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6.1 ANTIDERIVATIVES GRAPHICALLY AND NUMERICALLY

The Family of Antiderivatives

If the derivative of F is f, we call F an antiderivative of f.For example, since the derivative of >
is 2x, we say that
x? is an antiderivative of 2z.

Notice that 22 has many antiderivatives, since 2 + 1, 2 + 2, and 2% + 3, all have derivative 2. In
fact, if C'is any constant, we have

i(3324—0) =2z+0=2z

dx N -

so any function of the form =2 + C'is an antiderivative of 2z. The function f(z) = 2z has a family
of antiderivatives.

Let us look at another example. If v is the velocity of a car and s is its position, then v = ds/dt
and s is an antiderivative of v. As before, s+ C' is an antiderivative of v for any constant C'. In terms
of the car, adding C to s is equivalent to adding C' to the odometer reading. Adding a constant to
the odometer reading simply means measuring distance from a different point, which does not alter
the car’s velocity.

Visualizing Antiderivatives Using Slopes

Suppose we have the graph of f’, and we want to sketch an approximate graph of f. We are looking
for the graph of f whose slope at any point is equal to the value of f’ there. Where f is above
the z-axis, f is increasing; where f’ is below the x-axis, f is decreasing. If f’ is increasing, f is
concave up; if f is decreasing, f is concave down.

Example 1 The graph of f’ is given in Figure 6.1. Sketch a graph of f in the cases when f(0) = 0 and f(0) = 1.
f(x)
1 4 I
/(@) 5
3 @
2
0 x f(0)=1
1 2 3 4\5 F(0)=0 .
12345
Figure 6.1: Graph of f/ Figure 6.2: Two diffe.rent. f’s Yvhich
have the same derivative f
Solution For 0 < x < 2, the function f has a constant slope of 1, so the graph of f is a straight line. For
2 < x < 4, the function f is increasing but more and more slowly; it has a maximum at x = 4 and
decreases thereafter. (See Figure 6.2.) The solutions with f(0) = 0 and f(0) = 1 start at different
points on the vertical axis but have the same shape.
Example 2 Sketch a graph of the antiderivative F' of f(z) = e’ satisfying F'(0) = 0.
Solution The graph of f(x) = e~ is shown in Figure 6.3. The slope of the antiderivative F'(z) is given

by f(x). Since f(x) is always positive, the antiderivative F'(z) is always increasing. Since f(z) is
increasing for negative x, we know that F'(x) is concave up for negative z. Since f(z) is decreasing
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-2 b2 Figure 6.4: An antiderivative F'(z) of

fa)y=e

for positive x, we know that F'(z) is concave down for positive z. Since f(z) — 0 as z — +o0,
the graph of F'(z) levels off at both ends. See Figure 6.4.

Figure 6.3: Graph of f(z) = "

Example 3

Solution

For the function f’ given in Figure 6.5, sketch a graph of three antiderivative functions f, one with
f(0) = 0, one with f(0) = 1, and one with f(0) = 2.

2+ 3k

/(@) _ /@
L T fo =1 e
f0)=0 1 x
1 2 3 4
—92 1k

Figure 6.5: Slope function, f’ Figure 6.6: Antiderivatives f

To graph f, start at the point on the vertical axis specified by the initial condition and move with
slope given by the value of f” in Figure 6.5. Different initial conditions lead to different graphs for
f, but for a given z-value they all have the same slope (because the value of f’ is the same for each).
Thus, the different f curves are obtained from one another by a vertical shift. See Figure 6.6.

e Where f’ is positive (1 < 2 < 3), we see f is increasing; where f’ is negative (0 < 2 < 1 or
3 < x < 4), wesee f is decreasing.

e Where f’ is increasing (0 < z < 2), we see f is concave up; where f’ is decreasing (2 < = <
4), we see f is concave down.

e Where f’ = 0, we see [ has a local maximum at z = 3 and a local minimum at z = 1.

e Where f’ has a maximum (x = 2), we see f has a point of inflection.

Computing Values of an Antiderivative Using the Fundamental Theorem

A graph of [’ shows where f is increasing and where [ is decreasing. We can calculate the actual
value of the function f by using the Fundamental Theorem of Calculus (Theorem 5.1 on page 272):
If f/ is continuous, then

b
| #@ds = 1) - sa)

Example 4

Figure 6.7 is the graph of the derivative f’(z) of a function f(z). Itis given that f(0) = 100. Sketch
the graph of f(x), showing all critical points and inflection points of f and giving their coordinates.

20+

ol 1)

- T

10 20\ /30
+-10

Figure 6.7: Graph of derivative



302 Chapter Six CONSTRUCTING ANTIDERIVATIVES

Solution The critical points of f occur at v = 0, 2z = 20, and 2z = 30, where f’(2:) = 0. The inflection points
of f occurat z = 10 and = = 25, where f’(x) has a maximum or minimum. To find the coordinates
of the critical points and inflection points of f, we evaluate f(xz) for z = 0, 10, 20, 25, 30. Using the
Fundamental Theorem, we can express the values of f(z) in terms of definite integrals. We evaluate
the definite integrals using the areas of triangular regions under the graph of f’(x), remembering
that areas below the z-axis are subtracted. (See Figure 6.8.)

Inflection point

10 2 30 100 N . (10, 2(?01)00
/ ritical point (0O,
f'(x) ‘ p ‘( ) ) .

o+ 0 10 20 30
Figure 6.8: Finding f(10) = £(0) + [.° f'(z) do Figure 6.9: Graph of f(x)

/

Critical point ) )
(20, 300) Inflection point
204 N (25,275)
Shaded area 300+ e
10 g f(x)
= fo f(x)dx
10+ 900 \
Critical point
(30, 250)
x

Since f(0) = 100, the Fundamental Theorem gives us the following values of f, which are marked
in Figure 6.9.
-10 1
f(10) = f(0) + f'(x) dz = 100 + (Shaded area in Figure 6.8) = 100 + 5(10)(20) = 200,
0

20

£(20) = f(10) + [ f'(z)dz =200 + %(10)(20) = 300.
10
F(25) = f(20) + :)5 #(z) dz = 300 — %(5)(10) = 275,

30

£30) = f25)+ [ f'(2)da =275 — %(5)(10) — 250.
25

Example 5 Suppose F'(t) = tcost and F(0) = 2. Find F(b) at the points b = 0, 0.1, 0.2, ..., 1.0.

Solution We apply the Fundamental Theorem with f(¢) = t cost and ¢ = 0 to get values for F'(b):

b b
F(b) — F(0) = / F'(t)dt = / tcostdt.
0 0
Since F'(0) = 2, we have

b
F@) = 2+/ tcostdt.
0

Calculating the definite integral fob t cost dt numerically forb = 0,0.1,0.2, ..., 1.0 gives the values
for F' in Table 6.1:

Table 6.1  Approximate values for F

b 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F(b) 2.000 2.005 2.020 2.044 2.077 2.117 2.164 2216 2.271 2.327 2.382

Notice that F'(b) appears to be increasing between b = 0 and b = 1. This could have been
predicted from the fact that ¢ cos ¢, the derivative of F'(t), is positive for ¢ between 0 and 1.
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Exercises and Problems for Section 6.1

Exercises

In Exercises 14, sketch two functions F such that ' = f. 6. Given the values of the derivative f’(z) in the table and

In one case let F'(0) = 0 and in the other, let F(0) = 1. that f(0) = 100, estimate f(z) for z = 2,4, 6.
L 1 2. 1 o—
f(z) (@) T 0|2 ]4]6
f(x) | 10| 18|23 |25
T ——t—
1 1
-1 -1 +——o0 7. Estimate f(x) for z = 2, 4, 6, using the given values of

f' () and the fact that £(0) = 50.

f(@) ' @) z 0] 2] 416
f@ |1 lis]]2
X X
1: 1
-1 -1 8. (a) Using Figure 6.11, estimate f07 f(z)dx.

(b) If F'is an antiderivative of the same function f and
F(0) = 25, estimate F'(7).

5. Use Figure 6.10 and the fact that P = 2 when ¢t = 0 to

4
find values of P whent =1, 2, 3, 4 and 5. ) L f(z)
dP/dt v
1 o1 4 7
2\
1 1 1 -t
1 2 3 4 5 —6
-1 -8
Figure 6.10 Figure 6.11
Problems
In Problems 9-12, sketch two functions F' with F’(z) = 13. A particle moves back and forth along the z-axis. Fig-
f(2). In one, let F(0) = 0; in the other, let F'(0) = 1. Mark ure 6.12 approximates the velocity of the particle as a
z1, T2, and z3 on the z-axis of your graph. Identify local max- function of time. Positive velocities represent movement
ima, minima, and inflection points of F'(z). to the right and negative velocities represent movement
to the left. The particle starts at the point x = 5. Graph
9, 10. the distance of the particle from the origin, with distance
measured in kilometers and time in hours.
f()
f(x)
z1 v (km/hr)
x — —
] T3 ‘ 3 10
44—+t
1 2 3 4 5
11. 12.
f(@)
© -0+ — @ — —

Figure 6.12

T T2 T3
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14.

15.

16.

17.
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Assume f” is given by the graph in Figure 6.13. Suppose
f is continuous and that f(3) = 0.

(a) Sketch a graph of f.

(b) Find f(0) and f(7).

(¢) Find f07 f' () dz in two different ways.

2 _ J'(@)

14 —
————
123 45 67

—1 4 J—

—2 + —_—

Figure 6.13

Use Figure 6.14 and the fact that F'(2) = 3 to sketch the
graph of F'(x). Label the values of at least four points.

