

! h
_ U@t -gf@) fla+h)—fa)
fa+h 1@ oo

Now the limit of the left hand side as A — 0 is, of course, 1; so the limit
of the right hand side exists. Since lim [f(a+h) —f(@] = 0,

h—0

ol Fa L I _of FlaN)
. a-rij)— .
lim IAWAN 1)) —as\J\“)J — g/(/(a)).

o flath)—f@)

Hence we get that

. flat+h)—f(a)
im——————
B0 h
exists since g'(f(a)) # 0, and 1 = g'(f(@)f ().
Thus, £'(z) = [g'(f(2))]™*. If g is analytic then g’ is continuous and this
gives that /' is analytic. [l

2.21 Corollary. A branch of the logarithm function is analytic and its derivative
isz™ L.

We designate the particular branch of the logarithm defined above
on C—{z: z < 0} to be the principal branch of the logarithm. If we write
log z as a function we will always take it to be the principal branch of the
logarithm unless otherwise stated.

If fis a branch of the logarithm on an open connected set G andif 5in C
is fixed then define g: G — C by g(2) = exp (5f(2)). If b is an integer, then
g(z) = z%. In this manner we define a branch of 2%, b in C, for an open con-
nected set on which there is a branch of log z. If we write g(z) = z% as a
function we will always understand that z* = exp (b log z) where log z is
the principal branch of the logarithm; z* is analytic since log z is.

As is evident from the considerations just concluded, connectedness
plays an important role in analytic function theory. For example, Proposition
2.10 is false unless G is connected. This is analogous to the role played by
intervals in calculus. Because of this it is convenient to introduce the term
“region.” A region is an open connected subset of the plane.

This section concludes with' a discussion of the Cauchy-Riemann equa-
tions. Let /: G — C be analytic and let u(v, y) = Re fx+iy), v(x, y) = Im
f(x+iy) for x+iy in G. Let us evaluate the limit

D)
o h

in two different ways. Lirst let & = 0 through real valugs of i lor it /0

Y T U [P ¥
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fe+h)—f2)  fx+h+iy)—f(x+0y)

h hn

u(x+h, y)—u(x, y) | v(x+h y)—vx, y)
= +i
h h
Letting # — 0 gives
, ou . ov
2.22 @ =) +i—-(x))
oX ox
Now let 4 — 0 through purely imaginary values; that is, for & # 0 and
h real,

fe+in)—f(z2) L ulx,y+h)—u(x,p) ox, y+h)—uv(x,y)
ih = A + h

Thus,
2.23 @) = iy + 2
3 - 1 ay X, y) ;y (X, ))

Equating the real and imaginary parts of (2.22) and (2.23) we get the
Cauchy-Riemann equations

u ov

u _ v
ox  dy

2.24 — =
ay ox

an

Suppose that ¥ and v have continuous second partial derivatives (we will
eventually show that they are infinitely differentiable). Differentiating the
Cauchy-Riemann equations again we get

2%u ) g 2%u o
—=— and —5 = — —
ax?  oxdy oy? ayox
Hence,
2u &%u
225 ML
2t =

Any function with continuous second derivatives satisfying (2.25) is said to
be harmonic. In a similar fashion, v is also harmonic. We will study
harmonic functions in Chapter X.

Let G be a region in the plane and let # and v be functions defined on
G with continuous partial derivatives. Furthermore, suppose that # and v
satisfy the Cauchy-Riemann equations. If f(z)=u(z)+ iv(z) then f can be
shown to be analytic in G. To see this, let z=x+iy € G and let B(z;r) <
G. If h=s+it e B(0;r) then '

u(x+s, y+0—ulx, y) = [ulx+s, y+ 1) —ulx, y+ 0} +[u(x, y + 1) —u(x, y)]

Applying the mecan value theorem for the derivative of a function of one
variable to cach of these bracketed expressions, yiclds for each s+it in
B(O; r) numbers 5; and ¢, such that |s,| < ls] and || < |#] and

~

2.26 fulx k5o v v ) v vy 1) w (v Es) A Ds

]u(,\'. Y4+1)-uln, ¥ wiv, y 4,0t
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Letting

‘P(S9 t)' = [u(x +s, ¥+ t) - M(X, .V)] - [ux(xa .V)S+ uy(x> y)t]
(2.26) gives that

q)(S,l) - Y
s+ it s+it

[u (x+s,y+0)—u(xy)]+ [, (x.y +11) = u,(x.9)]

t
s+it
But |s| < |s+i], |t] < ls+it], [si| < Isl, [ta] < |¢], and the fact that u, and u,
are continuous gives that

_oels, )
lim —— =20
2.27 s+lit-'0 s+it

Hence

u(x+5, y+0—u(x, y) = ulx, p)s+u(x, p)i+eg(s; 1)
where ¢ satisfies (2.27). Similarly

Wx+s, y+0—vlx, p) = 0%, »)s+o,(x, )+ s, 1)

where i satisfies

228 lim %50 -

s+itmo S+

0

Using the fact that u and v satisfy the Cauchy-Riemann equations it is easy to
see that

+iN—f(z B s, D +ylx, t

s ti0f@) o o EE DD

s+it s+ it
In light of (2.27) and (2.28), f is differentiable and f'(z) = u2)+iv2).
Since u, and v, are continuous, f” is continuous and f is analytic. These
results are summarized as follows.

