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464 Chapter Nine  SEQUENCES AND SERIES

9.1 SEQUENCES

A s.equencel is an infinite list of numbers s1, s2, $3,...,8n,.... We call s; the first term, s, the

second term; s,, is the general term. For example, the sequence of squares, 1,4,9,...,n2,... can
be denoted by the general term s,, = n?. Thus, a sequence is a function whose domain is the
positive integers, but it is traditional to denote the terms of a sequence using subscripts, s,,, rather
than function notation, s(n). In addition, we may talk about sequences whose general term has no
simple formula, such as the sequence 3, 3.1, 3.14, 3.141, 3.1415, .. ., in which s,, gives the first n
digits of 7.

The Numerical, Algebraic, and Graphical Viewpoint

Just as we can view a function algebraically, numerically, graphically, or verbally, we can view
sequences in different ways. We may give an algebraic formula for the general term. We may give
the numerical values of the first few terms of the sequence, suggesting a pattern for the later terms.

Example 1 Give the first six terms of the following sequences:
n(n+1 n+(—=1)"
@ 5= 20tD o 5 PECD"
n
Solution (a) Substitutingn = 1,2, 3,4, 5, 6 into the formula for the general term, we get
1-2 2.3 3-4 4.5 5-6 67
Sl | 10, 15, 21.
2 ) 2 7 2 ) 2 ? 2 ) 2 3 37 6’ 07 57
(b) Substituting n = 1,2, 3,4, 5, 6 into the formula for the general term, we get
1-1 2+1 3—-1 441 5-1 6—|—1_0 32547
127 37 47 57 6 723456
Example 2 Give a general term for the following sequences:
TTT T 107
1, 2,4, 8,16, 32,... b) -, =, =, —, = S =y
(a) ) ) 787 6737 () 2757 87 117 2/177
Solution Although the first six terms do not determine the sequence, we can sometimes use them to guess a

possible formula for the general term.

(a) We have powers of 2, so we guess s,, = 2". When we check by substitutinginn = 1, 2,3,4, 5, 6,
we get 2,4, 8,16, 32, 64, instead of 1,2, 4, 8,16, 32. We fix our guess by subtracting 1 from the
exponent, so the general term is

sy = 2L
Substituting the first six values of n shows that the formula checks.

(b) In this sequence, the fifth term looks different from the others, whose numerators are all 7. We
can fix this by rewriting 1/2 = 7/14. The sequence of denominators is then 2,5,8,11, 14, 17.
This looks like a linear function with slope 3, so we expect the denominator has formula 3n + k
for some k. When n = 1, the denominator is 2, so

2=3-1+k giving k=-1
and the denominator of s,, is 3n — 1. Our general term is then

T
T 3n—1"

Sn

To check this, evaluate s, forn =1,...,6.

n everyday English, the words “sequence” and “series” are used interchangeably. In mathematics, they have different
meanings and cannot be interchanged.
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and the denominator of s,, is 3n — 1. Our general term is then
7
3n—1

Sp =

To check this, evaluate s,, forn =1,...,6.

There are two ways to visualize a sequence. One is to plot points with n on the horizontal

axis and s,, on the vertical axis. The other is to label points on a number line si, so, s3, .... See
Figure 9.1 for the sequence s, = 1+ (—1)"/n.
Sn
1
0 1 2
| | | | | | | | | | n } } } Sn
2 4 6 8 10 51 83 S5 5654 S2

Figure 9.1: The sequence s, = 1 + (—=1)"/n

Defining Sequences Recursively

Sequences can also be defined recursively, by giving an equation relating the n'" term to the previ-
ous terms and as many of the first terms as are needed to get started.

Example 3 Give the first six terms of the recursively defined sequences.

(@) s, =sp_1+3forn>1lands; =4

(b) s, = —3sp_1 forn > 1land sy =2

(©) sp, = %(sn,l + $p_2) for n >2 and s1 =0, s =1
d) s, =ns,_1forn>1lands; =1

Solution (a) When n = 2, we obtain so = s1 +3 =4+ 3 = 7. When n = 3, we obtain s3 = s5 + 3 =
7 + 3 = 10. In words, we obtain each term by adding 3 to the previous term. The first six terms
are

4,7, 10, 13, 16, 19.
(b) Each term is —3 times the previous term, starting with s; = 2. We have sg = —3s1 = =32 =
—6 and s3 = —3s2 = —3(—6) = 18. Continuing, we get
2, —6, 18, —54, 162, —486.
(c) Each term is the average of the previous two terms, starting with s; = 0 and s5 = 1. We get

Continuing, we get

(d) Here so =281 =2-1 =25s0s83 =359 =
gives

nd s4 = 4s3 = 4 - 6 = 24. Continuing

1, 2, 6, 24, 120, 720.

The general term of part (d) of the previous example is given by s,, = n(n—1)(n—2)...3-2-1,
which is denoted s,, = n! and is called n factorial.

We can also look at the first few terms of a sequence and try to guess a recursive definition by
looking for a pattern.

Example 4 Give a recursive definition of the following sequences.
(a) 1,3,7,15,31,63,... (b) 1,4,9,16,25,36,...
Solution (a) Each term is twice the previous term plus one; for example 7 =2 -3 + 1 and 63 = 2- 31 + 1.

Thus, a recursive definition is

Sp = 28,1+ 1forn > 1ands; = 1.
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There are other ways to define the sequence recursively. We might notice, for example, that the
differences of consecutive terms are powers of 2. Thus, we could also use
Sp=5,_1+2""1 forn>1lands; =1.

(b) We recognize the terms as the squares of the positive integers, but we are looking for a recursive
definition which relates consecutive terms. We see that

So =51 +3
s3 =82 +5
sS4 =83+7
S5 =84+ 9,

so the differences between consecutive terms are consecutive odd integers. The difference be-
tween s, and s,,_1 is 2n — 1, so a recursive definition is

Sp = 8p_1+2n—1, forn > 1and sy = 1.

Recursively defined sequences, sometimes called recurrence relations, are powerful tools used
frequently in computer science, as well as differential equations. Finding a formula for the general
term can be surprisingly difficult.

Convergence of Sequences

The limit of a sequence s, as n — oc is defined the same way as the limit of a function f(z) as
x — 00; see also Problem 59.

The sequence s1, S2, 83, - - -, Sn, - .. has a limit L, written lim s, = L, if s,, is as close to
n—oo

L as we please whenever n is sufficiently large. If a limit, L, exists, we say the sequence
converges to its limit L. If no limit exists, we say the sequence diverges.

To calculate the limit of a sequence, we use what we know about the limits of functions, in-
cluding the properties in Theorem 1.2 and the following facts:
e The sequence s, = 2" converges to 0 if || < 1 and diverges if |z| > 1

e The sequence s,, = 1/n? converges to 0if p > 0

Example 5 Do the following sequences converge or diverge? If a sequence converges, find its limit.
1—e™
n:()-sn b N — n=1 -1
@ s, = (0.8) ®) 5= © so=1+(-1)
Solution (a) Since 0.8 < 1, the sequence converges by the first fact and the limit is 0.
(b) Since e~! < 1, we have lim e " = lim (e™!)" = 0 by the first fact, so lim s, = 1.

n— oo n—00 n—00

(c) Since (—1)™ alternates in sign, the sequence alternates between 0 and 2. Thus the sequence sy,
diverges, since it does not get close to any fixed value.

Convergence and Bounded Sequences

A sequence s,, is bounded if there are numbers K and M such that K < s, < M for all terms. If
lim s, = L, then from some point on, the terms are bounded between L — 1 and L + 1. Thus we

n—oo
have the following fact:

A convergent sequence is bounded.
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On the other hand, a bounded sequence need not be convergent. In Example 5, we saw that
14 (—1)™ diverges, but it is bounded between 0 and 2. To ensure that a bounded sequence converges
we need to rule out this sort of oscillation. The following theorem gives a condition that ensures
convergence for a bounded sequence. A sequence s,, is called monotone if it is either increasing,
that is s,, < $p+1 for all n, or decreasing, that is s,, > $,41 for all n.

Theorem 9.1: Convergence of a Monotone, Bounded Sequence

If a sequence s,, is bounded and monotone, it converges.

To understand this theorem graphically, see Figure 9.2. The sequence s,, is increasing and
bounded above by M, so the values of s,, must “pile up” at some number less than or equal to M.
This number is the limit.

S1 S2 S3 S4 S5 M
Figure 9.2: Values of s, forn =1,2,---,10

As an example, the sequence s, = (14 1/n)™ can be shown to be increasing and bounded (see
Project 1 on page 502). Theorem 9.1 then guarantees that this sequence has a limit, which turns out
to be e. (In fact, the sequence can be used to define e.)

Example 6

Solution

If s, = (14 1/n)", find s100 and $10900. How many decimal places agree with e?

We have 5109 = (1.01)1° = 2.7048 and 51090 = (1.001)190 = 2.7169. Since e = 2.7183...,we
see that s100 agrees with e to one decimal place and 51909 agrees with e to two decimal places.

Exercises and Problems for Section 9.1

Exercises
In Exercises 1-6, find a formula for s,, n > 1. For Exercises 7-12, find the first five terms of the sequence
from the formula for s, n > 1.
1. 4,8, 16, 32, 64,... 2.1,3,7,15,31,...
7. 2" +1 8 n+(—1)"
3. 2,5, 10, 17, 26, ... 4. 1, -3,5,-7,9,... ) )
n n
9. 10. (-1)" (=
2n+1 0- (=) (2)
5.1/3, 2/5, 3/7, 4/9, 5/11,... o (1Y |\
6. 1/2, —1/4,1/6, —1/8, 1/10, ... 1. (-1) (5) 12. (1 e 1)
Problems
Do the sequences in Problems 13-24 converge or diverge? If 19, nt1 20. (D"
a sequence converges, find its limit. n n
2" 2n+ (—1)"5
n n 21. — 22, ————
13. 2 14. (0.2) n3 dn —(—1)"3
—2n n H
15. 3+e 16. (—0.3) 23. 51271 24. cos(mn)
n 10 2"
17. — + — 18. —
10 + n 8 3n

2See the online supplement for a proof.
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25. Match formulas (a)—(d) with graphs (I)—(IV).

(@ s,=1-1/n b) sp=1+(=1)"/n
© sn=1/n @ sp=1+1/n
o Sn (1 Sn
1 1
n n
10 10
am  sn N sn
1 1
n n
10 10

26. Match formulas (a)—(e) with descriptions (1)—(V) of the
behavior of the sequence as n — oo.

@ sp,=nn+1)—1
() sn=1/(n+1)
(© sp=1-n"

(d) s, =cos(1l/n)

(e) s, = (sinn)/n

(I) Diverges to —oo

(II) Diverges to +00
(III) Converges to 0 through positive numbers
(IV) Converges to 1

(V) Converges to O through positive and negative num-
bers

27. Match formulas (a)—(e) with graphs (D—(V).

@ s,=2-1/n
(b) s =(-1)"2+1/n
(©) sn=2+(—-1)"/n
d s, =2+1/n
(€ sn=(=1)"2+(=1)"/n
0 1 1 1 sn
-2 0 2
g 1 : : sn
-2 0 2
(1 1 1 1 sn
-2 0 2
) 1 1 1 sn
-2 0 2
v 1 1 1 sn
-2 0 2

In Exercises 28-31, find the first six terms of the recursively
defined sequence.

28. s, =28, 1+3forn>1ands; =1

29. s, =Sp—1+nforn>1lands; =1

30. 5, = Sp-1+ (%)7%1 forn > lands; =0

31. sy, =Spn-1+28p-oforn>2ands; =1,s5=5

In electrical engineering, a continuous function like f(¢) =
sint, where ¢ is time in seconds, is referred to as an ana-
log signal. To digitize the signal, we sample f(t) every At
seconds to form the sequence s, = f(nAt). For exam-
ple, sampling f every 1/10 second produces the sequence
sin(1/10), sin(2/10), sin(3/10),.... In Problems 32-34,
give the first 6 terms of a sampling of the signal every At
seconds.

2. ft)=(t—1)2 At=0.5
33. f(t) = cosbt, At =0.1
sint

To smooth a sequence, s1, s2, s3, . . ., we replace each term s,
by t,, the average of s,, with its neighboring terms

(Sn—1+ Sn + Sny1)

by =
3

forn > 1.

We start with 1 = (s1 + s2)/2, since s1 has only one neigh-
bor. For Problems 35-37, smooth the sequence once and then
smooth the resulting sequence. What do you notice?

35. 18, —18, 18, —18, 18, —18, 18...

36. 0,0,0,18,0,0,0,0...

37.1,2,3,4,5,6,7,8...

In Exercises 38-43, find a recursive definition for the se-
quence.

38. 1,3,5,7,9,... 39. 2,4,6,8,10,...

40. 3,5,9,17,33, . .. 41. 1,5,14,30,55,. ..

42. 1,3,6,10,15,. ..

In Problems 4446, show that the sequence s, satisfies the
recurrence relation.