Area =4
Area = 2
rea F'(2)
1 ——— —F =z
1 2w 708
Area = 7
Figure 6.14

Using Figure 6.15, sketch a graph of an antiderivative
G(t) of g(t) satisfying G(0) = 5. Label each critical
point of G(t) with its coordinates.

Area = 2

g(t)
Area = 16
; | l/l.\ t
1 2 &

=

Area = 8

Figure 6.15

Using the graph of g’ in Figure 6.16 and the fact that
g(0) = 50, sketch the graph of g(z). Give the coordi-
nates of all critical points and inflection points of g.

(20,10)

VaSS

15 40

(10, —20)

Figure 6.16

18. The vertical velocity of a cork bobbing up and down on

19.

20.

the waves in the sea is given by Figure 6.17. Upward is
considered positive. Describe the motion of the cork at
each of the labeled points. At which point(s), if any, is
the acceleration zero? Sketch a graph of the height of the
cork above the sea floor as a function of time.

velocity 4

B \/ D
C
Figure 6.17

time

Figure 6.18 shows the rate of change of the concentration
of adrenaline, in micrograms per milliliter per minute, in
a person’s body. Sketch a graph of the concentration of
adrenaline, in micrograms per milliliter, in the body as a
function of time, in minutes.

rate of change of adrenaline

concentration (£4g/ml/min)
/\ "

[ | |
1 (L
1 2 3 4/5 6 7 8

minutes)

Figure 6.18

Urologists are physicians who specialize in the health of
the bladder. In a common diagnostic test, urologists mon-
itor the emptying of the bladder using a device that pro-
duces two graphs. In one of the graphs the flow rate (in
milliliters per second) is measured as a function of time
(in seconds). In the other graph, the volume emptied from
the bladder is measured (in milliliters) as a function of
time (in seconds). See Figure 6.19.

(a) Which graph is the flow rate and which is the vol-

ume?
(b) Which one of these graphs is an antiderivative of the
other?
()
: ‘ : ‘ : — seconds
5 10 15 20 25
()
seconds
5 10 15 20 25

Figure 6.19



In Problems 21-22, a graph of f is given. Let [’ (z) = f(x).
(a) What are the critical points of F'(x)?

(b) Which critical points are local maxima, which are local
minima, and which are neither?

(c) Sketch a possible graph of F'(z).

21. 22.

f()

23. Use a graph of f(x) = 2sin(z?) to determine where an
antiderivative, F', of this function reaches its maximum
on 0 < x < 3.If F(1) = 5, find the maximum value
attained by F'.

24. The graph of f” is given in Figure 6.20. Draw graphs of
f and f’, assuming both go through the origin, and use
them to decide at which of the labeled x-values:

(a) f(x) is greatest.
(b) f(x) is least.

(¢) f'(x)is greatest.
(d) f'(x)is least.
(e) f"(z) is greatest.
® f'(z)is least.

Figure 6.20: Graph of "

25. Two functions, f(z) and g(z), are shown in Figure 6.21.
Let " and G be antiderivatives of f and g, respectively.
On the same axes, sketch graphs of the antiderivatives
F(x) and G(z) satisfying F(0) = 0 and G(0) = 0.
Compare F' and G, including a discussion of zeros and
2- and y-coordinates of critical points.
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J—
[\
g

Figure 6.21

26. The Quabbin Reservoir in the western part of Mas-
sachusetts provides most of Boston’s water. The graph
in Figure 6.22 represents the flow of water in and out of
the Quabbin Reservoir throughout 2007.

(a) Sketch a graph of the quantity of water in the reser-
voir, as a function of time.

(b) When, in the course of 2007, was the quantity of wa-
ter in the reservoir largest? Smallest? Mark and label
these points on the graph you drew in part (a).

(c) When was the quantity of water increasing most
rapidly? Decreasing most rapidly? Mark and label
these times on both graphs.

(d) By July 2008 the quantity of water in the reservoir
was about the same as in January 2007. Draw plau-
sible graphs for the flow into and the flow out of the
reservoir for the first half of 2008.

rate of flow
(millions of gallons/day)

Outflow
Inflow
| | | |
Jan (2007) April July Oct Jan (2008)
Figure 6.22

6.2 CONSTRUCTING ANTIDERIVATIVES ANALYTICALLY

What Is an Antiderivative of f(z) = 0?

A function whose derivative is zero everywhere on an interval must have a horizontal tangent line at
every point of its graph, and the only way this can happen is if the function is constant. Alternatively,
if we think of the derivative as a velocity, and if the velocity is always zero, then the object is
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standing still; the position function is constant. A rigorous proof of this result using the definition
of the derivative is surprisingly subtle. (See the Constant Function Theorem on page 165.)

If F'(x) = 0 on an interval, then F'(z) = C on this interval, for some constant C.

What Is the Most General Antiderivative of 1 ?

We know that if a function f has an antiderivative F', then it has a family of antiderivatives of the
form F(x) + C, where C is any constant. You might wonder if there are any others. To decide,
suppose that we have two functions F' and G with F’ = f and G’ = f: that is, F' and G are both
antiderivatives of the same function f. Since F’ = G’ we have (F'— ()" = 0. But this means that we
must have F'— G = C, so F(z) = G(z) + C, where C'is a constant. Thus, any two antiderivatives
of the same function differ only by a constant.

If F and G are both antiderivatives of f on an interval, then F'(z) = G(x) + C.

The Indefinite Integral

All antiderivatives of f(z) are of the form F(z) + C. We introduce a notation for the general an-
tiderivative that looks like the definite integral without the limits and is called the indefinite integral:

/f(x) dz = F(z) + C.

It is important to understand the difference between

/ab f(x)dz and /f(:r) dz.

The first is a number and the second is a family of functions. The word “integration” is frequently
used for the process of finding the antiderivative as well as of finding the definite integral. The
context usually makes clear which is intended.

What is an Antiderivative of f(z) = k?
If k is a constant, the derivative of kx is k, so we have
An antiderivative of k is kx.

Using the indefinite integral notation, we have

If k is constant,

/kd:L':k:L'—i-C.
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Finding Antiderivatives

Finding antiderivatives of functions is like taking square roots of numbers: if we pick a number at
random, such as 7 or 493, we may have trouble finding its square root without a calculator. But if
we happen to pick a number such as 25 or 64, which we know is a perfect square, then we can find
its square root exactly. Similarly, if we pick a function which we recognize as a derivative, then we
can find its antiderivative easily.

For example, to find an antiderivative of f(z) = x, notice that 2z is the derivative of x2; this
tells us that 22 is an antiderivative of 2z. If we divide by 2, then we guess that

2
An antiderivative of x is 5

To check this statement, take the derivative of a:2 /2:

d («2\ 1 d 4, 1 oy —
dz\2) 2 @t T

What about an antiderivative of z2? The derivative of z° is 322, so the derivative of z° /3 is

322 /3 = 2. Thus,
e
An antiderivative of 22 is 5

The pattern looks like
.’L‘"+1

n+1"

An antiderivative of " is

(We assume n # —1, or we would have x /0, which does not make sense.) It is easy to check this

formula by differentiation:
d (az”"‘l ) (n+1)z" n
= =a".

dr n+1 n+1

In indefinite integral notation, we have shown that

What about when n = —1? In other words, what is an antiderivative of 1/2? Fortunately, we
know a function whose derivative is 1/x, namely, the natural logarithm. Thus, since

1
%(IHI) = ;,

we know that
"1
/—dw:lnz—i—C, for z > 0.
T

If x < 0, then Inz is not defined, so it can’t be an antiderivative of 1/z. In this case, we can try
In(—z):

d 1 1
ln(—z) = (—1)— = =
(=) = (1) — =~

SO

/idl =In(—z)+C, forz <O0.
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This means In 2: is an antiderivative of 1/2 if z > 0, and In(—z) is an antiderivative of 1/z if x < 0.
Since |z| = & when 2 > 0 and |2| = —z when 2 < 0 we can collapse these two formulas into:

L 1.
An antiderivative of — is In ||
x

Therefore

/ldx=1n|a:|+C’.
x

Since the exponential function is its own derivative, it is also its own antiderivative; thus

/ewdm=6w+0.

Also, antiderivatives of the sine and cosine are easy to guess. Since

—sinx = cosx and — cosx = —sinz,

dx dx
we get

/Cosxd:rzsinx—l—C and /Sinxdmz—cosm—l—C.

Example1  Find / (3x + 2?) da.

Solution We know that 2 /2 is an antiderivative of  and that z° /3 is an antiderivative of 22, so we expect
: 2 3
/(3x+m2)dm=3 Rl R Ye?
2 3
You should always check your antiderivatives by differentiation—it’s easy to do. Here
d (3 , a3 3 322
=, Zi0) =224+ 2 =3 2.
dx<21+3+ ) 5 l+3 T+

The preceding example illustrates that the sum and constant multiplication rules of differentia-
tion work in reverse:

Theorem 6.1: Properties of Antiderivatives: Sums and Constant Multiples

In indefinite integral notation,

L[ @) £ gl do = [ f)dot [ gw)ds
2. /cf(m)dm:c/f(m)dm.

In words,
1. An antiderivative of the sum (or difference) of two functions is the sum (or difference)
of their antiderivatives.