2.29. Theorem. Let u and v be real-valued functions defined on a region G
and suppose that u and v have continuous partial derivatives. Then f: G —C
defined by f(z) = u(z) +iv(z) is analytic iff u and v satisfy the Cauchy-Riemann
equations.

Example. Is u(x, y) = log (x*+y?)* harmonic on G = C— {0}? The answer
is yes! This could be shown by differentiating u to see that it satisfies (2.25).
However, it can also be shown by observing that in a neighborhood of each
point of G, u is the real part of an analytic function defined in that neighbor-
hood. (Which function?)

Another problem concerning harmonic functions which will be taken
up in more detail in Scction VIII. 3, is the following. Suppose G is a region
in the planc and u: G -» R is harmonic. Does there exist a harmonic function
v: G »Rsuch that f = w+iris analytic in G? If such a function v exists it is
called a harmonic conjugate of w. 1f #y and r, are two harmonic conjugates
of uthen i(r, - ry)  (u¥iry) —(u y iry) is analytic on (¢ and only takes on
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purely imaginary values. It follows that two harmonic conjugates of a
harmonic function differ by a constant (see Exercise 14).

Returning to the question of the existence of a harmonic conjugate, the
above example u(z) = log |z| of a harmonic function on the region G = C—
{0} has no harmonic conjugate. Indeed, if it did then it would be possible to
define an analytic branch of the logarithm on G and this cannot be done.
(Exercise 21.) However, there are some regions for which every harmonic
function has a conjugate. In particular, it will now be shown that this is the
case when G is any disk or the whole plane.

2.30 Theorem. Let G be either the whole plane C or some open disk. If
u: G — R is a harmonic function then u has a harmonic conjugate.

Proof. To carry out the proof of this theorem, Leibniz’s rule for differentiating
under the integral sign is needed (this is stated and proved in Proposition 1V.
2.1). Let G = B(0; R),0 < R < oo, and let u: G — R be a harmonic function.
The proof will be accomplished by finding a harmonic function v such that

u and v satisfy the Cauchy-Riemann equations. So define

v(x, y) = f u,(x, )dt+ ¢(x)

U Tt B S et e " i arantiating Qi 1
and determine @ so that v, = —u,. Differentiating both sides of thi

with respect to x gives

e

y

0%, 9) = [ teelx, 1) di+9'(x)
0]
y
4 = —_Jr uyy(xa ‘t) d!+¢,(x)
0]

= - uy(x5 y) + uy(x5 0) +‘Pl(x)
So it must be that ¢’(x) = —u,(x, 0). It is easily checked that « and

y
o(x, ) = [ ulx, d
o]

do satisfy the Cauchy-Riemann equations. |l

Where was the fact that G is a disk or C used? Why can’t this method of
proof be doctored sufficiently that it holds for general regions G? Where
does the proof break down when G = C— {0} and u(z) = log |z|?

Exercises

1. Show that f(z) = |z|?> = x*+»? has a derivative only at the origin.

2. Prove that if b,, a, are real and positive and 0 < b = lim b,, a = lim
sup a, then ab = lim sup (a,b,). Docs this remain true if the requirement of
positivity is dropped?

3. Show that lim a'/™ = 1,



44 Elementary Properties and Examples of Analytic Functions

4. Show that (cos z)’ —sin z and (sin z)’ = cos z.
J UCIIVC fUl luulao \L 14)
6. Describe the following sets: {z: € = i}, {z: &€ = —1}, {z: & = =i},

{z: cos z = 0}, {z: sin z = 0}.
7. Prove formulas for cos (z+w) and sin (z+w).

sin z L . .
8. Define tan z = —— ; where is this function defined and analytic?
cos z

0y

9. Suppose that z,, zeG=C—{z: z <0} and z, = r,e’", z = re'® where
—a < 8,8, < = Prove that if z, >z then §, -8 and r, > r.

10. Prove the following generalization of Proposition 2.20. Let G and { be
open in C and suppose f and h are functions defined on G, g:92—C and
suppose that f(G)<§2. Suppose that g and / are analytic, g'(w)70 for any
, that fis continuous, 4 is one-one, and that they satisfy 4(z)=g(f(2)) for
z in G. Show that f is analytlc Give a formula for f'(z).

11. Suppose that f: G — C is a branch of the logarithm and that » is an
integer. Prove that z* = exp (nf(2)) for all z in G.

12. Show that the real part of the function z* is always positive.

13. Let G = C— {z: z < 0} and let n be a positive integer. Find all analytic
functions f: G — C such that z = (f(2))" for all zeG.

