Contents

2.1 How do We Measure Speed?

Average and Instantaneous Velocity

Velocity versus Speed

Defining Instantaneous Velocity

Visualizing Velocity: Slope of Curve

Computing the Instantaneous Velocity . . . .
2.2 The Derivative at a Point

Average Rate of Change

Average Rate of Change versus
Absolute Change

Blowing Up a Balloon
Instantaneous Rate of Change: The Derivative
Visualizing the Derivative: Slope of Curve and
Slope of Tangent
Why Radians Not Degrees?

Estimating the Derivative of an
Exponential Function . . .

Computing the Derivative of 1/x at z = 2

2.3 The Derivative Function
The Derivative Function: Graphically
What Does the Derivative Tell Us Graphically?
The Derivative Function: Numerically . . . .
Improving Numerical Estimates . . .
Derivative Function: From a Formula
Derivative of a Constant Function
Derivative of a Linear Function
Derivative of a Power Function
2.4 Interpretations of the Derivative
An Alternative Notation for the Derivative . .
Using Units to Interpret the Derivative . . . .
2.5 The Second Derivative

Interpretation of the Second Derivative as a
Rate of Change

Velocity and Acceleration
2.6 Differentiability

What Does It Mean for a Function to be
Differentiable?

Some Nondifferentiable Functions . .
Differentiability and Continuity
REVIEW PROBLEMS
CHECK YOUR UNDERSTANDING
PROJECTS




70

Chapter Two KEY CONCEPT: THE DERIVATIVE

2.1 HOw DO WE MEASURE SPEED?

The speed of an object at an instant in time is surprisingly difficult to define precisely. Consider
the statement: “At the instant it crossed the finish line, the horse was traveling at 42 mph.” How can
such a claim be substantiated? A photograph taken at that instant will show the horse motionless—it
is no help at all. There is some paradox in trying to study the horse’s motion at a particular instant
in time, since by focusing on a single instant we stop the motion!

Problems of motion were of central concern to Zeno and other philosophers as early as the fifth
century B.C. The modern approach, made famous by Newton’s calculus, is to stop looking for a
simple notion of speed at an instant, and instead to look at speed over small time intervals containing
the instant. This method sidesteps the philosophical problems mentioned earlier but introduces new
ones of its own.

We illustrate the ideas discussed above by an idealized example, called a thought experiment.
It is idealized in the sense that we assume that we can make measurements of distance and time as
accurately as we wish.

A Thought Experiment: Average and Instantaneous Velocity

We look at the speed of a small object (say, a grapefruit) that is thrown straight upward into the
air at £ = 0 seconds. The grapefruit leaves the thrower’s hand at high speed, slows down until it
reaches its maximum height, and then speeds up in the downward direction and finally, “Splat!”
(See Figure 2.1.)

Suppose that we want to determine the speed, say, at ¢ = 1 second. Table 2.1 gives the height,
y, of the grapefruit above the ground as a function of time. During the first second the grapefruit
travels 90 — 6 = 84 feet, and during the second second it travels only 142 — 90 = 52 feet. Hence
the grapefruit traveled faster over the first interval, 0 < ¢ < 1, than the second interval, 1 < ¢ < 2.

T Velocity
negative
Velocity l Table 2.1 Height of the grapefruit above the ground
positive
Start Ground t (sec) 0 1 2 3 4 5 6
“Splatl” y (feet) 6 90 142 162 150 106 30

Figure 2.1: The grapefruit’s path is

straight up and down

Velocity versus Speed

From now on, we will distinguish between velocity and speed. Suppose an object moves along a
line. We pick one direction to be positive and say that the velocity is positive if it is in the same
direction, and negative if it is in the opposite direction. For the grapefruit, upward is positive and
downward is negative. (See Figure 2.1.) Speed is the magnitude of the velocity and so is always
positive or zero.

If s(t) is the position of an object at time ¢, then the average velocity of the object over the
interval a <t < bis
Change in position  s(b) — s(a)

Average velocity = Changeintime  b—a

In words, the average velocity of an object over an interval is the net change in position
during the interval divided by the change in time.
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Example 1

Solution

Compute the average velocity of the grapefruit over the interval 4 <t < 5. What is the significance
of the sign of your answer?

During this interval, the grapefruit moves (106 — 150) = —44 feet. Therefore the average velocity is
—44 ft/sec. The negative sign means the height is decreasing and the grapefruit is moving downward.

Example 2

Solution

Average
velocity
66.4 ft/sec

Average
velocity
69.6 ft/sec

Compute the average velocity of the grapefruit over the interval 1 < ¢ < 3.

Average velocity = (162 — 90)/(3 — 1) = 72/2 = 36 ft/sec.

The average velocity is a useful concept since it gives a rough idea of the behavior of the
grapefruit: If two grapefruits are hurled into the air, and one has an average velocity of 10 ft/sec
over the interval 0 < ¢ < 1 while the second has an average velocity of 100 ft/sec over the same
interval, the second one is moving faster.

But average velocity over an interval does not solve the problem of measuring the velocity of
the grapefruit at exactly t = 1 second. To get closer to an answer to that question, we have to look
at what happens near ¢ = 1 in more detail. The data' in Figure 2.2 shows the average velocity over
small intervals on either side of ¢ = 1.

Notice that the average velocity before t = 1 is slightly more than the average velocity after
t = 1. We expect to define the velocity at t = 1 to be between these two average velocities. As the
size of the interval shrinks, the values of the velocity before ¢ = 1 and the velocity after t = 1 get
closer together. In the smallest interval in Figure 2.2, both velocities are 68.0 ft/sec (to one decimal
place), so we define the velocity at ¢ = 1 to be 68.0 ft/sec (to one decimal place).

Average
velocity
67.8 ft/sec

Average
velocity
68.2 ft/sec

\ \\

Average
velocity
68.0 ft/sec

Average
velocity
68.0 ft/sec

Figure 2.2: Average velocities over intervals on either side of ¢ = 1: showing successively smaller intervals

Of course, if we calculate to more decimal places, the average velocities before and after t = 1
would no longer agree. To calculate the velocity at ¢ = 1 to more decimal places of accuracy,
we take smaller and smaller intervals on either side of ¢ = 1 until the average velocities agree to
the number of decimal places we want. In this way, we can estimate the velocity at £ = 1 to any
accuracy.

IThe data is in fact calculated from the formula y = 6 4+ 100t — 16¢2.
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Defining Instantaneous Velocity Using Limit Notation

When we take smaller and smaller intervals, it turns out that the average velocities get closer and
closer to 68 ft/sec. It seems natural, then, to define instantaneous velocity at the instant ¢ = 1 to
be 68 ft/sec. Its definition depends on our being convinced that smaller and smaller intervals give
average speeds that come arbitrarily close to 68; that is, the average speeds approach 68 as a limit.

Notice how we have replaced the original difficulty of computing velocity at a point by a search
for an argument to convince ourselves that the average velocities approach a limit as the time inter-
vals shrink in size. Showing that the limit is exactly 68 requires the precise definition of limit given
in Section 1.8.

To define instantaneous velocity at an arbitrary point { = a, we use the same method as for
t = 1. On small intervals of size h around ¢t = a, we calculate

s(a+h) —s(a)
—

The instantaneous velocity is the number that the average velocities approach as the intervals de-
crease in size, that is, as i becomes smaller. So we make the following definition:

Average velocity =

Let s(t) be the position at time ¢. Then the instantaneous velocity at ¢ = a is defined as

Instantaneous velocity lim s(a+h) —s(a)
att =a h—0 h '

In words, the instantaneous velocity of an object at time ¢ = a is given by the limit of the
average velocity over an interval, as the interval shrinks around a.

This limit refers to the number that the average velocities approach as the intervals shrink. To
estimate the limit, we look at intervals of smaller and smaller, but never zero, length.

Visualizing Velocity: Slope of Curve

Now we visualize velocity using a graph of height. The cornerstone of the idea is the fact that, on
a very small scale, most functions look almost like straight lines. Imagine taking the graph of a
function near a point and “zooming in” to get a close-up view. (See Figure 2.3.) The more we zoom
in, the more the curve appears to be a straight line. We call the slope of this line the slope of the
curve at the point.

Curve More linear Almost completely
. linear

Slope of line
= Slope of
curve at P

Figure 2.3: Estimating the slope of the curve at the point by “zooming in”

To visualize the instantaneous velocity, we think about how we calculated it. We took average
velocities over small intervals containing at ¢ = 1. Two such velocities are represented by the slopes
of the lines in Figure 2.4. As the length of the interval shrinks, the slope of the line gets closer to the
slope of the curve at ¢ = 1.



2.1 HOW DO WE MEASURE SPEED? 73

Y y = s(t)
<1 Slope = Average velocity
! overl <t <35

Slope of curve = i — Slope = Average velocity
Instantaneous =~ ——— | | overl] <t<2
velocity at# = 1 | ! !

o i

. |

I 1 Ly

1 2 3.5

Figure 2.4: Average velocities over small intervals

The instantaneous velocity is the slope of the curve at a point.

Let’s go back to the grapefruit. Figure 2.5 shows the height of the grapefruit plotted against
time. (Note that this is not a picture of the grapefruit’s path, which is straight up and down.)
How can we visualize the average velocity on this graph? Suppose y = s(t). We consider the
interval 1 < ¢ < 2 and the expression
Change in position  s(2) —s(1) 142 —90

Average velocity = Changeintime ~  2-1 1 = 52 ft/sec.

Now s(2) — s(1) is the change in position over the interval, and it is marked vertically in Figure 2.5.
The 1 in the denominator is the time elapsed and is marked horizontally in Figure 2.5. Therefore,

Change in position
Change in time

Average velocity = = Slope of line joining B and C.

(See Figure 2.5.) A similar argument shows the following:

The average velocity over any time interval ¢ < ¢ < b is the slope of the line joining the
points on the graph of s(¢) corresponding to ¢ = a and ¢t = b.

Figure 2.5 shows how the grapefruit’s velocity varies during its journey. At points A and B
the curve has a large positive slope, indicating that the grapefruit is traveling up rapidly. Point D
is almost at the top: the grapefruit is slowing down. At the peak, the slope of the curve is zero:
the fruit has slowed to zero velocity for an instant in preparation for its return to earth. At point £
the curve has a small negative slope, indicating a slow velocity of descent. Finally, the slope of the
curve at point GG is large and negative, indicating a large downward velocity that is responsible for
the “Splat.”

) Velocity zero
height
y (height) Dy
c FE
142
Grapefruit
rr?O\?ing 90 Grapefruit
ast movin:
(upward) fast o
G (downward)
M
A /

t (time)

Figure 2.5: The height, y, of the grapefruit at time ¢
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Using Limits to Compute the Instantaneous Velocity
Suppose we want to calculate the instantaneous velocity for s(t) = t? at t = 3. We must find:

_ 2 _
lim s(3+h) —5(3) = lim (3+h) 9.
h—0 h h—0 h

We show two possible approaches.

3+h)?2-9
Example 3 Estimate }llin%) % numerically.
Solution The limit is the value approached by this expression as i approaches 0. The values in Table 2.2
seem to be converging to 6 as & — 0. So it is a reasonable guess that
2 _
i BFR" =9 _
h—0 h

However, we cannot be sure that the limit is exactly 6 by looking at the table. To calculate the limit
exactly requires algebra.

Table 2.2 Values of ((3 + h)? —9) /h near h = 0

h —0.1 —0.01 —0.001 0.001 0.01 0.1
(B+h)?>=9)/h | 59 5.99 5999 | 6.001 | 6.01 | 6.1
3+h)2-9
Example 4 Use algebra to find %ir% %
Solution Expanding the numerator gives
(3+h)*—9 9+46h+h*—9 G6h+h?
h N h - h
Since taking the limit as ~ — 0 means looking at values of & near, but not equal, to 0, we can cancel
h, giving
2 _
jim G20 64,
h—0 h h—0
As h approaches 0, the values of (6 + h) approach 6, so
2 _
lim BHh-9 = lim (6 + h) = 6.
h—0 h h—0

Exercises and Problems for Section 2.1

Exercises

1. The distance, s, a car has traveled on a trip is shown in 2. At time ¢ in seconds, a particle’s distance s(¢), in cm,

the table as a function of the time, ¢, since the trip started. from a point is given in the table. What is the average
Find the average velocity between ¢t = 2 and t = 5. velocity of the particle from ¢t = 3 to ¢t = 10?
t(hours) | O | 1 2 3 4 5 t 0} 3 6 10 13

s (km) 0| 45 | 135 | 220 | 300 | 400 s(¢) | 0| 72|92 | 144 | 180




3. The table gives the position of a particle moving along
the x-axis as a function of time in seconds, where x is
in angstroms. What is the average velocity of the particle
fromt =2tot =8?

t o]l 24| 6 |8
zt) | 0| 14| 6| -18| —4

4. Figure 2.6 shows a particle’s distance from a point. What
is the particle’s average velocity fromt = 0tot = 3?

distance (meters) (t) distance (meters) s(t)

5 / 7 )
3 b /
3
1 1
t (sec)
2 4 2
Figure 2.6 Figure 2.7

5. Figure 2.7 shows a particle’s distance from a point. What
is the particle’s average velocity from¢ = 1to ¢t = 3?

6. At time ¢ in seconds, a particle’s distance s(t), in cen-
timeters, from a point is given by s(t) = 4 + 3sint.
What is the average velocity of the particle from ¢ = 7 /3
tot="Tmw/3?

Problems

t (sec)
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7. At time ¢ in seconds, a particle’s distance s(¢), in mi-
crometers (;4m), from a point is given by s(¢) = e’ — 1.
What is the average velocity of the particle from ¢ = 2 to
t =47

8. In a time of ¢ seconds, a particle moves a distance of s
meters from its starting point, where s = 3t2.

(a) Find the average velocity between ¢ = 1 and ¢t =
1+ hif:
(i) h=0.1, (i) h=0.01, (i) h = 0.001.
(b) Use your answers to part (a) to estimate the instan-
taneous velocity of the particle at time ¢ = 1.