2. An antiderivative of a constant times a function is the constant times an antiderivative of
the function.
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Example 2

Solution

Find /(SiIIIL‘ + 3cosx) du.
We break the antiderivative into two terms:

/(sinx +3cosx)dr = /sinxdx + 3/cosxdx = —cosz+ 3sinz + C.
Check by differentiating:

d
d—(—cosm+3sinm+0) =sinx + 3cos .
x

Using Antiderivatives to Compute Definite Integrals

As we saw in Section 5.3, the Fundamental Theorem of Calculus gives us a way of calculating
definite integrals. Denoting F(b) — F'(a) by F(x) z, the theorem says that if F/ = f and f is
continuous, then

/ f > F(b) - F(a),

To find f: f(x)dz, we first find F, and then calculate F(b) — F(a). This method of computing
definite integrals gives an exact answer. However, the method only works in situations where we
can find the antiderivative F'(z). This is not always easy; for example, none of the functions we
have encountered so far is an antiderivative of sin(z?).

"2

Example 3 Compute / 3z dx using the Fundamental Theorem.
1
Solution Since F'(x) = 23 is an antiderivative of f(z) = 322,
2 2
/ 32% de = F(z)| = F(2) - F(1),
1 1
gives
2 2
/ 32?de=2% =22 - 1P =7
1 1
Notice in this example we used the antiderivative 2%, but 23 + C' works just as well because the
constant C' cancels out:
2 2
/ 322de = (2 +C)| =2 +C)- (13 +0)="T.
J1 1
’TI'/4 1
Example 4 Compute / ——— df exactly.
o cos?f
Solution We use the Fundamental Theorem. Since F'() = tan @ is an antiderivative of f(0) = 1/ cos? 0, we

get
/4

7T/4 1
/ ———df = tand
o cos?f

. = tan (%) —tan(0) = 1.
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Exercises and Problems for Section 6.2

Exercises

In Exercises 1-16, find an antiderivative.

1. f(z)=5 2. f(t) =5t

3. f(z) =2? 4. g(t)=1>+1
5. h(t) = cost 6. g(z2) =z
7. h(z) = % 8. (1) =

9. g(z) = 2—13 10. f(z) =¢€?

11. g(t) =sint 12. f(t) = 267 + 3¢ + 41"

2

13. p(t)=t3—t——t

5 4. qy)=y"' +

S

>+

15. f(z) =5z — /= ;

16. f(t) =

In Exercises 17-28, find the general antiderivative.

17. f(t) =6t 18. h(z)=2°—=x

19. f(z) =2 -4z +7 20. (1) =t>+5t—1
21. f(z) =z+¢€” 22. g(t) =1

23. g(xz) =sinz + cosw 24, Nh(z) = 4da® — 7

1

25. p(t) =2 +sint 26. p(t) = —
Vi
5 7

In Exercises 29-36, find an antiderivative F'(x) with F'(z) =
f(x) and F(0) = 0. Is there only one possible solution?

29. f(x)=3 30. f(x) =2z
31. f(z)=—-Tx 32. f(x) = ;laz
33 f(z) =2 3. f(z) =T

35. f(z) = 2+ 4z + 5a° 36. f(z) =sinz

Find the indefinite integrals in Exercises 37-52.

37. / 5x dx 38. / 2> dx
39. / sin 0 do 40. / («° - 2) da
41. /(ﬁ + t%) dt 42. /4\/5 dw

43. /(x2+5x+8)dw 44. /%dt

/COSGdG
/ (ac—i— %) dx
49. /sintdt 50. /(w—!—mu)dw

51. / (tﬂ—i—%\/g) dt 52 /(yzy_l) dy

In Exercises 53-63, evaluate the definite integrals exactly [as
in In(37)], using the Fundamental Theorem, and numerically
[In(37) ~ 2.243]:

45. / (4t + 7) dt 46.

47. / 5¢” dz 48.

3
53. / (2 + 4z + 3) dz 54.
0
/4
55. / sin x dx 56.
0

57. (2 — 72®) dz 58.

"2 1+ 2 "2 3
59. / Yy 60. / (x—-i-Qw) d
1 Y 0 3

/4
61. / (sint + cost)dt  62.
Jo

63 _12d
. — ar
g 78
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64

. Use the Fundamental Theorem to find the areca under
f(x) = z* between z = 1 and = = 4.

65. Calculate the exact area between the x-axis and the graph
of y =7 — 8z + z°.

66. Find the exact area below the curve y = x3(1 — z) and
above the z-axis.

67. Find the exact area enclosed by the curve iy = (1 —x)?
and the x-axis.

68. Find the exact area between the curves y = 2 and
= y>

69. Calculate the exact area above the graph of y = sin ¢ and
below the graph of y = cos @ for0 < 6§ < 7 /4.

70. Find the exact area between f(f) = sin6 and g(0) =
cos @ for 0 < 0 < 2.

71. Find the exact value of the area between the graphs of
y=coszandy =e” for0 <z < 1.

72. Find the exact value of the area between the graphs of
y = sinhx, y = coshz, for—1 <z < 1.

73. Use the Fundamental Theorem to determine the value of
b if the area under the graph of f(x) = 8z between
x = land x = bis equal to 192. Assume b > 1.

74. Find the exact positive value of c if the area between the
graph of y = 2° — ¢? and the z-axis is 36.

75. Use the Fundamental Theorem to find the average value
of f(x) = 2® + 1 on the interval z = 0 to z = 10.
Tllustrate your answer on a graph of f(x).

76. The average value of the function v(z) = 6/« on the
interval [1, ] is equal to 1. Find the value of c.

77. (a) What is the average value of f(t) = sint over

0 <t < 27? Why is this a reasonable answer?
(b) Find the average of f(t) =sintover0 <t¢ < 7.

78. The origin and the point (a, a) are at opposite corners of
a square. Calculate the ratio of the areas of the two parts
into which the curve /= + /y = /a divides the square.

79. If A, is the area between the curves y = x and y = z",
show that A,, — % as n — oo and explain this result
graphically.

80. (a) Explain why you can rewrite z* as ¥ = e*™"* for

x> 0. J
(b) Use your answer to part (a) to find e ().
(¢) Find /ch(l + Inz)dz.
2
(d) Find z%(1+ Inz)dz exactly using part (c).
1
Check your answer numerically.
81. Gasoline is pumped into a cylindrical tank, standing ver-

tically, at a decreasing rate given at time ¢ minutes by
r(t) = 120 — 6 ft* /min  for 0 < ¢ < 10.

The tank has radius 5 ft and is empty when ¢ = 0. Find
the depth of water in the tank at t = 4.

82.

83.

84.

85.

A store has an inventory of () units of a product at time
t = 0. The store sells the product at the steady rate of
(/A units per week, and it exhausts the inventory in A
weeks.

(a) Find a formula f(t) for the amount of product in in-
ventory at time ¢. Graph f(t).

(b) Find the average inventory level during the period
0 <t < A. Explain why your answer is reasonable.

For 0 < ¢ < 10 seconds, a car moves along a straight
line with velocity

v(t) = 2 + 10t ft/sec.

(a) Graph v(t) and find the total distance the car has
traveled between ¢ = 0 and ¢ = 10 seconds using
the formula for the area of a trapezoid.

(b) Find the function s(¢) that gives the position of the
car as a function of time. Explain the meaning of any
new constants.

(¢) Use your function s(¢) to find the total distance trav-
eled by the car between ¢t = 0 and ¢ = 10 seconds.
Compare with your answer in part (a).

(d) Explain how your answers to parts (a) and (c) relate
to the Fundamental Theorem of Calculus.

In drilling an oil well, the total cost, C, consists of fixed
costs (independent of the depth of the well) and marginal
costs, which depend on depth; drilling becomes more ex-
pensive, per meter, deeper into the earth. Suppose the
fixed costs are 1,000,000 riyals (the riyal is the unit of
currency of Saudi Arabia), and the marginal costs are

C'(z) = 4000 + 10z riyals/meter,

where « is the depth in meters. Find the total cost of
drilling a well x meters deep.

One of the earliest pollution problems brought to the at-
tention of the Environmental Protection Agency (EPA)
was the case of the Sioux Lake in eastern South Dakota.
For years a small paper plant located nearby had been
discharging waste containing carbon tetrachloride (CCly)
into the waters of the lake. At the time the EPA learned
of the situation, the chemical was entering at a rate of 16
cubic yards/year.

The agency ordered the installation of filters de-
signed to slow (and eventually stop) the flow of CCly
from the mill. Implementation of this program took ex-
actly three years, during which the flow of pollutant was
steady at 16 cubic yards/year. Once the filters were in-
stalled, the flow declined. If ¢ is time measured in years
since the EPA learned of the situation, between the time
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the filters were installed and the time the flow stopped, learned of the situation.
the rate of flow was well approximated by (b) How many years elapsed between the time the EPA

(a) Graph the rate of CCly, flow into the lake as a func-
tion of time, beginning at the time the EPA first

learned of the situation and the time the pollution

Rate (in cubic yards/year) = t* — 14¢ + 49. flow stopped entirely?

(¢) How much CCly entered the waters during the time
shown in the graph in part (a)?

6.3 DIFFERENTIAL EQUATIONS

In Chapter 2 we saw that velocity is the derivative of distance and that acceleration is the derivative
of velocity. In this section we analyze the motion of an object falling freely under the influence
of gravity. This involves going “backward” from acceleration to velocity to position. Chapter 11
investigates such problems in more detail.

Motion With Constant Velocity

Let’s briefly consider a familiar problem: An object moving in a straight line with constant velocity.
Imagine a car moving at 50 mph. How far does it go in a given time? The answer is given by

Distance = Rate x Time

or
s = b0t

where s is the distance of the car (in miles) from a fixed reference point and ¢ is the time in hours.