14. Suppose f: G — C is analytic and that G is connected. Show that if
f(2) is real for ail z in G then f'is constant.

1 .
15. Forr > 0let 4 = {w: w = exp (—) where 0 < |z] < r} ; determine the
z

set A.

16. Find an open connected set G = C and two continuous functions f and
g defined on G such that f(z)? = g(z)> = 1—2? forall z in G. Can you make
G maximal? Are f and g analytic?

17. Give the principal branch of \/1—z.

18. Let /: G — C and g: G — C be branches of z* and z b respectively. Show
that fg is a branch of z**? and f/g is a branch of z*~ b, Suppose that f(G) cG
and g(G) © G and prove that both fo g and g o f are branches of 2

19. Let G be a region and define G* = {z: ZeG}L If f: G—>C is analytlc
prove that f*: G* — C, defined by f*(z) = f(®), is also analytic.

20. Letz,,z,, ..., Z, be complex numbers such that Re z; > 0 and Re(z; ...
z) >0 for 1 < k < n. Show that log(z,...z,) =logz;+ ... + logz,
where log z is the principal branch of the logarlthm If the restrlctlons on the
z, are removed, does the formula remain valid?

21. Prove that there is no branch of the logarithm defined on G = C~{0}.
(Hint: Suppose such a branch exists and compare this with the principal
branch.)

§3. Analytic functions as mappings. Mobius transformations

Consider the function defined by f(z) - 2% If z - v+iy and p+iv=f(2)
then i -~ ¥2—p2, v - 2xy. Henee, the hyperbokas &2 y? = cand 2xy = d

arc mapped by finto the straight lines ¢ ¢, v - d. One interesting fact is
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that for ¢ and d not zero, these hyperbolas intersect at right angles, just as

their 1mquc do. This is not an isolated phenomenon and this property will

be explored in general later in this section.
Now examine what happens to the lines x = ¢ and y = d. First consider

x = c(yarbitrary); f maps this line intop = ¢?>—y*and v = 2¢y. Eliminating

y we get that x = cis mapped onto the parabolav® = —4c*(u—c?). Similarly,
f takes the line y = d onto the parabola »* = 4d*(u+d?). These parabolas
intersect at (®?—d?, +2|ed)). It is relevant to point out that as ¢ — 0 the
parabola v* = —4c?(u—c?) gets closer and closer to the negative real axis.

This corresponds to the fact that the function z* maps G = C—{z: z < 0}
onto {z: Re z > 0}. Notice also that x = cand x = —c(and y = d,y = —d)
are mapped onto the same parabolas.

What happens to a circle centered at the origin? If z = re'® then f(z) =
r2e%i®; thus, the circie of radius » about the origin is mapped onto the circle
of radius r? in a two to one fashion.

Finally, what happens to the sector S(«, 8) = {z: « < arg z < B}, for
a < B? It is easily seen that the image of S(«, B) is the sector S(2«, 28). The
restriction of f to S(«, B) will be one-one exactly when f—a < =

The above discussion sheds some light on the nature of f(z) = z* and,
likewise, it is useful to study the mapping properties’ other analytic functions.
In the theory of analytic functions the following problem holds a paramount
position: given two open connected sets G and €, is there an analytic function
J defined on G such that f(G) = Q? Besides being intrinsically interesting,
the solution (or rather, the information about the existence of a solution)
of this problem is very useful.

3.1 Definition. A path in a region G < C is a continuous function y:[a,b]—
G for some interval [a,b] in R. If y'(¢) exists for each ¢ in [a,b] and
v :{a,b]—C is continuous then y is a smooth path. Also y is piecewise
smooth if there is a partition of [a,b], a=1, <, <... <t,=b, such that y is
smooth on each subinterval {z,_,,7]. 1< j <n.

To say that a function v :[a,b]—C has a derivative y'(¢) for each point ¢
in [a,b] means that

Yith)—y()
w0

exists for a < t < b and that the right and left sided limits exist for =4 and
t=b, respectively. This is, of course, equivalent to saying that Rey and

e o .
Imy have a derivative (see Appendix A).

Suppose y:[a,b]->G is a smooth path and that for some ¢, in (a,b),
Y (ty)#0. Then y has a tangent line at the point zy=y(#,). This line goes
through the point z, in the direction of (the vector) y'(ty); or, the slope of
the line is tan(argy'(¢,). If v, and y, are two smooth paths with y,(¢/)=
Y1) =2z, and v(1))# 0. yi(1,) # 0, then define the angle between the paths
v, and v, at z, (0 be

argy (r)  argy, ().
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Suppose vy is a smooth path in G and f: G—C is analytic. Then o =fey
is also a smooth path and o'(r)=f'(y())y'(¥). Let z,= v(#), and suppose
that y'(1))70 and f'(z)#0; then o0'(f,)#0 and arge’(ty)=argf'(zo)+
argy’(ty). That is,

32 argo'(ty) —argy'(to)=argf'(z,).