44. s, =3n—2

Sn = Sn—1 +3forn >1lands; =1
sn=n(n+1)/2
Sn = 8n—1 +nforn>1lands; =1

45.

46.

Sn=2n°—n
Sn = Sn—1+4n —3forn >1lands; =1



For a function f, define a sequence recursively by z, =
f(xn-1) forn > 1 and z; = a. Depending on f and the
starting value a, this sequence may converge to a limit L. If
L exists, it has the property that f(L) = L. For the func-
tions and starting values in Problems 47-50, use a calculator
to see if the sequence converges. [To obtain the terms of the
sequence, repeatedly push the function button.]

47.
49.

S1.

52.

53.

54.

S5,

56.

f(x)=cosz,a=0 48. f(x)=e ",a=0

50. f(z) =+/z,a=0.5

f(x) =sinz,a=1

Let V,, be the number of new SUVs sold in the US in

month n, where n = 1 is January 2004. In terms of
SUVs, what do the following represent?

(@) Vio

(b) ‘/n - Vn—l

© X2, Viand 31 Vi

(a) Let s, be the number of ancestors a person has n
generations ago. What is s1? s2? Find a formula for
Sn.

(b) For which n is s, greater than 6 billion, the cur-
rent world population? What does this tell you about
your ancestors?

For 1 < n < 10, find a formula for p,,, the payment in
year n on a loan of $100,000. Interest is 5% per year,
compounded annually, and payments are made at the end
of each year for ten years. Each payment is $10,000 plus
the interest on the amount of money outstanding.

World oil consumption was 82.459 million barrels per
day in 2005 and is increasing by about 1.3% per year.?
Let ¢, be daily world oil consumption n years after 2005.

(a) Find a formula for c¢,,.

(b) Find and interpret ¢,, — Cn—1.

(¢) What does the sum 2;8:1 365¢y, represent? (You do
not need to compute this sum.)

(a) Cans are stacked in a triangle on a shelf. The bottom
row contains k cans, the row above contains one can
fewer, and so on, until the top row, which has one
can. How many rows are there? Find a,,, the number
of cans in the n*" row, 1 < n < k (where the top
row isn = 1).

Let 73, be the total number of cans in the top n rows.
Find a recurrence relation for 77, in terms of 15, 1.
(¢) Show that T}, = %n(n + 1) satisfies the recurrence

relation.

(b)

You are deciding whether to buy a new or a two-year-old
car (of the same make) based on which will have cost
you less when you resell it at the end of three years. Your
cost consists of two parts: the loss in value of the car and
the repairs. A new car costs $20,000 and loses 12% of

3www.bp.com, accessed May 14, 2007.

57.

58.

59.

60.
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its value each year. Repairs are $400 the first year and
increase by 18% each subsequent year.

(a) For a new car, find the first three terms of the se-
quence d,, giving the depreciation (loss of value) in
dollars in year n. Give a formula for d,,.

(b) Find the first three terms of the sequence 7y, the re-
pair cost in dollars for a new car in year n. Give a
formula for r,.

(c) Find the total cost of owning a new car for three
years.

(d) Find the total cost of owning the two-year-old car for
three years. Which should you buy?

The Fibonacci sequence first studied by the thirteenth
century Italian mathematician Leonardo di Pisa, also
known as Fibonacci, is defined recursively by

F,=F, 14+ F,_sforn>2and F; =1, F>, = 1.
The Fibonacci sequence occurs in many branches of
mathematics and can be found in patterns of plant growth
(phyllotaxis).

(a) Find the first 12 terms.

(b) Show that the sequence of successive ratios
F 41/ F,, appears to converge to a number r satis-
fying the equation 72 = r + 1. (The number r was
known as the golden ratio to the ancient Greeks.)

(c) Let r satisfy r2 = r 4+ 1. Show that the sequence
s, = Ar"™, where A is constant, satisfies the Fi-
bonacci equation 5, = 5,1 + 5,2 forn > 2.

This problem defines the Calkin-Wilf-Newman sequence
of positive rational numbers. The sequence is remarkable
because every positive rational number appears as one
of its terms and none appears more than once. Every real
number x can be written as an integer A plus a number B
where 0 < B < 1. Forexample, forz = 12/5 = 24+2/5
we have A = 2and B = 2/5. Forx = 3 = 34+ 0 we
have A = 3 and B = 0. Define the function f(x) by

flz)=A+(1-B).

For example, f(12/5) = 2 + (1 — 2/5) = 13/5 and
f(3)=3+(1-0)=4.

(a) Evaluate f(x) forx = 25/8,13/9, and 7.

(b) Find the first six terms of the recursively defined
Calkin-Wilf-Newman sequence: s, = 1/f(sn—1)
forn > land s; = 1.

Write a definition for lim s, = L similar to the €, 0

n—

oo
definition for lim f(z) = L in Section 1.8. Instead of d,

r—a

you will need N, a value of n.

The sequence s, is increasing, the sequence ¢, con-
verges, and s, < t,, for all n. Show that s,, converges.



470 Chapter Nine  SEQUENCES AND SERIES
9.2 GEOMETRIC SERIES

This section introduces infinite series of constants, which are sums of the form

I+3+3+1+

0.4+ 0.04 + 0.004 + 0.0004 + - - -.
The individual numbers, 1, %, %, ---,0r 0.4,0.04,---, etc., are called terms in the series. To talk

about the sum of the series, we must first explain how to add infinitely many numbers.
Let us look at the repeated administration of a drug. In this example, the terms in the series
represent each dose; the sum of the series represents the drug level in the body in the long run.

Repeated Drug Dosage

A person with an ear infection is told to take antibiotic tablets regularly for several days. Since the
drug is being excreted by the body between doses, how can we calculate the quantity of the drug
remaining in the body at any particular time?

To be specific, let’s suppose the drug is ampicillin (a common antibiotic) taken in 250 mg doses
four times a day (that is, every six hours). It is known that at the end of six hours, about 4% of the
drug is still in the body. What quantity of the drug is in the body right after the tenth tablet? The

fortieth?

Let Q,, represent the quantity, in milligrams, of ampicillin in the blood right after the n*" tablet.
Then

@1 =250 = 250 mg

Q2 = 250(0.04) + 250 = 260 mg

Remnants of first tablet ~ NeWw tablet

Qs = Q2(0.04) + 250 = (250(0.04) + 250) (0.04) + 250
= 250(0.04)2 + 250(0.04) + 250 = 260.4 mg

Remnants of first and second tablets ~ NeW tablet

Q1 = Q3(0.04) + 250 = (250(0.04)% + 250(0.04) + 250) (0.04) + 250
= 250(0.04)% 4- 250(0.04)2 + 250(0.04) + 250 = 260.416 mg.

Remnants of first, second, and third tablets New tablet

Looking at the pattern that is emerging, we guess that
Qs = 250(0.04)* + 250(0.04)% + 250(0.04)% 4 250(0.04) + 250
Q10 = 250(0.04)° + 250(0.04)% + - - - + 250(0.04) + 250.

Notice that there are 10 terms in this sum—one for every tablet—but that the highest power of 0.04
is the ninth, because no tablet has been in the body for more than 9 six-hour time periods. (Do you
see why?) Now suppose we actually want to find the numerical value of QQ1¢. It seems that we have
to add 10 terms—and if we want the value of ()40, we would be faced with adding 40 terms:

Qa0 = 250(0.04)% + 250(0.04)% + - - - + 250(0.04) + 250.
Fortunately, there’s a better way. Let’s start with Q1.
Q10 = 250(0.04)° 4 250(0.04)% + 250(0.04)7 + - - - + 250(0.04)2 + 250(0.04) + 250.

Notice the remarkable fact that if you subtract (0.04)Q10 from @1, a great many terms (all but two,
in fact) drop out. First multiplying by 0.04, we get

(0.04)Q10 = 250(0.04)° +250(0.04)° +250(0.04)% +- - -4-250(0.04)® 4 250(0.04)* +250(0.04).
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Subtracting gives
Q10 — (0.04)Q1p = 250 — 250(0.04)1°.

Factoring Q1o on the left and solving for Q1¢ gives

Q10(1 —0.04) = 250 (1 — (0.04)'%)
250 (1 —(0.04)'7)
10 1—-0.04

This is called the closed-form expression for (Q1¢. It is easy to evaluate on a calculator, giving
@10 = 260.42 (to two decimal places). Similarly, Q49 is given in closed-form by

250 (1 —(0.04)%?)
a 1—-0.04 '

Evaluating this on a calculator shows Q49 = 260.42, which is the same (to two decimal places) as
@10- Thus after ten tablets, the value of (),, appears to have stabilized at just over 260 mg.
Looking at the closed-forms for Q19 and (049, We can see that, in general, (),, must be given by

250 (1—(0.04)")
a 1—0.04

Qa0

Qn

What Happens as n — oco?

What does this closed-form for @Q,, predict about the long-run level of ampicillin in the body? As
n — oo, the quantity (0.04)™ — 0. In the long run, assuming that 250 mg continue to be taken
every six hours, the level right after a tablet is taken is given by

_ 250(1—(0.04)")  250(1—0)

= 260.42.
1-0.04 1-0.04 60

@n

The Geometric Series in General

In the previous example we encountered sums of the form a + ax + az? + - - - + az® + ax® (with
a = 250 and z = 0.04). Such a sum is called a finite geometric series. A geometric series is one
in which each term is a constant multiple of the one before. The first term is a, and the constant
multiplier, or common ratio of successive terms, is x. (In our example, a = 250 and x = 0.04.)

A finite geometric series has the form
2 n—2 n—1
@ - @18 5 @5~ = ° ° © == @b < @ .
An infinite geometric series has the form

atazx+axr’+---+ax" 2 +az" taz” +---.

The “- - - at the end of the second series tells us that the series is going on forever—in other words,
that it is infinite.

Sum of a Finite Geometric Series

The same procedure that enabled us to find the closed-form for )1( can be used to find the sum of
any finite geometric series. Suppose we write .S,, for the sum of the first n terms, which means up
to the term containing 2"~ !:

S,=a+ar+ar®+- - +az" 2+ ax"" L.
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Multiply S,, by x:
S, = ax +az® +az® + -+ az" "+ ax™.
Now subtract .5, from .S,,, which cancels out all terms except for two, giving
S, — xS, =a—az"”
(1—-2)S, =a(l—2").

Provided x # 1, we can solve to find a closed form for S,, as follows:

The sum of a finite geometric series is given by

a(l —a™)

S, =a+ar—+ar’+--+ax"" ! = :
—

, provided = # 1.

Note that the value of n in the formula for .S, is the number of terms in the sum S,,.

Sum of an Infinite Geometric Series

In the ampicillin example, we found the sum @,, and then let n — co. We do the same here. The
sum @,,, which shows the effect of the first n doses, is an example of a partial sum. The first three
partial sums of the series a + ax + ax?® + -+ + ax" "' + ax™ + - - - are

Sl=a
So =a+ ax
S5 = a+ ax + az’.

To find the sum, S, of this infinite series, we consider the partial sum, S,,, of the first n terms. The
formula for the sum of a finite geometric series gives
1 _ n
S’n :a+am+am2+...+amn_1 = M
11—z
What happens to S,, as n — oco? It depends on the value of z. If |x| < 1, then " — 0 as n — oo,
SO
1—a" 1-0
lim S, = lim o ") = o ) ——
n—oo n—oco 1—=x 11—z 11—z
Thus, provided |z| < 1, as n — oo the partial sums .S,, approach a limit of a/(1 — z). When
this happens, we define the sum of the infinite geometric series to be that limit and say the series

convergesto a/(1 — ).

For |z| < 1, the sum of the infinite geometric series is given by

S=a+ar+ar’+- - +ax" ' far" +-. = a4

1—2"

If, on the other hand, |x| > 1, then 2™ and the partial sums have no limit as n — oo (if @ # 0).
In this case, we say the series diverges. If z > 1, the terms in the series become larger and larger in
magnitude, and the partial sums diverge to +o0 (if @ > 0) or —oo (if a < 0). When z < —1, the
terms become larger in magnitude, the partial sums oscillate as n — oo, and the series diverges.
What happens when z = 1? The series is

atatatat---,

and if a # 0, the partial sums grow without bound, and the series does not converge. When x = —1,
the series is
a—a+a—a+a—---,

and, if a # 0, the partial sums oscillate between a and 0, and the series does not converge.
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Example 1 For each of the following infinite geometric series, find several partial sums and the sum (if it exists).
1 1 1 2 2 2
14+ -4+ 4+ 4. b) 1+244+84--- 6—24- 4= _ ...
@ 1+g+7+g+ ® 1+2+4+8+ (© ts3-g5to
Solution (a) This series may be written

14 ly 12+ 13+
2 \2 2
1

which we can identify as a geometric series witha = 1 and = %, so S = W = 2.