Alternatively, we can describe the motion by writing the equation

ds
i 50.
This is called a differential equation for the function s. The solution to this equation is the antideriva-
tive
s =50t + C.
The equation s = 50¢ + C' tells us that s = C' when ¢ = 0. Thus, the constant C represents the
initial distance, sg, of the car from the reference point.

Uniformly Accelerated Motion

Now we consider an object moving with constant acceleration along a straight line, or uniformly
accelerated motion. It has been known since Galileo’s time that an object moving under the influence
of gravity (ignoring air resistance) has constant acceleration, g. In the most frequently used units,
its value is approximately
g=98m/sec’, or g=32ft/sec’.

Thus, if v is the upward velocity and ¢ is the time,

dv

dt
The negative sign represents the fact that velocity is measured upward, whereas gravity acts down-
ward.

Example 1

Solution

A stone is dropped from a 100-foot-high building. Find, as functions of time, its position and veloc-
ity. When does it hit the ground, and how fast is it going at that time?

Suppose ¢ is measured in seconds from when the stone was dropped. If we measure distance, s, in
feet above the ground, then the velocity, v, is in ft/sec upward, and the acceleration due to gravity is
32 ft/sec? downward, so

dv
— = _32.
dt 3
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From what we know about antiderivatives, we must have
v=-32t+C

where C' is some constant. Since v = C when ¢ = 0, the constant C' represents the initial velocity,
vg. The fact that the stone is dropped rather than thrown off the top of the building tells us that the
initial velocity is zero, so vy = 0. Substituting gives

0=-3200)+C so C=0.

Thus,
v = —32L.

But now we can write

) ds 32t

v=— = —321.

dt

The general antiderivative of —32¢ is

s=—16t> + K,

where K is another constant.
Since the stone starts at the top of the building, s = 100 when ¢ = 0. Substituting gives

100 = —16(0*) + K, so K =100,

and therefore
s = —16t% + 100.

Thus, we have found both v and s as functions of time.
The stone hits the ground when s = 0, so we must solve
0= —16t> + 100

giving t2 = 100/16 or t = £10/4 = £2.5 sec. Since ¢ must be positive, ¢t = 2.5 sec. At that time,
v = —32(2.5) = —80 ft/sec. (The velocity is negative because we are considering up as positive
and down as negative.)

Example 2

Solution

An object is thrown vertically upward with a speed of 10 m/sec from a height of 2 meters. Find the
highest point it reaches and when it hits the ground.

We must find the position as a function of time. In this example, the velocity is in m/sec, so we use
g = 9.8 m/sec?. Measuring distance in meters upward from the ground, we have

As before, v is a function whose derivative is constant, so
v=-98t+C.
Since the initial velocity is 10 m/sec upward, we know that v = 10 when ¢ = 0. Substituting gives
10=-9.8(0)+C so C =10.

Thus,
v = —9.8t + 10.

To find s, we use

ds
v=— =—-9.8t+ 10
T *
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and look for a function that has —9.8¢4- 10 as its derivative. The general antiderivative of —9.8¢+ 10
is
s=—4.9t2 4+ 10t + K,

where K is any constant. To find K, we use the fact that the object starts at a height of 2 meters, so
s = 2 when t = 0. Substituting gives

2=-49(0)2+10(00)+ K, so K =2,

and therefore
s = —4.9t% + 10t + 2.

The object reaches its highest point when the velocity is 0, so at that time
v=-9.8t+10 = 0.

This occurs when 10
t = — =~ 1.02 sec.
9.8

When ¢ = 1.02 seconds,
s =—4.9(1.02)2 +10(1.02) + 2 ~ 7.10 m.
So the maximum height reached is 7.10 meters. The object reaches the ground when s = 0:
0= —4.9t* + 10t + 2.
Solving this using the quadratic formula gives
t~ —0.18 and t ~ 2.22 sec.

Since the time at which the object hits the ground must be positive, ¢t ~ 2.22 seconds.

Antiderivatives and Differential Equations

We solved the problem of uniformly accelerated motion by working backward from the derivative
of a function to the function itself. If f is a known function, finding the general solution to the
differential equation

dy
%—f(l’)

means finding the general antiderivative y = F(z) + C with F'(x) = f(x).

Example 3

Solution

Find and graph the general solution of the differential equation

d
4 =sinx + 2.

dz
We are asking for a function whose derivative is sin x + 2. One antiderivative of sin x + 2 is
y = —cosx + 2.

The general solution is therefore
y=—cosz+2x+C,

where C' is any constant. Figure 6.23 shows several curves in this family.
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Y
C=0
C=-1.99
C=-5
=-10

1 —

U 21
C=-15

—15-

Figure 6.23: Solution curves of dy/dx = sinx + 2

d
How Can We Pick One Solution to the Differential Equation d—y = f(z)?
€L

Picking one antiderivative is equivalent to selecting a value of C'. This requires knowing an extra
piece of information, such as the initial velocity or initial position. In general, we pick a particular
curve in the family of solutions by specifying that the curve should pass through a given point
(20, yo). The differential equation plus an extra condition

dy
qr f(@), y(zo) = yo
is called an initial value problem. An initial value problem usually has a unique solution. Note that
y(x0) = yo is shorthand for y = yo when & = x.

Example 4

Solution

Find the solution of the initial value problem

% =sinz+2, y(3)="5.

We have already seen that the general solution to the differential equation is y = — cosz + 2z + C.
The initial condition allows us to determine the constant C. Substituting y(3) = 5 gives

5=y(3)=—cos3+2-3+C,
so C'is given by
C=5+4cos3 -6~ —1.99.

Thus, the (unique) solution is
y = —cosz + 2z — 1.99.

Figure 6.23 shows this particular solution, marked C' = —1.99.

Exercises and Problems for Section 6.3

Exercises

In Exercises 1-4, find the general solution of the differential 5. Show that y = x + sina — 7 satisfies the initial value

equation. problem
LWy 2 W gy ) = Ltcosz, y(m) =0
d dz x z
dw dr .
3 E—4\/Z 4. d—p_?)smp
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In Exercises 6-9, find the solution of the initial value problem. ¢, % =2+4sinz, ¢=5whenz=0.
z
6. dy = 62° + 4z, y(2) = 10 10. Show that y = ze™“ + 2 is a solution of the initial value
dx problem
dpP
7. — =10e', P(0) =25 dy _
dt L —(1-a)e™, y(0) =2
8. % = —32t+ 100, s=>50whent=0
Problems
11. (a) Find the general solution of the differential equation  16. A revenue R(p) is obtained by a farmer from selling
dy/dz = 2z + 1. grain at price p dollars/unit. The marginal revenue is
(b) Sketch a graph of at least three solutions. given by R'(p) = 25 — 2p.
© Fmd‘the s9lutlon satisfying (1) = 5. Graph this (a) Find R(p). Assume the revenue is zero when the
solution with the others from part (b). .
price is zero.
12. A tomato is thrown upward from a bridge 25 m above the (b) For what prices does the revenue increase as the
ground at 40 m/sec. price increases? For what prices does the revenue
. . . decrease as price increases?
(a) Give formulas for the acceleration, velocity, and
height of the tomato at time ¢. 17. A water balloon launched from the roof of a building
(b) How high does the tomato go, and when does it at time ¢ = 0 has vertical velocity v(t) = —32t + 40
reach its highest point? feet/sec at time ¢ seconds, with v > 0 corresponding to
(¢) How long is it in the air? upward motion.
13. Figure 6.24 is a graph of (a) If the roof of the building is 30 feet above the
ground, find an expression for the height of the water
_(—z+1, for0<z<1; balloon above the ground at time ¢.
fz) = { x—1, forl < a <2. (b) What is the average velocity of the balloon between
t = 1.5 and t = 3 seconds?
(a) Find a function F such that F’ = f and F(1) = 1. (¢) A 6-foot person is standing on the ground. How fast
(b) Use geometry to show the area under the graph of f is the water balloon falling when it strikes the person
above the x-axis between x = 0 and z = 2 is equal on the top of the head?
o F(2) — F(0). . .
(¢) Use parts (a) and (b) to check the Fundamental The- 18. If a car goes from 0 to 80 mph in six seconds with con-
orem of Calculus stant acceleration, what is that acceleration?
19. A car starts from rest at time ¢ = 0 and accelerates at
1 —0.6t + 4 meters/sec? for 0 < ¢ < 12. How long does it
(@) take for the car to go 100 meters?
20. A car going 80 ft/sec (about 55 mph) brakes to a stop in
Lo five seconds. Assume the deceleration is constant.
! 2 (a) Graph the velocity against time, ¢, for 0 < ¢t < 5
Figure 6.24 seconds.
(b) Represent, as an area on the graph, the total distance
traveled from the time the brakes are applied until
14. Ice is forming on a pond at a rate given by tl%e car comes to astop. .
(¢) Find this area and hence the distance traveled.
dy (d) Now find the total distance traveled using antidiffer-
a kv, entiation.
where y is the thickness of the ice in inches at time ¢ 21. A 727 jet needs to attain a speed of 200 mph to take off.
measured in hours since the ice started forming, and k is If it can accelerate from 0 t0?200 mph in 30 seconds,
a positive constant. Find y as a function of £. how_ lor;g must the runway be? (Assume constant accel-
eration.
s . o _ a2
15. A firm’s marginal cost function is MC' = 3¢” +6q + 9. 22. A car going at 30 ft/sec decelerates at a constant 5 ft/sec?.

(a) Write a differential equation for the total cost, C'(q).
(b) Find the total cost function if the fixed costs are 400.

(a) Draw up a table showing the velocity of the car every
half second. When does the car come to rest?



23.

(b) Using your table, find left and right sums which esti-
mate the total distance traveled before the car comes
to rest. Which is an overestimate, and which is an
underestimate?