Ny lat o, anmd o, ha gman
l‘TUW lct Yl dlld YZ bc DlllUUlll P hD Wth yl\l-l}'— r2\12}—40 aud rl\tl)_f‘__

0% v5(ty); let o, = foy, and 6,=foy,. Also, suppose that the paths vy, and vy,
are not tangent to each other at z,; that is, suppose y(#,) 7 v5(t;). Equa-
tion (3.2) gives

33 arg yyt;) —arg y|(t;) = arg o(t;)—arg oi(1)).

This says that given any two paths through z,, f maps these paths onto two
paths through w, = f(z,) and, when f'(z,) # 0, the angles between the curves
are preserved both in magnitude and direction. This summarizes as follows.

3.4 Theorem. If f: G — C is analytic then f preserves angles at each point
zo of G where f'(zy) # 0.
A function f: G — C which has the angle preserving property and also has

o V@ =fa)

e |z—d]

existing is called a conformal map. If f is analytic and f'(z) # O for any z
then fis conformal. The converse of this statement is also true.

Iff(z) = ¢ I.llCllJ is conformal Lur()uguOLiL u.,, let us look at the expo-
nential function more closely. If z = ¢+iy where ¢ is fixed then f(z) = re”
for r = ¢°. That is, f maps the line x = ¢ onto the circle with center at the
orlgm and of radius ¢°. Also, f maps the line y = d onto the infinite ray
{re": 0 < r < w0}.

i

\

di
d

.

We have already seen that ¢ is onc-one on any horizontal strlp of width
<2r. Lt G - {z: ~wm < Imz < w) Then f(G) 2 C—{z:z - 0});abo
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f maps the vertical segments {z = c+iy, —m < y < =} onto the part of the
circle {¢%¢®: —7 < 8 < =}, and the horizontal line y =d, —mw <d < m,
goes onto the ray making an angle d with the positive real axis.

Notice that log z, the principal branch of the logarithm, does the opposite.
It maps Q onto the strip G, circles onto vertical segments in G, rays onto
horizontal lines in G.

The exploration of the mapping properties of cos z, sin z, and other
analytic functions will be done in the exercises. We now proceed to an

amazing class of mappings, the M&bius transformations.

3.5 Definition. A mapping of the form S(z) =

b
* y is called a linear frac-

tional transformation. If a, b, ¢, and d also satisfy ad—bc # 0 then S(z) is
called a Mébius transformation.

—b
If S is a Mobius transformation then S~'(2) =——Z—:; satisfies

S(S7Y(2)) = STYS(2)) = z; that is, S™! is the inverse mapping of S. If
S and T are both linear fractional transformations then it follows that So T
is also. Hence, the set of Mobius maps forms a group under composition.
Unless otherwise bldlcu, the Uluy linear fractional transformations we will
consider are Mdobius transformations.

b
Let S(2) = »—:::71 ; if A is any non-zero complex number, then
Z
A Ab
S(Z) — (_a)Z_—i—(__) .
(Ac)z+(Ad)

That is, the coefficients a, b, ¢, d are not unique (see Exercise 20).

We may also consider S as defined on C,, with S(c0) = a/c and S(—d/c)
= co. (Notice that we cannot have a = 0 = ¢ or d = 0 = ¢ since either
situation would contradict ad—bc # 0.) Since S has an inverse it maps C,
onto C,.

If S(z) = z+a then S is called a translation; if S(z) = az with a # 0
then S is a dilation; if S(z) = €'’z then it is a rotation; finally, if S(z) = 1/z
it is the inversion.

3.6 Proposition. If S is a Mobius transformation then S is the composition of
translations, dilations, and the inversion. (Of course, some of these may be
missing.)

Proof. First, suppose ¢ = 0. Hence S(2) = (a/d)z+(b/d) so if S,(2) = (a/d)z,

Sz(z) = z4+(b/d), then S, S; = S and we are done.
bc—ad
Now let ¢ # 0 and put S;(z) = z+d/c, S,(2) = 1/z, S3(z) = (—cz—)z,
S,(z) = z+ajc. Then S = S405;08,°5,. K
What are the fixed points of S? That is, what are the points z satisfying

S(z) = z. If z satisfies this condition then

2 4(d-a)z:—=b = 0.
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Hence, a Mébius transformation can have at most two fixed points unless
S{z) = z for all z.

Now let S be a Mabius transformation and let a, b, ¢ be distinct points
in C,, with « = S(a), B = S(b), y = S(c). Suppose that T is another map
with this property. Then 77! o S has a, b, and c as fixed points and, there-
fore, T"'o S = I = the identity. That is, S = T. Hence, a Mobius map is
uniquely determined by its action on any three given points in C,,.