9. In a time of ¢ seconds, a particle moves a distance of s
meters from its starting point, where s = 4t + 3.

(a) Find the average velocity between ¢ = 1 and ¢t =
1+ hif:

(i) h=0.1, (i) h=0.01, @Gii)) h=0.001.
(b) Use your answers to part (a) to estimate the instan-

taneous velocity of the particle at time ¢ = 1.

10. In a time of ¢ seconds, a particle moves a distance of s
meters from its starting point, where s = sin(2t).

(a) Find the average velocity between t = 1 and ¢t =
1+ hif:

(i) h=01, (i) h=0.01, (i) h=0.001.

(b) Use your answers to part (a) to estimate the instan-
taneous velocity of the particle at time ¢ = 1.

Estimate the limits in Problems 11-14 by substituting smaller
and smaller values of h. For trigonometric functions, use ra-
dians. Give answers to one decimal place.

3 — —
1. 1im 8RN =27 12. lim $P =1
h—0 h h—0 h
D! ettt e
13 lim —3 4. Jim —

15. Match the points labeled on the curve in Figure 2.8 with
the given slopes.

Slo& Point F
-3 —
ol A
el TN
1
2 I —
Figure 2.8

16. For the function shown in Figure 2.9, at what labeled
points is the slope of the graph positive? Negative? At
which labeled point does the graph have the greatest (i.e.,
most positive) slope? The least slope (i.e., negative and
with the largest magnitude)?

B C
A b F

Figure 2.9

17. A car is driven at a constant speed. Sketch a graph of the
distance the car has traveled as a function of time.

18. A car is driven at an increasing speed. Sketch a graph of
the distance the car has traveled as a function of time.

19. A car starts at a high speed, and its speed then decreases
slowly. Sketch a graph of the distance the car has traveled
as a function of time.
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20. For the graph y = f(z) in Figure 2.10, arrange the fol-  22. A particle moves at varying velocity along a line and
lowing numbers from smallest to largest: s = f(t) represents the particle’s distance from a point
as a function of time, ¢. Sketch a possible graph for f if

* Theslope of the graph at A1 the average velocity of the particle between ¢ = 2 and
e The slope of the graph at B. . . .

e The slope of the graph at C. t = 6 is the same as the instantaneous velocity at t = 5.
e The slope of the line AB. 23. Find the average velocity over the interval 0 < ¢ < 0.2,
e The number 0. and estimate the velocity at ¢ = 0.2 of a car whose posi-
e The number 1. tion, s, is given by the following table.

t(sec) | O 02 04 06 08 1.0
s(fty {0 05 1.8 38 65 9.6

24. A ball is tossed into the air from a bridge, and its height,
y (in feet), above the ground ¢ seconds after it is thrown
is given by

Figure 2.10

y = f(t) = =16t + 50t + 36.
21. The graph of f(t) in Figure 2.11 gives the position of a

particle at time ¢. List the following quantities in order, (a) How high above the ground is the bridge?

smallest to largest. (b) What is the average velocity of the ball for the first
e A, average velocity between ¢t = 1 and t = 3, second? .
e B, average velocity between ¢ = 5 and t = 6 (c) Approximate the velocity of the ball at t = 1 sec-
e (), instantaneous velocity at ¢t = 1, ond. . . .
e D, instantaneous velocity at ¢ = 3 (d) Graph f, and determine the maximum height the
e I, instantaneous velocity at £ = 5 ball reaches. What is the velocity at the time the ball
e F, instantaneous velocity at £ = 6. is at the peak?

(e) Use the graph to decide at what time, ¢, the ball
reaches its maximum height.

4 [
3 i Use algebra to evaluate the limits in Problems 25-28.
[ t
2 b 2 3 _
25. lim @2+h) -4 26. lim A+h)7 -1
1 h—0 h h—0 h
L . 32+ h)?—12
t
12 3 45 6 27. lim 7
Figure 2.11
2 _ (o _ 12
28. lim GF) — G-
h—0 2h

2.2 THE DERIVATIVE AT A POINT

Average Rate of Change
In Section 2.1, we looked at the change in height divided by the change in time, which tells us

Average rate of change of height  s(a + h) — s(a)
with respect to time N h '

This ratio is called the difference quotient. Now we apply the same analysis to any function f, not
necessarily a function of time. We say:

Average rate of change of f _ fla+h)— f(a)

over the interval from a to a + h h
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The numerator, f(a + h) — f(a), measures the change in the value of f over the interval from a to
a + h. The difference quotient is the change in f divided by the change in x. See Figure 2.12.

f(z)

Slope = Average rate
of change
= feth=—s(@)

|
1
a a+h

Figure 2.12: Visualizing the average rate of change of f

Although the interval is no longer necessarily a time interval, we still talk about the average
rate of change of f over the interval. If we want to emphasize the independent variable, we talk
about the average rate of change of [ with respect to x.

Average Rate of Change versus Absolute Change

The average rate of change of a function over an interval is not the same as the absolute change.
Absolute change is just the difference in the values of f at the ends of the interval:

fla+h)—f(a).
The average rate of change is the absolute change divided by the size of the interval:

fla+h) = f(a)
- :

The average rate of change tells how quickly (or slowly) the function changes from one end of the
interval to the other, relative to the size of the interval. It is often more useful to know the rate of
change than the absolute change. For example, if someone offers you a $100 salary, you will want
to know how long to work to make that money. Just knowing the absolute change in your money,
$100, is not enough, but knowing the rate of change (i.e., $100 divided by the time it takes to make
it) helps you decide whether or not to accept the salary.

Blowing Up a Balloon

Consider the function which gives the radius of a sphere in terms of its volume. For example, think
of blowing air into a balloon. You’ve probably noticed that a balloon seems to blow up faster at the
start and then slows down as you blow more air into it. What you’re seeing is variation in the rate of
change of the radius with respect to volume.

Example 1

The volume, V/, of a sphere of radius 7 is given by V' = 4773 /3. Solving for 7 in terms of V' gives

= (V) = (%)UB-

Calculate the average rate of change of r with respect to V' over the intervals 0.5 < V' < 1 and
1<V <15
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Solution Using the formula for the average rate of change gives
Average rate of change ~ f(1) — f(0.5) 5 (i)l/3 B (1;5>1/3 ~0.96
of radius for 0.5 <V <1 0.5 A 4m o

Average rate of change ~ f(1.5) — f(1) 5 (4_5) 1/3 B (1>1/3 ~ ois
of radius for 1 <V < 1.5 0.5 e

So we see that the rate decreases as the volume increases.

Instantaneous Rate of Change: The Derivative

We define the instantaneous rate of change of a function at a point in the same way that we defined
instantaneous velocity: we look at the average rate of change over smaller and smaller intervals.
This instantaneous rate of change is called the derivative of f at a, denoted by f’(a).

The derivative of f at a, written f/(a), is defined as

fla+h) - f(a)

Rate of change — i) = D .
of fata h—0 h

If the limit exists, then f is said to be differentiable at a.

To emphasize that f(a) is the rate of change of f(x) as the variable = changes, we call f/(a) the
derivative of f with respect to = at = a. When the function y = s(t) represents the position of an
object, the derivative s () is the velocity.

Example 2 By choosing small values for h, estimate the instantaneous rate of change of the radius, r, of a
sphere with respect to change in volume at V' = 1.

Solution The formula for » = f(V') is given in Example 1. With ~ = 0.01 and » = —0.01, we have the
difference quotients

f(LO1) — f(1) f(0.99) — f(1)
0.01 ~ 0.2061 and 0.0l
With A = 0.001 and h = —0.001,

FL001) — £(1) £(0.999) = £(1)

~ 0.2075.

~ 0.2069.

The values of these difference quotients suggest that the limit is between 0.2067 and 0.2069. We
conclude that the value is about 0.207; taking smaller i values confirms this. So we say

£() = Instantaneous rate of change of radius ~ 0.207.

with respect to volume at V' =1

In this example we found an approximation to the instantaneous rate of change, or derivative,
by substituting in smaller and smaller values of h. Now we see how to visualize the derivative.
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Visualizing the Derivative: Slope of Curve and Slope of Tangent

As with velocity, we can visualize the derivative f/(a) as the slope of the graph of f at z = a.
In addition, there is another way to think of f’(a). Consider the difference quotient (f(a + k) —
f(a))/h. The numerator, f(a + h) — f(a), is the vertical distance marked in Figure 2.13 and h is
the horizontal distance, so

fla+h) - [(a)

Average rate of change of f = = Slope of line AB.

h
As h becomes smaller, the line AB approaches the tangent line to the curve at A. (See Figure 2.14.)
We say
I f ch . a+h)— f(a
nstantaneous rate of change . 5( ) — f(a) _ Slope of tangent at A.
of fata h—0 h
f(z) f(x)
Slope = Average rate
of change
_ [lath)=f(a)
h
(a+h) = f(a)
o | Z |
! i } Slope = Derivative = f’(a)
‘ ‘ v | x
a a+h a
Figure 2.13: Visualizing the average rate of Figure 2.14: Visualizing the instantaneous
change of f rate of change of f

The derivative at point A can be interpreted as:
e The slope of the curve at A.

e The slope of the tangent line to the curve at A.

The slope interpretation is often useful in gaining rough information about the derivative, as the
following examples show.

Example 3 Is the derivative of sinx at ¢ = 7 positive or negative?

Solution Looking at a graph of sin z in Figure 2.15 (remember, x is in radians), we see that a tangent line
drawn at x = 7 has negative slope. So the derivative at this point is negative.

1 V‘\— Negative slope f(z) =sinz
x
L 7\/271 3 4
-1

Figure 2.15: Tangent line to sinw atx =

Recall that if we zoom in on the graph of a function y = f(x) at the point = a, we usually
find that the graph looks like a straight line with slope f/(a).
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Example 4

Solution

By zooming in on the point (0,0) on the graph of the sine function, estimate the value of the
derivative of sinz at x = 0, with z in radians.

Figure 2.16 shows graphs of sin x with smaller and smaller scales. On the interval —0.1 < z < 0.1,
the graph looks like a straight line of slope 1. Thus, the derivative of sin z at z = 0 is about 1.

3+ 14 0.1+

f(x) =sinz f(z) =sinz f(z) =sinz

T 1 Fo 1 -

3 -1 1 0.1

—3+ 14 —0.1+

Figure 2.16: Zooming in on the graph of sin = near x = 0 shows the derivative is about 1 at x = 0

Later we will show that the derivative of sinz at = 0 is exactly 1. (See page 143 in Sec-
tion 3.5.) From now on we will assume that this is so.

Example 5

Solution

Use the tangent line at © = 0 to estimate values of sin 2 near 2 = 0.

In the previous example we see that near z = 0, the graph of y = sin « looks like the straight line
y = x; we can use this line to estimate values of sin z when z is close to 0. For example, the point
on the straight line y = x with z coordinate 0.32 is (0.32,0.32). Since the line is close to the graph
of y = sin x, we estimate that sin 0.32 ~ 0.32. (See Figure 2.17.) Checking on a calculator, we find
that sin 0.32 ~ 0.3146, so our estimate is quite close. Notice that the graph suggests that the real
value of sin 0.32 is slightly less than 0.32.

0.32

Figure 2.17: Approximating y = sin z by the liney = x

Why Do We Use Radians and Not Degrees?

After Example 4 we stated that the derivative of sinz at x = 0 is 1, when = is in radians. This is
the reason we choose to use radians. If we had done Example 4 in degrees, the derivative of sin x
would have turned out to be a much messier number. (See Problem 23, page 84.)

Estimating the Derivative of an Exponential Function

Example 6

Estimate the value of the derivative of f(z) = 2% at 2 = 0 graphically and numerically.
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Solution Graphically: Figure 2.18 indicates that the graph is concave up. Assuming this, the slope at A is
between the slope of BA and the slope of AC. Since
. (20 -2 1 ) (2t — 2%
Slope of line BA = —— = = — and Slope of line AC = ————= =1,
0—=(=1) 2 (1-0)

we know that at = 0 the derivative of 2% is between 1/2 and 1.
Numerically: To estimate the derivative at z = 0, we look at values of the difference quotient
fO+h)—f(0) 2h—20 2h_7

h h h

for small h. Table 2.3 shows some values of 2" together with values of the difference quotients. (See
Problem 31 on page 85 for what happens for very small values of A.)

flx)=2"
Sope = 1 Table 2.3  Numerical values for difference quotient of 2%
27 J atx =0
i h

Slope = 3 — gﬁ)n;?: Il“;?(O) h 2" Difference quotient: 2—1
J 1 —0.0003 0.999792078 0.693075
A —0.0002 0.999861380 0.693099
B —0.0001 0.999930688 0.693123

0 1
‘1 1 z 0.0001 1.00006932 0.693171
. - . 0.0002 1.00013864 0.693195
Figure 2.18: Graph of y = 2” showing the

derivative at 7 — 0 0.0003 | 1.00020797 0.693219

The concavity of the curve tells us that difference quotients calculated with negative h’s are
smaller than the derivative, and those calculated with positive i’s are larger. From Table 2.3 we see
that the derivative is between 0.693123 and 0.693171. To three decimal places, f'(0) = 0.693.

Example 7 Find an approximate equation for the tangent line to f(x) = 2% atz = 0.

Solution From the previous example, we know the slope of the tangent line is about 0.693. Since the tangent
line has y-intercept 1, its equation is

y = 0.693x + 1.

Computing the Derivative of 1 /xz at x = 2

The graph of f(x) = 1/ in Figure 2.19 leads us to expect that f'(2) is negative. To compute f’(2)
exactly, we use algebra.

f(z) =1/
Slope = f'(2)

Figure 2.19: Tangent line to f(z) = 1/x atz = 2
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Example 8 Find the derivative of f(x) = 1/x at the point z = 2.