(¢) Sketch a graph of velocity against time. On the
graph, show an area representing the distance trav-
eled before the car comes to rest. Use the graph to
calculate this distance.

Now find a formula for the velocity of the car as a
function of time, and then find the total distance trav-
eled by antidifferentiation. What is the relationship
between your answer to parts (¢) and (d) and your

estimates in part (b)?

(@)

An object is shot vertically upward from the ground with
an initial velocity of 160 ft/sec.

(a) At what rate is the velocity decreasing? Give units.

(b) Explain why the graph of velocity of the object

against time (with upward positive) is a line.

Using the starting velocity and your answer to

part (b), find the time at which the object reaches

the highest point.

Use your answer to part (c) to decide when the ob-

ject hits the ground.

Graph the velocity against time. Mark on the graph

when the object reaches its highest point and when

it lands.

Find the maximum height reached by the object by

considering an area on the graph.

(g) Now express velocity as a function of time, and find
the greatest height by antidifferentiation.

(c)

(d)
(e)

®

24.

25.

26.

27.

28.
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A stone thrown upward from the top of a 320-foot cliff at
128 ft/sec eventually falls to the beach below.

(a) How long does the stone take to reach its highest
point?

(b) What is its maximum height?

(¢) How long before the stone hits the beach?

(d) What is the velocity of the stone on impact?

On the moon, the acceleration due to gravity is about
1.6 m/sec? (compared to g ~ 9.8 m/sec? on earth). If
you drop a rock on the moon (with initial velocity 0),
find formulas for:

(a) Its velocity, v(t), at time ¢.
(b) The distance, s(t), it falls in time ¢.

(a) Imagine throwing a rock straight up in the air. What
is its initial velocity if the rock reaches a maximum
height of 100 feet above its starting point?

(b) Now imagine being transplanted to the moon and
throwing a moon rock vertically upward with the
same velocity as in part (a). How high will it go?
(On the moon, g = 5 ft/sec?.)

A cat, walking along the window ledge of a New York
apartment, knocks off a flower pot, which falls to the
street 200 feet below. How fast is the flower pot travel-
ing when it hits the street? (Give your answer in ft/sec
and in mph, given that 1 ft/sec = 15/22 mph.)

An Acura NSX going at 70 mph stops in 157 feet. Find
the acceleration, assuming it is constant.

6.4 SECOND FUNDAMENTAL THEOREM OF CALCULUS

Suppose f is an elementary function, that is, a combination of constants, powers of x, sin z, cos z,
e”, and Inz. Then we have to be lucky to find an antiderivative F' which is also an elementary
function. But if we can’t find F" as an elementary function, how can we be sure that F' exists at all?
In this section we learn to use the definite integral to construct antiderivatives.

Construction of Antiderivatives Using the Definite Integral

Consider the function f(z) = e=*". We would like to find a way of calculating values of its an-
tiderivative, F', which is not an elementary function. However, we know from the Fundamental

Theorem of Calculus that

F(b) - Fl@) = / " at,

Setting a = 0 and replacing b by x, we have

F(z) — F(0) = /0 et at.

Suppose we want the antiderivative that satisfies £'(0) = 0. Then we get

x 2
/ e~ dt.
0



318

Chapter Six CONSTRUCTING ANTIDERIVATIVES

Proof

This is a formula for F'. For any value of x, there is a unique value for F'(x), so F' is a function. For
any fixed z, we can calculate I'(2) numerically. For example,

2
F(2) :/ e dt = 0.88208. ...
0

Notice that our expression for F' is not an elementary function; we have created a new function
using the definite integral. The next theorem says that this method of constructing antiderivatives
works in general. This means that if we define F' by

Flz) = / £t dt

then F' must be an antiderivative of f.

Theorem 6.2: Construction Theorem for Antiderivatives

(Second Fundamental Theorem of Calculus) If f is a continuous function on an interval,
and if @ is any number in that interval, then the function /' defined on the interval as follows
is an antiderivative of f:

F(z) = / o

Our task is to show that F', defined by this integral, is an antiderivative of f. We want to show that
F'(z) = f(=x). By the definition of the derivative,

F(x+h)— F(x)

b
F(x)_%li% h

To gain some geometric insight, let’s suppose f is positive and A is positive. Then we can visualize

x x+h
Pla) = / ft)dt and  Flao+h) = / () dt

as areas, which leads to representing
x+h
F(z+h) — F(z) = / f@)dt

x

as a difference of two areas. From Figure 6.25, we see that F/(x + h) — F(z) is roughly the area of
a rectangle of height f(x) and width h (shaded darker in Figure 6.25), so we have

F(z+h) — F(x) ~ f(x)h.

hence
F(x + h}z — F(x) ~ f(a).

More precisely, we can use Theorem 5.4 on comparing integrals on page 287 to conclude that

x+h
mh < / F(t)dt < Mh,
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where m is the greatest lower bound for f on the interval from x to « + h and M is the least upper
bound on that interval. (See Figure 6.26.) Hence

mh < F(x + h) — F(z) < Mh,

SO
F(z+h) — F(x)

m < < M.

Since f is continuous, both m and M approach f(x) as h approaches zero. Thus

F(z+ h) — F(x)

fl) < i D= <,

Area = F'(x) Area = F'(z)

~ f(x)h
a T x+h a T x+h
Figure 6.25: F(x + h) — F(x) is area of roughly rectangular Figure 6.26: Upper and lower bounds
region for F'(z + h) — F(x)

Thus both inequalities must actually be equalities, so we have the result we want:

f(x) = %%w = F'(x).

Relationship between the Construction Theorem and the Fundamental Theorem of Calculus

If F' is constructed as in Theorem 6.2, then we have just shown that F/ = f. Suppose G is any other

antiderivative of f, so G’ = f, and therefore F’ = G’. Since the derivative of I’ — G is zero, the

Constant Function Theorem on page 165 tells us that ' — G is a constant, so F(z) = G(z) + C.
Since we know F'(a) = 0 (by the definition of F'), we can write

b
/ f(t)dt = F(b) = F(b) — F(a) = (G(b) + C) — (G(a) + C) = G(b) — G(a).

This result, that the definite integral f: f(t)dt can be evaluated using any antiderivative of f, is
the (First) Fundamental Theorem of Calculus. Thus, we have shown that the First Fundamental
Theorem of Calculus can be obtained from the Construction Theorem (the Second Fundamental
Theorem of Calculus).

Using the Construction Theorem for Antiderivatives

The construction theorem enables us to write down antiderivatives of functions that do not have
elementary antiderivatives. For example, an antiderivative of (sinx)/z is

T gint
F(J:)z/ %dt.
Jo

Notice that F' is a function; we can calculate its values to any degree of accuracy. This function
already has a name: it is called the sine-integral, and it is denoted Si(z).
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Example 1 Construct a table of values of Si(z) forz = 0,1, 2, 3.

Solution Using numerical methods, we calculate the values of Si(z) = foz sint/t dt given in Table 6.2. Since
the integrand is undefined at ¢t = 0, we took the lower limit as 0.00001 instead of 0.

Table 6.2 A rable of values of Si(x)

T 0 1 2 3
Si(z) | 0 | 095 | 1.61 | 185

The reason the sine-integral has a name is that some scientists and engineers use it all the
time (for example, in optics). For them, it is just another common function like sine or cosine. Its
derivative is given by

sinz

d iy
%SI(OS)— o

Example 2 Find the derivative of x Si().
Solution Using the product rule,
d ) d . d .
o (zSi(x)) = <% x) Si(x) + x (@ SI(ZE))

=1-Si(z) + e

= Si(z) + sin .

Exercises and Problems for Section 6.4

Exercises
In Ex_ercises 1-4, let F(z) = foz f(t)dt. Graph F(z) as a 0. i ! arctan(2) dt 0. & ﬂcos(z?’) d
function of x. dr Jg 5 dt J,
1. @ 2. d [t d
11. d—/ Int dt 2. — [Si(z?)]
1) o ;
t t

13. For z = 0, 0.5, 1.0, 1.5, and 2.0, make a table of values
for I(x) = [ ViT+1dt.
3. f(t) 4. f(t) 14. Assume that F'(t) = sintcost and F(0) = 1. Find
F(b) forb=0, 0.5, 1, 1.5, 2, 2.5, and 3.
15. (a) Continue the table of values for Si(z) =
¢ ¢ fox(sint/t) dt on page 320 forx =4 and x = 5.
(b) Why is Si(x) decreasing between z = 4 and z = 57

In Exercises 16-18, write an expression for the function, f(x),

. S . with the given properties.
Find the derivatives in Exercises 5—12.

N N 16. f'(z) = sin(z?) and f(0) =7
5. %/ (1+1)*dt 6. %/ In(t> 4 1) dt 17. f'(z) = (sinz)/z and f(1) =5
! 2 18. f'(z) = Si(z) and £(0) = 2

1 T t
7. (—/ cos(t?) dt 8. 4 sin(v/z) dx
dzr J, at J,
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For Problems 19-21, let F(z) = fox sin(t?) dt.

19. Approximate F'(z) forx = 0, 0.5, 1, 1.5, 2, 2.5.
20. Using a graph of I’ (x), decide where F'(x) is increasing
and where F'(z) is decreasing for 0 < z < 2.5.

21. Does F(x) have a maximum value for 0 < x < 2.5?If
so, at what value of = does it occur, and approximately
what is that maximum value?