Let’s check this by finding the partial sums:

S =1

1 3 1
S2=1ltg=35=2-3

1 1 7 1
H=ltg =723

1 1 1 15 1
=1 — - = =9_Z
Sy +2+4+8 3 3
PRI GNS U S S B
T2 816 16 T 16

The formula for S, gives
1_ln 1 n—1
1-1 2

Thus, the partial sums are creeping up to the value S = 2, s0 5,, — 2 asn — oo.
(b) The partial sums of this geometric series (with a = 1 and x = 2) grow without bound, so the
series has no sum:
S1=1
So=1+2=23
S3=14244=7
Sy=1+2+448=15
Ss=1+2+4+8+16 = 31.

The formula for S, gives

1-2m
= =2"—1.
=T
(c) This is an infinite geometric series with @ = 6 and x = —%. The partial sums,

Si=6.00, Sy=4.00, S;3a4.67, Sy~ 444, S5~ 452, Se~4.49,

appear to be converging to 4.5. This turns out to be correct because the sum is

6

m - 4.5.

S:

Regular Deposits into a Savings Account

People who save money often do so by putting some fixed amount aside regularly. To be specific,
suppose $1000 is deposited every year in a savings account earning 5% a year, compounded annu-
ally. What is the balance, B,,, in dollars, in the savings account right after the nth deposit?
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As before, let’s start by looking at the first few years:
B, = 1000
By = B;(1.05) + 1000 = 1000(1.05) + 1000
N — SN~~~ )
Original deposit ~ New deposit
Bs = By(1.05) + 1000 = 1000(1.05)? + 1000(1.05) + 1000

New deposit

First two deposits

By = B3(1.05) + 1000 = 1000(1.05)* + 1000(1.05)% + 1000(1.05) + 1000,
New deposit

First three deposits
Observing the pattern, we see
B, = 1000(1.05)"~* +1000(1.05)"~2 + - - - 4 1000(1.05) -+ 1000.
So B, is a finite geometric series with @ = 1000 and = = 1.05. Thus we have
1000 (1 — (1.05)")
" 1—1.05 '
We can rewrite this so that both the numerator and denominator of the fraction are positive:
1000 ((1.05)™ — 1)
" 1.05—1

What Happens as n — co?

Common sense tells you that if you keep depositing $1000 in an account and it keeps earning
interest, your balance grows without bound. This is what the formula for B,, shows also: (1.05)" —
o0 asn — o0, 0 By, has no limit. (Alternatively, observe that the infinite geometric series of which

B, is a partial sum has x = 1.05, which is greater than 1, so the series does not converge.)

Exercises and Problems for Section 9.2

Exercises

In Exercises 1-10, decide which of the following are geomet-
ric series. For those which are, give the first term and the ratio
between successive terms. For those which are not, explain
why not.

1. 5-10+20—-40+80 —---

2 1+l+1+l+l+ -
) 2 3 4 5
1 1 1
3. 2+1+§+Z+§+"'
1 1 1 1
4. 1—5+Z—§+E+"'

1+ o+ 22% 432 +4a* + -+
14224 (22)2 + (22> + - -
34324622 +92° 122 -+
l—z+z?—a3+z*— -
Ly 4y =yt

10. 2+  +y' +y° + -

® ® A0

For each finite geometric series in Exercises 11-13, say how
many terms are in the series and find its sum.

11. 2+2(0.1) +2(0.1)2 4 --- +2(0.1)*

12. 2(0.1) +2(0.1)* +--- +2(0.1)"°
13. 2(0.1)° +2(0.1)% 4+ --- +2(0.1)**

Find the sum of the series in Exercises 14—17.

3.3 3 3
14. 3+§+Z+§+‘“+ﬁ
1 1 1 1

15. —2+1—§+Z—§+E—"'

) 1 n 20 1 n
16. (g) 17. > (§>
n=4 n=4

In Exercises 18-23, use the properties of geometric series to
find the sum of the series. For what values of the variable does
the series converge to this sum?

18. 1+2/2422/4+2%/8 4 -+
19. 1+ 3z + 922 4+ 272% + - -
20 y— v+t —yt+ -

21, 2 — 42+ 822 —162° + -
22. 3+ +ai4+ad 4+

23, 4+ y+ 3+ 9+
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24.

25.

26.

27.

28.

Bill invests $200 at the start of each month for 24 months,
starting now. If the investment yields 0.5% per month,
compounded monthly, what is its value at the end of 24
months?

This problem shows another way of deriving the long-run
ampicillin level. (See page 470.) In the long run the ampi-
cillin levels off to () mg right after each tablet is taken.
Six hours later, right before the next dose, there will be
less ampicillin in the body. However, if stability has been
reached, the amount of ampicillin that has been excreted
is exactly 250 mg because taking one more tablet raises
the level back to () mg. Use this to solve for Q.

On page 470, you saw how to compute the quantity @,
mg of ampicillin in the body right after the n'" tablet of
250 mg, taken once every six hours.

(a) Do a similar calculation for P,. the quantity of
ampicillin (in mg) in the body right before the n'®
tablet is taken.

(b) Express P, in closed form.

(¢) What is lim,_ .o P,? Is this limit the same as
lim,,— o0 @»? Explain in practical terms why your
answer makes sense.

Figure 9.3 shows the quantity of the drug atenolol in the
blood as a function of time, with the first dose at time
t = 0. Atenolol is taken in 50 mg doses once a day to
lower blood pressure.

q (quantity, mg)

t (time, days)
4 5

Figure 9.3

(a) If the half-life of atenolol in the blood is 6.3 hours,
what percentage of the atenolol present at the start
of a 24-hour period is still there at the end?

(b) Find expressions for the quantities Qo, @1, Q2, @3,
..., and Q,, shown in Figure 9.3. Write the expres-
sion for @y, in closed-form.

(¢) Find expressions for the quantities Py, P>, Ps, ...,
and P, shown in Figure 9.3. Write the expression
for P, in closed-form.

Draw a graph like that in Figure 9.3 for 250 mg of ampi-
cillin taken every 6 hours, starting at time ¢ = 0. Put on
the graph the values of Q1. @2, Q3, . .. introduced in the
text on page 470 and the values of Py, P», Ps, ... calcu-
lated in Problem 26.

29.

30.

31.

32.

33.

34.

A $200,000 loan is to be repaid over 20 years in equal
monthly installments of $M, beginning at the end of the
first month. Find the monthly payment if the loan is at an
annual rate of 9%, compounded monthly. [Hint: Find an
expression for the present value of the sum of all of the
monthly payments, set it equal to $200,000, and solve
for M.]

(a) The total reserves of a non-renewable resource are
400 million tons. Annual consumption, currently 25
million tons per year, is expected to rise by 1% each
year. After how many years will the reserves be ex-
hausted?

Instead of increasing by 1% per year, suppose con-
sumption was decreasing by a constant percentage
per year. If existing reserves are never to be ex-
hausted, what annual percentage reduction in con-
sumption is required?

(b)

One way of valuing a company is to calculate the present
value of all its future earnings. Suppose a farm expects to
sell $1000 worth of Christmas trees once a year forever,
with the first sale in the immediate future. What is the
present value of this Christmas tree business? Assume
that the interest rate is 4% per year, compounded contin-
uously.

Around January 1, 1993, Barbra Streisand signed a con-
tract with Sony Corporation for $2 million a year for 10
years. Suppose the first payment was made on the day of
signing and that all other payments are made on the first
day of the year. Suppose also that all payments are made
into a bank account earning 4% a year, compounded an-
nually.

(a) How much money was in the account
(1) On the night of December 31, 1999?
(i) On the day the last payment was made?

(b) What was the present value of the contract on the
day it was signed?

In theory, drugs that decay exponentially always leave a
residue in the body. However, in practice, once the drug
has been in the body for 5 half-lives, it is regarded as
being eliminated.” If a patient takes a tablet of the same
drug every 5 half-lives forever, what is the upper limit to
the amount of drug that can be in the body?

This problem deals with the question of estimating the
cumulative effect of a tax cut on a country’s economy.
Suppose the government proposes a tax cut totaling $100
million. We assume that all the people who have ex-
tra money to spend would spend 80% of it and save
20%. Thus, of the extra income generated by the tax cut,
$100(0.8) million = $80 million would be spent and
so become extra income to someone else. Assume that
these people also spend 80% of their additional income,

4http://dr.pierce].net/PDF/half life.pdf, accessed on May 10, 2003.
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or $80(0.8) million, and so on. Calculate the total addi-
tional spending created by such a tax cut.

The government proposes a tax cut of $100 million as in
Problem 34, but that economists now predict that people
will spend 90% of their extra income and save only 10%.
How much additional spending would be generated by
the tax cut under these assumptions?

A ball is dropped from a height of 10 feet and bounces.
Each bounce is % of the height of the bounce before.
Thus, after the ball hits the floor for the first time, the
ball rises to a height of 10(3) = 7.5 feet, and after it
hits the floor for the second time, it rises to a height of
7.5(2) = 10(2)” = 5.625 feet. (Assume that there is no
air resistance.)

(a) Find an expression for the height to which the ball
rises after it hits the floor for the " time.
(b) Find an expression for the total vertical distance the

9.3 CONVERGENCE OF SERIES

37.

ball has traveled when it hits the floor for the first,
second, third, and fourth times.

(¢) Find an expression for the total vertical distance the
ball has traveled when it hits the floor for the nt®
time. Express your answer in closed-form.

You might think that the ball in Problem 36 keeps bounc-
ing forever since it takes infinitely many bounces. This is
not true!

(a) Show that a ball dropped from a height of h feet
reaches the ground in i h seconds. (Assume g =
32 ft/sec?)

Show that the ball in Problem 36 stops bouncing af-
ter

1 1 3 1
_«/10+_\/10\/i ———— | =~ 11 seconds.
1 2 4\1-/3/4

(b)

We now consider general series in which each term a,, is a number. The series can be written

compactly using a Z sign as follows

oo
Y an=artaztaz+octan+oo-

n=1

For any particular values of a and x, the geometric series is such a series, with general term a,, =

axn—l

Partial Sums and Convergence of Series

As in Section 9.2, we define the partial sum, S,,, of the first n terms of a series as

n
Sn:Zaizal—l—ag—i----—l—an.

=1

To investigate the convergence of the series, we consider the sequence of partial sums

51752»‘937 s

If S,, has a limit as n — oo, then we define the sum of the series to be that limit.

n=1
say that the series diverges.

If the sequence S, of partial sums converges to S, so lim S,, = S, then we say the series

oo o0
Z a,, converges and that its sum is S. We write Z an, = S.If lim S,, does not exist, we

n—oc

n—oo
n=1

Visualizing Series

We can visualize the terms of a series as in Figure 9.4. In this figure, we assume a,, > 0 for all n,
so each rectangle has area a,,. Then the series converges if the total area of the rectangles is finite
and the sum of the series is the total area of the rectangles. This is similar to an improper integral
J,° f(z) dz, in which the area under the graph of f can be finite, even on an infinite interval.
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ay |
as
as +

a4 -

n 1 e [
12345 n

Figure 9.4: Height and area of the n'" rectangle is a.,

Here are some properties that are useful in determining whether or not a series converges.

Theorem 9.2: Convergence Properties of Series

[ee] oo
1. If Z a, and Z by, converge and if k is a constant, then

n=1 n=1

o . -
o Z(an + by,) converges to Z ap -+ Z b,,.
n=1 n=1 n=1

oo [e.e]
° E ka,, converges to k E ay,.
n=1 n=1

2. Changing a finite number of terms in a series does not change whether or not it converges,
although it may change the value of its sum if it does converge.

o0
3. If lim a, # 0or lim a, does not exist, then Z a,, diverges.
n—oo n—oo 1

4. 1f Z a,, diverges, then Z kay, diverges if k # 0.

n=1 n=1

For proofs of these properties, see Problems 39-42. As for improper integrals, the convergence
of a series is determined by its behavior for large n. (See the “behaves like” principle on page 381.)
From Property 2 we see that, if N is a positive integer, then ), a,, and Y > - a,, either both
converge or both diverge. Thus, if all we care about is the convergence of a series, we can omit the
limits and write > a,.

Example 1 Does the series Z(l — e~ ") converge?

Solution Since the terms in the series, a,, = 1 — e~ " tend to 1, not 0, as n — oo, the series diverges by
Property 3 of Theorem 9.2.

Comparison of Series and Integrals

We investigate the convergence of some series by comparison with an improper integral. The har-
monic series is the infinite series

3L TEE T P S
nzln_ 2 3 4 n

Convergence of this sum would mean that the sequence of partial sums
1 1 1 1

1 1
:1 :]_ - :]_ — — e ’I’L=1 —_ — e —,
Si=1, S=l+g, S=1l+5+3, o Sn=ld s gt
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tends to a limit as n — oo. Let’s look at some values:
Sl = 1, 510 ~ 2.93, 8100 ~ 5.19, 51000 ~ 7.49, 810000 ~ 9.79.

The growth of these partial sums is slow, but they do in fact grow without bound, so the harmonic
series diverges. This is justified in the following example and in Problem 46.