Solution The derivative is the limit of the difference quotient, so we look at
"(2) = li
f(2) = lim

Using the formula for f and simplifying gives

f2+h) - f2)

h

, 1/ 1 1\ . [(2-@2+h)\ .  -h
"=lm—-(———-=] =1 — ) = lim ———.
F2) = lim <2+h 2) hli%< 2h(2+ h) > im0 2h(2 + )

Since the limit only examines values of h close to, but not equal to, zero, we can cancel h. We get

f'2)

= lim
h—0

-1 1

22+h) 4

Thus, f'(2) = —1/4. The slope of the tangent line in Figure 2.19 is —1/4.

Exercises and Problems for Section 2.2

Exercises

1. The table shows values of f(z) = z* near z = 2 (to
three decimal places). Use it to estimate f'(2).

z | 1.998 1999 2000 2.001 2.002
3| 7976 7.988 8000 8.012 8.024

2. (a) Make a table of values rounded to two decimal

places for the function f(x) = e® for
z =1, 1.5, 2, 2.5, and 3. Then use the table to an-
swer parts (b) and (c).

(b) Find the average rate of change of f(x) between 5
r=1andz = 3.

(c) Use average rates of change to approximate the in-
stantaneous rate of change of f(x) atz = 2.

3. (a) Make a table of values, rounded to two decimal
places, for f(z) = logz (that is, log base 10) with
r =1, 1.5, 2,2.5, 3. Then use this table to answer
parts (b) and (c).
(b) Find the average rate of change of f(x) between
z=1andx = 3.
(¢) Use average rates of change to approximate the in-
stantaneous rate of change of f(x) at x = 2.
4. (a) Let f(z) = z*. Explain what Table 2.4 tells us about
7).
(b) Find f(1) exactly.
(c) If x changes by 0.1 near x = 1, what does f’(1) tell
us about how f(x) changes? Illustrate your answer
with a sketch.

Table 2.4

Difference in
T z? successive z2 values
0.998 | 0.996004

0.001997
0.999 | 0.998001

0.001999
1.000 | 1.000000

0.002001
1.001 | 1.002001

0.002003

1.002 | 1.004004

. If f(x) = 2% + 4z, estimate f’(3) using a table with

values of « near 3, spaced by 0.001.

. Graph f(z) = sin z, and use the graph to decide whether

the derivative of f(x) at & = 3 is positive or negative.

. For the function f(x) = logx, estimate f'(1). From

the graph of f(x), would you expect your estimate to
be greater than or less than f(1)?

8. Estimate f'(2) for f(z) = 3". Explain your reasoning.
9. Figure 2.20 shows the graph of f. Match the derivatives

in the table with the points a, b, ¢, d, e.

x| f(x)
f 0
| | | | | 05
a b ¢ g€ * 2
—0.5
-2

Figure 2.20



10. Label points A, B,C, D, E, and F on the graph of y =
f(x) in Figure 2.21.

(a) Point A is a point on the curve where the derivative
is negative.

(b) Point B is a point on the curve where the value of
the function is negative.

(c) Point C'is a point on the curve where the derivative
is largest.

(d) Point D is a point on the curve where the derivative
is zero.

(e) Points £ and F are different points on the curve
where the derivative is about the same.

y

Figure 2.21

Problems
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11. The graph of y = f(x) is shown in Figure 2.22. Which
is larger in each of the following pairs?

y = f(x)

N W ke Ot

Figure 2.22

(a) Average rate of change: Between x = 1 and x = 3?
Or between z = 3 and © = 57

(b) f(2) or f(5)?

() f(1)or f'(4)?

12. Suppose that f(z) is a function with f(100) = 35 and
f/(100) = 3. Estimate f(102).

13. The function in Figure 2.23 has f(4) = 25 and f'(4) =
1.5. Find the coordinates of the points A, B, C.

Tangent line

f(=)

Figure 2.23

14. Use Figure 2.24 to fill in the blanks in the following state-
ments about the function g at point B.

@ g(_)=_ b g(_)=_
(1.95,5.02)
g(z)
(2,5)
Tangent line

Figure 2.24

15. Show how to represent the following on Figure 2.25.

@ f(4) (b) f(4)—f(2)
f(5) = f(2) /
(c) T 5_9 @ f(3)
f(x)
12345 !
Figure 2.25

16. For each of the following pairs of numbers, use Fig-

ure 2.25 to decide which is larger. Explain your answer.

@ f(3) or f(4)?
(b) f(3) = f(2) or f(2)—f(1)?

© [=10 e =),
2—-1 3—-1
@ f/(1)or f'(4)?

17. With the function f given by Figure 2.25, arrange the

following quantities in ascending order:

0. f'(2, (3, f3)-1r(©2



84

18.

19.

20.
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On a copy of Figure 2.26, mark lengths that represent the
quantities in parts (a) — (d). (Pick any positive x and h.)

@ f(z) () f(z+h)
© flzth)—f@) (@ h

(e) Using your answers to parts (a)—(d), show how the

flz+h) - f(=)
slope of a line in Figure 2.26.

quantity can be represented as the

y=[f(z)

Figure 2.26

On a copy of Figure 2.27, mark lengths that represent the
quantities in parts (a) — (d). (Pick any convenient x, and
assume h > 0.)

@ f(z) () f(z+h)
f(z) @ h

(e) Using your answers to parts (a)—(d), show how the

flz+h) - f(z)

slope of a line on the graph.

(© flz+h)—

quantity can be represented as the

Figure 2.27

Consider the function shown in Figure 2.28.

(a) Write an expression involving f for the slope of the
line joining A and B.

(b) Draw the tangent line at C'. Compare its slope to the
slope of the line in part (a).

(¢) Are there any other points on the curve at which the
slope of the tangent line is the same as the slope of
the tangent line at C'? If so, mark them on the graph.
If not, why not?

2

21

22.

23.

24.

25.
26.

27.

28.

29.

30.

|
|
|
|
|
a C

Figure 2.28

. (a) If fisevenand f'(10) = 6, whatis f'(—10)?

(b) If f is any even function and f’(0) exists, what is
1(0)?

If g is an odd function and ¢’(4) = 5, what is g’'(—4)?

(a) Estimate f’(0) if f(z) = sinz, with z in degrees.

(b) In Example 4 on page 80, we found that the deriva-
tive of sinx at x = 0 was 1. Why do we get a dif-
ferent result here? (This problem shows why radians
are almost always used in calculus.)

Estimate the instantaneous rate of change of the function
f(x) = xlnx atz = 1 and at z = 2. What do these
values suggest about the concavity of the graph between
1 and 2?

Estimate the derivative of f(x) = 2" atz = 2.

Fory = f(z) = 3232 — 1z, use your calculator to con-
struct a graph of y = f(z), for 0 < < 2. From your
graph, estimate f'(0) and f(1).

Let f(x) = In(cosz). Use your calculator to approxi-
mate the instantaneous rate of change of f at the point
x = 1. Do the same thing for x = 7/4. (Note: Be sure
that your calculator is set in radians.)

The population, P(t), of China,” in billions, can be ap-
proximated by

P(t) = 1.267(1.007)",

where ¢ is the number of years since the start of 2000. Ac-
cording to this model, how fast was the population grow-
ing at the start of 2000 and at the start of 2007? Give your
answers in millions of people per year.

On October 17, 2006, in an article called “US Popula-
tion Reaches 300 Million,” the BBC reported that the US
gains 1 person every 11 seconds. If f(¢) is the US pop-
ulation in millions ¢ years after October 17, 2006, find
£(0) and £'(0).

(a) Graph f(z) = 12” and g(z) = f(z) + 3 on the
same set of axes. What can you say about the slopes
of the tangent lines to the two graphs at the point
z = 0?2 = 2? Any point x = z¢?

Explain why adding a constant value, C, to any func-
tion does not change the value of the slope of its
graph at any point. [Hint: Let g(z) = f(z) + C,
and calculate the difference quotients for f and g.]

(b)

www.unescap.org/stat/data/apif/index.asp, accessed May 1, 2007.



31. Suppose Table 2.3 on page 81 is continued with smaller
values of h. A particular calculator gives the results in
Table 2.5. (Your calculator may give slightly different
results.) Comment on the values of the difference
quotient in Table 2.5. In particular, why is the last value
of (2" — 1)/h zero? What do you expect the calculated
value of (2" —1)/h to be when h = 107207

Table 2.5  Questionable values of
difference quotients of 2" near v = 0

h Difference quotient: (2" — 1)/h
10— 0.6931712

106 0.693147

10—8 0.6931

10-10 0.69

10~ 12 0

Use algebra to evaluate the limits in Problems 32-37.

32. lim M 33. lim w
h—0 h h—0 h
f— 2 —
34. lim M 35. lim M
h—0 h h—0 h

2.3 THE DERIVATIVE FUNCTION
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36. }llm%) # [Hint: Multiply by v/4 + h + 2 in nu-

merator and denominator. ]

17, %in% 1/4/4 +hh —1/2

Find the derivatives in Problems 38—43 algebraically.

38. f(x) =5z%atx =10 39. f(z)=xatx = -2

40. git) =t>+tatt=—1 41. f(z)=2>+5atz=1

2. g(z)=1/zatz =2 43. g(z) = 272, find ¢'(2)

For Problems 4447, find the equation of the line tangent to
the function at the given point.
-2

44, f(z) =5sz%atz =10 45. f(z)=2atz =

46. f(z) =xatz =20 47. f(z) =1/2% at (1,1)

In the previous section we looked at the derivative of a function at a fixed point. Now we consider
what happens at a variety of points. The derivative generally takes on different values at different

points and is itself a function.

First, remember that the derivative of a function at a point tells us the rate at which the value of
the function is changing at that point. Geometrically, we can think of the derivative as the slope of
the curve or of the tangent line at the point.

Example 1

Estimate the derivative of the function f(z) graphed in Figure 2.29 at x = —2, 1,0, 1,2, 3,4, 5.

5

/
/)

Slope of tangent
=f(-1)~2

N

1

—2 =1 | 1] 2N\ 3] 4] s °
~1

. /
-3

Figure 2.29: Estimating the derivative graphically as the slope of the tangent line



86 Chapter Two KEY CONCEPT: THE DERIVATIVE

Solution

From the graph we estimate the derivative at any point by placing a straightedge so that it forms the
tangent line at that point, and then using the grid squares to estimate the slope of the straightedge. For
example, the tangent at x = —1 is drawn in Figure 2.29, and has a slope of about 2, so f'(—1) = 2.
Notice that the slope at x = —2 is positive and fairly large; the slope at x = —1 is positive
but smaller. At z = 0, the slope is negative, by = 1 it has become more negative, and so on.
Some estimates of the derivative are listed in Table 2.6. You should check these values. Are they
reasonable? Is the derivative positive where you expect? Negative?

Table 2.6  Estimated values of derivative of function in Figure 2.29

z —2 | -1 0 1 2 3| 4
F(x) 6 2 | -1 | —2 | =2 | -1 1| 4

Notice that for every x-value, there’s a corresponding value of the derivative. Therefore, the
derivative is itself a function of x.

For any function f, we define the derivative function, f’, by

fa+h) — $(z)

/'(z) = Rate of change of f atz = }{IL% Y

For every x-value for which this limit exists, we say f is differentiable at that x-value. If the
limit exists for all  in the domain of f, we say f is differentiable everywhere. Most functions we
meet are differentiable at every point in their domain, except perhaps for a few isolated points.

The Derivative Function: Graphically

Example 2

Solution

Sketch the graph of the derivative of the function shown in Figure 2.29.

We plot the values of this derivative given in Table 2.6. We obtain Figure 2.30, which shows a graph
of the derivative (the black curve), along with the original function (color).

You should check that this graph of f’ makes sense. Where the values of f’ are positive, [ is
increasing (z < —0.3 or z > 3.8) and where [’ is negative, f is decreasing. Notice that at the points

\\ 5 1@
4
v 3 f(x) /

-2 |1 1 2 3 4 5
1 /
-2
-3

Figure 2.30: Function (colored) and derivative (black) from Example 1
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where f has large positive slope, such as z = —2, the graph of the derivative is far above the z-axis,
as it should be, since the value of the derivative is large there. At points where the slope is gentler,
such as & = —1, the graph of f’ is closer to the x-axis, since the derivative is smaller.

What Does the Derivative Tell Us Graphically?

Where f/ is positive, the tangent line to f is sloping up; where f’ is negative, the tangent line to f
is sloping down. If f* = 0 everywhere, then the tangent line to f is horizontal everywhere, and f is
constant. We see that the sign of f’ tells us whether f is increasing or decreasing.

If /7 > 0 on an interval, then f is increasing over that interval.
If /7 < 0 on an interval, then [ is decreasing over that interval.

Moreover, the magnitude of the derivative gives us the magnitude of the rate of change; so if f’ is
large (positive or negative), then the graph of f is steep (up or down), whereas if f’ is small the
graph of f slopes gently. With this in mind, we can learn about the behavior of a function from the
behavior of its derivative.

The Derivative Function: Numerically

If we are given values of a function instead of its graph, we can estimate values of the derivative.

Example 3

Table 2.7 gives values of c(t), the concentration (ug/cm?) of a drug in the bloodstream at time #
(min). Construct a table of estimated values for ¢/ (¢), the rate of change of ¢(¢) with respect to time.