22. Use Figure 6.27 to sketch a graph of F(z) = [ Ox f@t)dt.
Label the points x1, x2, x3.

20 F'(x)
S (@)
‘ ; z 10 60
r1 T2 €T3
Figure 6.27 Figure 6.28

23. The graph of the derivative ' of some function F' is
given in Figure 6.28. If £'(20) = 150, estimate the max-
imum value attained by F'.

In Problems 24-25, find the value of the function with the
given properties.
24. F(1), where F'(z) = e~ and F(0) = 2
25. G(—1), where G'(x) = cos(z?) and G(0) = —3
26. Let g(x) = fow f(¢) dt. Using Figure 6.29, find
@ g(0) (b g¢'(1)
(¢) The interval where g is concave up.

(d) The value of x where g takes its maximum on the
interval 0 < x < 8.

3 f()
2
1
t
-1 4 6 8
—2
Figure 6.29

27. Let F(x) = fox sin(2t) dt.
(a) Evaluate F' ().
(b) Draw a sketch to explain geometrically why the an-

swer to part (a) is correct.
(c) For what values of z is F'(x) positive? negative?

28. Let F(z) = f;(l/lnt) dt forx > 2.

(a) Find F'(z).

(b) Is F' increasing or decreasing? What can you say
about the concavity of its graph?

(c) Sketch a graph of F'(z).

Calculate the derivatives in Problems 29-36.

d ] d sin t
29. %/Z sin(¢?) dt 30. T : cos(z?) da
22 4
31 4 In(1+4¢*)dt 32 4 sin(v/x) dz
Cdx o Codt -
w4 [0 e EYIL e
' % COS(Ee ) % 7:1;6
da [~ d [
2
35 — e’ dt 36. — V1+a22de
dx 22 dt et

T

37. Let P(x) =/ arctan(t?) dt.
0

(a) Evaluate P(0) and determine if P is an even or an
odd function.

(b) Is P increasing or decreasing?

(¢) What can you say about concavity?

(d) Sketch a graph of P(z).

38. LetR(:c):/ V1+t2dt
0

(a) Evaluate R(0) and determine if R is an even or an
odd function.

(b) Is R increasing or decreasing?

(¢) What can you say about concavity?

(d) Sketch a graph of R(x).

(e) Show that lim, . (R(z)/z?) exists and find its
value.

39. If [w(t—to) dt = s(t)+C, where tg is a constant, what
is &' (t)?

40. 1f [ v(w) du = s(¢), what is [7o(t)de?

41. If [v(t) dt = s(t—to)+C, where to is a constant, what

is §'(t)?

If [ f(2x) dz = g(2x) + C, what is ¢/ (z)?

43. If f af(z)dxr = g(ax) + C, where a is a nonzero con-
stant, what is ¢’ (z)?

42,

In Problems 4447, find the given quantities. The error func-
tion, erf(z), is defined by

erf(z) = % / e dt.
Jo

d d
44. E(merf(x)) 45. E(erf(ﬁ))

d z3 42 d 23 42
46 o (fy e ar) . = ([ e )
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6.5 THE EQUATIONS OF MOTION

The problem of a body moving freely under the influence of gravity near the surface of the earth
intrigued mathematicians and philosophers from Greek times onward and was finally solved by
Galileo and Newton. The question to be answered was: How do the velocity and the position of the
body vary with time? We define s to be the position, or height, of the body above a fixed point (often
ground level); v then is the velocity of the body measured upward. We assume that the acceleration
of the body is a constant, —g (the negative sign means that the acceleration is downward), so

dv
Acceleration = — = —g.
! a7

Thus, velocity is the antiderivative of —g:
v=—gt+C.
If the initial velocity is vg, then C' = vy, so
v = —gt + vg.
How about the position? We know that

ds

— =0v = —gt + vp.
I gt +vo

Therefore, we can find s by antidifferentiating again, giving:

t2
s = —97 + vot + C.

If the initial position is sg, then we must have

gt?
s = -5 + vot + sg.

Our derivation of the formulas for the velocity and the position of the body took little effort. It
hides an almost 2000-year struggle to understand the mechanics of falling bodies, from Aristotle’s
Physics to Galileo’s Dialogues Concerning Two New Sciences.

Though it is an oversimplification of his ideas, we can say that Aristotle’s conception of mo-
tion was primarily in terms of change of position. This seems entirely reasonable; it is what we
commonly observe, and this view dominated discussions of motion for centuries. But it misses a
subtlety that was brought to light by Descartes, Galileo, and, with a different emphasis, by Newton.
That subtlety is now usually referred to as the principle of inertia.

This principle holds that a body traveling undisturbed at constant velocity in a straight line
will continue in this motion indefinitely. Stated another way, it says that one cannot distinguish in
any absolute sense (that is, by performing an experiment), between being at rest and moving with
constant velocity in a straight line. If you are reading this book in a closed room and have no external
reference points, there is no experiment that will tell you, one way or the other, whether you are at
rest or whether you, the room, and everything in it are moving with constant velocity in a straight
line. Therefore, as Newton saw, an understanding of motion should be based on change of velocity
rather than change of position. Since acceleration is the rate of change of velocity, it is acceleration
that must play a central role in the description of motion.

How does acceleration come about? How does the velocity change? Through the action of
forces. Newton placed a new emphasis on the importance of forces. Newton’s laws of motion do
not say what a force is, they say how it acts. His first law is the principle of inertia, which says what
happens in the absence of a force—there is no change in velocity. His second law says that a force



6.5 THE EQUATIONS OF MOTION 323

acts to produce a change in velocity, that is, an acceleration. It states that F' = ma, where m is the
mass of the object, I is the net force, and « is the acceleration produced by this force.

Let’s return to Galileo. He demonstrated that a body falling under the influence of gravity does
so with constant acceleration. Furthermore, assuming we can neglect air resistance, this constant
acceleration is independent of the mass of the body. This last fact was the outcome of Galileo’s
famous observation that a heavy ball and a light ball dropped off the Leaning Tower of Pisa hit the
ground at the same time. Whether or not he actually performed this experiment, Galileo presented
a very clear thought experiment in the Dialogues to prove the same point. (This point was counter
to Aristotle’s more common sense notion that the heavier ball would reach the ground first.) Galileo
showed that the mass of the object did not appear as a variable in the equation of motion. Thus, the
same constant acceleration equation applies to all bodies falling under the influence of gravity.

Nearly a hundred years after Galileo’s experiment, Newton formulated his laws of motion and
gravity, which led to a differential equation describing the motion of a falling body. According to
Newton, acceleration is caused by force, and in the case of falling bodies, that force is the force of
gravity. Newton’s law of gravity says that the gravitational force between two bodies is attractive
and given by

GMm

F = 2

b

where G is the gravitational constant, m and M are the masses of the two bodies, and r is the
distance between them. This is the famous inverse square law. For a falling body, we take M to be
the mass of the earth and r to be the distance from the body to the center of the earth. So, actually, r
changes as the body falls, but for anything we can easily observe (say, a ball dropped from the Tower
of Pisa), it won’t change significantly over the course of the motion. Hence, as an approximation, it
is reasonable to assume that the force is constant. According to Newton’s second law,

Force = Mass x Acceleration.

Since the gravitational force is acting downward

GMm d?s
- =m—.
r2 dt?
Hence,
s _GM Constant
a2 2 '
If we define g = GM/r?, then
d?s B
aw -7

The fact that the mass cancels out of Newton’s equations of motion reflects Galileo’s experimental
observation that the acceleration due to gravity is independent of the mass of the body.

Exercises and Problems for Section 6.5

Exercises

1. An object is thrown upward at time ¢ = 0. After ¢ sec-
onds, its height is y = —4.9t% + 7t + 1.5 meters above
the ground.

(a) From what height was the object thrown?
(b) What is the initial velocity of the object? 3.
(c) What is the acceleration due to gravity?

2. An object thrown in the air on a planet in a distant galaxy

is at height s = —25¢% 4 72t + 40 feet at time ¢ sec-
onds after it is thrown. What is the acceleration due to
gravity on this planet? With what velocity was the object
thrown? From what height?

Attime ¢t = 0, a stone is thrown off a 250-meter cliff with
velocity 20 meters/sec downward. Express its height,
h(t), in meters above the ground as a function of time,
t, in seconds.
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Problems
4. An object is dropped from a 400-foot tower. When does  11. A particle of mass, m, acted on by a force, F', moves in
it hit the ground and how fast is it going at the time of the a straight line. Its acceleration, a, is given by Newton’s
impact? Law:
Lo F =ma.
5. The object in Problem 4 falls off the same 400-foot tower.
What would the acceleration due to gravity have to be to The work, W, done by a constant force when the particle
make it reach the ground in half the time? moves through a displacement, d. is
6. A ball that is dropped from a window hits the ground in W = Fd.
five seconds. How high is the window? (Give your an-
swer in feet.) The velocity, v, of the particle as a function of time, ¢, is
given in Figure 6.30. What is the sign of the work done
7. On the moon the acceleration due to gravity is 5 ft/sec. during each of the time intervals: [0, 1], [t1, t2], [t2, 3],
An astronaut jumps into the air with an initial upward ve- [ts, tal,[t2, t4]?
locity of 10 ft/sec. How high does he go? How long is the
astronaut off the ground?
v
8. Galileo was the first person to show that the distance trav-
eled by a body falling from rest is proportional to the
square of the time it has traveled, and independent of the ‘ ‘ Ly
mass of the body. Derive this result from the fact that the t‘l t; tN‘l
acceleration due to gravity is a constant.
9. While attempting to understand the motion of bodies un-
der gravity, Galileo stated that: Figure 6.30
The time in which any space is traversed by a
body starting at rest and uniformly accelerated
is equal to the time in which that same space 12. In his Dialogues Concerning Two New Sciences, Galileo
would be traversed by the same body moving wrote:
at a uniform speed whose value is the mean of The distances traversed during equal intervals
the highest velocity and the velocity just before of time by a body falling from rest stand to one
acceleration began. another in the same ratio as the odd numbers
(a) Write Galileo’s statement in symbols, defining all beginning with unity.
the symbols you use. Assume, as is now believed, that s = —(gt?) /2, where s
(b) Check Galileo’s statement for a body dropped off a is the total distance traveled in time ¢, and g is the accel-
100-foot building accelerating from rest under grav- eration due to gravity.
ity until it hits the ground. . .
(¢) Show why Galileo’s statement is true in general. (a) How far does a falling body travgl in the first second
(between ¢t = 0 and ¢ = 1)? During the second sec-
10. The acceleration due to gravity 2 meters from the ground ond (between ¢ = 1 and ¢ = 2)? The third second?

is 9.8 m/sec?. What is the acceleration due to gravity 100
meters from the ground? At 100,000 meters? (The radius
of the earth is 6.4 - 10° meters.)