Example 2 Show that the harmonic series 1 +1/2 4+ 1/3 + 1/4 + ... diverges.

Solution The idea is to approximate [,~(1/z)dx by a left-hand sum, where the terms 1,1/2,1/3, ... are
heights of rectangles of base 1. In Figure 9.5, the sum of the areas of the 3 rectangles is larger than
the area under the curve between x = 1 and © = 4, and the same kind of relationship holds for the
first n rectangles. Thus, we have

11 1 i
Sp=14=-4+-+...+=> —dr =1 1).
n +2+3+ + = /1 —dz n(n+1)
Since In(n + 1) gets arbitrarily large as n — o0, so do the partial sums, S,,. Thus, the partial sums
have no limit, so the series diverges.
Y
—y=1/z
Area—= 1 Rectangles showing4
s Area=1/2 1+3+3> [ 2dz=1In4
%z v
T
1 2 3 4
Figure 9.5: Comparing the harmonic series to f 100 (1/z)d=
Notice that the harmonic series diverges, even though lim a, = lim (1/n) = 0.
n—oo n—oo
Example 3 By comparison with the improper integral | 1°° (1/22) dx, show that the following series converges:
i Loyl
n? 4 9 ’
n=1
o9}

Solution Since we want to show that Z 1/n? converges, we want to show that the partial sums of this series

n=1

tend to a limit. We do this by showing that the sequence of partial sums increases and is bounded
above, so Theorem 9.1 applies.

Each successive partial sum is obtained from the previous one by adding one more term in the
series. Since all the terms are positive, the sequence of partial sums is increasing.

(o]
To show that the partial sums of Z 1/n? are bounded, we consider the right-hand sum repre-
n=1
sented by the area of the rectangles in Figure 9.6. We start at z = 1, since the area under the curve
is infinite for 0 < 2 < 1. The shaded rectangles in Figure 9.6 suggest that:

LR +1</°¢1d
— — — ... — —a:.
479" 16 n? = J,

The area under the graph is finite, since

1 b1 1
/ —zdmzlim —zdm:lim (———I—l):l.
1 x b—oo 1 T b—oo b
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Y
Lr y=1/z" Shaded rectangles show -
H + ! + 1 + L < L dx
4 9 16 25 2
Area = 1/4
1/4 Area =1/9
i = Area =1/16
1/9 C Area = 1/25
1/16 2

1 2 3 4
Figure 9.6: Comparing > | 1/n” to [°(1/27) da
To get .S,,, we add 1 to both sides, giving

4 9 16 x?

Thus, the sequence of partial sums is bounded above by 2. Hence, by Theorem 9.1 the sequence of
partial sums converges, so the series converges.

11 1 1 > 1
Sn:1+—+—+—+~-+ﬁ§1+/ —dz =2.
1

Notice that we have shown that the series in the Example 3 converges, but we have not found
its sum. The integral gives us a bound on the partial sums, but it does not give us the limit of the
partial sums. Euler proved the remarkable fact that the sum is 72 /6.

The method of Examples 2 and 3 can be used to prove the following theorem. See Problem 45.

Theorem 9.3: The Integral Test
Suppose a,, = f(n), where f(x) is decreasing and positive.
o

o If J(z) dz converges, then ) a,, converges.
1

o
o If / f(z) dzx diverges, then Y a,, diverges.
1

Suppose f(x) is continuous. Then if f(x) is positive and decreasing for all = beyond some
point, say c, the integral test can be used.

The integral test allows us to analyze a family of series, the p-series, and see how convergence
depends on the parameter p.

Example 4

Solution

oo
For what values of p does the series Z 1/n? converge?

n=1

If p < 0, the terms in the series a,, = 1/nP do not tend to 0 as n — co. Thus the series diverges for
p < 0.

[ee)
If p > 0, we compare Z 1/nP to the integral floo 1/2P dz. In Example 3 of Section 7.7 we
n=1
saw that the integral converges if p > 1 and diverges if p < 1. By the integral test, we conclude that
>~ 1/nP converges if p > 1 and diverges if p < 1.

We can summarize Example 4 as follows:

o0
The p-series Z 1/nP converges if p > 1 and diverges if p < 1.

n=1
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Exercises and Problems for Section 9.3

Exercises

In Exercises 1-3, find the first five terms of the sequence of
partial sums.

= — (— 1
I.Zgn 2.2;( S.Z;m

Use the integral test to decide whether the series in Exer-
cises 4-7 converge or diverge.

o)

4. ;— 5. ;WLH
65 L U S

) — en ) ~ n(lnn)?
Problems

2z %dx to show that

Z:;z 1/n® converges to a number less than or equal
to 1/2.
9. Use comparison with [ 1/(2z* + 1) dz to show that

3> . 1/(n® +1) converges to a number less than or
equal to /2.

8. Use comparison with [

Explain why the integral test cannot be used to decide if the
series in Exercises 10—12 converge or diverge.

10. i": n? i":
n=1 n=1

(=)

12. i e "sinn

n=1

Do the series in Problems 13-32 converge or diverge?

—~ 3 4
13. 14.
3D o5 D i
n=0 n=0
T e 6. 2
. n=0 2+’Il ‘ n=0 1+n4
- 2n - 2n
17. —_ 18. _—
19. —_ 20. —_
’ z_;(%—l)2 0 Z_:(Qn—i—l)?’
=~ 3 2
21'2@7#—!—4 22'2()1—!—4712
= n = n+1
23. 24.
> 1 n 2 n > 3 n 1
53(3) +(5) X))
n=1 n=1
S
' n2n ) n
n=1 n=1
2 i 1 2 i n+1
) n(1+Inn) ) n2 +2n + 2
n=1 n=3
= 1 nlnn+4
nn
31. z;] n2 +2n + 2 32. z; n?
n= n=

fee]
1
33. Show that g —>— diverges.
n=1 111(2 )

34. Show that Z m converges.

35. (a) Find the partial sum, S,,, of Z In (n +1 )

n
(b) Does the series in part (a) converge or diverge?
36. (a) Show ™" = n'™7 for positive numbers n and .

(b) For what values 7 > 0 does Y > | 77 converge?
. e 1 1 1
37. Consider the series ; EED =13 + 73 4

1 1 1
(a) Show that E — k_—H_ = m
(b) Use part (a) to find the partial sums S3, Si0, and S,,.
(¢) Use part (b) to show that the sequence of partial
sums S,,, and therefore the series, converges to 1.

38. Consider the series

S (S52) (1) o ()

(a) Show that the partial sum of the first three nonzero

terms S3 = In (5/8).
n+2
2n+1) )"

(¢) Use part (b) to show that the partial sums S,,, and
therefore the series, converge to In (1/2).

39. Show thatif Y an and ) by, converge and if k is a con-
stant, then Y (an + bn), > (an — byn), and Y kay con-
verge.

40. Let N be a positive integer. Show that if a,, = b, for

n > N, then Y a, and > b, either both converge, or
both diverge.

41. Show that if Z an converges, then lim a, = 0. [Hint:
n—oo

(b) Show that the partial sum S,, = In

Consider limy— o0 (Sp, — Sn—1), where S, is the nt? par-
tial sum.]



42,

43.

44.

45.

46.

47.

48.

Show that if > a, diverges and k # 0, then Y kan
diverges.

The series y _ an converges. Explain, by looking at par-
tial sums, why the series > (@n4+1 — ay) also converges.
The series Y | a, diverges. Give examples that show the
series Y (an+1 — an) could converge or diverge.

In this problem, you will justify the integral test. Suppose
¢ > 0and f(x) is a decreasing positive function, defined
for all © > ¢, with f(n) = a,, for all n.

(a) Suppose fcoo f(z)dx converges. By considering
rectangles under the graph of f, show that ) an
converges. [Hint: See Example 3 on page 478.]

(b) Suppose that j;o f(x) dz diverges. By considering
rectangles above the graph of f, show that > a, di-
verges. [Hint: See Example 2 on page 478.]

Consider the following grouping of terms in the har-
monic series:

1+(1)+(1+1)+(1+1+1+1)+

2 34 56 7 8
(5+m5++15)+
9 10 16
(a) Show that the sum of each group of fractions is more

than 1/2.
(b) Explain why this shows that the harmonic series
does not converge.

o0
Show that Z !

nlnn

diverges.
n=2
(a) Using the integral test.
(b) By considering the grouping of terms

(5m2) * (s * 7o)
21n2 3In3  4In4

+(1+1+1+1)+--
505  6n6 ' 7In7  8In8 '

Consider the sequence given by

a —(1+1+1+-~~l)—lnn
" 23 n '

(a) Show that a,, is positive for all n. [Use a left-sum
approximation to [ (1/z) dx with Az = 1]

9.4 TESTS FOR CONVERGENCE

Comparison of Series

49.

50.

S1.
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(b) Show that a,,+1 < a,, for all n. [Use one rectangle
to give a right approximation to f:“ (1/2) dx.]

(¢) Explain why lim,,— a, exists.

(d) The number v = lim,— ay is called Euler’s con-
stant. Estimate y to two decimal places by comput-
ing a200.-

On page 479, we gave Euler’s result
— 1
D
n=1

(a) Find the sum of the first 20 terms of this series. Give
your answer to three decimal places.

(b) Use your answer to estimate 7. Give your answer to
two decimal places.

(c) Repeat parts (a) and (b) with 100 terms.

(d) Use a right sum approximation to bound the er-
ror in approximating 72 /6 by Ziozl (1/n?) and by

STH (1/n?).

This problem approximates e using
1
e = Z m
n=0

(a) Find a lower bound for e by evaluating the first five
terms of the series.

(b) Show that 1/n! < 1/2" ! forn > 1.

(¢) Find an upper bound for e using part (b).

_
-

In this problem we investigate how fast the partial sums

Sy = 1% +2° +3° + ... 4+ N°® of the divergent series

Z:’:l n® grow as NV gets larger and larger. Show that

(@) Sy > N/6by considering the right-hand Riemann
sum for fON 2°dx with Az = 1.

(b) Sx < ((N+1)°—1)/6 by considering the left-hand
Riemann sum for 1N+1 2°dx with Az = 1.

(©) limy—oo Sn/(NC/6) = 1. We say that Sy is
asymptotic to N®/6 as N goes to infinity.

In Section 7.8, we compared two integrals to decide whether an improper integral converged. In
Theorem 9.3 we compared an integral and a series. Now we compare two series.

Theorem 9.4: Comparison Test

Suppose 0 < a,, < b, for all n beyond a certain value.
e If > b, converges, then > a,, converges.

e If > a, diverges, then Y b, diverges.
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Since a,, < by, the plot of the a,, lies under the plot of the b,,. (See Figure 9.7.) The comparison
test says that if the total area for 3 b, is finite, then the total area for 3 a,, is finite also. If the total
area for ) a,, is not finite, then neither is the total area for 3 b,,.

b1

ai as
[¢2%

az
Qa4 bn
as

1 2 3 4 5 n

Figure 9.7: Each a., is represented by the area of a dark rectangle, and each b,, by a dark plus a light rectangle

(o)
Example 1 Use the comparison test to determine whether the series Z 51 converges.
n=1 ne+
Solution For n > 1, we know that n3 < n3 + 1, so
1 1
0< — < —
- n3 +1 d

Thus, every term in the series ZZC:1 1/(n® + 1) is less than or equal to the corresponding term
in Y07 | 1/n3. Since we saw that Y>> | 1/n® converges as a p-series with p > 1, we know that
S0, 1/(n?® + 1) converges.

-1 Gn + 1
Example 2 Decide whether the following series converge: (a) Z 3 (b) Z
Solution (a) Since the convergence is determined by the behavior of the terms for large n, we observe that
-1 1
:3—_'_3 behaves like % =3 as  n — oo.

Since Y 1/n? converges, we guess that > (n — 1)/(n® + 3) converges. To confirm this, we use
the comparison test. Since a fraction increases if its numerator is made larger or its denominator
is made smaller, we have

n—1 n

1
<—=— forall n>1.

0<
“n343 " nd n?

Thus, the series > (n — 1)/(n® + 3) converges by comparison with >~ 1/n2.
(b) First, we observe that
6n% +1 6n> 3

351 behaves like o3 = o as n — oo.
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Since Y 1/n diverges, so does >~ 3/n, and we guess that > (6n% + 1)/(2n3 — 1) diverges. To
confirm this, we use the comparison test. Since a fraction decreases if its numerator is made
smaller or its denominator is made larger, we have

6n®  6n>+1
0< — ,
— 23 T 2n3 —1
) )
0<3<6n +1

Thus, the series > (6n2 + 1)/(2n® — 1) diverges by comparison with Y 3/n.

Limit Comparison Test

The convergence or divergence of a series > a,, is determined by the values of a,, as n — oo. This
often enables us to predict convergence or divergence by looking at the long-run behavior of a,,.