Let z,, z3, z, be points in C. Define S: C, — C,, by

S(2) = <2—23>/(22__Zj) if 2,24, 2,€C;
z—24)\2:—24

z—z5
S@2) = if z, = o0;
7—2,4
Zy—24
Siz)=—"—"—" if z3 = o0;
Z—2,4
z2—z3
Sz =—2 if z, = 0.
22“"23
In any case S{z,) = 1, S{z;) = 0, S(z,) = o0 and S is the only transforma-

tion having this property.

3.7 Definition. If z, € C_, then (zy, z,, 23, z4). (The cross ratio of z,, z,, z3,
and z,) is the image of z, under the unique Mdbius transformation which
takes z,to 1, z; to 0, and z, to co.

For example: (z,, z,, 23, 24) = 1 and (z, 1, 0, ©©0) = z. Also, if M is any
Mo6bius map and w,, wj, w, are the points such that Mw, = 1, Mw; = 0,
Mw, = o then Mz = (z, w,, W3, Wy).

3.8 Proposition. If z,, z3, z, are distinct points and T is any Mébius trans-
Jformation then

(ZI’ 23,23, Z4) = (TZI’ TZZ’ TZ3$ TZ4)
for any point z,.
Proof. Let Sz = (z, z,, 23, 24); then S is a Mobius map. If M = ST™!
then M(Tz,) = 1, M(Tz3) =0, M(Tz,) = oo; hence, ST 'z = (z, Tz,,
Tz,, Tz,) for all zin C,. In particular, if z = Tz, the desired result follows. Il

3.9 Proposition. If z,, z5, z4 are distinct points in C, and w,, w3, w, are also

distinct points of C,, then there is one and only one Mébius transformation S
c'ufla that (”7, = Sz3 = S~ =

n that Wy, 35 wy

Proof. Let Tz = (z, z3, 23, 24), Mz = (2, w,, w3, wy) and put S = M ~'T
Clearly S has the desired property. If R is another Mobius map with Rz; =
w;forj = 2,3, 4 then R~ ' o S has three fixed points (z,, =3, and z,). Hence
R'eS=1orS=R N

It is well known from high school geometry that three points in the planc
determine a circle. (Recatl that a circle in €, passing through - corresponds
to a straight hne in C. Flence there is no need to inject in the previous state-
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ment the word ‘“‘non- colmear) A straight line in the plane will be called a

ins when four points lie on a circle,

3.10 Proposition. Let z,, z,, z3, 24 be four distinct points in C,. Then (zy, z,,
z3, 24) is a real number iff all four points lie on a circle.

Proof. Let S: C, — C, be defined by Sz = (z, z3, 23, 24); then § “I(R) = the
set of z such that (z, z,, z3, z4) is real. Hence, we will be finished if we can
show that the image of R, under a Mobius transformation is a circle.

Let Sz = az_+b (ifz =xeRand w = S 1(x) then x = Sw implies that
cz+d
S(w) = S(w). That is,
aw+b do+b
cwid ca+d

Cross multiplying this gives
3.11 (a¢=dc) |w|? +(ad — bc)w + (b¢— da)o +(bd—bd) =

If a¢ is real then aé—dc = O; putting « = 2(ad—bc), B = i(bd—bd) and
multiplying (3.11) by i gives

3.12 0 = Im (ew)~B = Im (xw~f)

since B is real. That is, w lies on the line determined by (3.12) for fixed « and
B. If aé is not real then (3.11) becomes

lw|* +50+y0—8 =0

for some constants y in C, 8 in R. Hence,

3.13 lw+y| =
where
A= (ylP+9)F = a—d—-bc_' > 0.
—acé
Since y and A are independent of x and since (3.13) is the equation of a circle,

the proof is finished.
3.14 Theorem. A Mébius transformation takes circles onto circles.

Proof. Let T be any circle in C,, and let S be any Mobius transformation.
Let z,, z3, z, be three distinct points on I’ and put w; = Sz; forj =23,4
Then w,, wj, w, determine a circle I''. We claim that b(l) . In fact,
for any z in C

3.15 (29 23,23, 24) = (SZ’ Wy, W3, w4)

by Proposition 3.8. By the preceding proposition, if z is on T' then both
sides of (3.15) are real. But this says that Sz« 1. |l

Now fet I'and P be twocircles in €, and et 25, 25, 24 ¢ P w,, w3, w4 €
PPl Rz - (2, 250 240 2 Sz (2w, wy, ), Then T S R maps
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I onto I'. In fact, Tz; = w; for j = 2, 3, 4 and, as in the above proof, it
follows that T(F) ﬁ'.

3.16 Proposition. For any given circles T and T’ in C, there is a Mébius
transformation T such that T(I') = T". Furthermore we can specify that T
take any three points on I' onto any three points of T, If we do specify Tz;
Sor j =2, 3, 4 (distinct z; in T) then T is unique.

Proof. The proof, except for the uniqueness statement, is given in the previous
paragraph. The uniqueness part is a trivial exercise for the reader. |l

Now that we know that a Mdbius map takes circles to circles, the next
question is: What happens to the inside and the outside of these circles?
To answer this we introduce some new concepts.