Table 2.7 Concentration as a function of time

t (min)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c(t) (uglem®) 0.84 0.89 0.94 0.98 1.00 1.00 0.97 0.90 0.79 0.63 0.41

Solution

We estimate values of ¢’ using the values in the table. To do this, we have to assume that the data
points are close enough together that the concentration does not change wildly between them. From
the table, we see that the concentration is increasing between t = 0 and ¢ = 0.4, so we expect a
positive derivative there. However, the increase is quite slow, so we expect the derivative to be small.
The concentration does not change between 0.4 and 0.5, so we expect the derivative to be roughly
0 there. From ¢ = 0.5 to t = 1.0, the concentration starts to decrease, and the rate of decrease gets
larger and larger, so we expect the derivative to be negative and of greater and greater magnitude.
Using the data in the table, we estimate the derivative using the difference quotient:

ron L ct+h) —c(t)

Since the data points are 0.1 apart, we use h = 0.1, giving
c(0.1) —c(0)  0.89 —0.84

d(0) ~ 0T 0T = 0.5 pg/cm?/min
.2) —¢(0.1 .94 — 0.

d(0.1) = (0 )0 10(0 ) _ 09 5 10 8 0.5 pg/cm®/min

(02) c(0.3)0—1c(0.2) _ 0.980—10.94 04 pglem¥/min
4) — ¢(0. 1.00 — 0.

d(0.3) ~ (0 )O 16(0 3 _ 00 10 % 0. pe/cm®/min
b)) —c(0.4 1.00 — 1.

d(0.4) =~ c(© 5)0 10(0 ) _ 000 T 0o 0.0 pg/cm?®/min

and so on.
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These values are tabulated in Table 2.8. Notice that the derivative has small positive values up
until ¢ = 0.4, where it is roughly 0, and then it gets more and more negative, as we expected. The
slopes are shown on the graph of ¢(¢) in Figure 2.31.

Table 2.8 Estimated
derivative of concentration

t c(t)

0 0.5 1

0.1 0.5 08 1 T

0.2 0.4 Slope = 0.5 Slope = 0

0.3 0.2 0.6

0.4 0.0 0.4 Slope = —2.2 —»
0.5 —0.3

06 | —0.7 02

07 | —11 ol
0.8 ~16 0.2 0.4 0.6 0.8 1
0.9 —22 Figure 2.31: Graph of concentration as a function of time

Improving Numerical Estimates for the Derivative

In the previous example, the estimate for the derivative at 0.2 used the interval to the right; we found
the average rate of change between ¢ = 0.2 and ¢ = 0.3. However, we could equally well have gone
to the left and used the rate of change between ¢t = 0.1 and ¢ = 0.2 to approximate the derivative at
0.2. For a more accurate result, we could average these slopes and say

4(0.2) ~ 1 (Slope toleft  Slope to right> _05+04

2 of 0.2 of 0.2 5~ 04

In general, averaging the slopes leads to a more accurate answer.

Derivative Function: From a Formula

If we are given a formula for f, can we come up with a formula for f’? We often can, as shown in
the next example. Indeed, much of the power of calculus depends on our ability to find formulas for
the derivatives of all the functions we described earlier. This is done systematically in Chapter 3.

Derivative of a Constant Function

The graph of a constant function f(x) = k is a horizontal line, with a slope of 0 everywhere.
Therefore, its derivative is 0 everywhere. (See Figure 2.32.)

If f(x) =k, then f'(x) = 0.

flw) =k

/

Slope = 0

Figure 2.32: A constant function
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Derivative of a Linear Function

We already know that the slope of a straight line is constant. This tells us that the derivative of a
linear function is constant.

If f(x) = b+ ma, then f'(x) = Slope = m

Derivative of a Power Function

Example4  Find a formula for the derivative of f(x) = 22.
Solution Before computing the formula for f’(x) algebraically, let’s try to guess the formula by looking for a
pattern in the values of f’(x). Table 2.9 contains values of f(x) = 22 (rounded to three decimals),
which we can use to estimate the values of f/(1), f'(2), and f'(3).
Table2.9 Values of f(z) = 22 near v = 1, x = 2, & = 3 (rounded to three decimals)
T 1’2 T ll'2 T .’L’2
0.999 0.998 1.999 3.996 2.999 8.994
1.000 1.000 2.000 4.000 3.000 9.000
1.001 1.002 2.001 4.004 3.001 9.006
1.002 1.004 2.002 4.008 3.002 9.012
Near - = 1, the value of 22 increases by about 0.002 each time x increases by 0.001, so
0.002
O 0.001
Similarly, near # = 2 and = = 3, the value of 22 increases by about 0.004 and 0.006, respectively,
when z increases by 0.001. So
0.004 0.006
1(2) x —— =4 d
I~ 501 and ')~ 5001 ~
Knowing the value of f” at specific points can never tell us the formula for /7, but it certainly can
be suggestive: Knowing f'(1) =~ 2, f'(2) ~ 4, f'(3) ~ 6 suggests that f'(x) = 2.
The derivative is calculated by forming the difference quotient and taking the limit as h goes to
zero. The difference quotient is
flx+h)—fx) (z+h)?—a® x*+2h+h®>—a® 2zh+h?
h N h N h N h
Since h never actually reaches zero, we can cancel it in the last expression to get 2z + h. The limit
of this as h goes to zero is 2z, so
fl(z) = }1111})(290 + h) = 2z.
11—
Example5  Calculate f/(z) if f(z) = 3.
Solution We look at the difference quotient

fath) —f@)  (@+h)’—

h h
Multiplying out gives (z + h)3 = 23 + 322h + 3zh% + h3, so
, . @3+ 3x%h + 3zh? + b3 — 23 . 32%h + 3zh® + R
f(x) = lim = lim .

h—0 h h—0 h
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Since in taking the limit as h — 0, we consider values of A near, but not equal to, zero, we can

cancel h giving

32%h + 3zh? + K3

f'(@) = lim

h
As h — 0, the value of (3zh + h?%) — 0 so

= lim (322 + 3zh + h?).

(z) = Aii%(iixz + 3xh + h?) = 322

The previous two examples show how to compute the derivatives of power functions of the
form f(z) = 2™, when n is 2 or 3. We can use the Binomial Theorem to show the power rule for a

positive integer n:

If f(z) = 2™ then f'(z) = na"" L.

This result is in fact valid for any real value of n.

Exercises and Problems for Section 2.3

Exercises

1. (a) Estimate f’(2) using the values of f in the table.
(b) For what values of = does f’(z) appear to be posi-
tive? Negative?

x o|l2f46]8]10]12
f@y|1o|18f24]21]20]18]15

2. Find approximate values for f’(z) at each of the z-values

given in the following table.
T 0 5 | 10| 15| 20
f(x) | 100 | 70 | 55 | 46 | 40

For Exercises 3—12, graph the derivative of the given func-
tions.

3. 41/ 4. 43/
/ \
—4 4" 4 4*
| \
/ \
—4 —4
5 41/ 6. 4y
\
\
_ _ 7
AN 4 4 \
—4 —4
7 y 8. y
4 4
/ \ /
[ . I .
—4 1 4 —4 1
. I
)

9 y 10. y
l =
71 J
[
—4 —4
11. 4y 12. 4y
/
\ xr x
—4 [ \[ 14 _
! 4 N4
| /
| |
—4 —4

In Exercises 13—14, find a formula for the derivative using the
power rule. Confirm it using difference quotients.

13. k(z) =1/z 14. I(z) = 1/2*

Find a formula for the derivatives of the functions in Exer-
cises 15-16 using difference quotients.

15. g(zx) = 22% — 3 16. m(z) =1/(z +1)

For Exercises 17-22, sketch the graph of f(x), and use this
graph to sketch the graph of f’(x).

17. f(z) =bx 18. f(z) = 2?

19. f(z) =¢€" 20. f(z)=az(x—1)

21. f(x) =cosx 22. f(x) =logx
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23. In each case, graph a smooth curve whose slope meets
the condition.

(a) Everywhere positive and increasing gradually.

(b) Everywhere positive and decreasing gradually.

(¢) Everywhere negative and increasing gradually (be-
coming less negative).

(d) Everywhere negative and decreasing gradually (be-
coming more negative).

35.

24. For f(z) = Inx, construct tables, rounded to four deci-
mals, near x = 1, x = 2, x = 5, and x = 10. Use the
tables to estimate f'(1), f'(2), f'(5), and f'(10). Then
guess a general formula for f/(z).

25. Given the numerical values shown, find approximate val-
ues for the derivative of f(z) at each of the x-values
given. Where is the rate of change of f(x) positive?
Where is it negative? Where does the rate of change of

f(x) seem to be greatest?

T 0 1 2
f(x) | 18 13

345 6 7 8
10 9 9 11 15 21 30

26. Values of x and g(x) are given in the table. For what

value of z is g’ () closest to 3? M

T 2.7
g(z) | 3.4

3.2
4.4

3.7
5.0

4.2
5.4

4.7
6.0

5.2
7.4

5.7
9.0

6.2
11.0

For Problems 27-36, sketch the graph of f'(x).

27. f(z) 28.
X
r 38
29. fx) 30
x
. 12
* f(@)
31. flz) 32 (@)
z X

33.

37.

A vehicle moving along a straight road has distance f(t)
from its starting point at time ¢. Which of the graphs in
Figure 2.33 could be f'(t) for the following scenarios?
(Assume the scales on the vertical axes are all the same.)

(a) A bus on a popular route, with no traffic
(b) A car with no traffic and all green lights
(¢) A car in heavy traffic conditions

()

(1)

Figure 2.33

. A child inflates a balloon, admires it for a while and then

lets the air out at a constant rate. If V' (¢) gives the volume
of the balloon at time ¢, then Figure 2.34 shows V() as
a function of ¢. At what time does the child:

(a) Begin to inflate the balloon?

(b) Finish inflating the balloon?

(¢) Begin to let the air out?

(d) What would the graph of V() look like if the child
had alternated between pinching and releasing the
open end of the balloon, instead of letting the air out
at a constant rate?

1 T ,—\‘ V’(t)} | |

-2

Figure 2.34
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39. Figure 2.35 shows a graph of voltage across an electri-
cal capacitor as a function of time. The current is pro-
portional to the derivative of the voltage; the constant of
proportionality is positive. Sketch a graph of the current
as a function of time.

voltage

time

Figure 2.35

40. In the graph of f in Figure 2.36, at which of the labeled
x-values is

(@) f(x) greatest? () f(x) least?

(¢) f'(z) greatest? @ f'(x) least?
| /\
| | |
x1 I I T4 Ts I
: \ \ 1
| o &3 | xe
| |
|
f(z)
Figure 2.36

41. Figure 2.37 is the graph of f’, the derivative of a function
f. On what interval(s) is the function f

(a) Increasing? (b) Decreasing?

Figure 2.37: Graph of f’, not f

42. The derivative of f is the spike function in Figure 2.38.
What can you say about the graph of f?

f()

Figure 2.38

43.

4.

45.

46.

47.

48.

49.

The population of a herd of deer is modeled by

P(t) = 4000 + 500 sin (2mf - %)

where ¢ is measured in years from January 1.

(a) How does this population vary with time? Sketch a
graph of P(t) for one year.

(b) Use the graph to decide when in the year the popula-
tion is a maximum. What is that maximum? Is there
a minimum? If so, when?

(¢) Use the graph to decide when the population is
growing fastest. When is it decreasing fastest?

(d) Estimate roughly how fast the population is chang-
ing on the first of July.

The graph in Figure 2.39 shows the accumulated federal
debt since 1970. Sketch the derivative of this function.
What does it represent?

debt (trillions of dollars)

1975

1995

ar

L L ye
1985 2005

Figure 2.39

Draw the graph of a continuous function y = f(x) that
satisfies the following three conditions.

o f(x) >0forz < —2,
o fl(z) <Ofor—2<az<2,
o f'(z)=0foraz > 2.

Draw the graph of a continuous function y = f(x) that
satisfies the following three conditions:

o f'(z) >0forl <z<3
o f'(z) <Oforz <landzx >3
e fl(z)=0atx=1landz =3

If lim f(z) = 50 and f’(z) is positive for all z, what
&Zr—00

is lim f’(z)? (Assume this limit exists.) Explain your
T — 00

answer with a picture.

Using a graph, explain why if f(x) is an even function,
then f’(x) is odd.

Using a graph, explain why if g(x) is an odd function,
then ¢’(z) is even.
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2.4 INTERPRETATIONS OF THE DERIVATIVE

We have seen the derivative interpreted as a slope and as a rate of change. In this section, we see
other interpretations. The purpose of these examples is not to make a catalog of interpretations but
to illustrate the process of obtaining them.

An Alternative Notation for the Derivative

So far we have used the notation f’ to stand for the derivative of the function f. An alternative
notation for derivatives was introduced by the German mathematician Wilhelm Gottfried Leibniz
(1646-1716). If the variable y depends on the variable z, that is, if

y = f(2),
then he wrote dy/dx for the derivative, so
dy gl
Y= ')

Leibniz’s notation is quite suggestive if we think of the letter d in dy/dx as standing for “small
difference in ... .” The notation dy/dz reminds us that the derivative is a limit of ratios of the form

Difference in y-values
Difference in z-values

The notation dy/dx suggests the units for the derivative: the units for y divided by the units for
x. The separate entities dy and dz officially have no independent meaning: they are all part of one
notation. In fact, a good way to view the notation dy/dx is to think of d/dz as a single symbol
meaning “the derivative with respect to « of . ...” So dy/dx can be viewed as

% (y), meaning “the derivative with respect to = of y.”

On the other hand, many scientists and mathematicians think of dy and dx as separate entities
representing “infinitesimally” small differences in y and x, even though it is difficult to say exactly
how small “infinitesimal” is. Although not formally correct, it can be helpful to think of dy/dx as a
small change in y divided by a small change in z.

For example, recall that if s = f(¢) is the position of a moving object at time ¢, then v = f'(t)
is the velocity of the object at time ¢. Writing

_ds

T

reminds us that v is a velocity, since the notation suggests a distance, ds, over a time, dt, and we
know that distance over time is velocity. Similarly, we recognize

dy ’
ot "I;‘
2w
as the slope of the graph of y = f(z) since slope is vertical rise, dy, over horizontal run, dz.
The disadvantage of Leibniz’s notation is that it is awkward to specify the x-value at which we

are evaluating the derivative. To specify f’(2), for example, we have to write

dy
dr|,_o
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Using Units to Interpret the Derivative

The following examples illustrate how useful units can be in suggesting interpretations of the deriva-
tive. We use the fact that the units of the instantaneous and the average rate of change are the same.