Example 3

Solution

Predict convergence or divergence of
Y s
nd4+n+2

As n — oo, the highest power terms in the numerator and denominator, n? and 13, dominate. Thus

the term
n? -5

an:n3+1l+2

behaves, as n — o0, like

Since the harmonic series Y 1/n diverges, we guess that Y _ a,, also diverges.

The comparison test is needed to confirm a prediction of convergence or divergence. Because
the comparison test requires showing that a,, < b,,, we may prefer to use the following test, which
avoids these inequalities.

Theorem 9.5: Limit Comparison Test
Suppose a,, > 0 and b,, > 0 for all n. If

. an,
lim — =c¢ where ¢ > 0,
n—oo bn

then the two series »_ a,, and ) b,, either both converge or both diverge.

The limit lim,, .~ a,, /b, = ¢ captures the idea that a,, “behaves like” ¢b,, as n — oo.

Example 4

Use the limit comparison test to determine if the following series converge or diverge.

n?+6 (1
(a) Z—n4—2n+3 (b) Zsm<g>
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. n?+6 . n? 1 9
Solution (a) We take a,, = —————. Because a,, behaves like — = — asn — oo we take b,, = 1/n”.
nt—2n+3 nt n?
We have
im * — i nt 4+ 6n?
1 — = 11 _—
n— oo bn n—o0 TL4 —2n + 3
The limit comparison test applies with ¢ = 1. Since 5 1/n? converges, the limit comparison
n?+6
test shows that —_
W Z n* —2n+3
(b) Since sin (x) ~ a for x near 0, we know that sin (%) behaves like 1/n as n — co. We apply
the limit comparison test with a,, = sin (2) and b, = 1/n. We have
fim @ = g S/

n—0o0 n n—oo ]_/n

also converges.

1.

Thus ¢ = 1 and since > 1/n diverges, the series Y _ sin (1/n) also diverges.

Series of Both Positive and Negative Terms

If Y a, has both positive and negative terms, then its plot has rectangles lying both above and
below the horizontal axis. See Figure 9.8. The total area of the rectangles is no longer equal to
> a,. However, it is still true that if the total area of the rectangles above and below the axis is
finite, then the series converges. The area of the n*? rectangle is |a,,|, so we have:

Theorem 9.6: Convergence of Absolute Values Implies Convergence

If Y |an| converges, then so does Y a,,.

Problem 87 shows how to prove this result.

||
Uw ;

as
aa -

as -

Figure 9.8: Representing a series with positive and negative terms

Example 5 Explain how we know that the following series converges
[ee]
-1 n—1 1 1
e
n? 4 9
n=1
Solution Writing a,, = (—1)"~1/n?2, we have
(_1)71—1 1
ol = | = e
n—1

The p-series > 1/n? converges, since p > 1,50 > (—1)""" /n? converges.
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Comparison with a Geometric Series: The Ratio Test

Proof

A geometric series Y a,, has the property that the ratio a,, 11 /a,, is constant for all n. For many other
series, this ratio, although not constant, tends to a constant as n increases. In some ways, such series
behave like geometric series. In particular, a geometric series converges if the ratio |a,+1/a,| < 1.
A non-geometric series also converges if the ratio |a,1/ax| tends to a limit which is less than 1.
This idea leads to the following test.

Theorem 9.7: The Ratio Test

For a series Y a,, suppose the sequence of ratios |a,t1|/|an| has a limit:

lim —| Wi1| _

n—oo |an|

e If L < 1, then Y a,, converges.
e If L > 1, orif L is infinite,’ then Y a,, diverges.

e If L = 1, the test does not tell us anything about the convergence of > a,.

. . . a
Here are the main steps in the proof. Suppose lim M = L < 1. Let « be a number between L

n—00 |(],n
and 1. Then for all sufficiently large n, say for all n > k, we have

|an 1] <z
|an|

Then,

|aks1] < laglz,

|ak o < lagia]z < |agl2®,

|ak4a] < larralz < larla®,
and so on. Thus, writing @ = |ay|, we have for: =1,2,3, ...,

|lag4i| < az'.

Now we can use the comparison test: > |ak+i| converges by comparison with the geometric series
> ax®. Since Y |ak+;| converges, Theorem 9.6 tells us that > ay-; converges. So, by property 2

of Theorem 9.2, we see that > a,, converges too.
If L > 1, then for sufficiently large n, say n > m,

|an+1| > |an|7
so the sequence @, |, |@m+t1|, |@m+2l, - - -, is increasing. Thus, lim a,, # 0, s0 Y a,, diverges (by
n—oo

Theorem 9.2, property 3). The argument in the case that |a,1|/|a,| is unbounded is similar.

Example 6

Solution

Show that the following series converges:®

L, 11
2=yttt

n=1

[ee]

Since a,, = 1/n!and a1 = 1/ (n 4 1)!, we have
lani1]  1/(n+1)!  nl nin—1)(n-—2)---

lan] 1/l (n+1)! (n+Dnn-—1)---

| o
= =

SThat is, the sequence |ay, +1|/|an| grows without bound.
6We define 2! tobe 2 - 1 = 2. Similarly, 3! =3-2-1=6andn! =n-(n—1)---2- 1. We also define 0! = 1.
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We cancel n(n — 1)(n —2) - - -- 2 -1, giving
|
limwz im —% — — lim =
o0
Because the limit is 0, which is less than 1, the ratio test tells us that Z 1/n! converges. In Chap-
n=1

ter 10, we see that the sum is e — 1.

Example 7 ‘What does the ratio test tell us about the convergence of the following two series?

oo o0
1 (=)t
o and Z W
n=1 n=1
Solution Because |(—1)"| = 1, in both cases we have lim,,_ o |@n+1/an| = lim, oo n/(n + 1) = 1. Thus,

the ratio test does not tell us anything about the convergence of either series. In fact, the first series
is the harmonic series, which diverges. Example 8 will show that the second series converges.

Alternating Series

A series is called an alternating series if the terms alternate in sign. For example,

o0 (_1)7l—1_ 1 1 1 (_1)71,—1
Z n =1 s3I T T T

n=1

The convergence of an alternating series can often be determined using the following test:

Theorem 9.8: Alternating Series Test

A series of the form
o0
(-)"ta, =a; —aztaz—as+---+(=D)"a, +---

n=1

converges if

0<ant1 <a, foraln and lim a, = 0.
n—oo

Although we do not prove this result, we can see why it is reasonable. The first partial sum,
S1 = ay, is positive. The second, So = a1 — ag, is still positive, since ay < aj, but S is smaller
than S;. (See Figure 9.9.) The next sum, S3 = a; — a2 + ag, is greater than S5 but smaller than
S1. The partial sums oscillate back and forth, and since the distance between them tends to 0, they
eventually converge.

Q4

ao

a

ai

I I I I I T

0 S Sy Ss St

Figure 9.9: Partial sums, S1, S2, S3, Si of an alternating series

Example 8 Show that the following alternating harmonic series converges:

x 1)1
s
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Solution We have a,, = 1/n and ap+1 = 1/(n + 1). Thus,
1 1
Apt1 = n_—|—1 < ﬁ =a, foralln, and nh_)rgo ]./’I’L =0.
Thus, the hypothesis of Theorem 9.8 is satisfied, so the alternating harmonic series converges.
Suppose S is the sum of an alternating series, so .S = lim,,_,o, S,. Then S is trapped between
any two consecutive partial sums, say S3 and Sy or Sy and S so
So< Sy << S<-- <83 < 8.
Thus, the error in using S, to approximate the true sum S is less than the distance from S, to Sj, 41,
which is a,,4 1. Stated symbolically, we have the following result:
Theorem 9.9: Error Bounds for Alternating Series
n
Let S, = Z(—l)i_lai be the n'* partial sum of an alternating series and let S = lim S,,.
n—oo
i=1
Suppose that 0 < a,4+1 < a, for all n and lim, .o a, = 0. Then
|S — Sn| < Qpi1-
Thus, provided S,, converges to .S by the alternating series test, the error in using S, to approxi-
mate S is less than the magnitude of the first term of the series which is omitted in the approximation.
o0
Example 9 Estimate the error in approximating the sum of the alternating harmonic series Z (—=1)"/n by
n=1
the sum of the first nine terms.
Solution The ninth partial sum is given by

11 1
So=1=F+g5 = +5=0745....

The first term omitted is —1/10, with magnitude 0.1. By Theorem 9.9, we know that the true value
of the sum differs from 0.7456 . .. by less than 0.1.

Absolute and Conditional Convergence

We say that the series Z a,, 18
o absolutely convergent if > a,, and > |a,,| both converge.
e conditionally convergent if a,, converges but » |a,| diverges.

Conditionally convergent series rely on cancelation between positive and negative terms for their
convergence.

o -1
. (-, .
Example: The series Z W is absolutely convergent because the series converges and
n=1
the p-series > 1/n? also converges.
& (_1)n—1
Example: The series Z ———— is conditionally convergent because the series converges but
n
n=1

the harmonic series Y 1/n diverges.
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Exercises and Problems for Section 9.4

Exercises
Use the comparison test to confirm the statements in Exer- = " = n
cises 13, 22. Z(—l) cos(nm) 23. Z(—l) cosn
n=1 n=1
1. i ! diverges, so Z ! diverges
< g - 3 ges.
n= n=
= 4 o 1 Use the alternating series test to show that the series in Exer-
2. Zl o converges, so Zl P converges. cises 24-27 converge.
=%} oo o0 _ e} 1
3. Z 3 converges, s Z en_2 converges. Z 2n 1
n=1 n=1 v=1 n=1
In Exercises 4-7, use end behavior to compare the series to a i (-t f: 1)" !
p-series and predict whether the series converges or diverges. — n2+on+1 —
= n®+1 > n+4
4'Zn4+2n3+2n S'Zn3—|—/5n—3
n=1 n=1 In Exercises 28-34, determine whether the series is absolutely
o 1 convergent, conditionally convergent, or divergent.
6- o a2 . =
;n4+3n3+7 Z\/n3+n2+ 28 Z(— 29. Z( 1)”
Use the comparison test to determine whether the series in n ( 1 ) (="
30. -1 14+ —= 31
Exercises 8-13 converge. Z( ) + Z nt+7

- o (1)t
Z 1 1 32. —_—
8. 2 37+ 1 9. nézl m Z nlnn
Zoo 1 - 2 33. (—1)" " arcsin (l)
10. Z m 11. nE=1 n4n_—|—]_ Z n

o Z (—=1)" ' arctan(1/n)

n2

» insinzn 1. Z 2"+1
’ n3 41 n2n — In Exercises 35—43, use the limit comparison test to determine
n=t whether the series converges or diverges.

Use the ratio test to decide if the series in Exercises 14—19 5n +
converge or diverge. 35. Z , by comparing to Z —
n=1
14 N L 15 -~ () 36 Z (1 - n) ! by comparing to i (1)n
) Z:l (2n)! ) z_; (2n)! ) — 3n ’ ot 3

[Hint: limy,—oc (1 + 1/n)" = e.]
37. Z (1 — cos l) by comparing to Y 1/n?

38. Zn41_7 39, Z:ztl?
40. Z% 41. Zgnil

= (2n)!
16. _
2; nl(n+1)!

= 1
82

Which of the the series in Exercises 20-23 are alternating?

1 ! .
aSr(l) aSew  Zwmam Xl



Problems
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Explain why the comparison test cannot be used to decide if
the series in Problems 44-45 converge or diverge.

44, i (—nlz)" 45, f:sinn
n=1 n=1

Explain why the ratio test cannot be used to decide if the series
in Problems 46-47 converge or diverge.

46. i(—l)" 47. isinn
n=1 n=1

Explain why the alternating series test cannot be used to de-
cide if the series in Problems 48—50 converge or diverge.

48. Z(—l)"_ln 49. z:(—l)"_1 sinn
n=1

n=1

50. i(—n”‘l (2 - %)

Use a computer or calculator to investigate the behavior of
the partial sums of the alternating series in Problems 51-53.
Which ones converge? Confirm convergence using the alter-
nating series test. If a series converges, estimate its sum.

51.1-243 4454+ (—1)"(n+1)+--

52. 1-0.1+0.01 —0.001 +--- 4 (=1)"107" + - --

sa1- L1 1

’IL]'
TR I e T

Determine which of the series in Problems 54-72 converge.

o0 n o0 n
54. Z 8—1 55. Z %

56. i (0;11!)71 57. i (”;21)'
n=0 n=1

58. ie_n 59. ien
n=0 n=1

i |
60. > (2n)! 61.

12
n=1 (n) n=1
> n +1 bn+ 2
2. E . _
6 1n3+6 63 12712+3n+7
n= n=

_1\yn—1
64. L

hgE
?A
L

> (_1)77,—1271
650 Z T
n=1

Q

3
Il

i

o} . et .
sinn sinn
66. > —s 67. ) —
n=1 n=1
— cos(n) 42
™ n
68. ) — 69. Y
n=1 n=2
70. 71. —_—
; Inn? ; /n2(n+ 2)
~~ n(n+1)
72. —_—
Z Vvn3 + 2n?

1

3
Il

For what values of a do the series in Problems 73-77 con-
verge?