The fourth second?
(b) What do your answers tell you about the truth of
Galileo’s statement?

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

e Constructing antiderivatives

Graphically, numerically, analytically.

e The family of antiderivatives

The indefinite integral.

e Differential equations

Initial value problems, uniform motion.

Construction theorem (Second Fundamental Theo-
rem of Calculus)
Constructing antiderivatives using definite integrals.

e Equations of motion
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REVIEW EXERCISES AND PROBLEMS FOR CHAPTER SIX

Exercises

In Exercises 1-2, sketch two functions F' such that F/ = f.
In one case let F'(0) = 0 and in the other, let F(0) = 1.

1. ——o 2.

w
—
(23
8
_|_
EN|
~
IsH
8
e
/N
o
~
_|_
| =
N———
IsH
ISS

5. /(2 + cost) dt 6. /761 dz
7 /(Sem + 2sinz) dx 8 /(m +3)% dx
3 2
9. /id.r 10. / (— - —)
. T . t o t?

11. /(em +5) dx 12.

1
13. / dx 14. / 2% dx
cos? x

15. /(x+1)2dx 16. /(m+1)3dx
/<x+1> e

2
+atl
19. /<&> e 20. /(3cost+3\/i) dt
x

Problems

17. / (x+1)°da 18.

2
21. /(3cosx—7sin;r)dm 22./<—+7rsinm) dx
x

23. /(Qex — 8cosz)dr

Find antiderivatives for the functions in Exercises 24-31.
Check by differentiation.

2. (1) = 7 25. f(z) = %

26. f(xz) =cosx 27. g(z) =sinzx
28. f(z)=e"—1 29. f(z) = 5e”

1

30. h(t) = % 3Mf@) =t

For Exercises 32-37, find an antiderivative F'(z) with
F'(z) = f(x) and F(0) = 4.

32. f(x) =a®

M. f(z)=Vz

36. f(x) =sinz

33, f(z) =2 +62% — 4
35. f(z) =€

37. f(z) =coszx

38. Uge the Fundamental Theorem of Calculus to evaluate
f1 (62% + 8z + 5)dx.

39. Show that y = 2™ + A is a solution of the differential
equation 3/ = na™"" for any value of A.

40. Find the general solution of the differential equation
y = 1/x, where x > 0.

41. Use the Fundamental Theorem to find the area under
f(z) = 2® between z = 0 and = = 3.

42. Find the exact area of the region bounded by the x-axis
and the graph of y = 2 — .

43. Calculate the exact area above the graph of y = % (%Jc) ’
and below the graph of y = cosx. The curves intersect

atz = +7/3.

44. Find the exact area of the shaded region in Figure 6.31
between y = 322 — 3 and the z-axis.

y=3x2 -3
- x
_/i 3
Figure 6.31

45. (a) Find the exact area between f(z) = z°— 72> +10z,
the z-axis, = 0, and x = 5.

(b) Find [ 05(x3 — 72% + 10z) dz exactly and interpret
this integral in terms of areas.
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46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.
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Find the exact area between the curve y = e* — 2 and
the z-axis for 0 < x < 2.

Consider the area between the curve y = e — 2 and the
x-axis, between x = 0 and z = c for ¢ > 0. Find the
value of ¢ making the area above the axis equal to the
area below the axis.

The area under 1/+/x on the interval 1 < z < b is equal
to 6. Find the value of b using the Fundamental Theorem.

Find the exact positive value of ¢ which makes the area
under the graph of y = ¢(1 — z*) and above the z-axis
equal to 1.

Sketch the parabola y = x(xz — ) and the curve y =
sin x, showing their points of intersection. Find the exact
area between the two graphs.

Find the exact average value of f(z) = +/x on the in-
terval 0 < = < 9. Illustrate your answer on a graph of
fla) = V.

For t in years, 0 < t < 3, the rate of discharge of a
pollutant is estimated to be #* — 14t 4+ 49 cubic meters
per year. What is the total amount discharged during the
three years?

If A(r) represents the area of a circle of radius r and
C'(r) represents its circumference, it can be shown that
A’(r) = C(r). Use the fact that C(r) = 27 to obtain
the formula for A(r).

If V(r) represents the volume of a sphere of radius 7
and S(r) represents its surface area, it can be shown that
V’(r) = S(r). Use the fact that S(r) = 477 to obtain
the formula for V' (r).

For a function f, you are given the graph of the derivative
f in Figure 6.32 and that f(0) = 50.

(a) On the interval 0 < ¢t < 5, at what value of ¢ does
f appear to reach its maximum value? Its minimum
value?

(b) Estimate these maximum and minimum values.

(c) Estimate f(5) — f(0).

10
5
@) .

1] 2\3| 4

-5
S

—10
Figure 6.32

Assume f is given by the graph in Figure 6.33. Suppose
f is continuous and that f(0) = 0.

(a) Find f(3) and f(7).
(b) Find all z with f(z) = 0.
(c) Sketch a graph of f over the interval 0 < z < 7.

2 L
oo f'(z)
1To—o o—0
1+ T
1 234567
-1+ oo
—2 o—o0
Figure 6.33

For Problems 57-58 the graph of f'(z) is given. Sketch a pos-
sible graph for f(x). Mark the points x ... z4 on your graph
and label local maxima, local minima and points of inflection.

ST f@)

N

r1 w2 w3 T4

58. ‘

1
Tl T2

Calculate the derivatives in Problems 59-68.

d [* d [* 1
9. — 1+12 .= —
5 dm/l +1t2dt 60 dt/g) i dx
61 i/r arccos(t”) dt 62 4 7log(az6)dyc
dz [, dt J,
d [~ d [°
63. — / 1412 dt 64. — / cos(z®) da
dz [/, dat |,
d e® 5 d 17 5
65. %/5 cos(t”) dt 66. o Sinmtan tdt
d cost o d 4sint 14z
67. — 4" d 68. —
dt /s ‘ i), 1+a2
69. Let F(2) = f:/2(si11t /t) dt. Find the value(s) of z: be-

tween 7 /2 and 37 /2 for which F'(z) has a global maxi-
mum and global minimum.

70. The graphs of three functions are given in Figure 6.34.

Determine which is f, which is f’, and which is
J: Or f(t) dt. Explain your answer.

C
Figure 6.34

71. Write an expression for the function which is an an-
T 2
tiderivative of e”

@ (0,3)

and which passes through the point
(b) (_ 1? 5)



72. An object is attached to a coiled spring which is sus-
pended from the ceiling of a room. The function h(t)
gives the height of the object above the floor of the room
at time, t. The graph of 1/(t) is given in Figure 6.35.
Sketch a possible graph of A(t).

(1)
t

Figure 6.35

73. The acceleration, a, of a particle as a function of time is
shown in Figure 6.36. Sketch graphs of velocity and po-
sition against time. The particle starts at rest at the origin.

Figure 6.36

74. A car moves along a straight line with velocity, in
feet/second, given by

v(t)=6—2t fort>0.

(a) Describe the car’s motion in words. (When is it mov-
ing forward, backward, and so on?)

(b) The car’s position is measured from its starting
point. When is it farthest forward? Backward?

(c¢) Find s, the car’s position measured from its starting
point, as a function of time.

75. The angular speed of a car engine increases from 1100
revs/min to 2500 revs/min in 6 sec.

(a) Assuming that it is constant, find the angular accel-
eration in revs/min.

(b) How many revolutions does the engine make in this
time?

76. A helicopter rotor slows down at a constant rate from 350
revs/min to 260 revs/min in 1.5 minutes.

(a) Find the angular acceleration during this time inter-
val. What are the units of this acceleration?

(b) Assuming the angular acceleration remains constant,
how long does it take for the rotor to stop? (Mea-
sure time from the moment when speed was 350
revs/min.)

(¢) How many revolutions does the rotor make between
the time the angular speed was 350 revs/min and
stopping?

CAS Challenge Problems
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77. An object is thrown vertically upward with a velocity of
80 ft/sec.

(a) Make a table showing its velocity every second.

(b) When does it reach its highest point? When does it
hit the ground?

(¢) Using your table, write left and right sums which
under- and overestimate the height the object attains.

(d) Use antidifferentiation to find the greatest height it
reaches.

78. A car, initially moving at 60 mph, has a constant de-
celeration and stops in a distance of 200 feet. What is
its deceleration? (Give your answer in ft/sec?. Note that
1 mph = 22/15 ft/sec.)

79. The birth rate, B, in births per hour, of a bacteria popu-
lation is given in Figure 6.37. The curve marked D gives
the death rate, in deaths per hour, of the same population.