3.17 Definition. Let T" be a circle through points z,, z3, z,. The points z,
z* in C,, are said to be symmetric with respect to I if

3.18 (z*%, 235 23, 24) = (2, 2, 23,24)-

As it stands, this definition not only depends on the circle but also on the
points z,, z3, z4. It is left as an exercise for the reader to show that symmetry
is independent of the points chosen (Exercise 11).

Also, by Proposition 3.10 z is symmetric to itself with respect to T if
and only if ze I'.

Let us investigate what it means for z and z* to be symmetric. If T is a
straight line then our linguistic prejudices lead us to believe that z and z*
are symmetric with respect to I if the line through z and z* is perpendicular
to I' and z and z* are the same distance from I" but on opposite sides of T.
This is indeed the case.

If T is a straight line then, choosing z, = o0, cquation (3.18) becomes

=

STy 3
T2, 2272y
This gives [2*—z,]  |z—z,]: since =, was not specified, we have that z
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and z* are equidistant from each point on I'. Also

z¥—z,4 Z—Z,4
Im = Im——
2723 2,23
Z—Z3
= —Im ——
2323
Hence, we have (unless z e ') that z and z* lie in different half planes deter-

mined by I. It now follows that [z, z*] is perpendicular to I.
Now suppose that I' = {z: |z—a| = R} (0 < R < ). Let z;,, z3, z, be
points in I'; using (3.18) and Proposition 3.8 for a number of Mdbius trans-

formations gives

(Z*a 235235 24) = (Z’ 23,23, 24)

=(z—a,z,—a,23—a, 24 —a)

_ . R R PR
=\z—a, s »
22—a Z3—a Zg—4a

z—a
pZ
— 1\ = 23, 24)
zZ—a
Hence, z* = a+ R*Z—ad) ! or (z*~a) (z—a) = R*. From this it follows that
z*—a R?
= 2 >0,
z—a |z—q|

s0 that z* lies on the ray {a+#(z—a): 0 < ¢t < oo} from a through z. Using
the fact that |[z—a| |z*—a| = R* we can obtain z* from z (if z lies inside I')
as in the figure below. That is: Let L be the ray from a through z. Construct

~_

a line P perpendicular to L at z and at the point where P intersects I' con-
struct the tangent to I". The point of intersection of this tangent with L is
the point z*. Thus, the points @ and oo are symmetric with respect to I',

3 m » o) . . Al
3.19 Symmetry Principle. If a Mdabiux transformation T takes a circle T';

onto the circle V5 then any pair of pointy symmetric with respect to ¥y are
mapped by T onto a pair of points symmetric with respect to 1
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Proof. Let z,, z5, z,€Ty; it follows that if z and z* are symmetric with
respect to I'; then

(TZ*’ TZZ’ TZ3: TZ4) = (Z*’ 23, 23, 24)
= (2, 23, 23, 24)

= (Tz, T2,, Tz5, Tz,)

by Proposition 3.8. Hence 7z* and 7z are symmetric with respect to I';. Il

Now we will discuss orientation for circles in C; this will enable us to
distinguish between the “inside” and ““outside” of a circle in C,. Notice
that on C, (the sphere) there is no obvious choice for the inside and outside
of a circle.

TOT A o
1

3.26 Definition. If T 1s a circle then an orientation for
of points (z;, z,, z3) such that each z; is in I'.

Intuitively, these three points give a direction to I'. That is we “go”
from z, to z, to z5. If only two points were given, this would, of course, be
ambiguous.

az+b
Let I' = R and let z;, z,, z5 € R; also, put 7z = (z, zy, 25, 23) =
cz+d
L N M it fallawe that 7 A » Jdrean ba chosen to be real numbers
ollle 1 \“00} = U8 1L RUHUWS Ulat &y, Uy &, & vall UL VIIVOLIL U UL abal JRASULL
(see Exercise 8). Hence,
az+b
Z =
cz+d
az+b _
=i, 712 ( Z+d)
|cz 44|
1 2
———— [ac|z|* + bd+ bcZ +ad]
" Jez+d|
Hence,
(ad«bc)
Im (z, 2y, 23, 23) = T ,,|2
|LA_|_ l

Thus, {z: Im (z, z,, z,, z3) < 0} is either the upper or lower half plane
depending on whether (ad—bc) > 0 or (ad—bc) < 0. (Note that ad—bc 1is

the “determinant” of T.)

Now let T' be arbitrary, and suppose that z;, z,, z; are on I'; for any
Mobius transformation S we have (by Proposition 3.8)

{z:Im (z, z,, 25, 23) > 0} = {z: Im (Sz, Sz, Sz,, Sz3) > 0}
= Sz Im(z, Sz, Sz, 874) > 0}

In particular, if S is chosen so that S maps Fonto B, . then {z: Im (2. 2y,
zy.23) > Obis equat to 8 ' of cither the upper or fower half plane.