> (2) 7.3 (2) s

n=1
o0 oo 1
75. Z (Ina)",a>0 76. Z ::J
n=1 n=1
o0
77. X; (—1)" arctan (%) ,a>0
n=

The series in Problems 78-80 converge by the alternating se-
ries test. Use Theorem 9.9 to find how many terms give a par-
tial sum, .S,,, within 0.01 of the sum, S, of the series.

w0y

n=1 n=1
%0 > (_1)n71
) Z; (2n)!

81. Suppose 0 < b, < 2" < apand0 < ¢, <27" < d,
for all n. Which of the series > an, > bn, > ¢n, and
> dy, definitely converge, which definitely diverge?

82. Given two convergent series > a, and Y by, we know
that the term-by-term sum Y _ (ay, + by, ) converges. What
about the series formed by taking the products of the
terms »  an, - by, ? This problem shows that it may or may
not converge.

(a) Show that if Y a, = > 1/n* and Y b, =
S°1/n% then Y an - by converges.

(b) Explain why Y (—1)"/y/n converges.

(¢) Show thatif a, = b, = (—=1)"/y/n, then y_ an by,
does not converge.
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83. Suppose that b, > 0 and > b, converges. Show that if ~Problems 88-89 introduce the root fest for convergence.
lim a,/bn, = 0 then Z an converges. Given a series E ay, of positive terms (that is, a, > 0) such

nee that the root {/a,, has a limit ,
84. Suppose that b, > 0 and ) by, diverges. Show that if atthe 100t /an has a imitras n = 00

lim an/b, = oo then Y a, diverges. e if r < 1, then Y an converges
n— o0

85. A series Y an of positive terms (that is, a,, > 0) can be e if 7> 1, then } a, diverges

used to form another series y | b, where each term by, is e if 7 = 1,then > a,, could converge or diverge.

the average of the first n terms of the original series, that . . .

is, by = (a1 +as + - -+ ay)/n. Show that 3 b,, does (Th1§ test works since hmn_,oo. {V@ = r.tells us that the se-
not converge (even if 3" a,, does). [Hint: Compare 3 by, ries is compar’able toa geor:netrlc series }Vlth ratio r.) Use this
to a multiple of the harmonic series.] test to determine the behavior of the series.

86. Show that if ) |a,| converges, then Y (—1)"a, con- - -
n n
verges. 88. > (3) 8. 3 (5" ’;1)
87. (a) For a series Y . an, show that 0 <an+|an| <2|an|. —n =\ 3n
(b) Use part (a) to show that if Z |an| converges, then
> an converges.

9.5 POWER SERIES AND INTERVAL OF CONVERGENCE

In Section 9.2 we saw that the geometric series » | az™ converges for —1 < x < 1 and diverges
otherwise. This section studies the convergence of more general series constructed from powers.
Chapter 10 shows how such power series are used to approximate functions such as e”, sin z, cos z,
and In z.

A power series about z = a is a sum of constants times powers of (z — a):

Co+Ci(z—a)+Cr(x—a)’+---+Cplz—a)" +--- = ZC’n(az—a)".
n=0

We think of @ as a constant. For any fixed x, the power series » . C,,(x — a)™ is a series of
numbers like those considered in Section 9.3. To investigate the convergence of a power series, we
consider the partial sums, which in this case are the polynomials S,,(z) = Co+C1(x—a)+Ca(z—
a)? + -+ + C,(z — a)™. As before, we consider the sequence’

So(x), Si(x), Sa(z), ... ,Su(x),....

For a fixed value of =z, if this sequence of partial sums converges to a limit L, that is, if
lim S, (z) = L, then we say that the power series converges to L for this value of .
n—o0

A power series may converge for some values of = and not for others.

Example 1 Determine whether the power series Z % converges or diverges for
n=0
(a) z=-1 b) z=3
Solution (a) Substituting x = —1, we have
oo " > (_1)n ) 1\ "

This is a geometric series with ratio —1/2, so the series converges to 1/(1 — (—3)) = 2/3.

7Here we have chosen to call the first term in the sequence Sp () rather than S () to correspond to the power of (z—a).
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(b) Substituting x = 3, we have
YE-rr-x(3)

This is a geometric series with ratio greater than 1, so it diverges.

Example 2 Find an expression for the general term of the series and use it to write the series using » | notation:
x=2)t (z-2°% (@-2)8 (x-2)19
@-2' @-2° (@=2° @-2°
4 9 16 25
Solution The series is about x = 2 and the odd terms are zero. We use (x — 2)2" and begin with n = 2. Since

the series alternates and is positive for n = 2, we multiply by (—1)™. For n = 2, we divide by 4, for
n = 3 we divide by 9, and in general, we divide by n2. One way to write this series is

— (—1)"(z —2)*
Z:z( )(n2 )"

Numerical and Graphical View of Convergence

Consider the series

(x-12  (@—1° (@—1) woy (= 1)

5 T 3 7 PR
To investigate the convergence of this series, we look at the sequence of partial sums graphed in
Figure 9.10. The graph suggests that the partial sums converge for « in the interval (0, 2). In Ex-
amples 4 and 6, we show that the series converges for 0 < z < 2. This is called the interval of
convergence of this series.

At x = 1.4, which is inside the interval, the series appears to converge quite rapidly:

(x—1) =

S5(1.4) = 0.33698...  Sy(1.4) = 0.33653. ..
Se(1.4) =0.33630...  Ss(1.4) = 0.33645. ..

Table 9.1 shows the results of using z = 1.9 and = = 2.3 in the power series. For z = 1.9,
which is inside the interval of convergence but close to an endpoint, the series converges, though
rather slowly. For z = 2.3, which is outside the interval of convergence, the series diverges: the
larger the value of n, the more wildly the series oscillates. In fact, the contribution of the twenty-
fifth term is about 28; the contribution of the hundredth term is about —2,500,000,000. Figure 9.10
shows the interval of convergence and the partial sums.

Interval Sha(x) Ss(z) Table 9.1 Partial sums for series in
— Example 4 with x = 1.9 inside interval

0
convergence i
of convergence and x = 2.3 outside

n Sn(1.9) n Sn(2.3)
/f‘\\@ 3 | & 2 | 0495 2 0.455
L Ly 3 5 | 0.69207 5 1.21589
i 8 | 0.61802 8 0.28817
! 11 | 065473 11 1.71710
I Sg(il’)
} 14 | 0.63440 14 | —0.70701
=2 S11(1’)

Figure 9.10: Partial sums for series in
Example 4 converge for 0 < z < 2
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Notice that the interval of convergence, 0 < x < 2, is centered on = = 1. Since the interval

extends one unit on either side, we say the radius of convergence of this series is 1.

Intervals of Convergence

Each power series falls into one of the three following cases, characterized by its radius of conver-

gence, R.

o The series converges only for = a; the radius of convergence is defined to be R = 0.

e The series converges for all values of x; the radius of convergence is defined to be
R = o0.

e There is a positive number R, called the radius of convergence, such that the series
converges for |z — a| < R and diverges for |z — a| > R. See Figure 9.11.

e The interval of convergence is the interval between a — R and a + R, including any
endpoint where the series converges.

. o—R—H .
Series Series
diverges t«—————Interval of convergence ———» diverges
i i 1 T
a— R a a+ R

Figure 9.11: Radius of convergence, R, determines an interval, centered at z = a, in
which the series converges

There are some series whose radius of convergence we already know. For example, the geo-

metric series
T Y

converges for || < 1 and diverges for |z| > 1, so its radius of convergence is 1. Similarly, the

series
1+x+(x)2+ +(x)n+
3 3 3

converges for |z/3| < 1 and diverges for |x/3| > 1, so its radius of convergence is 3.
The next theorem gives a method of computing the radius of convergence for many series. To
(o]

find the values of = for which the power series Z Cp(z — a)™ converges, we use the ratio test.
n=0

Writing a,, = Cy,(z — a)™ and assuming C,, # 0 and = # a, we have

|ant1] . |Chsallz — 4

. T |Cn+1(x—a)"+1| - - . |Cny1]
P R S ey IS To N A LS T

Case 1. Suppose lim |a,+1|/|ax]| is infinite. Then the ratio test shows that the power series con-
verges only for « ":_;;.O The radius of convergence is R = 0.
Case 2. Suppose lim |an+1|/|an| = 0. Then the ratio test shows that the power series converges
for all z. The radiﬁs_)g;? convergence is R = oo.
Case 3. Suppose nh_}n:;o lant1l/|an] = K|z — a|, where nh—{%o |Crt1]/|Cr| = K. In Case 1, K

does not exist; in Case 2, K = 0. Thus, we can assume A exists and K # 0, and we can define

R =1/K. Then we have
- langa| |z —a
1 —_— K —_ = —,
b0 |an)| o —al="—5
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so the ratio test tells us that the power series:
|z —al
R

|z — al

e Converges for < 1; thatis, for |z —a| < R

e Diverges for

> 1; that is, for |z — a| > R.
The results are summarized in the following theorem.

Theorem 9.10: Method for Computing Radius of Convergence
To calculate the radius of convergence, R, for the power series Z Cp(z — a)", use the ratio
n=0
test with a,, = Cy(x — a)™.
o If lim |ap41|/|an| is infinite, then R = 0.

o If lim |a,41]/|an] =0, then R = co.

o If lim |an+1]|/|an| = K|x — a|, where K is finite and nonzero, then R = 1/ K.
n—00

Note that the ratio test does not tell us anything if lim,, oo |@;,41]|/|ay | fails to exist, which can
occur, for example, if some of the C,s are zero.

A proof that a power series has a radius of convergence and of Theorem 9.10 is given in the
online theory supplement. To understand these facts informally, we can think of a power series as
being like a geometric series whose coefficients vary from term to term. The radius of convergence
depends on the behavior of the coefficients: if there are constants C' and K such that for larger and
larger n,

|Cl = CK™,

then it is plausible that Y C,z™ and Y CK"z™ = > C'(Kx)™ converge or diverge together. The
geometric series Y, C'(Kx)" converges for | Kz| < 1, that is, for |z| < 1/K. We can find K using
the ratio test, because

|anta] _ |Crpall(@ —a)" | ~ CK™(z —a)"*!| = Kz — qf
|an| |Cnl[(z —a)"| CK"™|(z —a)|
Example 3 Show that the following power series converges for all x:
2 1’ "
+2L“+2!+3!+ +n!+
Solution Because C,, = 1/n!, none of the C,,s are zero and we can use the ratio test:
C 1 1)! ! 1
lim [n i1 = |z| lim O] = |z| lim Yn+ ! = |z| lim ——— = |z| lim =0
n—oo |an| n—oo |Cn| n— 00 1/71! n—oo (n —+ 1)’ n—oo N + 1

This gives R = 0o, so the series converges for all z. We see in Chapter 10 that it converges to e”.

Example 4 Determine the radius of convergence of the series

2 x—1)3 z—1)* x—1)"
(SL‘—].)—(:E;]-) _|_( 31) _( 41) ++(_1)n—1%+

What does this tell us about the interval of convergence of this series?
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Solution The general term of the series is (x — 1)"/n if n is odd and —(z — 1)™/n if n is even, so C,, =
(—1)"~1/n, and we can use the ratio test. We have

lim —|a"+1| =
n—o00 |an|

| (1)
—1| tim Sz gy gy A2 AT
L e = P e

Thus, K = 1 in Theorem 9.10, so the radius of convergence is R = 1. The power series converges
for |z — 1| < 1 and diverges for |z — 1| > 1, so the series converges for 0 < z < 2. Notice that the
radius of convergence does not tell us what happens at the endpoints, z = 0 and x = 2. We see in
Chapter 10 that the series converges to Inx for 0 < z < 2.

C
[Cnia = Jo—1| lim —— = [z—1].
n n—oon + 1

The ratio test requires lim |a,,11|/|a,| to exist for a,, = C,,(z — a)™. What happens if some
n—oo

of the coefficients C,, are zero? Then we use the fact that an infinite series can be written in several
ways and pick one in which the terms are nonzero. For example, we think of the power series

2 T _ Tl
S T T B I E
S T T TN S A G gy
as the series with a; = z and ag = —23/3!,..., 50 a, = (—1)""1z2"~1/(2n — 1)!. With this

choice of ay,, all a,, # 0, so we can use the ratio test.®

Example 5 Find the radius and interval of convergence of the series

3 5 7 2n—1

T T T nel T
T a(—1 ...
S T E R S A P T
Solution We take
1 xQn—l
= —]_ _—
o= U G

so that, replacing n by n + 1, we have

e 22(n+1)—1 L g2ntl
pt1 = (—1)( -2 o (-1)" —.
2(n+1)—1)! (2n+ 1)!
Thus,
n p2ntl
lani1| ’(—1) Gormi| | (D2t -0 || (=12 | a?
lan] ’(_1)"—1 (52"—11)’ (—=Dr=1g2n=1(2n + 1)!|  |(2n+1)2n| (2n+1)2n
Because

. |an+1| . .'172
1 = lim ————— =0,
w00 Jan| | mebo (2n+ 1) 2n

we have lim,, . |@n+41|/|an| = 0 < 1forall z. Thus, the ratio test guarantees that the power series
converges for every x. The radius of convergence is infinite and the interval of convergence is all x.
We see in Chapter 10 that the series converges to sin x.