(a) Explain what the shape of each of these graphs tells
you about the population.

(b) Use the graphs to find the time at which the net rate
of increase of the population is at a maximum.

(¢) Attime ¢t = 0 the population has size N. Sketch the
graph of the total number born by time ¢. Also sketch
the graph of the number alive at time ¢. Estimate the
time at which the population is a maximum.

bacteria/hour
B
D
: : : — time (hours)
5 10 15
Figure 6.37

80. Water flows at a constant rate into the left side of the W-
shaped container in Figure 6.38. Sketch a graph of the
height, H, of the water in the left side of the container as
a function of time, t. The container starts empty.

Figure 6.38

81. (a) Set up a right-hand Riemann sum for f: x3dx using
n subdivisions. What is Az? Express each x;, for

i = 1,2,...,n, in terms of 7.
(b) Use a computer algebra system to find an expression

for the Riemann sum in part (a); then find the limit
of this expression as n — oo.

(c) Simplify the final expression and compare the result
to that obtained using the Fundamental Theorem of
Calculus.
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82.

83.

84.
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(a) Use a computer algebra system to find f e2* dx,
[ €* dx,and [ 17 dax.

(b) Using your answers to part (a), conjecture a formula
for f e dz, where a and b are constants.

(¢) Check your formula by differentiation. Explain
which differentiation rules you are using.

(a) Use acomputer algebra system to find f sin(3x) dw,
fsin(4x) dz, and f sin(3z — 2) dx.

(b) Using your answers to part (a), conjecture a formula

for [ sin(ax + b) dz, where a and b are constants.

Check your formula by differentiation. Explain

which differentiation rules you are using.

(c)

(a)

Use a computer algebra system to find

r—2 r—3 r—1
./x_ldac, /a:—ldx’ and ./x_de.

(b)

If a and b are constants, use your answers to part (a)
to conjecture a formula for

T—a
/:If—bdx’

CHECK YOUR UNDERSTANDING

Are the statements in Problems 1-26 true or false? Give an
explanation for your answer.

N A U AW N e

10.

11.

12.

13.

. A function f(z) has at most one derivative.

. An antiderivative of 3v/z + 1 is 2(z + 1)%/2.

. An antiderivative of 327 is z® 4 7.

. An antiderivative of 1 /z is In |z| + In 2.

. An antiderivative of e *" is —e " /2.

. [ f(@)dz = (1/z) [xf(x)da.

. If F(z) is an antiderivative of f(z) and G(z) = F'(z) +

2, then G(z) is an antiderivative of f(x).

. If F(z) is an antiderivative of f(x), then y = F(z)is a

solution to the differential equation dy/dx = f(x).

. If y = F(z) is a solution to the differential equation

dy/dx = f(z), then F'(z) is an antiderivative of f(z).

If an object has constant nonzero acceleration, then the
position of the object as a function of time is a quadratic
polynomial.

If F(xz) and G(z) are two antiderivatives of f(z) for
—o0 < z < oo and F(5) > G(5), then F(10) >
G(10).

In an initial value problem for the differential equation
dy/dx = f(x), the value of y at z = 0 is always speci-
fied.

If f(x) is positive for all z, then there is a solution of
the differential equation dy/dz = f(xz) where y(z) is
positive for all .

85.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.
24.
25.

26.

(¢) Check your formula by differentiation. Explain
which rules of differentiation you are using.

(a) Use a computer algebra system to find

1 1
/ TR / @ D"

and

1
/ (z —1)(z +3) dr.

(b) If a and b are constants, use your answers to part (a)
to conjecture a formula for

/ e

(¢) Check your formula by differentiation. Explain
which rules of differentiation you are using.

If f(z) > 0 for all = then every solution of the differen-
tial equation dy/dx = f(x) is an increasing function.

If two solutions of a differential equation dy/dz = f(x)
have different values at « = 3 then they have different
values at every x.

If the function y = f(x) is a solution of the differ-
ential equation dy/dx = sinx/xz, then the function
y = f(x) + 5 is also a solution.

There is only one solution y(t) to the initial value prob-
lem dy/dt = 3t2, y(1) = =.

If F(x) is an antiderivative of f(z) and G(z) is an an-
tiderivative of g(x), then F'(x) - G(z) is an antiderivative
of f(z) - g(=).

If F(z) and G(x) are both antiderivatives of f(x) on an
interval then F'(z) — G(x) is a constant function.

Every continuous function has an antiderivative.

A ball thrown downward at 10 feet per second from the
top of a 100 foot building hits the ground in less than
3 seconds.

J, sin(t?)dt is an antiderivative of sin(z?).
If F(z) = [" f(t)dt, then F(5) — F(3) = [} f(t)dt.
If F(z) = foz f(t)dt, then F' () must be increasing.

If F(z) = fox f(®)dt and G(z) = f; f(t)dt, then
F(z) =G(z)+C.

If F(z) = fox f(t)dt and G(z) = fox g(t)dt, then
F(z) +G(z) =[] (f(t) +g(t))dt.
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1. Distribution of Resources

Whether a resource is distributed evenly among members of a population is often an im-
portant political or economic question. How can we measure this? How can we decide if the
distribution of wealth in this country is becoming more or less equitable over time? How can
we measure which country has the most equitable income distribution? This problem describes
a way of making such measurements. Suppose the resource is distributed evenly. Then any
20% of the population will have 20% of the resource. Similarly, any 30% will have 30% of
the resource and so on. If, however, the resource is not distributed evenly, the poorest p% of
the population (in terms of this resource) will not have p% of the goods. Suppose F'(x) rep-
resents the fraction of the resources owned by the poorest fraction x of the population. Thus
F(0.4) = 0.1 means that the poorest 40% of the population owns 10% of the resource.

(a) What would F be if the resource were distributed evenly?

(b) What must be true of any such F? What must F(0) and F(1) equal? Is F increasing or
decreasing? Is the graph of I concave up or concave down?

(¢) Gini’s index of inequality, GG, is one way to measure how evenly the resource is distributed.
It is defined by

1
G=2/ [ — F(2)] da.
0
Show graphically what G represents.

2. Yield from an Apple Orchard
Figure 6.39 is a graph of the annual yield, y(t), in bushels per year, from an orchard ¢ years
after planting. The trees take about 10 years to get established, but for the next 20 years they
give a substantial yield. After about 30 years, however, age and disease start to take their toll,
and the annual yield falls off.!

(a) Represent on a sketch of Figure 6.39 the total yield, F/(M), up to M years, with 0 < M <
60. Write an expression for F'(M) in terms of y(t).

(b) Sketch a graph of F/(M) against M for 0 < M < 60.

(¢) Write an expression for the average annual yield, a(M), up to M years.

(d) When should the orchard be cut down and replanted? Assume that we want to maximize
average revenue per year, and that fruit prices remain constant, so that this is achieved by
maximizing average annual yield. Use the graph of y(t) to estimate the time at which the
average annual yield is a maximum. Explain your answer geometrically and symbolically.

y (annual yield)
500
400 El ™
300
200
100
10 20 20 10 50 t (time in years)
Figure 6.39

3. Slope Fields
Suppose we want to sketch the antiderivative, ', of the function f. To get an accurate graph
of I, we must be careful about making I have the right slope at every point. The slope of F' at
any point (x,y) on its graph should be f(x), since F'(x) = f(x). We arrange this as follows:
at the point (z,y) in the plane, draw a small line segment with slope f(x). Do this at many
points. We call such a diagram a slope field. If f(x) = x, we get the slope field in Figure 6.40.

"From Peter D. Taylor, Calculus: The Analysis of Functions, (Toronto: Wall & Emerson, Inc., 1992).
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Figure 6.40: Slope field of Figure 6.41: Slope field of
fla)== flz) = e’

Notice how the lines in Figure 6.40 seem to be arranged in a parabolic pattern. This is
because the general antiderivative of z is 22/2 + C, so the lines are all the tangent lines to the
family of parabolas y = x2/2 + C. This suggests a way of finding antiderivatives graphically
even if we can’t write down a formula for them: plot the slopes, and see if they suggest the
graph of an antiderivative. For example, if you do this with f(z) = e=*", which is one of the
functions that does not have an elementary antiderivative, you get Figure 6.41.

You can see the ghost of the graph of a function lurking behind the slopes in Figure 6.41;
in fact there is a whole stack of them. If you move across the plane in the direction suggested by
the slope field at every point, you will trace out a curve. The slope field is tangent to the curve
everywhere, so this is the graph of an antiderivative of e’

(a) (i) Sketch a graph of f(t) = Sl;—lt

(ii) What does your graph tell you about the behavior of
Si(z) = / sin(t) g,
0 t

for x > 0? Is Si(z) always increasing or always decreasing? Does Si(z) cross the

x-axis for x > 0?7
int
(iii) By drawing the slope field for f(t) = Sl% decide whether lim Si(z) exists.
T—00

(b) (i) Use your calculator or computer to sketch a graph of y = 2% for 0 < z < 20.
(ii) Using your answer to part (i), sketch by hand a graph of the function F', where

F(z) = / it dt.
0

(iii) Use a slope field program to check your answer to part (ii).
(c) Let F(z) be the antiderivative of sin(z?) satisfying F'(0) = 0.
(i) Describe any general features of the graph of F' that you can deduce by looking at the
graph of sin(z?) in Figure 6.42.
(ii) By drawing a slope field (using a calculator or computer), sketch a graph of F'. Does
F ever cross the z-axis in the region > 0? Does lim F(z) exist?

T— 00

Y y=sin (xz)

Figure 6.42