If (z,. z5. 23) is an orientation of 1 then we define the richi side of
(with respect to (=), =0 =) to be

=1y (~ . .. =) - ("
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Similarly, we define the left side of T to be
{z:Im (z, z{, 2, 25) < O}.
The proof of the following theorem is left as an exercise.

3.21 Orientation Principle. Let I'; and T, be two circles in C,, and let T be
a Mobius transformation such that T(I')) = I',. Let (z,, z,, z5) be an orienta-
tion for T'y. Then T takes the right side and the left side of Ty onto the right
side and left side of T', with respect to the orientation (Tz,, Tz,, Tz5).
Consider the orientation (1, 0, c0) of R. By the definition of the cross
ratio, (z, 1, 0, o0) = z. Hence, the right side of R with respect to (1, 0, o0)
is the upper half plane. This fits our intuition that the right side lies on our

right as we walk along R from 1 to 0 to oo.
As an example consider the following problem: Fi d an analytic

caqlllpie COIICGCT e 0L villg oblem: ¢t

f:G—C,where G = {z: Re z > 0}, suchthatf(G) =D={z:]z]| < 1}. We
solve this problem by finding a Mdbius transformatlon which takes the
imaginary axis onto the unit circle and, by the Orientation Principle, takes
G onto D (that is, we must choose this map carefully in order that it does not
send G onto {z: |z| > 1.

1f wa oiva tha q tha art
1 WL plve tllb uuaslual_y a/uo v v

is on the right of this axis. In fact,

(z, =1,0,i) = —

z—1i

2z z+1

z—i z+1
~

= i_zTLzTZ - (|2]*+iz)

Hence, {z: Im (z, —#, 0, i) >0} = {z: Im (z) > 0} = {z: Re z > 0}.
Giving T the orientation (—i, —1, i) we have that D lies on the right of T'.

Also,
2i  z+1
(Zs _i, 1’ l) -~
i—1 z—i
If
2 2i z+1
Sz=-— and Rz=|— | —.
z—Ii i—1 z—1
then 7 = ‘D“IS mance 7 onta Diand the imaoinarv axis anto I Ry algebraic
AL IIILI.}ID N VL &/ \ull\-l Ll llllusl ul] CLAALT WLl & /. u] uAbvuAu -
manipulations we have
z—1
Tz = —-;
z+1

Combining this with previous results we have that g(z) = maps

e+ 1
the infinite strip {z: {lm =] < #/2} onto the open unit disk D, (It is worth

L oF =1
mentioning that tanh (z/2).)
¢+
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Let G,, G, be open connected sets; to try to find an analytic function f
such that f(G,) = G, we try to map both G, and G, onto the open unit disk.
If this can be done, f can be obtained by taking the composition of one

function with the inverse of the other.

As an example, let G be the open set inside two circles Iy and I',, inter-

secting at points a and b (a # b). Let L be the line passing through a and &
z—a

and give L the orientation (o, a, b). Then 7z = (z, ©, a, b) = 2‘7))

maps L onto the real axis (Too = 1, Ta = 0, Tb = o). Since 7" must map

circles onto circles, T maps I'; and F2 onto circles through 0 and co. That is,
7(,) and T(T',) are straight lines. By the use of orientation we have that
T(G) = {w—a < arg w < oc} for some « > 0, or the complement of some
such closed sector. By the use of an appropriate power of z and possibly a
rotation we can map this wedge onto the right half plane. Now, composing

with the map (z—1) (z+1)~* gives amap of Gonto D = {z: |z| < 1}.

Exercises

1. Find the image of {z: Re z < 0, |Im z| < 7} under the exponential
function.

2. Do exercise 1 for the set {z: |Im z| < =/2}.

3. Discuss the mapping properties of cos z and sin z.

4., Discuss the mapping properties of z" and z'% for n = 2. (Hint: use polar
coordinates.)

5. Find the fixed points of a dilation, a translation and the inversion on C
6. Evaluate the following cross ratios: (a) (744, 1,0, ) (b) (2, I i, 1, l+1)
(), 1,i, =@ (-1, oo, 1+40).

az+b s

= find z,, 23, 24 (in terms of a, b, ¢, &

cz+d

i

~
et

3]

(R}
»
~—
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8. I Tz = ZH0
cz+d

o) = R, iff we can choose a, b, ¢, d to be

real numbers.

0. 1 Tz = “¥0
cz+d

where T is the unit circle {z: |z| = 1}.

10. Let D = {z: |z] < 1} and find all M&bius transformations T such that

T(D) =

11. Show that the definition of symmetry (3.17) does not depend on the

choice of points z,, z3, z,4. That is, show that if w,, wj, w, are also in I" then

equation (3.18) is satisfied iff (z*, w,, w3, wy) = (2, w,, ws, w,). (Hint: Use

Exercise 8.)