8We do not take a1 = =, a3 = 0,a3 = —z°/3!,a4 = 0, ... because then lim |an41|/|axn | does not exist.
n—oo



9.5 POWER SERIES AND INTERVAL OF CONVERGENCE 495

What Happens at the Endpoints of the Interval of Convergence?

The ratio test does not tell us whether a power series converges at the endpoints of its interval of
convergence, ¢ = a = R. There is no simple theorem that answers this question. Since substituting
r = a £ R converts the power series to a series of numbers, the tests in Sections 9.3 and 9.4 are
often useful. See Examples 6 and 7.

Example 6

Solution

Determine the interval of convergence of the series

c—12 (z-17 (z-1)* r—1)"

In Example 4 on page 493, we showed that this series has R = 1; it converges for 0 < z < 2 and
diverges for v < 0 or > 2. We need to determine whether it converges at the endpoints of the
interval of convergence, z = 0 and x = 2. At x = 2, we have the series

_1n—1
g ST L

1 1
4 n

1
1 -4 =
2+3

This is an alternating series with a,, = 1/(n + 1), so by the alternating series test (Theorem 9.8), it
converges. At x = 0, we have the series

This is the negative of the harmonic series, so it diverges. Therefore, the interval of convergence is
0 < x < 2. The right endpoint is included and the left endpoint is not.

Example 7

Solution

Find the radius and interval of convergence of the series

142222 4 2% 42020 ... 222

If we take a,, = 2"2" for n even and a,, = 0 for n odd, lim |a,+1|/|an| does not exist. Therefore,
n—oo
for this series we take
a, = 22n$2n,

so that, replacing n by n + 1, we have

_ 22(n+1)x2(n+1) _ 22n+2x2n+2.

an+1
Thus,
lang1| |22n+21'2n+2| _ ’22x2| — 42
|an| - |22nx2n| - - )
We have

lim —|a"+1| = 42,

n— o0 |an| o
The ratio test guarantees that the power series converges if 4z% < 1, that is, if |x| < % The radius
of convergence is % The series converges for —% <z < % and diverges for z < % orzr > —%. At
T = j:%, all the terms in the series are 1, so the series diverges (by Theorem 9.2 Property 3). Thus,
the interval of convergence is —% <z < %
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Exercises and Problems for Section 9.5

Exercises

Which of the series in Exercises 1-4 are power series?

3,6 10, 15
lL.e—a+2" —2x +x° —---

Ly Lyl Ly
r x? a3 ozt

N

L4+ @—12+@-2°%+(x—-3)"+---

4. 2" +2+2
In Exercises 5-10, find an expression for the general term of

the series. Give the starting value of the index (n or k for ex-
ample).

1 1-3 o 1‘35

S 3t T E g T
-1 1 2
6. m+p(p )$2+p(1) P=2) 5
21 3!
(z-1?% (-1 (z-1)°
L R TR
s (@-1° (@-1)7 (2-1)°
8. (v —1)" — 5 + T +
_ _ 2 _ 3 _ 4
g, =0 (z—a) (z—a) (z —a) .
1 2.2l 4.3l 8- 4l
7 9
10. 2(;B+5)3+3(w+5)5+4(x;5) +5(x;’,5) N

Problems

Use the ratio test to find the radius of convergence of the
power series in Exercises 11-21.

1. ) (52)"
n=0
(n+1)a™
13.
2) 2" 4+ n

— (z—3)"
15. Z:l —

12. i n’z
n=0

= x
16. Z:l @]

18. 142z +4;2+ii!3+%+3§’_f5+...
e B
20. 3x+gx2+;x +Zx4+5 4o
21.x—§+x—;—m—77+...

22. (a) Determine the radius of convergence of the series

A A AU
2 4

-1 "—1£
3 + (-1 n+

What does this tell us about the interval of conver-
gence of this series?

(b) Investigate convergence at the end points of the in-
terval of convergence of this series.

> 22\
23. Show that the seriesz (22) converges for |z| < 1/2.
n

n=1
Investigate whether the series converges for x = 1/2 and
x=-1/2.

In Problems 24-29, find the interval of convergence.

24. ig—: 25. Z

n=0
26. Z - 27. Z( 1)252;5)"
29, in!m”

n=0

3)"

9For an explanation of the name, see Section 10.2.

In Problems 30-33, use the formula for the sum of a geomet-
ric series to find a power series centered at the origin that con-
verges to the expression. For what values does the series con-
verge?

1 2
R 1.
30 1422 3 14 y?
3 8
2, — . —
3 1—2/2 3 44y

34. For constant p, find the radius of convergence of the bi-
nomial power series:’

plp—Da®  plp—1)(p—2)z°
21 31

1+ pr+

35. Show that if Cy + Cyx + Caa? + Caa® + - - - converges
for |x| < R with R given by the ratio test, then so does
C1 +2Cox + 3C32% + - - -,

36. The series Y C, ™ converges at x = —5 and diverges
at x = 7. What can you say about its radius of conver-
gence?



37. The series Y Crn (2 + 7)" converges at z = 0 and di-
verges at x = —17. What can you say about its radius of
convergence?

38. Suppose that the power series » . Cr,z™ converges when
x = —4 and diverges when x = 7. Which of the follow-
ing are true, false or not possible to determine?

(a) The power series converges when x = 10.
(b) The power series converges when x = 3.
(¢) The power series diverges when = 1.
(d) The power series diverges when x = 6.

39. If Y Cu(z — 3)™ converges at z = 7 and diverges at
x = 10, what can you say about the convergence at
r =117 Atx = 5? Atx = 0?

40. Bessel functions are important in such diverse areas as
describing planetary motion and the shape of a vibrating
drumhead. The Bessel function of order 0 is defined by

oo b
(_1)77, mZn
J(z) = Z) CEIEnER

(a) Find the domain of J(z) by finding the interval of

convergence for this power series.
(b) Find J(0).
(¢) Find the partial sum polynomials So, S1, S2, S3, Sa.
(d) Estimate .J(1) to three decimal places.
(e) Use your answer to part (d) to estimate .J(—1).

41. For all z-values for which it converges, the function f is
defined by the series

oo n

fla) =3 =

n=0
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(a) Whatis f£(0)?

(b) What is the domain of f?

(c) Assuming that f’ can be calculated by differentiat-
ing the series term-by-term, find the series for f’(x).
What do you notice?

(d) Guess what well-known function f is.

42. From Example 5 on page 494, we know the following
series converges for all . We define g(x) to be its sum:

> 2n—1

g(z) = Z(—l)“‘l—(;; —r

n=1

(a) Is g(x) odd, even, or neither? What is ¢(0)?

(b) Assuming that derivatives can be computed term-by-
term, show that ¢” (z) = —g(z).

(¢) Guess what well-known function g might be. Check
your guess using g(0) and g’(0).

43. The functions p(z) and ¢(x) are defined by the series

> 2

p@) =D (D G 6@ = )" ey

n=0 n=1

Assuming that these series converge for all  and that
multiplication can be done term-by-term:

(a) Find the series for (p(z))? + (q(x))? up to the term
inz”.
(b) Guess what well-known functions p and g could be.

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

e Sequences
Recursive definition, monotone, bounded, convergence.

o Geometric series
Finite sum, infinite sum.

e Harmonic series

e Alternating series

e Tests for convergence of series
Integral test, p-series, comparison test, limit comparison
test, ratio test, alternating series test.
Absolute and conditional convergence.

e Power series

Ratio test for radius of convergence, interval of conver-
gence.

REVIEW EXERCISES AND PROBLEMS FOR CHAPTER NINE

Exercises

1. Find the sum of the series b° + b% + b7 + b% + b + b0,
2. Find the sum of the series (0.5)% 4 (0.5)*+- - -+(0.5)".

3"+5
4n

o0
3. Find the sum: Z

n=0

Do the sequences in Exercises 4-7 converge or diverge? If a
sequence converges, find its limit.

3+ 4n n(n+1)
. 5 (-1)"—=
5+ Tn (=1) n
. s 1
6. sin (—n) 7. —+Inn
4 n
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Use the integral test to decide whether the series in Exer-
cises 8—11 converge or diverge.

= 3n?2+2n

1

10. inein 11. i n22_ T
n=0 n=2

Use the ratio test to decide if the series in Exercises 12-15
converge or diverge.

n = 1
12. Z% 13. ZW
n=1 n=1
o (n—1)! nl(n +1)! +1>'
n — ! n.(n
Uy 15. Z
n=1

Use the alternating series test to decide which of the series in
Exercises 16—17 converge.

In Exercises 18-21 determine whether the series are abso-
lutely convergent, conditionally convergent, or divergent.

1)7L

18. Z —7
20. Z )" Ynn

n Y =t
’ arctann

Use the comparison test to confirm the statements in Exer-
cises 22-23.

o0 o n
1\" n?
22. E ( 3 ) converges, SO E (m) converges.
n=1

n=1
oo oo
1 . 1 .
23. E — diverges, so E —— diverges.
n nsin“n
n=1 n=

In Exercises 24-27 use the limit comparison test to determine
whether the series converges or diverges.

4.y vn—1

n2+3

26. Z sin %

25, Zn —2n +n+1

1
27- Zﬁ

Determine which of the series in Exercises 28-47 converge.

2 =y
30.22=3 — 31‘2\/;“
oo n2 o ’I’L2
32'Zn2+1 33.2_:71”1

=\ 3" = (2n)!
Y ool 35. Z eIE
n=1
- n? 2" = (n+1)
6.y — = 37.) 27"
Z; n22n 2—21 (n+2)
38. i(—nni 3. i(—n”"“
— @n+1)! — vn
243" - 1
40. 41.
0 ‘ Hn — 2+ sinn
—~ (2n — 5)3 vt n3—3
= sin(nw/2) - 1
TP 45. 3 I (HE)
n=1 k=1
> n = 1
46. 22— 47. Z; e

In Exercises 48-53, find the radius of convergence.

- n - (271)'1‘”
8. ) na 49. ) g
n=1

n=0
0 o
n 2\, n T
50. Y (@ +n’) 51L0) i
n=0 n=0

52. x + 422 + 92° 4 162* + 252° + -
x 222 3% 4zt 5ax®

53.§+?+T+T+ + -

In Exercises 54-57, find the interval of convergence.
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58. For > 0, how does the convergence of the following
series depend on 77
o
S
nrrm

n=

59. Suppose that Z Crn(z —2)" converges when x = 4

n=0
and diverges when x = 6. Which of the following are
true, false or not possible to determine? Give reasons for
your answers.

(a) The power series converges when x = 7.
(b) The power series diverges when x = 1.

(¢) The power series converges when « = 0.5.
(d) The power series diverges when x = 5.

(e) The power series converges when x = —3.

60. For all the ¢-values for which it converges, the function i
is defined by the series

oo
2
t2n

h(t) = -1" .
(1) 2( o]
(a) What is the domain of h?
(b) Is h odd, even, or neither?
(c) Assuming that derivatives can be computed term-by-
term, show that

R (t) = —h(t).

61. Peter wishes to create a retirement fund from which he
can draw $20,000 when he retires and the same amount
at each anniversary of his retirement for 10 years. He
plans to retire 20 years from now. What investment need
he make today if he can get a return of 5% per year, com-
pounded annually?

62. The extraction rate of a mineral is currently 12 million
tons a year, but this rate is expected to fall by 5% each
year. What minimum level of world reserves would al-
low extraction to continue indefinitely?

63. A new car costs $30,000; it loses 10% of its value each
year. Maintenance is $500 the first year and increases by
20% annually.

(a) Find a formula for [,,, the value lost by the car in
year n.

(b) Find a formula for m,,, the maintenance expenses in
year n.

(¢) In what year do maintenance expenses first exceed
the value lost by the car?

Problems 64—67 are about bonds, which are issued by a gov-
ernment to raise money. An individual who buys a $1000 bond
gives the government $1000 and in return receives a fixed sum
of money, called the coupon, every six months or every year
for the life of the bond. At the time of the last coupon, the
individual also gets the $1000, or principal back.

64.

65.

66.

67.

68.

What is the present value of a $1000 bond which pays
$50 a year for 10 years, starting one year from now? As-
sume the interest rate is 6% per year, compounded annu-
ally.

What is the present value of a $1000 bond which pays
$50 a year for 10 years, starting one year from now? As-
sume the interest rate is 4% per year, compounded annu-
ally.

(a) What is the present value of a $1000 bond which
pays $50 a year for 10 years, starting one year from
now? Assume the interest rate is 5% per year, com-
pounded annually.

(b) Since $50 is 5% of $1000, this bond is often called a
5% bond. What does your answer to part (a) tell you
about the relationship between the principal and the
present value of this bond when the interest rate is
5%?