For example, suppose s = f(t) gives the distance, in meters, of a body from a fixed point as a
function of time, ¢, in seconds. Then knowing that

d
] P 1'(2) = 10 meters/sec

dt],—y
tells us that when ¢ = 2 seconds, the body is moving at an instantaneous velocity of 10 meters/sec.
This means that if the body continued to move at this speed for a whole second, it would move 10
meters. In practice, however, the velocity of the body may not remain 10 meters/sec for long. Notice

that the units of instantaneous velocity and of average velocity are the same.

Example 1

Solution

The cost C' (in dollars) of building a house A square feet in area is given by the function C' = f(A).
What is the practical interpretation of the function f/(A)?

In the alternative notation, 4
/
fia)=—.
This is a cost divided by an area, so it is measured in dollars per square foot. You can think of dC
as the extra cost of building an extra dA square feet of house. Then you can think of dC/dA as the
additional cost per square foot. So if you are planning to build a house roughly A square feet in area,
f'(A) is the cost per square foot of the extra area involved in building a slightly larger house, and
is called the marginal cost. The marginal cost is probably smaller than the average cost per square

foot for the entire house, since once you are already set up to build a large house, the cost of adding
a few square feet is likely to be small.

Example 2

Solution

The cost of extracting 7" tons of ore from a copper mine is C' = f(T") dollars. What does it mean to
say that f/(2000) = 100?

In the alternative notation,

#/(2000) = dc = 100.

AT | p—2000
Since C' is measured in dollars and 7" is measured in tons, dC'/dT" must be measured in dollars per
ton. So the statement f’(2000) = 100 says that when 2000 tons of ore have already been extracted
from the mine, the cost of extracting the next ton is approximately $100.

Example 3

Solution

If ¢ = f(p) gives the number of pounds of sugar produced when the price per pound is p dollars,
then what are the units and the meaning of the statement f’(3) = 50?

Since f/(3) is the limit as h — 0 of the difference quotient
fB+h)— f3)
h )
the units of f’(3) and the difference quotient are the same. Since f(3 + h) — f(3) is in pounds and
h is in dollars, the units of the difference quotient and f’(3) are pounds/dollar. The statement
f'(3) = 50 pounds/dollar

tells us that the instantaneous rate of change of ¢ with respect to p is 50 when p = 3. In other
words, when the price is $3, the quantity produced is increasing at 50 pounds/dollar. Thus, if the
price increased by a dollar, the quantity produced would increase by approximately 50 pounds.
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Example 4

Solution

You are told that water is flowing through a pipe at a constant rate of 10 cubic feet per second.
Interpret this rate as the derivative of some function.

You might think at first that the statement has something to do with the velocity of the water, but in
fact a flow rate of 10 cubic feet per second could be achieved either with very slowly moving water
through a large pipe, or with very rapidly moving water through a narrow pipe. If we look at the
units—cubic feet per second—we realize that we are being given the rate of change of a quantity
measured in cubic feet. But a cubic foot is a measure of volume, so we are being told the rate of
change of a volume. One way to visualize this is to imagine all the water that is flowing through the
pipe ending up in a tank somewhere. Let V' (¢) be the volume of water in the tank at time ¢. Then we
are being told that the rate of change of V' (¢) is 10, or

dv
V'(t) = — = 10.
(t) p

Example 5

Solution

Suppose P = f(t) is the population of Mexico in millions, where ¢ is the number of years since
1980. Explain the meaning of the statements:

@@ f(6)=2 (b) f~1(95.5) = 16 © (f71)(95.5) = 0.46

(a) The units of P are millions of people, the units of ¢ are years, so the units of f’(¢) are millions
of people per year. Therefore the statement f’(6) = 2 tells us that at ¢ = 6 (that is, in 1986), the
population of Mexico was increasing at 2 million people per year.

(b) The statement f~1(95.5) = 16 tells us that the year when the population was 95.5 million was
t = 16 (that is, in 1996).

(c) The units of (f~1)/(P) are years per million of population. The statement (f~1)’(95.5) = 0.46
tells us that when the population was 95.5 million, it took about 0.46 years for the population
to increase by 1 million.

Exercises and Problems for Section 2.4

Exercises

1. The cost, C (in dollars), to produce g quarts of ice cream

4. The cost, C' (in dollars) to produce g gallons of a chem-

is C = f(q). In each of the following statements, what
are the units of the two numbers? In words, what does
each statement tell us?

@@ £(200) = 600 () £(200) =2

. The temperature, H, in degrees Celsius, of a cup of cof-
fee placed on the kitchen counter is given by H = f(t),
where ¢ is in minutes since the coffee was put on the
counter.

(a) Is f’(t) positive or negative? Give a reason for your
answer.

(b) What are the units of f'(20)? What is its practical
meaning in terms of the temperature of the coffee?

. The temperature, 7", in degrees Fahrenheit, of a cold yam
placed in a hot oven is given by T' = f(t), where ¢ is the
time in minutes since the yam was put in the oven.

(a) What is the sign of f'(t)? Why?
(b) What are the units of f(20)? What is the practical
meaning of the statement f'(20) = 2?

ical can be expressed as C' = f(g). Using units, explain
the meaning of the following statements in terms of the
chemical.

(@ f(200) = 1300 (b) £'(200) =6

. The time for a chemical reaction, 7' (in minutes), is

a function of the amount of catalyst present, a (in
milliliters), so T' = f(a).

(@) If f(5) = 18, what are the units of 5? What are the
units of 182 What does this statement tell us about
the reaction?

(b) If f/(5) = —3, what are the units of 5? What are the
units of —3? What does this statement tell us?

. After investing $1000 at an annual interest rate of 7%

compounded continuously for ¢ years, your balance is
$B, where B = f(t). What are the units of dB/dt?
What is the financial interpretation of dB/dt?
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7. Suppose C(r) is the total cost of paying off a car loan  10. Let f(x) be the elevation in feet of the Mississippi river
borrowed at an annual interest rate of 7%. What are the miles from its source. What are the units of f’(z)? What
units of C’(r)? What is the practical meaning of C”(r)? can you say about the sign of f/(z)?

What is its sign? 11. An economist is interested in how the price of a certain

8. Suppose P(t) is the monthly payment, in dollars, on a item affects its sales. At a price of $p, a quantity, g, of the
mortgage which will take ¢ years to pay off. What are the item is sold. If ¢ = f(p), explain the meaning of each of
units of P’(¢)? What is the practical meaning of P’(¢)? the following statements:

What is its sign?
aris s sien _ @@ f(150) = 2000 ®  f(150) = —25

9. Investing $1000 at an annual interest rate of 7%, com-
pounded continuously, for 10 years gives you a balance 12. Meteorologists define the temperature lapse rate to be
of $B, where B = ¢(r). Give a financial interpretation —dT'/dz where T is the air temperature in Celsius at al-
of the statements: titude 2 kilometers above the ground.

(a) g(5) ~ 1649. (a) What are the units of the lapse rate?
(b) ¢'(5) ~ 165. What are the units of ¢'(5)? (b) What is the practical meaning of a lapse rate of 6.5?
Problems
13. A laboratory study investigating the relationship between  18. Let f(¢) be the number of centimeters of rainfall that has
diet and weight in adult humans found that the weight of fallen since midnight, where ¢ is the time in hours. Inter-
a subject, W, in pounds, was a function, W = f(c), of pret the following in practical terms, giving units.
the average number of Calories per day, ¢, consumed by
the subject. (@) f(10) =3.1 ) f'(5)=16
(a) Interpret the statements f(1800) = 155, (¢) f'(10)=0.4 @ (fF 4G =2
f'(2000) = 0, and f~'(162) = 2200 in terms
of diet and weight. . L. ) )
(b) What are the units of f'(c) = dW/de? 19. Water is ﬂow1pg into a Fank, the depth, in fe?t, of the wa-
ter at time ¢ in hours is h(t). Interpret, with units, the
14. A city grew in population throughout the 1980s. The following statements.
population was at its largest in 1990, and then shrank
throughout the 1990s. Let P = f(t) represent the pop- (@ h(5)=3 () h'(5) =07
ulation of tlhe city t years sinc~e 1980. Sketch graphs of © ') =7 @ (b1 (5) =12
f(t) and f'(t), labeling the units on the axes.
15. Ifftclli.the pu]rjr}ﬁf:r wa year]i S{nce 20.0 3 tth;:é) Olt)l;l le;tlon;.P, 20. Let p(h) be the pressure in dynes per cm? on a diver at a
orf-hima, i brions, can be approximated by the tunction depth of h meters below the surface of the ocean. What
P = f() = 1.291(1.006)". dg each‘ of the followu}g quantities mean to the diver?
Give units for the quantities.
_ 6
Estimate f(6) and f’(6), giving units. What do these two (a) p(100) (b) h such that p(h) = 1.2- 10
numbers tell you about the population of China? (© p(h)+20 (@ p(h+20)
) ) (e) p’(100) (f) h such that p’(h) = 20
16. For some painkillers, the size of the dose, D, given de-
pends on the weight of the patient, W Thus, D = FV). 21, 1f g(v) is the fuel efficiency, in miles per gallon, of a
where D is in milligrams and W' is in pounds. car going at v miles per hour, what are the units of
(a) Interpret the statements f(140) = 120 and gi (90)? What is the practical meaning of the statement
f'(140) = 3 in terms of this painkiller. g'(55) = —0.547
(b) Use the information in the statements in part (a) to ) )
estimate f(145). 22. Let P be the total petroleum reservoir on earth in the
' year ¢. (In other words, P represents the total quantity of
17. On May 9, 2007, CBS Evening News had a 4.3 point petroleum, including what’s not yet discovered, on earth

rating. (Ratings measure the number of viewers.) News
executives estimated that a 0.1 drop in the ratings for the
CBS Evening News corresponds to a $5.5 million drop in
revenue.® Express this information as a derivative. Spec-
ify the function, the variables, the units, and the point at
which the derivative is evaluated.

at time ¢.) Assume that no new petroleum is being made
and that P is measured in barrels. What are the units of
dP/dt? What is the meaning of dP/dt? What is its sign?
How would you set about estimating this derivative in
practice? What would you need to know to make such an
estimate?

3ocC Register, May 9, 2007; The New York Times, May 14, 2007.
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24.

25.

26.

27.

28.

(a) If you jump out of an airplane without a parachute,
you fall faster and faster until air resistance causes
you to approach a steady velocity, called the termi-
nal velocity. Sketch a graph of your velocity against
time.

(b) Explain the concavity of your graph.

(c) Assuming air resistance to be negligible at ¢ =
0, what natural phenomenon is represented by the
slope of the graph att = 0?

Let WW be the amount of water, in gallons, in a bathtub at
time ¢, in minutes.

(a) What are the meaning and units of dW/dt?

(b) Suppose the bathtub is full of water at time tg, so
that W (¢o) > 0. Subsequently, at time ¢, > to, the
plug is pulled. Is dW¥/dt positive, negative, or zero:

(1) Fortg <t <t,?
(ii) After the plug is pulled, but before the tub is
empty?
(iii) When all the water has drained from the tub?

A company’s revenue from car sales, C' (in thousands of
dollars), is a function of advertising expenditure, a, in
thousands of dollars, so C' = f(a).

(a) What does the company hope is true about the sign
of f'?

(b) What does the statement f'(100) = 2 mean in prac-
tical terms? How about f’(100) = 0.5?

(¢) Suppose the company plans to spend about
$100,000 on advertising. If f'(100) = 2, should
the company spend more or less than $100,000 on
advertising? What if f/(100) = 0.5?

Let P(x) be the number of people of height < z inches
in the US. What is the meaning of P’(66)? What are
its units? Estimate P’(66) (using common sense). Is
P’(x) ever negative? [Hint: You may want to approxi-
mate P’(66) by a difference quotient, using h = 1. Also,
you may assume the US population is about 300 million,
and note that 66 inches = 5 feet 6 inches. ]

In May 2007 in the US, there was one birth every 8 sec-
onds, one death every 13 seconds, one new international
migrant every 27 seconds.*

(a) Let f(t) be the population of the US, where ¢ is time
in seconds measured from the start of May 2007.
Find f’(0). Give units.

(b) To the nearest second, how long did it take for the
US population to add one person in May 2007?

When you breathe, a muscle (called the diaphragm) re-
duces the pressure around your lungs and they expand
to fill with air. The table shows the volume of a lung as a
function of the reduction in pressure from the diaphragm.

4www.census.gov, accessed May 14, 2007.

29.
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Pulmonologists (lung doctors) define the compliance of
the lung as the derivative of this function.’

(a) What are the units of compliance?

(b) Estimate the maximum compliance of the lung.

(¢) Explain why the compliance gets small when the
lung is nearly full (around 1 liter).

Pressure reduction | Volume
(cm of water) (liters)

0 0.20

5 0.29

10 0.49

15 0.70

20 0.86

25 0.95

30 1.00

The compressibility index, 7, of cold matter (in a neutron
star or black hole) is given by

04 (p/?)dp
)= D dé’

where p is the pressure (in dynes/cm?), § is the density
(in g/em?®), and ¢ ~ 3 - 10" is the speed of light (in
cm/sec). Figure 2.40 shows the relationship between J,
~, and p. Values of log p are marked along the graph.®

(a) Estimate dp/dd for cold iron, which has a density of
about 10 g/cm®. What does the magnitude of your
answer tell you about cold iron?

Estimate dp/dd for the matter inside a white dwarf
star, which has a density of about 10° g/cm®. What
does your answer tell you about matter inside a
white dwarf?

(b)

1
8 10 12 14 16 18

log 6 (gm/cm?)

Figure 2.40:

3 Adapted from John B. West, Respiratory Physiology 4th Ed. (New York: Williams and Wilkins, 1990).
SFrom C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (San Francisco: W. H. Freeman and Company, 1973).
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2.5 THE SECOND DERIVATIVE

Since the derivative is itself a function, we can consider its derivative. For a function f, the derivative
of its derivative is called the second derivative, and written f” (read “ f double-prime”). If y = f(x),

d? d ([ di d
the second derivative can also be written as _y’ which means — & , the derivative of _y.
dx? dx \ dx dx

What Do Derivatives Tell Us?