12. Prove Theorem 3.4.

13. Give a discussion of the mapping f(z) = ¥z+1/2).

14. Suppose that one circle is contained inside another and that they are
tangent at the point a. Let G be the region between the two circles and
map G conformally onto the open unit disk. (Hint: first try (z—a)~'.)

find necessary and sufficient conditions that 7(I') =

15. Can you map the open unit disk conformally onto {z:0<|z|<1}?
16. Map G = C—{z: —1 < z < 1} onto the open unit disk oy an analytic

function f. Can f be one-one?
17. Let G be a region and suppose that f: G — C is analytic such that f(G)
is a subset of a circle. Show that fis constant.

18. Let —0 < a < b < oo and put Mz = Z_IZ. Define the lines L, =

z—1i
{zzImz=0"5}, L, = {z: Im z=a} and L, = {z: Re z = 0}. Determine
which of the regions A, B, C, D E Fin Figure 1, are mapped by M onto the
regions U, V, W, X, Y, Z in Figure 2.
A 4 D
ib U W
14
B E
0 ¥ 1
X z
ia
C F
Flgure 1 Flgure 2

19. Let a, b, and M be as in Excrcise 18 and let log be the principal branch of
the logarithm.
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(a) Show that log (Mz) is defined for all z except z = ic, a < ¢ < b; and
if h(z) = Im [log Mz] then 0 < h(z) < = for Re z > 0.
(b) Show that log (z—ic) is defined for Re z > 0 and any real number c;

also prove that |Im log (z—ic)| < 3 TifRez > 0.
(c) Let % be as in (a) and prove that (z) = Im [log (z—ia)—log (z—ib)].
(d) Show that

b
J—dt—, — i[log (z— ib) —log (z—id)]
z—It

(Hint: Use the Fundamental Theorem of Calculus.)
(e) Combine (c) and (d) to get that
b

—a y—b
x+iy) = J m dt = arctan (J—)x—) —arctan <T)

(f) Interpret part (¢) geometrically and show that for Re z > 0 A(z) is the
angle depicted in the figure.

D

20, Lot 5z = PP ana 7o =P
cz+d yz+98

complex number A such that « = Ag, B = Ab, y = Ac, 8 = Ad.

21. Let T be a Mobius transformation with fixed points =, and z,. IS 1s a

Mobius transformation show that S~ 7S has fixed points & 'zyand S 7'z,

22. (1) Show that a Mobius transformation has 0 and oo as its only fixed

points T it s a dilation.

: show that .S = T iff there is a non zero
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(b) Show that a Md&bius transformation has oo as its only fixed point iff
it is a translation.

23. Show that a M6bius transformation T satisfies 7(0) = oo and T(o0) = 0
iff Tz = az™! for some a in C.

24. Let T be a Mobius transformation, 7 # the identity. Show that a
Moébius transformation S commutes with 7 if S and T have the same fixed
points (Hint Use Exercises 21 and 22. )

a1 slao o Paen o srnime ~F a gratims ~F o twenemof,

25. Find all the abelian auugluuyb of the group o1 Moébius transformations.
26. (a) Let GL,(C) = all invertible 2x2 matrices with entries in C and
let # be the group of Mobius transformations. Define ¢: GL,(C) — 4 by

b +b . ]
<P(j d) = Z_’_ 7 Show that ¢ is a group homomorphism of GL,(C) onto .#.

Find the kernel of ¢.

(b) Let SL,(C) be the subgroup of GL,(C) consisting of all matrices of
determinant 1. Show that the image of SL,(C) under ¢ is all of .#. What
part of the kernel of ¢ is in SL,{(C)?

27.1f % is a group and A" is a subgroup then A is said to be a normal subgroup
of @ if S"'TSe N whenever Te A and Se %. ¥ is a simple group if the
only normal subgroups of & are {I} (J = the identity of* %) and & itself.
Prove that the group .# of Mgbius transformations is a simple group.

28. Discuss the mapping properties of (1 —2z)".

29. For complex numbers a and B with |a>+|B[> =1

4 p(2)= 5 -2

and let U={uﬂ’5:[a|2+|/3|2= 1},

(a) Show that U is a group under composition.

(b) If SU, is the set of all unitary matrices with determinant 1, show that
SU, is a group under matrix multiplication and that for each A4 in SU,
there are unique complex numbers a and B with |al*+|B]*=1 and

A5

(c) Show that ( g l_g)}-»Umﬁ is an isomorphism of the group SU,
onto U. - @

(d) if / G{O,;,l,g, .} let H,=all the polynomials of degree <2/. For
Uy g=u in U define T:H~H; by (T f)(z)=(pz+a)*f(u(z)). Show
that T is an invertible linear transformation on H, and u>T is an
injective homomorphism of U into the group of invertible linear transfor-
mations of H, onto H,.

30. For |z| <1 define f(z) by

f(z)=exp{ - ilog[i( :ti)}l/z]

(a) Show that f maps D ={:z:]z]- 1) conformally onto an annulus G.
(b) Find alt Mobius transformations S (2) that map D onto D and such
that /(S(z))=/(:) when o] |