(c) If the interest rate is more than 5% per year, com-
pounded annually, which is larger: the principal or
the present value of the bond? Why do you think the
bond is then described as trading at a discount?

(d) If the interest rate is less than 5% per year, com-
pounded annually, why is the bond described as
trading at a premium?

In the nineteenth century, the railroads issued 100-year
bonds. Consider a $100 bond which paid $5 a year, start-
ing a year after it was sold. Assume interest rates are 4%
per year, compounded annually.

(a) What was such a bond worth on the day it was sold?

(b) Suppose that instead of maturing in 100 years, the
bond was to have paid $5 a year forever. This time
the principal, $100, is never repaid. How much
would such a bond be worth on the day of its sale?

Cephalexin is an antibiotic with a half-life in the body of
0.9 hours, taken in tablets of 250 mg every six hours.

(a) What percentage of the cephalexin in the body at the
start of a six-hour period is still there at the end (as-
suming no tablets are taken during that time)?

(b) Write an expression for 1, Q2, Q3, Q4, where @,
mg, is the amount of cephalexin in the body right
after the n'" tablet is taken.

(¢) Express (Y3, Q4 in closed-form and evaluate them.

(d) Write an expression for @),, and put it in closed-
form.

(e) If the patient keeps taking the tablets, use your an-
swer to part (d) to find the quantity of cephalexin in
the body in the long run, right after taking a pill.
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69. Before World War I, the British government issued what
are called consols, which pay the owner or his heirs a
fixed amount of money every year forever. (Cartoonists
of the time described aristocrats living off such payments
as “pickled in consols.”) What should a person expect to
pay for consols which pay £10 a year forever? Assume
the first payment is one year from the date of purchase
and that interest remains 4% per year, compounded an-
nually. (£ denotes pounds, the British unit of currency.)

70. This problem illustrates how banks create credit and can
thereby lend out more money than has been deposited.
Suppose that initially $100 is deposited in a bank. Expe-
rience has shown bankers that on average only 8% of the
money deposited is withdrawn by the owner at any time.
Consequently, bankers feel free to lend out 92% of their
deposits. Thus $92 of the original $100 is loaned out to
other customers (to start a business, for example). This
$92 will become someone else’s income and, sooner or
later, will be redeposited in the bank. Then 92% of $92,
or $92(0.92) = $84.64, is loaned out again and eventu-
ally redeposited. Of the $84.64, the bank again loans out
92%, and so on.

(a) Find the total amount of money deposited in the
bank as a result of these transactions.

(b) The total amount of money deposited divided by the
original deposit is called the credit multiplier. Calcu-
late the credit multiplier for this example and explain
what this number tells us.

71. Baby formula can contain bacteria which double in num-
ber every half hour at room temperature and every 10
hours in the refrigerator.'” Suppose there are By bacteria
initially.

(a) Write a formula for

(i) R,, the number of bacteria n hours later if the
baby formula is kept at room temperature.

(ii) F,, the number of bacteria n hours later if the
baby formula is kept in the refrigerator.

(ii1) Y, the ratio of the number of bacteria at room
temperature to the number of bacteria in the re-
frigerator.

(b) How many hours does it take before there are a mil-
lion times as many bacteria in baby formula kept at
room temperature as in baby formula kept in the re-
frigerator?

_1\n—1
72. Estlmatez ((2 )_ 01

of the serles

to within 0.01 of the actual sum

73. Is it possible to construct a convergent alternating se-
oo
ries Z(—l)"_lan for which 0 < an41 < an but

n=1
lim a, # 0?
74. Suppose that 0 < b, < 2" for all n. Give two exam-
ples of series Y by, that satisfy this condition, one that

diverges and one that converges.

75. Show that if 3 a, converges and ) by diverges, then
> (an + by) diverges. [Hint: Assume that Y (an + bn)
converges and consider Y (an + bn) — > an.]

Suppose that ) _ a,, converges with a, > 0 for all n. Decide
if the series in Problems 76-80 converge, diverge or if there is
not enough information provided.

76. > an/n 77. > 1/an 78. > nan

79. > (an + an/2) 80. > a2

o
1 1
81. D g (— —) di ? D
oes G + 5 ) converge or diverge oes
—/1 1 ,
g (E - ;) converge or diverge? Is the statement

n=1
“If > an and Y by, diverge, then » (an + b,) may or
may not diverge” true?

82. Estimate the sum of the first 100,000 terms of the har-

monic series,
100000

> ¢

to the closest integer. [Hint: Use left- and right-hand
sums of the function f(x) = 1/x on the interval from
1 to 100,000 with Az = 1.]

83. Although the harmonic series does not converge, the par-
tial sums grow very, very slowly. Take a right-hand sum
approximating the integral of f(z) = 1/x on the interval
[1,n], with Az = 1, to show that

111
R R aEE

+1<lnn
2 3 4 n '

If a computer could add a million terms of the harmonic
series each second, estimate the sum after one year.

84. Is the following argument true or false? Give reasons for
your answer.

- 1
Consider the infinite series g —— . Since
—1
n=2 n(n )

1 1 1 . . .
———— = —— — — we can write this series as
nin—1) n—-1 n

=1 1
P D
n=2 n=2

For the first series a, = 1/(n — 1). Sincen —1 < n
we have 1/(n — 1) > 1/n and so this series diverges by
o0

. . . . . 1
comparison with the divergent harmonic series g —.
n

n=2
The second series is the divergent harmonic series. Since

both series diverge, their difference also diverges.

107verson, C. and Forsythe, F., reported in “Baby Food Could Trigger Meningitis,” www.newscientist.com, June 3, 2004.



CHECK YOUR UNDERSTANDING

Decide if the statements in Problems 1-45 are true or false.
Give an explanation for your answer.

1.

»

10

h

11.

12

.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22,

You can tell if a sequence converges by looking at the
first 1000 terms.

If the terms s, of a convergent sequence are all positive
then lim s, is positive.

n—0o0
If the sequence s,, of positive terms is unbounded, then
the sequence has a term greater than a million.
If the sequence s,, of positive terms is unbounded, then
the sequence has an infinite number of terms greater than
a million.

If a sequence s, is convergent, then the terms s,, tend to
zero as n increases.

If a series converges, then the sequence of partial sums
of the series also converges.

A monotone sequence can not have both positive and
negative terms.

. If a monotone sequence of positive terms does not con-

verge, then it has a term greater than a million.
If the terms s,, of a sequence alternate in sign, then the
sequence converges.

If all terms s,, of a sequence are less than a million, then
the sequence is bounded.

oo
Z(x —n)™ is a power series.
n=1
If the power series Z Cpa™ converges for z = 2, then
it converges for x = 1.

If the power series E Cra™ converges for z = 1, then
the power series converges for x = 2.

If the power series Z Crz" does not converge for z =

1, then the power series does not converge for v = 2.

If0 < an, < b, and Y a, converges, then Y b, con-
verges.

If 0 < an < by and Y a, diverges, then Y b, di-
verges.
If by < @, < 0and Y b, converges, then » @, con-
verges.

If Y a, converges, then » _ |an| converges.
If Y |an + bn| converges, then > |a,| and > |by, | con-
verge.
If Y a, converges, then lim |ani1|/|an| # 1.
oo

Z(—l)" cos(mn) is an alternating series.

n=0

Z(l + (—=1)™) is a series of nonnegative terms.

n=1

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.
37.

38.

39.

40.
41.

42,

43.

44.

45.
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[e o)

. The series Z(—l)"Z" converges.

n=0

oo
The series Z 2(=b" converges.
n=1
If > an converges, then > (—1)"a, converges.
If an alternating series converges by the alternating series
test, then the error in using the first n terms of the series

to approximate the entire series is less in magnitude than
the first term omitted.

If an alternating series converges, then the error in using
the first n terms of the series to approximate the entire
series is less in magnitude than the first term omitted.

If Y |an| converges, then > (—1)"|a, | converges.

To find the sum of the alternating harmonic series
S2(=1)"*"'/n to within 0.01 of the true value, we can
sum the first 100 terms.

S Cp(z — 1)" and > C,z™ have the same radius of
convergence.

If >~ Cna™ and Y Bna™ have the same radius of con-
vergence, then the coefficients, C',, and B,, must be
equal.

If a series Yy a, converges, then the terms, a,, tend to
zero as n increases.

If the terms, a,,, of a series tend to zero as n increases,
then the series | a,, converges.

If Y a, does not converge and > by, does not converge,
then E an by does not converge.

If > anby, converges, then » | an and Y, by converge.
If 5~ an is absolutely convergent, then it is convergent.

If ¥ a,, is conditionally convergent, then it is absolutely
convergent.

If a power series converges at one endpoint of its interval
of convergence, then it converges at the other.

If a, > 0.5b, > 0 for all n and b, diverges, then
> an diverges.

A power series always converges at at least one point.

If the power series y , Cz™ converges at z = 10, then
it converges at x = —9.
If the power series . C,x™ converges at = 10, then

it converges at z = —10.

—5 < x < Tis a possible interval of convergence of a
power series.

—3 < x < 2 could be the interval of convergence of
S Cna™.

If =11 < x < 1 is the interval of convergence of
> Cn(z —a)", thena = —5.
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PROJECTS FOR CHAPTER NINE

1. A Definition of e .
1
We show that the sequence s, = <1 + —) converges; its limit can be used to define e.
n

(a) For afixed integer n > 0, let f(x) = (n+1)z" —nz™ . For x > 1, show [ is decreasing
and that f(z) < 1. Hence, for z > 1,

z"(n+1—nz) <1

(b) Substitute the following 2-value into the inequality from part (a)

_ 1+1/n
S 14+1/(n+1)

n <n + 1>
€@ < 1.
n+2
(¢) Use the inequality from part (b) to show that s,, < s,+1 for all n > 0. Conclude the

sequence is increasing.
(d) Substitute z = 1 + 1/2n into the inequality from part (a) to show that

1 n
1+ — 2.
(1+3:) <

(e) Use the inequality from part (d) to show s, < 4. Conclude the sequence is bounded.
(f) Use parts (c) and (e) to show that the sequence has a limit.

T

and show that

2. Probability of Winning in Sports
In certain sports, winning a game requires a lead of two points. That is, if the score is tied
you have to score two points in a row to win.

(a) For some sports (e.g. tennis), a point is scored every play. Suppose your probability of
scoring the next point is always p. Then, your opponent’s probability of scoring the next
point is always 1 — p.

(i) What is the probability that you win the next two points?
(ii) What is the probability that you and your opponent split the next two points, that is,
that neither of you wins both points?
(iii)) What is the probability that you split the next two points but you win the two after
that?
(iv) What is the probability that you either win the next two points or split the next two and
then win the next two after that?
(v) Give a formula for your probability w of winning a tied game.
(vi) Compute your probability of winning a tied game when p = 0.5; when p = 0.6; when
p = 0.7; when p = 0.4. Comment on your answers.

(b) In other sports (e.g. volleyball), you can score a point only if it is your turn, with turns
alternating until a point is scored. Suppose your probability of scoring a point when it is
your turn is p, and your opponent’s probability of scoring a point when it is her turn is g.

(i) Find a formula for the probability S that you are the first to score the next point,
assuming it is currently your turn.

(i) Suppose that if you score a point, the next turn is yours. Using your answers to part (a)
and your formula for S, compute the probability of winning a tied game (if you need
two points in a row to win).

e Assume p = 0.5 and ¢ = 0.5 and it is your turn.
e Assume p = 0.6 and ¢ = 0.5 and it is your turn.
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3. Prednisone
Prednisone is often prescribed for acute asthma attacks. For 5 mg tablets, typical instructions
are: “Take 8 tablets the first day, 7 the second, and decrease by one tablet each day until all
tablets are gone.” Prednisone decays exponentially in the body, and 24 hours after taking k£ mg,
there are kx mg in the body.

(a) Write formulas involving « for the amount of prednisone in the body
(1) 24 hours after taking the first dose (of 8 tablets), right before taking the second dose
(of 7 tablets).
(i) Immediately after taking the second dose (of 7 tablets).
(i) Immediately after taking the third dose (of 6 tablets).
(iv) Immediately after taking the eighth dose (of 1 tablet).
(v) 24 hours after taking the eighth dose.
(vi) n days after taking the eighth dose.

(b) Find a closed form for the sum 7' = 827 4 725 + 62° + - - - 4+ 2z + 1, which is the number
of prednisone tablets in the body immediately after taking the eighth dose.

(c) If a patient takes all the prednisone tablets as prescribed, how many days after taking the
eighth dose is there less than 3% of a prednisone tablet in the patient’s body? The half-life
of prednisone is about 24 hours.

(d) A patient is prescribed n tablets of prednisone the first day, n — 1 the second, and one tablet
fewer each day until all tablets are gone. Write a formula that represents 7;,, the number of

prednisone tablets in the body immediately after taking all tablets. Find a closed form sum
for T,,.