Recall that the derivative of a function tells you whether a function is increasing or decreasing:
e If f/ > 0 on an interval, then f is increasing over that interval. Thus, f is monotonic over that
interval.

e If f/ < 0 on an interval, then f is decreasing over that interval. Thus, f is monotonic over that
interval.
Since f” is the derivative of f’,
e If f”” > 0 on an interval, then f’ is increasing over that interval.

e If f” < 0 on an interval, then [’ is decreasing over that interval.

What does it mean for f’ to be increasing or decreasing? An example in which f” is increasing
is shown in Figure 2.41, where the curve is bending upward, or is concave up. In the example shown
in Figure 2.42, in which f” is decreasing, the graph is bending downward, or is concave down. These
figures suggest the following result:

If /7 > 0 on an interval, then f’ is increasing, so the graph of f is concave up there.
If /" < O onan interval, then f’is decreasing, so the graph of f is concave down there.

f// >0
Concave up

<o >0

Figure 2.41: Meaning of f”: The slope increases from left to right, ' is positive, and f is concave up

>0 f'<o0

f// < 0
Concave down

Figure 2.42: Meaning of f”’: The slope decreases from left to right, f”’ is negative, and f is concave down

Warning! The graph of a function f can be concave up everywhere and yet have f”/ = 0 at
some point. For instance, the graph of f(x) = 2* in Figure 2.43 is concave up, but it can be shown
that f/(0) = 0. If we are told that the graph of a function f is concave up, we can be sure that f”/
is not negative, that is f”/ > 0, but not that f”’ is positive, /" > 0.

=0
/

Figure 2.43: Graph of f(z) = z*

xT

If the graph of f is concave up on an interval, then " > 0 there.
If the graph of f is concave down on an interval, then f” < 0 there.
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Example 1 For the functions graphed in Figure 2.44, what can be said about the sign of the second derivative?.
@) f (b) ©) h
g
t t t
Figure 2.44: What signs do the second derivatives have?
Solution (a) The graph of f is concave up everywhere, so f”/ > 0 everywhere.
(b) The graph of g is concave down everywhere, so g’ < 0 everywhere.
(¢) Fort < 0, the graph of h is concave down, so A" < 0 there. For ¢ > 0, the graph of  is concave
up, so b’ > 0 there.
Example 2 Sketch the second derivative f” for the function f of Example 1 on page 85, graphed with its
derivative, f’, in Figure 2.45. Relate the resulting graph of f”’ to the graphs of f and f'.
N £@) ! f'(@
/s :
3 f(@) / 2
1
2
AT x
\ . —2 1 2 3 4 5
—2 —1\| 1| 2\3//4] 5 !
- / Y
-2 ‘_O
Figure 2.45: Function, f in color; derivative, f’, in black Figure 2.46: Graph of f”
Solution We want to sketch the derivative of f’. We do this by estimating the slopes of f/ and plotting them,

obtaining Figure 2.46.

We observe that where f”/ > 0, the graph of f is concave up and f’ is increasing, and that
where f” < 0, the graph of f is concave down and f’ is decreasing. Where f”(x) = 0, the graph
of f changes from concave up to concave down, and f’ changes from decreasing to increasing.

Interpretation of the Second Derivative as a Rate of Change

If we think of the derivative as a rate of change, then the second derivative is a rate of change of a
rate of change. If the second derivative is positive, the rate of change of f is increasing; if the second
derivative is negative, the rate of change of f is decreasing.

The second derivative can be a matter of practical concern. In 1985 a newspaper headline re-
ported the Secretary of Defense as saying that Congress had cut the defense budget. As his op-
ponents pointed out, however, Congress had merely cut the rate at which the defense budget was
increasing.” In other words, the derivative of the defense budget was still positive (the budget was
increasing), but the second derivative was negative (the budget’s rate of increase had slowed).

7In the Boston Globe, March 13, 1985, Representative William Gray (D—Pa.) was reported as saying: “It’s confusing to
the American people to imply that Congress threatens national security with reductions when you're really talking about a
reduction in the increase.”
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Example 3 A population, P, growing in a confined environment often follows a logistic growth curve, like that
shown in Figure 2.47; Relate the sign of d? P/dt* to how the rate of growth, dP/dt, changes over
time. What are practical interpretations of ¢y and L?

Figure 2.47: Logistic growth curve

Solution For t < tg, the rate of growth, dP/dt, is increasing and d?>P/dt? > 0. At tg, the rate dP/dt is a
maximum. In other words, at time ¢ the population is growing fastest. For ¢ > 1y, the rate of growth,
dP/dt, is decreasing and dp? / dt? < 0. At g, the curve changes from concave up to concave down,
and d?P/dt* = 0 there.

The quantity L represents the limiting value of the population as ¢ — oco. Biologists call L the
carrying capacity of the environment.

Example 4 Tests on the C5 Chevy Corvette sports car gave the results® in Table 2.10.

(a) Estimate dv/dt for the time intervals shown.
(b) What can you say about the sign of d?v/dt? over the period shown?

Table 210 Velocity of C5 Chevy Corvette

Time, t (sec) 0 3 6 9 12
Velocity, v (meters/sec) 0 20 33 43 51

Solution (a) For each time interval we can calculate the average rate of change of velocity. For example,
from¢ = 0 tot = 3 we have
dv 20-0 m/sec
— = A te of ch f velocity = —— = 6.67 .
o verage rate of change of velocity = —— =

Estimated values of dv/dt are in Table 2.11.

(b) Since the values of dv/dt are decreasing between the points shown, we expect d?v/dt? < 0.
The graph of v against ¢ in Figure 2.48 supports this; it is concave down. The fact that dv/dt > 0
tells us that the car is speeding up; the fact that d?v/dt?> < 0 tells us that the rate of increase
decreased (actually, did not increase) over this time period.

v (meters/sec)

60 L
40
Table 211 Estimates for dv/dt (meters/sec/sec) 00 I
Time interval (sec) 0—-3 3—6 6—9 9—12 I
Average rate of change (dv/dt) 6.67 4.33 3.33 2.67 3 6 9 12 t (sec)
Figure 2.48: Velocity of C5 Chevy

Corvette

8 Adapted from the report in Car and Driver, February 1997.
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Velocity and Acceleration

When a car is speeding up, we say that it is accelerating. We define acceleration as the rate of
change of velocity with respect to time. If v(¢) is the velocity of an object at time ¢, we have

Average acceleration  v(t +h) — v(t)
fromttot+h h ’

t+h)—o(t
Instantaneous acceleration = v'(¢) = }lzin%) M

If the term velocity or acceleration is used alone, it is assumed to be instantaneous. Since velocity
is the derivative of position, acceleration is the second derivative of position. Summarizing:

If y = s(t) is the position of an object at time ¢, then

e Velocity: v(t) = d_ s'(t).
dt

. dzy " /

e Acceleration: a(t) = ol s"(t) ='(1).

Example 5 A particle is moving along a straight line; its acceleration is zero only once. Its distance, s, to the
right of a fixed point is given by Figure 2.49. Estimate:

(a) When the particle is moving to the right and when it is moving to the left.
(b) When the acceleration of the particle is zero, when it is negative, and when it is positive.

s (distance)
Particle stops moving to right

s increasin )
¢ / Acceleration changes from
l negative to positive

/

Concave up —
1

. . . . t (time)
1 2

<—— sincreasing

1 1

Figure 2.49: Distance of particle to right of a fixed point

Solution (a) The particle is moving to the right whenever s is increasing. From the graph, this appears to be
for0 <t < % and for ¢ > 2. For % < t < 2, the value of s is decreasing, so the particle is
moving to the left.

(b) Since the acceleration is zero only once, this must be when the curve changes concavity, at
aboutt = %. Then the acceleration is negative for ¢ < %, since the graph is concave down there,
and the acceleration is positive for ¢ > %, since the graph is concave up there.
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Exercises and Problems for Section 2.5
Exercises

1. For the function graphed in Figure 2.50, are the following
nonzero quantities positive or negative?

@ f(2) (b) f(2) © f'(2)

H 1

| | | Z% T
T \2 T T o
-1 f(x)

Figure 2.50

2. At one of the labeled points on the graph in Figure 2.51
both dy/dx and d*y/dz* are positive. Which is it?

Y

Figure 2.51

3. At exactly two of the labeled points in Figure 2.52, the
derivative f” is 0; the second derivative " is not zero at
any of the labeled points. On a copy of the table, give the
signs of £, f’, f”" at each marked point.

B

c Point | f | f' | f”
A
B
A D C
D
Figure 2.52

4. Graph the functions described in parts (a)—(d).

(a) First and second derivatives everywhere positive.

(b) Second derivative everywhere negative; first deriva-
tive everywhere positive.

(c) Second derivative everywhere positive; first deriva-
tive everywhere negative.

(d) First and second derivatives everywhere negative.

Problems

5. Sketch the graph of a function whose first derivative is
everywhere negative and whose second derivative is pos-
itive for some x-values and negative for other z-values.

6. Sketch the graph of the height of a particle against time
if velocity is positive and acceleration is negative.

For Exercises 7-12, give the signs of the first and second
derivatives for the following functions. Each derivative is ei-
ther positive everywhere, zero everywhere, or negative every-
where.

7. 8
f()
— f(@)
1 1+
x —t—
1 1
9 10.
f(@)
1 x
T
! ()
11. 12. 1
1 xX x
1 f(@) L
f(@)

13. The position of a particle moving along the w-axis is
given by s(t) = 5t* + 3. Use difference quotients to
find the velocity v(t) and acceleration a(t).

14. The table gives the number of passenger cars, C' = f(t),
in millions,” in the US in the year ¢.

(a) Do f/(t) and f"(t) appear to be positive or negative
during the period 1940-1980?

(b) Estimate f’(1975). Using units, interpret your an-
swer in terms of passenger cars.

t | 1940
C | 275

1950
40.3

1960
61.7

1970
89.2

1980
121.6

1990
133.7

2000
133.6

9www.bts.gov/publications/national_transportation_statistics/html/table_01_1 1.html. Accessed June 22, 2008.



15.

An accelerating sports car goes from 0 mph to 60 mph
in five seconds. Its velocity is given in the following ta-
ble, converted from miles per hour to feet per second, so
that all time measurements are in seconds. (Note: 1 mph
is 22/15 ft/sec.) Find the average acceleration of the car
over each of the first two seconds.

O 1213
030 |52] 68

Time, t (sec)
Velocity, v(t) (ft/sec)

80 | 88

In Problems 16-21, graph the second derivative of the func-

tion.

16.

18.

20.

22.

17.

4 4
—4 4% —4 4"
/ |
[ \
—4 —4
Y 19. Y
4 4
s
—q 7[7777\:77 4" INEPAREERPY
]
I
4 —4
Y 21. Y
4 4
|
_4 4 z —41] 4%
\NEN| |
/ [
[ |
4 —4

Let P(t) represent the price of a share of stock of a
corporation at time ¢. What does each of the following
statements tell us about the signs of the first and second
derivatives of P(t)?

(a) “The price of the stock is rising faster and faster.”
(b) “The price of the stock is close to bottoming out.”

23.

24.

25.

26.
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In economics, total utility refers to the total satisfac-
tion from consuming some commodity. According to the
economist Samuelson: '

As you consume more of the same good, the
total (psychological) utility increases. However,
... with successive new units of the good, your
total utility will grow at a slower and slower
rate because of a fundamental tendency for your
psychological ability to appreciate more of the
good to become less keen.

(a) Sketch the total utility as a function of the number
of units consumed.
(b) In terms of derivatives, what is Samuelson saying?

“Winning the war on poverty” has been described cyn-
ically as slowing the rate at which people are slipping
below the poverty line. Assuming that this is happening:

(a) Graph the total number of people in poverty against
time.

(b) If N is the number of people below the poverty line
at time ¢, what are the signs of dN/dt and d*> N /dt*?
Explain.

In April 1991, the Economist carried an article!’ which

said:
Suddenly, everywhere, it is not the rate of
change of things that matters, it is the rate of
change of rates of change. Nobody cares much
about inflation; only whether it is going up or
down. Or rather, whether it is going up fast
or down fast. “Inflation drops by disappointing
two points,” cries the billboard. Which roughly
translated means that prices are still rising, but
less fast than they were, though not quite as
much less fast as everybody had hoped.

In the last sentence, there are three statements about
prices. Rewrite these as statements about derivatives.

An industry is being charged by the Environmental Pro-
tection Agency (EPA) with dumping unacceptable lev-
els of toxic pollutants in a lake. Over a period of several
months, an engineering firm makes daily measurements
of the rate at which pollutants are being discharged into
the lake. The engineers produce a graph similar to ei-
ther Figure 2.53(a) or Figure 2.53(b). For each case, give
an idea of what argument the EPA might make in court
against the industry and of the industry’s defense.

(@) (b)

rate of discharge rate of discharge

time

ayear ago now ayear ago

Figure 2.53

19From Paul A. Samuelson, Economics, 11th edition (New York: McGraw-Hill, 1981).
From “The Tyranny of Differential Calculus: d2 P/dt? > 0 = misery.” The Economist (London: April 6, 1991).
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27. At which of the marked z-values in Figure 2.54 can the 29. The graph of f (not f) is given in Figure 2.56. At which

28.

following statements be true? of the marked values of x is

gg J; /(E’U))< 00 (a) f(x) greatest? (b) f(x) least?
r) <

© f(x) is decreasing (¢) f'(z) greatest? (d f'(z) least?

(d) f'(z) is decreasing (e) f"(x) greatest? ) f"(x) least?

(e) Slope of f(z) is positive
(f) Slope of f(x) is increasing

f(x)

1 T T T T
moeom N

Figure 2.54 Figure 2.56: Graph of f’, not f

Figure 2.55 gives the position, f(t), of a particle at time ~ 30. A function fhas f(5) = 20, f(5) = 2,and f"(z) <0,

t. At which of the marked values of ¢ can the following for z > 5. Which of the following are possible values for
statements be true? f(7) and which are impossible?

(a) The position is positive (a) 26 (b) 24 (c) 22

(b) The velocity is positive

(¢) The acceleration is positive 31

. A continuous function defined for all = has the following
(d) The position is decreasing

properties:
(e) The velocity is decreasing e f isincreasing e fis concave down
70 * f(3)=2 o ['(5) =73
t}l tf /\ . (a) Sketch a possible graph for f.
\ | t3 ty  ts (b) How many zeros does f have?

(¢) What can you say about the location of the zeros?
(d) Whatis lim f(z)?

Figure 2.55 (e) Ts it possible that f'(1) = 1?

(f) Is it possible that f/(1) = $?

2.6 DIFFERENTIABILITY

What Does It Mean for a Function to be Differentiable?

A function is differentiable at a point if it has a derivative there. In other words:

The function f is differentiable at x if

o L) = f()

exists.
h—0 h

Thus, the graph of f has a nonvertical tangent line at z. The value of the limit and the slope
of the tangent line are the derivative of f at z.

Occasionally we meet a function which fails to have a derivative at a few points. A function
fails to be differentiable at a point if:

e The function is not continuous at the point.
e The graph has a sharp corner at that point.

e The graph has a vertical tangent line.
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Figure 2.57 shows a function which appears to be differentiable at all points except © = a and
2 = b. There is no tangent at A because the graph has a corner there. As 2 approaches a from the
left, the slope of the line joining P to A converges to some positive number. As x approaches a from
the right, the slope of the line joining P to A converges to some negative number. Thus the slopes
approach different numbers as we approach x = a from different sides. Therefore the function is
not differentiable at = a. At B, the graph has a vertical tangent. As = approaches b, the slope of
the line joining B to ) does not approach a limit; it just keeps growing larger and larger. Again, the
limit defining the derivative does not exist and the function is not differentiable at z = b.

f
A
\
Pl |
o | f(@) = Iz
\ \ \ \
\ \ \ \
[ [ | [
o Ql |
[ L | "
a b r
Figure 2.58: Graph of absolute value function,
Figure 2.57: A function which is not differentiable at A or B showing point of non-differentiability at z = 0

Examples of Nondifferentiable Functions

An example of a function whose graph has a corner is the absolute value function defined as follows:

if 2 >0,
f@ =kl ={%, 0

This function is called piecewise linear because each part of it is linear. Its graph is in Figure 2.58.
Near z = 0, even close-up views of the graph of f(x) look the same, so this is a corner which can’t
be straightened out by zooming in.

Example 1

Solution

Try to compute the derivative of the function f(z) = |z| at x = 0. Is f differentiable there?

To find the derivative at z = 0, we want to look at
|h| -0 |h|

. fh) = F(0) :
iy T =
As h approaches 0 from the right, / is positive, so |h| = h, and the ratio is always 1. As h approaches
0 from the left, h is negative, so |h| = —h, and the ratio is —1. Since the limits are different from
each side, the limit of the difference quotient does not exist. Thus, the absolute value function is not
differentiable at x = 0. The limits of 1 and —1 correspond to the fact that the slope of the right-hand
part of the graph is 1, and the slope of the left-hand part is —1.

Example 2

Solution

Investigate the differentiability of f(z) = z/3 at z = 0.

This function is smooth at x = 0 (no sharp corners) but appears to have a vertical tangent there.
(See Figure 2.59.) Looking at the difference quotient at z = 0, we see
(0 4 h)1/3 _ 01/3 h1/3 1

lim = lim — = lim —.
h—0 h h—0 h h—0 h2/3
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6 -
fla) ==/ 9(x)
4 -
1 - 27
4 8
1 1 1 T
1 2 3
Figure 2.59: Continuous function not Figure 2.60: Continuous
differentiable at =z = 0: Vertical tangent function not differentiable at
z=1

As h — 0 the denominator becomes small, so the fraction grows without bound. Hence, the function
fails to have a derivative at z = 0.

Example 3 Consider the function given by the formulas

(x)_{x—l-l if <1
I =\ 3w =1 if a>1.

Draw the graph of g. Is g continuous? Is ¢ differentiable at x = 1?

Solution The graph in Figure 2.60 has no breaks in it, so the function is continuous. However, the graph has
a corner at x = 1 which no amount of magnification will remove. To the left of = 1, the slope is
1; to the right of = = 1, the slope is 3. Thus, the difference quotient at z = 1 has no limit, so the
function g is not differentiable at z = 1.

The Relationship Between Differentiability and Continuity

The fact that a function which is differentiable at a point has a tangent line suggests that the function
is continuous there, as the next theorem shows.

Theorem 2.1: A Differentiable Function Is Continuous

If f(x) is differentiable at a point # = a, then f(z) is continuous at x = a.

Proof We assume f is differentiable at z = a. Then we know that f’(a) exists where

Fa) — tim L0 S @)

T—a r—a

To show that f is continuous at & = a, we want to show that lim,_., f(z) = f(a). We calculate
lim, ., (f(z) — f(a)), hoping to get 0. By algebra, we know that for z # a,

F@) = fla) = (z—a) - LB =S

Tr—a



Taking the limits, we have

lim
r—a

lim (£(2) — f(a))

= (lim(:r—a)

T—a

=0-f'(a) =0.

2.6 DIFFERENTIABILITY

CREEEC)

r—a

)- (1 L=

(By Theorem 1.2, Property 3)
r—a

(Since f’(a) exists)

Thus we know that lim f(z) = f(a), which means f(z) is continuous at z = a.
r—a

Exercises and Problems for Section 2.6

Exercises

107

For the graphs in Exercises 1-2, list the z-values for which
the function appears to be

(a) Not continuous.

(b) Not differentiable.

In Exercises 3—4, does the function appear to be differentiable

on the interval of x-values shown?

3. flz) 4 f(z)
1. f(x) 2.
J\ oz I
x
x T
1 2 3 4 5 1 23 456
Problems
Decide if the functions in Problems 5-7 are differentiable at f(z)
2 = 0. Try zooming in on a graphing calculator, or calculating 20
the derivative f(0) from the definition.
10
5 f(x) = (z+|z))? +1
L | | ! ! T
6. f(z) = zsin(l/z) +z  forz #0 o0 10 0 10 a0
0 forx =0
5 . Figure 2.61
7. f(z) = zsin(l/x) forx #0
0 forx =0

. In each of the following cases, sketch the graph of a con-

tinuous function f(z) with the given properties.
(@ f’(z) > 0forx < 2and forz > 2 and f'(2) is
undefined.

() f’(xz) >0forz < 2and f’(z) < 0forz > 2and
f'(2) is undefined.

. Look at the graph of f(x) = (2 +0.0001)"/2 shown in

Figure 2.61. The graph of f appears to have a sharp cor-
ner at = 0. Do you think f has a derivative at z = 0?

10. The acceleration due to gravity, g, varies with height
above the surface of the earth, in a certain way. If you
go down below the surface of the earth, ¢ varies in a dif-

ferent way. It can be shown that g is given by

G}]gr forr < R

G_]Q\/[ forr > R
r
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11.

12.

13.
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where R is the radius of the earth, M is the mass of the
earth, G is the gravitational constant, and r is the distance
to the center of the earth.

(a) Sketch a graph of g against 7.

(b) Is g a continuous function of r? Explain your an-
swer.

(¢) Is g a differentiable function of »? Explain your an-
swer.

An electric charge, (), in a circuit is given as a function
of time, ¢, by

C
Q = {Ce—t/RC’

where C' and R are positive constants. The electric cur-
rent, I, is the rate of change of charge, so
aQ
I =—
dt
(a) Is the charge, ), a continuous function of time?
(b) Do you think the current, I, is defined for all times,

t? [Hint: To graph this function, take, for example,
C=1land R=1.]

fort <0
fort > 0,

A magnetic field, B, is given as a function of the distance,
r, from the center of a wire as follows:

T
— By  forr <7y
o

To
— By forr > rg.
r

(a) Sketch a graph of B against . What is the meaning
of the constant By?

(b) Is B continuous at » = ro? Give reasons.

(¢) Is B differentiable at r = r¢? Give reasons.

A cable is made of an insulating material in the shape of
a long, thin cylinder of radius ro. It has electric charge
distributed evenly throughout it. The electric field, F, at
a distance r from the center of the cable is given by

kr
E= kﬁ

r

for r<rg

for r > 7ro.

14.

15.

16.

(a) Is E continuous at r = r¢?
(b) Is E differentiable at r = ry?
(¢) Sketch a graph of F as a function of r.

Graph the function defined by

—2<r<2

_ [ 1+cos(mr/2) for
9(r) = { r<-—2 or

0 for r> 2.

(a) Is g continuous at r = 2? Explain your answer.
(b) Do you think g is differentiable at » = 2? Explain
your answer.

The potential, ¢, of a charge distribution at a point on the
y-axis is given by

2o (\/yi’—i-(ﬁ —y) fory >0
2mo (\/yz—i-az—i-y) fory <0

where o and a are positive constants. [Hint: To graph this
function, take, for example, 270 = 1 and a = 1.]

=

(a) Is ¢ continuous at y = 0?
(b) Do you think ¢ is differentiable at y = 0?

Sometimes, odd behavior can be hidden beneath the sur-
face of a rather normal-looking function. Consider the
following function:

ifz <0

)0
f(x)_{xz if x > 0.

(a) Sketch a graph of this function. Does it have any ver-
tical segments or corners? Is it differentiable every-
where? If so, sketch the derivative f’ of this func-
tion. [Hint: You may want to use the result of Exam-
ple 4 on page 89.]

Is the derivative function, f’(z), differentiable ev-
erywhere? If not, at what point(s) is it not differen-
tiable? Draw the second derivative of f(x) wherever
it exists. Is the second derivative function, f”(x),
differentiable? Continuous?

(b)

CHAPTER SUMMARY (see also Ready Reference at the end of the book)

e Rate of change

Average, instantaneous.

e Definition of derivative

Difference quotient, limit.

Estimating and computing derivatives

Estimate derivatives from a graph, table of values, or for-
mula. Use definition to find derivatives of simple func-
tions algebraically. Know derivatives of constant, linear,
and power functions.

Interpretation of derivatives

Rate of change, instantaneous velocity, slope, using units.
Second derivative

Concavity, acceleration.

Working with derivatives

Understand relation between sign of f" and whether f is
increasing or decreasing. Sketch graph of f from graph
of f.

Differentiability
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REVIEW EXERCISES AND PROBLEMS FOR CHAPTER TWO

Exercises

In Exercises 1-6, find the average velocity for the position

function s(t), in mm, over the interval 1 < ¢ < 3, where # is Find a formula for the derivatives of the functions in Exer-

cises 15-16 algebraically.

in seconds.
_ 19 _ 42 _
Los(t) =12t =1 2. s(t) =1n(t) 15. f(z) = 52" 4+ 16. n(z) = (1/z) +1
3 t o123 4. t [o|1]2
sy | 7|37 s(t) | 8|42
17. Find the derivative of f(z) = 2% + 1 at z = 3 alge-
5.4 s(t) 6. , s(t) braically. Find the equation of the tangent line to f at
r=3.
3 1
2 \ t 18. (a) Between which pair of consecutive points in Fig-
1 / 12 3 4 ure 2.62 is the average rate of change of k

t (a) Greatest? (b) Closest to zero?

(b) Between which two pairs of consecutive points are
the average rates of change of k closest?

Sketch the graphs of the derivatives of the functions shown in
Exercises 7-12. Be sure your sketches are consistent with the

important features of the graphs of the original functions.
7. 8.
f(=)
5
x
x
9. f(z) 10. .
- Figure 2.62

-1 1 2 3 4

11. /\ 12.

Use algebra to evaluate the limits in Exercises 19-23. Assume

a > 0.
xr
\f@) .
z 19. lim M
: h—0 h
In Exercises 1314, graph the second derivative of each of the = 50 1. 1/(a+h) —1/a
given functions. - h
13. 4y 14. 4y 1. lim 1/((1, + h)Z _ 1/(1,2
AN " h=o h
N VT - i -
\\ / = ol X 22. ’lli L [Hint: Multiply by v/a + h ++/a in
—4 4 - -
/ numerator and denominator.]
\J
4 _4 23. 1/— Va+h—1/va

h—»O
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Problems

24. Sketch the graph of a function whose first and second

derivatives are everywhere positive.

25. Figure 2.63 gives the position, y = s(¢), of a particle at

time ¢. Arrange the following numbers from smallest to
largest:

The instantaneous velocity at A.

The instantaneous velocity at B.

The instantaneous velocity at C'.

The average velocity between A and B.
The number 0.

The number 1.

Figure 2.63

26. The table'? gives the number of passenger cars, C' =

f(t), in millions, in the US in the year ¢.

(a) During the period 2002-2006, when is f'(t) posi-
tive? Negative?

(b) Estimate f’(2003). Using units, interpret your an-
swer in terms of passenger cars.

t (year)

2002 | 2003 | 2004 | 2005 | 2006

C' (cars, in millions)

135.9 | 135.7 | 136.4 | 136.6 | 135.4

27.

28.

29.

Let f(¢) be the depth, in centimeters, of water in a tank
at time ¢, in minutes.

(a) What does the sign of f'(t) tell us?

(b) Explain the meaning of f(30) = 20. Include units.

(¢) Using the information in part (b), at time ¢ = 30
minutes, find the rate of change of depth, in meters,
with respect to time in hours. Give units.

The revenue, in thousands of dollars, earned by a gas sta-

tion when the price of gas is $p per gallon is R(p).

(a) What are the units of R’(3)? Interpret this quantity.
(b) What are the units of (R™')'(5)? Interpret this
quantity.
(a) Give an example of a function with lim2 f(z) = o0.
z—
(b) Give an example of a function with lim2 f(z) =

—0Q.

12yww.bts.gov, accessed May 27, 2008.

30.

31.

32.

33.

34.

Suppose f(2) = 3 and f'(2) = 1. Find f(—2) and
f'(—2), assuming that f(z) is

(a) Even (b) Odd.

Do the values for the function y = k(z) in the table
suggest that the graph of k(x) is concave up or concave
down for 1 < x < 3.37 Write a sentence in support of
your conclusion.

T 1.0
k(z) | 4.0

1.2
3.8

1.5
3.6

1.9
3.4

2.5
3.2

3.3
3.0

Suppose that f(x) is a function with f(20) = 345 and
f'(20) = 6. Estimate f(22).

Students were asked to evaluate f'(4) from the following
table which shows values of the function f:

z [ 123|456
fx) |42 |41|42]|45]|50]5.7

e Student A estimated the derivative as f(4)
f(5)—f(4)
—— = =10.5.
5—4
e Student B estimated the derivative as f’(4)
4) —
) = 7G) i §(3) =0.3.
e Student C suggested that they should split the differ-
ence and estimate the average of these two results,
that is, f/(4) ~ %(0.5 +0.3) =04.

(a) Sketch the graph of f, and indicate how the three
estimates are represented on the graph.

(b) Explain which answer is likely to be best.

(c) Use Student C’s method to find an algebraic formula
to approximate f’(x) using increments of size h.

Q

Q

Use Figure 2.64 to fill in the blanks in the following state-
ments about the function f at point A.

@ f(_)=_ b) f(_)=_

Tangent line
(7.2,3.8) o

f(x)

Figure 2.64



35. Use Figure 2.65. At point A, we are told that z = 1. In
3, f/(1) = 2, and h = 0.1. What are
the values of z1, 2, 3, Y1, Y2, y3?

36.

37.

38.

39.

40.

addition, f(1) =

Y

L

Y2 = ——————7

B =

Given all of the following information about a function

L1 L2 T3

Figure 2.65

f, sketch its graph.
e f(z)=0atx=-5,x=0,andz =5
e lim f(z)=o00
o lim f(x)=—

o fllz)=0atx=-3,2 =25 andzx =7

A yam has just been taken out of the oven and is cooling
off before being eaten. The temperature, 7', of the yam
(measured in degrees Fahrenheit) is a function of how
long it has been out of the oven, ¢ (measured in minutes).
Thus, we have T' = f(t).

(a) Is f/(t) positive or negative? Why?
(b) What are the units for f'(¢)?

An economist is interested in how the price of a certain
commodity affects its sales. Suppose that at a price of $p,
a quantity ¢ of the commodity is sold. If ¢ = f(p), ex-
plain in economic terms the meaning of the statements
f(10) = 240,000 and f'(10) =
At time, ¢, in years, the US population is growing at 0.8%
per year times its size, P(t), at that moment. Using the
derivative, write an equation representing this statement.

(a) Using the table, estimate f(0.6) and f/(0.5).

(b) Estimate f”(0.6).

(¢) Where do you think the maximum and minimum
values of f occur in the interval 0 < z < 1?

—29,000.

ZT

0.2

0.4

0.6

0.8

1.0

f(x)

3.7

3.5

3.5

3.9

4.0

3.9
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41. Let g(z) = v/z and f(z) = ka?, where k is a constant.

(a) Find the slope of the tangent line to the graph of g at
the point (4, 2).

(b) Find the equation of this tangent line.

(c) If the graph of f contains the point (4, 2), find k.

(d) Where does the graph of f intersect the tangent line
found in part (b)?

42. A circle with center at the origin and radius of length
V/19 has equation 2 4 32 = 19. Graph the circle.

(a) Just from looking at the graph, what can you say
about the slope of the line tangent to the circle at the
point (0, v/19)? What about the slope of the tangent
at (v/19,0)?

(b) Estimate the slope of the tangent to the circle at the
point (2, —v/15) by graphing the tangent carefully
at that point.

(¢) Use the result of part (b) and the symmetry of the cir-
cle to find slopes of the tangents drawn to the circle

at (—2,v/15), (=2, —V/15), and (2, V/15).

43. Each of the graphs in Figure 2.66 shows the position of
a particle moving along the z-axis as a function of time,
0 <t < 5. The vertical scales of the graphs are the same.
During this time interval, which particle has

(a) Constant velocity?

(b) The greatest initial velocity?

(¢) The greatest average velocity?
(d) Zero average velocity?

(e) Zero acceleration?

(f) Positive acceleration throughout?

bv % t
5
[ —
K} t
%
Figure 2.66
44. The population of a herd of deer is modeled by

P(t) = 4000 + 400 sin (%t) + 180 sin (gt)

where ¢ is measured in months from the first of April.

(a) Use a calculator or computer to sketch a graph show-
ing how this population varies with time.
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45.

46.

Chapter Two KEY CONCEPT: THE DERIVATIVE

Use the graph to answer the following questions.

(b) When is the herd largest? How many deer are in it at
that time?

(¢) When is the herd smallest? How many deer are in it
then?

(d) When is the herd growing the fastest? When is it
shrinking the fastest?

(e) How fast is the herd growing on April 1?

The number of hours, H, of daylight in Madrid is a func-

tion of ¢, the number of days since the start of the year.

Figure 2.67 shows a one-month portion of the graph of
H.

H (daylight in hours)

N A daySSinCe
10 20 30 start of month

Figure 2.67

(a) Comment on the shape of the graph. Why does it
look like a straight line?

(b) What month does this graph show? How do you
know?

(¢) What is the approximate slope of this line? What
does the slope represent in practical terms?

Suppose you put a yam in a hot oven, maintained at a
constant temperature of 200°C. As the yam picks up heat
from the oven, its temperature rises.'®

CAS Challenge Problems

47.

48.

(a) Draw a possible graph of the temperature 7" of the
yam against time ¢ (minutes) since it is put into the
oven. Explain any interesting features of the graph,
and in particular explain its concavity.
Suppose that, at ¢ = 30, the temperature 7" of the
yam is 120° and increasing at the (instantaneous)
rate of 2°/min. Using this information, plus what
you know about the shape of the 7" graph, estimate
the temperature at time ¢ = 40.
Suppose in addition you are told that at ¢ = 60, the
temperature of the yam is 165°. Can you improve
your estimate of the temperature at ¢ = 40?
(d) Assuming all the data given so far, estimate the time
at which the temperature of the yam is 150°.

(b)

(c)

You are given the following values for the error function,
erf(z).

erf(0) = 0 erf(1) = 0.84270079
erf(0.1) = 0.11246292  erf(0.01) = 0.01128342.

(a) Use all this information to determine your best es-
timate for erf’(0). (Give only those digits of which
you feel reasonably certain.)

(b) Suppose you find that erf(0.001) = 0.00112838.
How does this extra information change your answer
to part (a)?

(a) Use your calculator to approximate the derivative of
the hyperbolic sine function (written sinh x) at the
points 0, 0.3, 0.7, and 1.

Can you find a relation between the values of this
derivative and the values of the hyperbolic cosine
(written cosh x)?

(b)

49

50

51

. Use a computer algebra system to find the derivative of
f(x) = sin®z + cos® = and simplify your answer. Ex-
plain your result.

. (a) Use acomputer algebra system to find the derivative
of f(x) = 2sinx cos x.

Simplify f(x) and f'(x) using double angle formu-
las. Write down the derivative formula that you get
after doing this simplification.

(b)

. (a) Use a computer algebra system to find the second
derivative of g(z:) = e~ * with respect to .
Graph g(z) and ¢''(z) on the same axes for a =
1,2,3 and describe the relation between the two
graphs.

Explain your answer to part (b) in terms of concav-

ity.

ax

(b)

(c)

52.

53.

54.

(a) Use a computer algebra system to find the deriva-
tive of f(z) = In(x), g(z) = In(2x), and h(x) =
In(3z). What is the relationship between the an-
swers?

Use the properties of logarithms to explain what you

see in part (a).

(b)

(a) Use a computer algebra system to find the derivative
of (2 +1)%, (z® + 1), and (2 + 1)*.

(b) Conjecture a formula for the derivative of (2% + 1)"
that works for any integer n. Check your formula
using the computer algebra system.

(a) Use a computer algebra system to find the deriva-
tives of sin x, cos x and sin x cos x.

(b) Is the derivative of a product of two functions always
equal to the product of their derivatives?

13From Peter D. Taylor, Calculus: The Analysis of Functions (Toronto: Wall & Emerson, Inc., 1992).



CHECK YOUR UNDERSTANDING

Are the statements in Problems 1-22 true or false? Give an
explanation for your answer.

1.

14.
15.

If a car is going 50 miles per hour at 2 pm and 60 miles
per hour at 3 pm then it travels between 50 and 60 miles
during the hour between 2 pm and 3 pm.

. If a car travels 80 miles between 2 and 4 pm, then its

velocity is close to 40 mph at 2 pm.

. If the time interval is short enough, then the average ve-

locity of a car over the time interval and the instantaneous
velocity at a time in the interval can be expected to be
close.

. If an object moves with the same average velocity over

every time interval, then its average velocity equals its
instantaneous velocity at any time.

. The formula Distance traveled = Average velocity x

Time is valid for every moving object for every time in-
terval.

. By definition, the instantaneous velocity of an object

equals a difference quotient.

. If f(x) is concave up, then

f'(a) < (f(b) — f(a))/(b— a) fora < b.

. You cannot be sure of the exact value of a derivative of a

function at a point using only the information in a table
of values of the function. The best you can do is find an
approximation.

. If f'(z) is increasing, then f(z) is also increasing.
10.
11.
12.
13.

If f(a) # g(a). then f'(a) # ¢'(a).

The derivative of a linear function is constant.

If g(z) is a vertical shift of f(x), then f'(z) = ¢’ ().
If f(z) is defined for all z but f’(0) is not defined, then
the graph of f(z) must have a corner at the point where
x =0.

iy = f(@).then | = f'(a)

If you zoom in (with your calculator) on the graph of
y = f(x) in a small interval around z = 10 and see a
straight line, then the slope of that line equals the deriva-
tive f/(10).

16.
17.

18.

19.

20.

21.
22.
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If f”(x) > 0 then f'(x) is increasing.

The instantaneous acceleration of a moving particle at
time ¢ is the limit of difference quotients.

If f(¢) is the quantity in grams of a chemical produced af-
ter ¢ minutes and g(¢) is the same quantity in kilograms,
then f'(t) = 1000g’ (¢).

If f(¢) is the quantity in kilograms of a chemical pro-
duced after ¢ minutes and g¢(t) is the quantity in kilo-
grams produced after ¢ seconds, then f'(t) = 60g’(t).

A function which is monotonic on an interval is either
increasing or decreasing on the interval.

3

The function f(x) = x° is monotonic on any interval.

The function f(x) = 2 is monotonic on any interval.

Are the statements in Problems 23-27 true or false? If a state-
ment is true, give an example illustrating it. If a statement is
false, give a counterexample.

23.

24.
25.
26.

217.

28.

There is a function which is continuous on [1, 5] but not
differentiable at = = 3.

If a function is differentiable, then it is continuous.
If a function is continuous, then it is differentiable.

If a function is not continuous, then it is not differen-
tiable.

If a function is not differentiable, then it is not continu-
ous.

Which of the following would be a counterexample to
the statement: “If f is differentiable at x = a then f is
continuous at x = a”?

(a) A function which is not differentiable at x = a but
is continuous at x = a.

(b) A function which is not continuous at x = a but is
differentiable at z = a.

(¢) A function which is both continuous and differen-
tiable at = a.

(d) A function which is neither continuous nor differen-
tiable at x = a.
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PROJECTS FOR CHAPTER TWO

1. Hours of Daylight as a Function of Latitude
Let S(z) be the number of sunlight hours on a cloudless June 21, as a function of latitude, ,
measured in degrees.
(a) Whatis S(0)?
(b) Let x( be the latitude of the Arctic Circle (xy ~ 66°30’). In the northern hemisphere, S(x)
is given, for some constants ¢ and b, by the formula:

a + barcsin tanz forO0<z <z
Sx)=4" ’ tan = 0

24 for zog < x < 90.

Find a and b so that S(x) is continuous.
(¢) Calculate S(z) for Tucson, Arizona (x = 32°13’) and Walla Walla, Washington (46°4").
(d) Graph S(z), for 0 < z < 90.
(e) Does S(x) appear to be differentiable?

2. US Population
Census figures for the US population (in millions) are listed in Table 2.12. Let f be the
function such that P = f(t) is the population (in millions) in year ¢.

Table 212 US population (in millions), 1790-2000

Year Population Year Population Year Population Year Population
1790 39 1850 23.1 1910 92.0 1970 205.0
1800 53 1860 314 1920 105.7 1980 226.5
1810 72 1870 38.6 1930 122.8 1990 248.7
1820 9.6 1880 50.2 1940 131.7 2000 281.4
1830 12.9 1890 62.9 1950 150.7

1840 17.1 1900 76.0 1960 179.0

(a) (i) Estimate the rate of change of the population for the years 1900, 1945, and 2000.
(ii)) When, approximately, was the rate of change of the population greatest?
(iii) Estimate the US population in 1956.

(iv) Based on the data from the table, what would you predict for the census in the year
20107
(b) Assume that f is increasing (as the values in the table suggest). Then f is invertible.

(i) What is the meaning of f~*(100)?

(ii) What does the derivative of f~!(P) at P = 100 represent? What are its units?
(iii) Estimate f~1(100).
(iv) Estimate the derivative of f~!(P) at P = 100.

(¢) (i) Usually we think the US population P = f(t) as a smooth function of time. To what
extent is this justified? What happens if we zoom in at a point of the graph? What about
events such as the Louisiana Purchase? Or the moment of your birth?

(ii)) What do we in fact mean by the rate of change of the population at a particular time ¢?

(iii) Give another example of a real-world function which is not smooth but is usually
treated as such.



